1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry, next; 479 vm_object_t object; 480 481 td = curthread; 482 entry = td->td_map_def_user; 483 td->td_map_def_user = NULL; 484 while (entry != NULL) { 485 next = entry->next; 486 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 487 /* 488 * Decrement the object's writemappings and 489 * possibly the vnode's v_writecount. 490 */ 491 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 492 ("Submap with writecount")); 493 object = entry->object.vm_object; 494 KASSERT(object != NULL, ("No object for writecount")); 495 vnode_pager_release_writecount(object, entry->start, 496 entry->end); 497 } 498 vm_map_entry_deallocate(entry, FALSE); 499 entry = next; 500 } 501 } 502 503 void 504 _vm_map_unlock(vm_map_t map, const char *file, int line) 505 { 506 507 if (map->system_map) 508 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 509 else { 510 sx_xunlock_(&map->lock, file, line); 511 vm_map_process_deferred(); 512 } 513 } 514 515 void 516 _vm_map_lock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_lock_flags_(&map->system_mtx, 0, file, line); 521 else 522 sx_slock_(&map->lock, file, line); 523 } 524 525 void 526 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 527 { 528 529 if (map->system_map) 530 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 531 else { 532 sx_sunlock_(&map->lock, file, line); 533 vm_map_process_deferred(); 534 } 535 } 536 537 int 538 _vm_map_trylock(vm_map_t map, const char *file, int line) 539 { 540 int error; 541 542 error = map->system_map ? 543 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 544 !sx_try_xlock_(&map->lock, file, line); 545 if (error == 0) 546 map->timestamp++; 547 return (error == 0); 548 } 549 550 int 551 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 552 { 553 int error; 554 555 error = map->system_map ? 556 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 557 !sx_try_slock_(&map->lock, file, line); 558 return (error == 0); 559 } 560 561 /* 562 * _vm_map_lock_upgrade: [ internal use only ] 563 * 564 * Tries to upgrade a read (shared) lock on the specified map to a write 565 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 566 * non-zero value if the upgrade fails. If the upgrade fails, the map is 567 * returned without a read or write lock held. 568 * 569 * Requires that the map be read locked. 570 */ 571 int 572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 573 { 574 unsigned int last_timestamp; 575 576 if (map->system_map) { 577 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 578 } else { 579 if (!sx_try_upgrade_(&map->lock, file, line)) { 580 last_timestamp = map->timestamp; 581 sx_sunlock_(&map->lock, file, line); 582 vm_map_process_deferred(); 583 /* 584 * If the map's timestamp does not change while the 585 * map is unlocked, then the upgrade succeeds. 586 */ 587 sx_xlock_(&map->lock, file, line); 588 if (last_timestamp != map->timestamp) { 589 sx_xunlock_(&map->lock, file, line); 590 return (1); 591 } 592 } 593 } 594 map->timestamp++; 595 return (0); 596 } 597 598 void 599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 600 { 601 602 if (map->system_map) { 603 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 604 } else 605 sx_downgrade_(&map->lock, file, line); 606 } 607 608 /* 609 * vm_map_locked: 610 * 611 * Returns a non-zero value if the caller holds a write (exclusive) lock 612 * on the specified map and the value "0" otherwise. 613 */ 614 int 615 vm_map_locked(vm_map_t map) 616 { 617 618 if (map->system_map) 619 return (mtx_owned(&map->system_mtx)); 620 else 621 return (sx_xlocked(&map->lock)); 622 } 623 624 #ifdef INVARIANTS 625 static void 626 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 627 { 628 629 if (map->system_map) 630 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 631 else 632 sx_assert_(&map->lock, SA_XLOCKED, file, line); 633 } 634 635 #define VM_MAP_ASSERT_LOCKED(map) \ 636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 637 #else 638 #define VM_MAP_ASSERT_LOCKED(map) 639 #endif 640 641 /* 642 * _vm_map_unlock_and_wait: 643 * 644 * Atomically releases the lock on the specified map and puts the calling 645 * thread to sleep. The calling thread will remain asleep until either 646 * vm_map_wakeup() is performed on the map or the specified timeout is 647 * exceeded. 648 * 649 * WARNING! This function does not perform deferred deallocations of 650 * objects and map entries. Therefore, the calling thread is expected to 651 * reacquire the map lock after reawakening and later perform an ordinary 652 * unlock operation, such as vm_map_unlock(), before completing its 653 * operation on the map. 654 */ 655 int 656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 657 { 658 659 mtx_lock(&map_sleep_mtx); 660 if (map->system_map) 661 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 662 else 663 sx_xunlock_(&map->lock, file, line); 664 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 665 timo)); 666 } 667 668 /* 669 * vm_map_wakeup: 670 * 671 * Awaken any threads that have slept on the map using 672 * vm_map_unlock_and_wait(). 673 */ 674 void 675 vm_map_wakeup(vm_map_t map) 676 { 677 678 /* 679 * Acquire and release map_sleep_mtx to prevent a wakeup() 680 * from being performed (and lost) between the map unlock 681 * and the msleep() in _vm_map_unlock_and_wait(). 682 */ 683 mtx_lock(&map_sleep_mtx); 684 mtx_unlock(&map_sleep_mtx); 685 wakeup(&map->root); 686 } 687 688 void 689 vm_map_busy(vm_map_t map) 690 { 691 692 VM_MAP_ASSERT_LOCKED(map); 693 map->busy++; 694 } 695 696 void 697 vm_map_unbusy(vm_map_t map) 698 { 699 700 VM_MAP_ASSERT_LOCKED(map); 701 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 702 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 703 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 704 wakeup(&map->busy); 705 } 706 } 707 708 void 709 vm_map_wait_busy(vm_map_t map) 710 { 711 712 VM_MAP_ASSERT_LOCKED(map); 713 while (map->busy) { 714 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 715 if (map->system_map) 716 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 717 else 718 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 719 } 720 map->timestamp++; 721 } 722 723 long 724 vmspace_resident_count(struct vmspace *vmspace) 725 { 726 return pmap_resident_count(vmspace_pmap(vmspace)); 727 } 728 729 /* 730 * vm_map_create: 731 * 732 * Creates and returns a new empty VM map with 733 * the given physical map structure, and having 734 * the given lower and upper address bounds. 735 */ 736 vm_map_t 737 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 738 { 739 vm_map_t result; 740 741 result = uma_zalloc(mapzone, M_WAITOK); 742 CTR1(KTR_VM, "vm_map_create: %p", result); 743 _vm_map_init(result, pmap, min, max); 744 return (result); 745 } 746 747 /* 748 * Initialize an existing vm_map structure 749 * such as that in the vmspace structure. 750 */ 751 static void 752 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 753 { 754 755 map->header.next = map->header.prev = &map->header; 756 map->needs_wakeup = FALSE; 757 map->system_map = 0; 758 map->pmap = pmap; 759 map->min_offset = min; 760 map->max_offset = max; 761 map->flags = 0; 762 map->root = NULL; 763 map->timestamp = 0; 764 map->busy = 0; 765 } 766 767 void 768 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 769 { 770 771 _vm_map_init(map, pmap, min, max); 772 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 773 sx_init(&map->lock, "user map"); 774 } 775 776 /* 777 * vm_map_entry_dispose: [ internal use only ] 778 * 779 * Inverse of vm_map_entry_create. 780 */ 781 static void 782 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 783 { 784 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 785 } 786 787 /* 788 * vm_map_entry_create: [ internal use only ] 789 * 790 * Allocates a VM map entry for insertion. 791 * No entry fields are filled in. 792 */ 793 static vm_map_entry_t 794 vm_map_entry_create(vm_map_t map) 795 { 796 vm_map_entry_t new_entry; 797 798 if (map->system_map) 799 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 800 else 801 new_entry = uma_zalloc(mapentzone, M_WAITOK); 802 if (new_entry == NULL) 803 panic("vm_map_entry_create: kernel resources exhausted"); 804 return (new_entry); 805 } 806 807 /* 808 * vm_map_entry_set_behavior: 809 * 810 * Set the expected access behavior, either normal, random, or 811 * sequential. 812 */ 813 static inline void 814 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 815 { 816 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 817 (behavior & MAP_ENTRY_BEHAV_MASK); 818 } 819 820 /* 821 * vm_map_entry_set_max_free: 822 * 823 * Set the max_free field in a vm_map_entry. 824 */ 825 static inline void 826 vm_map_entry_set_max_free(vm_map_entry_t entry) 827 { 828 829 entry->max_free = entry->adj_free; 830 if (entry->left != NULL && entry->left->max_free > entry->max_free) 831 entry->max_free = entry->left->max_free; 832 if (entry->right != NULL && entry->right->max_free > entry->max_free) 833 entry->max_free = entry->right->max_free; 834 } 835 836 /* 837 * vm_map_entry_splay: 838 * 839 * The Sleator and Tarjan top-down splay algorithm with the 840 * following variation. Max_free must be computed bottom-up, so 841 * on the downward pass, maintain the left and right spines in 842 * reverse order. Then, make a second pass up each side to fix 843 * the pointers and compute max_free. The time bound is O(log n) 844 * amortized. 845 * 846 * The new root is the vm_map_entry containing "addr", or else an 847 * adjacent entry (lower or higher) if addr is not in the tree. 848 * 849 * The map must be locked, and leaves it so. 850 * 851 * Returns: the new root. 852 */ 853 static vm_map_entry_t 854 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 855 { 856 vm_map_entry_t llist, rlist; 857 vm_map_entry_t ltree, rtree; 858 vm_map_entry_t y; 859 860 /* Special case of empty tree. */ 861 if (root == NULL) 862 return (root); 863 864 /* 865 * Pass One: Splay down the tree until we find addr or a NULL 866 * pointer where addr would go. llist and rlist are the two 867 * sides in reverse order (bottom-up), with llist linked by 868 * the right pointer and rlist linked by the left pointer in 869 * the vm_map_entry. Wait until Pass Two to set max_free on 870 * the two spines. 871 */ 872 llist = NULL; 873 rlist = NULL; 874 for (;;) { 875 /* root is never NULL in here. */ 876 if (addr < root->start) { 877 y = root->left; 878 if (y == NULL) 879 break; 880 if (addr < y->start && y->left != NULL) { 881 /* Rotate right and put y on rlist. */ 882 root->left = y->right; 883 y->right = root; 884 vm_map_entry_set_max_free(root); 885 root = y->left; 886 y->left = rlist; 887 rlist = y; 888 } else { 889 /* Put root on rlist. */ 890 root->left = rlist; 891 rlist = root; 892 root = y; 893 } 894 } else if (addr >= root->end) { 895 y = root->right; 896 if (y == NULL) 897 break; 898 if (addr >= y->end && y->right != NULL) { 899 /* Rotate left and put y on llist. */ 900 root->right = y->left; 901 y->left = root; 902 vm_map_entry_set_max_free(root); 903 root = y->right; 904 y->right = llist; 905 llist = y; 906 } else { 907 /* Put root on llist. */ 908 root->right = llist; 909 llist = root; 910 root = y; 911 } 912 } else 913 break; 914 } 915 916 /* 917 * Pass Two: Walk back up the two spines, flip the pointers 918 * and set max_free. The subtrees of the root go at the 919 * bottom of llist and rlist. 920 */ 921 ltree = root->left; 922 while (llist != NULL) { 923 y = llist->right; 924 llist->right = ltree; 925 vm_map_entry_set_max_free(llist); 926 ltree = llist; 927 llist = y; 928 } 929 rtree = root->right; 930 while (rlist != NULL) { 931 y = rlist->left; 932 rlist->left = rtree; 933 vm_map_entry_set_max_free(rlist); 934 rtree = rlist; 935 rlist = y; 936 } 937 938 /* 939 * Final assembly: add ltree and rtree as subtrees of root. 940 */ 941 root->left = ltree; 942 root->right = rtree; 943 vm_map_entry_set_max_free(root); 944 945 return (root); 946 } 947 948 /* 949 * vm_map_entry_{un,}link: 950 * 951 * Insert/remove entries from maps. 952 */ 953 static void 954 vm_map_entry_link(vm_map_t map, 955 vm_map_entry_t after_where, 956 vm_map_entry_t entry) 957 { 958 959 CTR4(KTR_VM, 960 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 961 map->nentries, entry, after_where); 962 VM_MAP_ASSERT_LOCKED(map); 963 map->nentries++; 964 entry->prev = after_where; 965 entry->next = after_where->next; 966 entry->next->prev = entry; 967 after_where->next = entry; 968 969 if (after_where != &map->header) { 970 if (after_where != map->root) 971 vm_map_entry_splay(after_where->start, map->root); 972 entry->right = after_where->right; 973 entry->left = after_where; 974 after_where->right = NULL; 975 after_where->adj_free = entry->start - after_where->end; 976 vm_map_entry_set_max_free(after_where); 977 } else { 978 entry->right = map->root; 979 entry->left = NULL; 980 } 981 entry->adj_free = (entry->next == &map->header ? map->max_offset : 982 entry->next->start) - entry->end; 983 vm_map_entry_set_max_free(entry); 984 map->root = entry; 985 } 986 987 static void 988 vm_map_entry_unlink(vm_map_t map, 989 vm_map_entry_t entry) 990 { 991 vm_map_entry_t next, prev, root; 992 993 VM_MAP_ASSERT_LOCKED(map); 994 if (entry != map->root) 995 vm_map_entry_splay(entry->start, map->root); 996 if (entry->left == NULL) 997 root = entry->right; 998 else { 999 root = vm_map_entry_splay(entry->start, entry->left); 1000 root->right = entry->right; 1001 root->adj_free = (entry->next == &map->header ? map->max_offset : 1002 entry->next->start) - root->end; 1003 vm_map_entry_set_max_free(root); 1004 } 1005 map->root = root; 1006 1007 prev = entry->prev; 1008 next = entry->next; 1009 next->prev = prev; 1010 prev->next = next; 1011 map->nentries--; 1012 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1013 map->nentries, entry); 1014 } 1015 1016 /* 1017 * vm_map_entry_resize_free: 1018 * 1019 * Recompute the amount of free space following a vm_map_entry 1020 * and propagate that value up the tree. Call this function after 1021 * resizing a map entry in-place, that is, without a call to 1022 * vm_map_entry_link() or _unlink(). 1023 * 1024 * The map must be locked, and leaves it so. 1025 */ 1026 static void 1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1028 { 1029 1030 /* 1031 * Using splay trees without parent pointers, propagating 1032 * max_free up the tree is done by moving the entry to the 1033 * root and making the change there. 1034 */ 1035 if (entry != map->root) 1036 map->root = vm_map_entry_splay(entry->start, map->root); 1037 1038 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1039 entry->next->start) - entry->end; 1040 vm_map_entry_set_max_free(entry); 1041 } 1042 1043 /* 1044 * vm_map_lookup_entry: [ internal use only ] 1045 * 1046 * Finds the map entry containing (or 1047 * immediately preceding) the specified address 1048 * in the given map; the entry is returned 1049 * in the "entry" parameter. The boolean 1050 * result indicates whether the address is 1051 * actually contained in the map. 1052 */ 1053 boolean_t 1054 vm_map_lookup_entry( 1055 vm_map_t map, 1056 vm_offset_t address, 1057 vm_map_entry_t *entry) /* OUT */ 1058 { 1059 vm_map_entry_t cur; 1060 boolean_t locked; 1061 1062 /* 1063 * If the map is empty, then the map entry immediately preceding 1064 * "address" is the map's header. 1065 */ 1066 cur = map->root; 1067 if (cur == NULL) 1068 *entry = &map->header; 1069 else if (address >= cur->start && cur->end > address) { 1070 *entry = cur; 1071 return (TRUE); 1072 } else if ((locked = vm_map_locked(map)) || 1073 sx_try_upgrade(&map->lock)) { 1074 /* 1075 * Splay requires a write lock on the map. However, it only 1076 * restructures the binary search tree; it does not otherwise 1077 * change the map. Thus, the map's timestamp need not change 1078 * on a temporary upgrade. 1079 */ 1080 map->root = cur = vm_map_entry_splay(address, cur); 1081 if (!locked) 1082 sx_downgrade(&map->lock); 1083 1084 /* 1085 * If "address" is contained within a map entry, the new root 1086 * is that map entry. Otherwise, the new root is a map entry 1087 * immediately before or after "address". 1088 */ 1089 if (address >= cur->start) { 1090 *entry = cur; 1091 if (cur->end > address) 1092 return (TRUE); 1093 } else 1094 *entry = cur->prev; 1095 } else 1096 /* 1097 * Since the map is only locked for read access, perform a 1098 * standard binary search tree lookup for "address". 1099 */ 1100 for (;;) { 1101 if (address < cur->start) { 1102 if (cur->left == NULL) { 1103 *entry = cur->prev; 1104 break; 1105 } 1106 cur = cur->left; 1107 } else if (cur->end > address) { 1108 *entry = cur; 1109 return (TRUE); 1110 } else { 1111 if (cur->right == NULL) { 1112 *entry = cur; 1113 break; 1114 } 1115 cur = cur->right; 1116 } 1117 } 1118 return (FALSE); 1119 } 1120 1121 /* 1122 * vm_map_insert: 1123 * 1124 * Inserts the given whole VM object into the target 1125 * map at the specified address range. The object's 1126 * size should match that of the address range. 1127 * 1128 * Requires that the map be locked, and leaves it so. 1129 * 1130 * If object is non-NULL, ref count must be bumped by caller 1131 * prior to making call to account for the new entry. 1132 */ 1133 int 1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1135 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1136 int cow) 1137 { 1138 vm_map_entry_t new_entry; 1139 vm_map_entry_t prev_entry; 1140 vm_map_entry_t temp_entry; 1141 vm_eflags_t protoeflags; 1142 struct ucred *cred; 1143 vm_inherit_t inheritance; 1144 boolean_t charge_prev_obj; 1145 1146 VM_MAP_ASSERT_LOCKED(map); 1147 1148 /* 1149 * Check that the start and end points are not bogus. 1150 */ 1151 if ((start < map->min_offset) || (end > map->max_offset) || 1152 (start >= end)) 1153 return (KERN_INVALID_ADDRESS); 1154 1155 /* 1156 * Find the entry prior to the proposed starting address; if it's part 1157 * of an existing entry, this range is bogus. 1158 */ 1159 if (vm_map_lookup_entry(map, start, &temp_entry)) 1160 return (KERN_NO_SPACE); 1161 1162 prev_entry = temp_entry; 1163 1164 /* 1165 * Assert that the next entry doesn't overlap the end point. 1166 */ 1167 if ((prev_entry->next != &map->header) && 1168 (prev_entry->next->start < end)) 1169 return (KERN_NO_SPACE); 1170 1171 protoeflags = 0; 1172 charge_prev_obj = FALSE; 1173 1174 if (cow & MAP_COPY_ON_WRITE) 1175 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1176 1177 if (cow & MAP_NOFAULT) { 1178 protoeflags |= MAP_ENTRY_NOFAULT; 1179 1180 KASSERT(object == NULL, 1181 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1182 } 1183 if (cow & MAP_DISABLE_SYNCER) 1184 protoeflags |= MAP_ENTRY_NOSYNC; 1185 if (cow & MAP_DISABLE_COREDUMP) 1186 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1187 if (cow & MAP_VN_WRITECOUNT) 1188 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1189 if (cow & MAP_INHERIT_SHARE) 1190 inheritance = VM_INHERIT_SHARE; 1191 else 1192 inheritance = VM_INHERIT_DEFAULT; 1193 1194 cred = NULL; 1195 KASSERT((object != kmem_object && object != kernel_object) || 1196 ((object == kmem_object || object == kernel_object) && 1197 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1198 ("kmem or kernel object and cow")); 1199 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1200 goto charged; 1201 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1202 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1203 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1204 return (KERN_RESOURCE_SHORTAGE); 1205 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1206 object->cred == NULL, 1207 ("OVERCOMMIT: vm_map_insert o %p", object)); 1208 cred = curthread->td_ucred; 1209 crhold(cred); 1210 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1211 charge_prev_obj = TRUE; 1212 } 1213 1214 charged: 1215 /* Expand the kernel pmap, if necessary. */ 1216 if (map == kernel_map && end > kernel_vm_end) 1217 pmap_growkernel(end); 1218 if (object != NULL) { 1219 /* 1220 * OBJ_ONEMAPPING must be cleared unless this mapping 1221 * is trivially proven to be the only mapping for any 1222 * of the object's pages. (Object granularity 1223 * reference counting is insufficient to recognize 1224 * aliases with precision.) 1225 */ 1226 VM_OBJECT_WLOCK(object); 1227 if (object->ref_count > 1 || object->shadow_count != 0) 1228 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1229 VM_OBJECT_WUNLOCK(object); 1230 } 1231 else if ((prev_entry != &map->header) && 1232 (prev_entry->eflags == protoeflags) && 1233 (prev_entry->end == start) && 1234 (prev_entry->wired_count == 0) && 1235 (prev_entry->cred == cred || 1236 (prev_entry->object.vm_object != NULL && 1237 (prev_entry->object.vm_object->cred == cred))) && 1238 vm_object_coalesce(prev_entry->object.vm_object, 1239 prev_entry->offset, 1240 (vm_size_t)(prev_entry->end - prev_entry->start), 1241 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1242 /* 1243 * We were able to extend the object. Determine if we 1244 * can extend the previous map entry to include the 1245 * new range as well. 1246 */ 1247 if ((prev_entry->inheritance == inheritance) && 1248 (prev_entry->protection == prot) && 1249 (prev_entry->max_protection == max)) { 1250 map->size += (end - prev_entry->end); 1251 prev_entry->end = end; 1252 vm_map_entry_resize_free(map, prev_entry); 1253 vm_map_simplify_entry(map, prev_entry); 1254 if (cred != NULL) 1255 crfree(cred); 1256 return (KERN_SUCCESS); 1257 } 1258 1259 /* 1260 * If we can extend the object but cannot extend the 1261 * map entry, we have to create a new map entry. We 1262 * must bump the ref count on the extended object to 1263 * account for it. object may be NULL. 1264 */ 1265 object = prev_entry->object.vm_object; 1266 offset = prev_entry->offset + 1267 (prev_entry->end - prev_entry->start); 1268 vm_object_reference(object); 1269 if (cred != NULL && object != NULL && object->cred != NULL && 1270 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1271 /* Object already accounts for this uid. */ 1272 crfree(cred); 1273 cred = NULL; 1274 } 1275 } 1276 1277 /* 1278 * NOTE: if conditionals fail, object can be NULL here. This occurs 1279 * in things like the buffer map where we manage kva but do not manage 1280 * backing objects. 1281 */ 1282 1283 /* 1284 * Create a new entry 1285 */ 1286 new_entry = vm_map_entry_create(map); 1287 new_entry->start = start; 1288 new_entry->end = end; 1289 new_entry->cred = NULL; 1290 1291 new_entry->eflags = protoeflags; 1292 new_entry->object.vm_object = object; 1293 new_entry->offset = offset; 1294 new_entry->avail_ssize = 0; 1295 1296 new_entry->inheritance = inheritance; 1297 new_entry->protection = prot; 1298 new_entry->max_protection = max; 1299 new_entry->wired_count = 0; 1300 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1301 new_entry->next_read = OFF_TO_IDX(offset); 1302 1303 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1304 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1305 new_entry->cred = cred; 1306 1307 /* 1308 * Insert the new entry into the list 1309 */ 1310 vm_map_entry_link(map, prev_entry, new_entry); 1311 map->size += new_entry->end - new_entry->start; 1312 1313 /* 1314 * It may be possible to merge the new entry with the next and/or 1315 * previous entries. However, due to MAP_STACK_* being a hack, a 1316 * panic can result from merging such entries. 1317 */ 1318 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1319 vm_map_simplify_entry(map, new_entry); 1320 1321 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1322 vm_map_pmap_enter(map, start, prot, 1323 object, OFF_TO_IDX(offset), end - start, 1324 cow & MAP_PREFAULT_PARTIAL); 1325 } 1326 1327 return (KERN_SUCCESS); 1328 } 1329 1330 /* 1331 * vm_map_findspace: 1332 * 1333 * Find the first fit (lowest VM address) for "length" free bytes 1334 * beginning at address >= start in the given map. 1335 * 1336 * In a vm_map_entry, "adj_free" is the amount of free space 1337 * adjacent (higher address) to this entry, and "max_free" is the 1338 * maximum amount of contiguous free space in its subtree. This 1339 * allows finding a free region in one path down the tree, so 1340 * O(log n) amortized with splay trees. 1341 * 1342 * The map must be locked, and leaves it so. 1343 * 1344 * Returns: 0 on success, and starting address in *addr, 1345 * 1 if insufficient space. 1346 */ 1347 int 1348 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1349 vm_offset_t *addr) /* OUT */ 1350 { 1351 vm_map_entry_t entry; 1352 vm_offset_t st; 1353 1354 /* 1355 * Request must fit within min/max VM address and must avoid 1356 * address wrap. 1357 */ 1358 if (start < map->min_offset) 1359 start = map->min_offset; 1360 if (start + length > map->max_offset || start + length < start) 1361 return (1); 1362 1363 /* Empty tree means wide open address space. */ 1364 if (map->root == NULL) { 1365 *addr = start; 1366 return (0); 1367 } 1368 1369 /* 1370 * After splay, if start comes before root node, then there 1371 * must be a gap from start to the root. 1372 */ 1373 map->root = vm_map_entry_splay(start, map->root); 1374 if (start + length <= map->root->start) { 1375 *addr = start; 1376 return (0); 1377 } 1378 1379 /* 1380 * Root is the last node that might begin its gap before 1381 * start, and this is the last comparison where address 1382 * wrap might be a problem. 1383 */ 1384 st = (start > map->root->end) ? start : map->root->end; 1385 if (length <= map->root->end + map->root->adj_free - st) { 1386 *addr = st; 1387 return (0); 1388 } 1389 1390 /* With max_free, can immediately tell if no solution. */ 1391 entry = map->root->right; 1392 if (entry == NULL || length > entry->max_free) 1393 return (1); 1394 1395 /* 1396 * Search the right subtree in the order: left subtree, root, 1397 * right subtree (first fit). The previous splay implies that 1398 * all regions in the right subtree have addresses > start. 1399 */ 1400 while (entry != NULL) { 1401 if (entry->left != NULL && entry->left->max_free >= length) 1402 entry = entry->left; 1403 else if (entry->adj_free >= length) { 1404 *addr = entry->end; 1405 return (0); 1406 } else 1407 entry = entry->right; 1408 } 1409 1410 /* Can't get here, so panic if we do. */ 1411 panic("vm_map_findspace: max_free corrupt"); 1412 } 1413 1414 int 1415 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1416 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1417 vm_prot_t max, int cow) 1418 { 1419 vm_offset_t end; 1420 int result; 1421 1422 end = start + length; 1423 vm_map_lock(map); 1424 VM_MAP_RANGE_CHECK(map, start, end); 1425 (void) vm_map_delete(map, start, end); 1426 result = vm_map_insert(map, object, offset, start, end, prot, 1427 max, cow); 1428 vm_map_unlock(map); 1429 return (result); 1430 } 1431 1432 /* 1433 * vm_map_find finds an unallocated region in the target address 1434 * map with the given length. The search is defined to be 1435 * first-fit from the specified address; the region found is 1436 * returned in the same parameter. 1437 * 1438 * If object is non-NULL, ref count must be bumped by caller 1439 * prior to making call to account for the new entry. 1440 */ 1441 int 1442 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1443 vm_offset_t *addr, /* IN/OUT */ 1444 vm_size_t length, int find_space, vm_prot_t prot, 1445 vm_prot_t max, int cow) 1446 { 1447 vm_offset_t start, initial_addr; 1448 int result; 1449 1450 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1451 (object->flags & OBJ_COLORED) == 0)) 1452 find_space = VMFS_ANY_SPACE; 1453 initial_addr = *addr; 1454 again: 1455 start = initial_addr; 1456 vm_map_lock(map); 1457 do { 1458 if (find_space != VMFS_NO_SPACE) { 1459 if (vm_map_findspace(map, start, length, addr)) { 1460 vm_map_unlock(map); 1461 if (find_space == VMFS_OPTIMAL_SPACE) { 1462 find_space = VMFS_ANY_SPACE; 1463 goto again; 1464 } 1465 return (KERN_NO_SPACE); 1466 } 1467 switch (find_space) { 1468 case VMFS_ALIGNED_SPACE: 1469 case VMFS_OPTIMAL_SPACE: 1470 pmap_align_superpage(object, offset, addr, 1471 length); 1472 break; 1473 #ifdef VMFS_TLB_ALIGNED_SPACE 1474 case VMFS_TLB_ALIGNED_SPACE: 1475 pmap_align_tlb(addr); 1476 break; 1477 #endif 1478 default: 1479 break; 1480 } 1481 1482 start = *addr; 1483 } 1484 result = vm_map_insert(map, object, offset, start, start + 1485 length, prot, max, cow); 1486 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE || 1487 #ifdef VMFS_TLB_ALIGNED_SPACE 1488 find_space == VMFS_TLB_ALIGNED_SPACE || 1489 #endif 1490 find_space == VMFS_OPTIMAL_SPACE)); 1491 vm_map_unlock(map); 1492 return (result); 1493 } 1494 1495 /* 1496 * vm_map_simplify_entry: 1497 * 1498 * Simplify the given map entry by merging with either neighbor. This 1499 * routine also has the ability to merge with both neighbors. 1500 * 1501 * The map must be locked. 1502 * 1503 * This routine guarentees that the passed entry remains valid (though 1504 * possibly extended). When merging, this routine may delete one or 1505 * both neighbors. 1506 */ 1507 void 1508 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1509 { 1510 vm_map_entry_t next, prev; 1511 vm_size_t prevsize, esize; 1512 1513 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1514 return; 1515 1516 prev = entry->prev; 1517 if (prev != &map->header) { 1518 prevsize = prev->end - prev->start; 1519 if ( (prev->end == entry->start) && 1520 (prev->object.vm_object == entry->object.vm_object) && 1521 (!prev->object.vm_object || 1522 (prev->offset + prevsize == entry->offset)) && 1523 (prev->eflags == entry->eflags) && 1524 (prev->protection == entry->protection) && 1525 (prev->max_protection == entry->max_protection) && 1526 (prev->inheritance == entry->inheritance) && 1527 (prev->wired_count == entry->wired_count) && 1528 (prev->cred == entry->cred)) { 1529 vm_map_entry_unlink(map, prev); 1530 entry->start = prev->start; 1531 entry->offset = prev->offset; 1532 if (entry->prev != &map->header) 1533 vm_map_entry_resize_free(map, entry->prev); 1534 1535 /* 1536 * If the backing object is a vnode object, 1537 * vm_object_deallocate() calls vrele(). 1538 * However, vrele() does not lock the vnode 1539 * because the vnode has additional 1540 * references. Thus, the map lock can be kept 1541 * without causing a lock-order reversal with 1542 * the vnode lock. 1543 * 1544 * Since we count the number of virtual page 1545 * mappings in object->un_pager.vnp.writemappings, 1546 * the writemappings value should not be adjusted 1547 * when the entry is disposed of. 1548 */ 1549 if (prev->object.vm_object) 1550 vm_object_deallocate(prev->object.vm_object); 1551 if (prev->cred != NULL) 1552 crfree(prev->cred); 1553 vm_map_entry_dispose(map, prev); 1554 } 1555 } 1556 1557 next = entry->next; 1558 if (next != &map->header) { 1559 esize = entry->end - entry->start; 1560 if ((entry->end == next->start) && 1561 (next->object.vm_object == entry->object.vm_object) && 1562 (!entry->object.vm_object || 1563 (entry->offset + esize == next->offset)) && 1564 (next->eflags == entry->eflags) && 1565 (next->protection == entry->protection) && 1566 (next->max_protection == entry->max_protection) && 1567 (next->inheritance == entry->inheritance) && 1568 (next->wired_count == entry->wired_count) && 1569 (next->cred == entry->cred)) { 1570 vm_map_entry_unlink(map, next); 1571 entry->end = next->end; 1572 vm_map_entry_resize_free(map, entry); 1573 1574 /* 1575 * See comment above. 1576 */ 1577 if (next->object.vm_object) 1578 vm_object_deallocate(next->object.vm_object); 1579 if (next->cred != NULL) 1580 crfree(next->cred); 1581 vm_map_entry_dispose(map, next); 1582 } 1583 } 1584 } 1585 /* 1586 * vm_map_clip_start: [ internal use only ] 1587 * 1588 * Asserts that the given entry begins at or after 1589 * the specified address; if necessary, 1590 * it splits the entry into two. 1591 */ 1592 #define vm_map_clip_start(map, entry, startaddr) \ 1593 { \ 1594 if (startaddr > entry->start) \ 1595 _vm_map_clip_start(map, entry, startaddr); \ 1596 } 1597 1598 /* 1599 * This routine is called only when it is known that 1600 * the entry must be split. 1601 */ 1602 static void 1603 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1604 { 1605 vm_map_entry_t new_entry; 1606 1607 VM_MAP_ASSERT_LOCKED(map); 1608 1609 /* 1610 * Split off the front portion -- note that we must insert the new 1611 * entry BEFORE this one, so that this entry has the specified 1612 * starting address. 1613 */ 1614 vm_map_simplify_entry(map, entry); 1615 1616 /* 1617 * If there is no object backing this entry, we might as well create 1618 * one now. If we defer it, an object can get created after the map 1619 * is clipped, and individual objects will be created for the split-up 1620 * map. This is a bit of a hack, but is also about the best place to 1621 * put this improvement. 1622 */ 1623 if (entry->object.vm_object == NULL && !map->system_map) { 1624 vm_object_t object; 1625 object = vm_object_allocate(OBJT_DEFAULT, 1626 atop(entry->end - entry->start)); 1627 entry->object.vm_object = object; 1628 entry->offset = 0; 1629 if (entry->cred != NULL) { 1630 object->cred = entry->cred; 1631 object->charge = entry->end - entry->start; 1632 entry->cred = NULL; 1633 } 1634 } else if (entry->object.vm_object != NULL && 1635 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1636 entry->cred != NULL) { 1637 VM_OBJECT_WLOCK(entry->object.vm_object); 1638 KASSERT(entry->object.vm_object->cred == NULL, 1639 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1640 entry->object.vm_object->cred = entry->cred; 1641 entry->object.vm_object->charge = entry->end - entry->start; 1642 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1643 entry->cred = NULL; 1644 } 1645 1646 new_entry = vm_map_entry_create(map); 1647 *new_entry = *entry; 1648 1649 new_entry->end = start; 1650 entry->offset += (start - entry->start); 1651 entry->start = start; 1652 if (new_entry->cred != NULL) 1653 crhold(entry->cred); 1654 1655 vm_map_entry_link(map, entry->prev, new_entry); 1656 1657 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1658 vm_object_reference(new_entry->object.vm_object); 1659 /* 1660 * The object->un_pager.vnp.writemappings for the 1661 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1662 * kept as is here. The virtual pages are 1663 * re-distributed among the clipped entries, so the sum is 1664 * left the same. 1665 */ 1666 } 1667 } 1668 1669 /* 1670 * vm_map_clip_end: [ internal use only ] 1671 * 1672 * Asserts that the given entry ends at or before 1673 * the specified address; if necessary, 1674 * it splits the entry into two. 1675 */ 1676 #define vm_map_clip_end(map, entry, endaddr) \ 1677 { \ 1678 if ((endaddr) < (entry->end)) \ 1679 _vm_map_clip_end((map), (entry), (endaddr)); \ 1680 } 1681 1682 /* 1683 * This routine is called only when it is known that 1684 * the entry must be split. 1685 */ 1686 static void 1687 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1688 { 1689 vm_map_entry_t new_entry; 1690 1691 VM_MAP_ASSERT_LOCKED(map); 1692 1693 /* 1694 * If there is no object backing this entry, we might as well create 1695 * one now. If we defer it, an object can get created after the map 1696 * is clipped, and individual objects will be created for the split-up 1697 * map. This is a bit of a hack, but is also about the best place to 1698 * put this improvement. 1699 */ 1700 if (entry->object.vm_object == NULL && !map->system_map) { 1701 vm_object_t object; 1702 object = vm_object_allocate(OBJT_DEFAULT, 1703 atop(entry->end - entry->start)); 1704 entry->object.vm_object = object; 1705 entry->offset = 0; 1706 if (entry->cred != NULL) { 1707 object->cred = entry->cred; 1708 object->charge = entry->end - entry->start; 1709 entry->cred = NULL; 1710 } 1711 } else if (entry->object.vm_object != NULL && 1712 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1713 entry->cred != NULL) { 1714 VM_OBJECT_WLOCK(entry->object.vm_object); 1715 KASSERT(entry->object.vm_object->cred == NULL, 1716 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1717 entry->object.vm_object->cred = entry->cred; 1718 entry->object.vm_object->charge = entry->end - entry->start; 1719 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1720 entry->cred = NULL; 1721 } 1722 1723 /* 1724 * Create a new entry and insert it AFTER the specified entry 1725 */ 1726 new_entry = vm_map_entry_create(map); 1727 *new_entry = *entry; 1728 1729 new_entry->start = entry->end = end; 1730 new_entry->offset += (end - entry->start); 1731 if (new_entry->cred != NULL) 1732 crhold(entry->cred); 1733 1734 vm_map_entry_link(map, entry, new_entry); 1735 1736 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1737 vm_object_reference(new_entry->object.vm_object); 1738 } 1739 } 1740 1741 /* 1742 * vm_map_submap: [ kernel use only ] 1743 * 1744 * Mark the given range as handled by a subordinate map. 1745 * 1746 * This range must have been created with vm_map_find, 1747 * and no other operations may have been performed on this 1748 * range prior to calling vm_map_submap. 1749 * 1750 * Only a limited number of operations can be performed 1751 * within this rage after calling vm_map_submap: 1752 * vm_fault 1753 * [Don't try vm_map_copy!] 1754 * 1755 * To remove a submapping, one must first remove the 1756 * range from the superior map, and then destroy the 1757 * submap (if desired). [Better yet, don't try it.] 1758 */ 1759 int 1760 vm_map_submap( 1761 vm_map_t map, 1762 vm_offset_t start, 1763 vm_offset_t end, 1764 vm_map_t submap) 1765 { 1766 vm_map_entry_t entry; 1767 int result = KERN_INVALID_ARGUMENT; 1768 1769 vm_map_lock(map); 1770 1771 VM_MAP_RANGE_CHECK(map, start, end); 1772 1773 if (vm_map_lookup_entry(map, start, &entry)) { 1774 vm_map_clip_start(map, entry, start); 1775 } else 1776 entry = entry->next; 1777 1778 vm_map_clip_end(map, entry, end); 1779 1780 if ((entry->start == start) && (entry->end == end) && 1781 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1782 (entry->object.vm_object == NULL)) { 1783 entry->object.sub_map = submap; 1784 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1785 result = KERN_SUCCESS; 1786 } 1787 vm_map_unlock(map); 1788 1789 return (result); 1790 } 1791 1792 /* 1793 * The maximum number of pages to map 1794 */ 1795 #define MAX_INIT_PT 96 1796 1797 /* 1798 * vm_map_pmap_enter: 1799 * 1800 * Preload read-only mappings for the specified object's resident pages 1801 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1802 * the resident pages within the address range [addr, addr + ulmin(size, 1803 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1804 * the specified address range are mapped. This eliminates many soft 1805 * faults on process startup and immediately after an mmap(2). Because 1806 * these are speculative mappings, cached pages are not reactivated and 1807 * mapped. 1808 */ 1809 void 1810 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1811 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1812 { 1813 vm_offset_t start; 1814 vm_page_t p, p_start; 1815 vm_pindex_t psize, tmpidx; 1816 1817 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1818 return; 1819 VM_OBJECT_RLOCK(object); 1820 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1821 VM_OBJECT_RUNLOCK(object); 1822 VM_OBJECT_WLOCK(object); 1823 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1824 pmap_object_init_pt(map->pmap, addr, object, pindex, 1825 size); 1826 VM_OBJECT_WUNLOCK(object); 1827 return; 1828 } 1829 VM_OBJECT_LOCK_DOWNGRADE(object); 1830 } 1831 1832 psize = atop(size); 1833 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1834 psize = MAX_INIT_PT; 1835 if (psize + pindex > object->size) { 1836 if (object->size < pindex) { 1837 VM_OBJECT_RUNLOCK(object); 1838 return; 1839 } 1840 psize = object->size - pindex; 1841 } 1842 1843 start = 0; 1844 p_start = NULL; 1845 1846 p = vm_page_find_least(object, pindex); 1847 /* 1848 * Assert: the variable p is either (1) the page with the 1849 * least pindex greater than or equal to the parameter pindex 1850 * or (2) NULL. 1851 */ 1852 for (; 1853 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1854 p = TAILQ_NEXT(p, listq)) { 1855 /* 1856 * don't allow an madvise to blow away our really 1857 * free pages allocating pv entries. 1858 */ 1859 if ((flags & MAP_PREFAULT_MADVISE) && 1860 cnt.v_free_count < cnt.v_free_reserved) { 1861 psize = tmpidx; 1862 break; 1863 } 1864 if (p->valid == VM_PAGE_BITS_ALL) { 1865 if (p_start == NULL) { 1866 start = addr + ptoa(tmpidx); 1867 p_start = p; 1868 } 1869 } else if (p_start != NULL) { 1870 pmap_enter_object(map->pmap, start, addr + 1871 ptoa(tmpidx), p_start, prot); 1872 p_start = NULL; 1873 } 1874 } 1875 if (p_start != NULL) 1876 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1877 p_start, prot); 1878 VM_OBJECT_RUNLOCK(object); 1879 } 1880 1881 /* 1882 * vm_map_protect: 1883 * 1884 * Sets the protection of the specified address 1885 * region in the target map. If "set_max" is 1886 * specified, the maximum protection is to be set; 1887 * otherwise, only the current protection is affected. 1888 */ 1889 int 1890 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1891 vm_prot_t new_prot, boolean_t set_max) 1892 { 1893 vm_map_entry_t current, entry; 1894 vm_object_t obj; 1895 struct ucred *cred; 1896 vm_prot_t old_prot; 1897 1898 vm_map_lock(map); 1899 1900 VM_MAP_RANGE_CHECK(map, start, end); 1901 1902 if (vm_map_lookup_entry(map, start, &entry)) { 1903 vm_map_clip_start(map, entry, start); 1904 } else { 1905 entry = entry->next; 1906 } 1907 1908 /* 1909 * Make a first pass to check for protection violations. 1910 */ 1911 current = entry; 1912 while ((current != &map->header) && (current->start < end)) { 1913 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1914 vm_map_unlock(map); 1915 return (KERN_INVALID_ARGUMENT); 1916 } 1917 if ((new_prot & current->max_protection) != new_prot) { 1918 vm_map_unlock(map); 1919 return (KERN_PROTECTION_FAILURE); 1920 } 1921 current = current->next; 1922 } 1923 1924 1925 /* 1926 * Do an accounting pass for private read-only mappings that 1927 * now will do cow due to allowed write (e.g. debugger sets 1928 * breakpoint on text segment) 1929 */ 1930 for (current = entry; (current != &map->header) && 1931 (current->start < end); current = current->next) { 1932 1933 vm_map_clip_end(map, current, end); 1934 1935 if (set_max || 1936 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1937 ENTRY_CHARGED(current)) { 1938 continue; 1939 } 1940 1941 cred = curthread->td_ucred; 1942 obj = current->object.vm_object; 1943 1944 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1945 if (!swap_reserve(current->end - current->start)) { 1946 vm_map_unlock(map); 1947 return (KERN_RESOURCE_SHORTAGE); 1948 } 1949 crhold(cred); 1950 current->cred = cred; 1951 continue; 1952 } 1953 1954 VM_OBJECT_WLOCK(obj); 1955 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1956 VM_OBJECT_WUNLOCK(obj); 1957 continue; 1958 } 1959 1960 /* 1961 * Charge for the whole object allocation now, since 1962 * we cannot distinguish between non-charged and 1963 * charged clipped mapping of the same object later. 1964 */ 1965 KASSERT(obj->charge == 0, 1966 ("vm_map_protect: object %p overcharged\n", obj)); 1967 if (!swap_reserve(ptoa(obj->size))) { 1968 VM_OBJECT_WUNLOCK(obj); 1969 vm_map_unlock(map); 1970 return (KERN_RESOURCE_SHORTAGE); 1971 } 1972 1973 crhold(cred); 1974 obj->cred = cred; 1975 obj->charge = ptoa(obj->size); 1976 VM_OBJECT_WUNLOCK(obj); 1977 } 1978 1979 /* 1980 * Go back and fix up protections. [Note that clipping is not 1981 * necessary the second time.] 1982 */ 1983 current = entry; 1984 while ((current != &map->header) && (current->start < end)) { 1985 old_prot = current->protection; 1986 1987 if (set_max) 1988 current->protection = 1989 (current->max_protection = new_prot) & 1990 old_prot; 1991 else 1992 current->protection = new_prot; 1993 1994 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1995 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1996 (current->protection & VM_PROT_WRITE) != 0 && 1997 (old_prot & VM_PROT_WRITE) == 0) { 1998 vm_fault_copy_entry(map, map, current, current, NULL); 1999 } 2000 2001 /* 2002 * When restricting access, update the physical map. Worry 2003 * about copy-on-write here. 2004 */ 2005 if ((old_prot & ~current->protection) != 0) { 2006 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2007 VM_PROT_ALL) 2008 pmap_protect(map->pmap, current->start, 2009 current->end, 2010 current->protection & MASK(current)); 2011 #undef MASK 2012 } 2013 vm_map_simplify_entry(map, current); 2014 current = current->next; 2015 } 2016 vm_map_unlock(map); 2017 return (KERN_SUCCESS); 2018 } 2019 2020 /* 2021 * vm_map_madvise: 2022 * 2023 * This routine traverses a processes map handling the madvise 2024 * system call. Advisories are classified as either those effecting 2025 * the vm_map_entry structure, or those effecting the underlying 2026 * objects. 2027 */ 2028 int 2029 vm_map_madvise( 2030 vm_map_t map, 2031 vm_offset_t start, 2032 vm_offset_t end, 2033 int behav) 2034 { 2035 vm_map_entry_t current, entry; 2036 int modify_map = 0; 2037 2038 /* 2039 * Some madvise calls directly modify the vm_map_entry, in which case 2040 * we need to use an exclusive lock on the map and we need to perform 2041 * various clipping operations. Otherwise we only need a read-lock 2042 * on the map. 2043 */ 2044 switch(behav) { 2045 case MADV_NORMAL: 2046 case MADV_SEQUENTIAL: 2047 case MADV_RANDOM: 2048 case MADV_NOSYNC: 2049 case MADV_AUTOSYNC: 2050 case MADV_NOCORE: 2051 case MADV_CORE: 2052 modify_map = 1; 2053 vm_map_lock(map); 2054 break; 2055 case MADV_WILLNEED: 2056 case MADV_DONTNEED: 2057 case MADV_FREE: 2058 vm_map_lock_read(map); 2059 break; 2060 default: 2061 return (KERN_INVALID_ARGUMENT); 2062 } 2063 2064 /* 2065 * Locate starting entry and clip if necessary. 2066 */ 2067 VM_MAP_RANGE_CHECK(map, start, end); 2068 2069 if (vm_map_lookup_entry(map, start, &entry)) { 2070 if (modify_map) 2071 vm_map_clip_start(map, entry, start); 2072 } else { 2073 entry = entry->next; 2074 } 2075 2076 if (modify_map) { 2077 /* 2078 * madvise behaviors that are implemented in the vm_map_entry. 2079 * 2080 * We clip the vm_map_entry so that behavioral changes are 2081 * limited to the specified address range. 2082 */ 2083 for (current = entry; 2084 (current != &map->header) && (current->start < end); 2085 current = current->next 2086 ) { 2087 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2088 continue; 2089 2090 vm_map_clip_end(map, current, end); 2091 2092 switch (behav) { 2093 case MADV_NORMAL: 2094 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2095 break; 2096 case MADV_SEQUENTIAL: 2097 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2098 break; 2099 case MADV_RANDOM: 2100 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2101 break; 2102 case MADV_NOSYNC: 2103 current->eflags |= MAP_ENTRY_NOSYNC; 2104 break; 2105 case MADV_AUTOSYNC: 2106 current->eflags &= ~MAP_ENTRY_NOSYNC; 2107 break; 2108 case MADV_NOCORE: 2109 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2110 break; 2111 case MADV_CORE: 2112 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2113 break; 2114 default: 2115 break; 2116 } 2117 vm_map_simplify_entry(map, current); 2118 } 2119 vm_map_unlock(map); 2120 } else { 2121 vm_pindex_t pstart, pend; 2122 2123 /* 2124 * madvise behaviors that are implemented in the underlying 2125 * vm_object. 2126 * 2127 * Since we don't clip the vm_map_entry, we have to clip 2128 * the vm_object pindex and count. 2129 */ 2130 for (current = entry; 2131 (current != &map->header) && (current->start < end); 2132 current = current->next 2133 ) { 2134 vm_offset_t useStart; 2135 2136 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2137 continue; 2138 2139 pstart = OFF_TO_IDX(current->offset); 2140 pend = pstart + atop(current->end - current->start); 2141 useStart = current->start; 2142 2143 if (current->start < start) { 2144 pstart += atop(start - current->start); 2145 useStart = start; 2146 } 2147 if (current->end > end) 2148 pend -= atop(current->end - end); 2149 2150 if (pstart >= pend) 2151 continue; 2152 2153 vm_object_madvise(current->object.vm_object, pstart, 2154 pend, behav); 2155 if (behav == MADV_WILLNEED) { 2156 vm_map_pmap_enter(map, 2157 useStart, 2158 current->protection, 2159 current->object.vm_object, 2160 pstart, 2161 ptoa(pend - pstart), 2162 MAP_PREFAULT_MADVISE 2163 ); 2164 } 2165 } 2166 vm_map_unlock_read(map); 2167 } 2168 return (0); 2169 } 2170 2171 2172 /* 2173 * vm_map_inherit: 2174 * 2175 * Sets the inheritance of the specified address 2176 * range in the target map. Inheritance 2177 * affects how the map will be shared with 2178 * child maps at the time of vmspace_fork. 2179 */ 2180 int 2181 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2182 vm_inherit_t new_inheritance) 2183 { 2184 vm_map_entry_t entry; 2185 vm_map_entry_t temp_entry; 2186 2187 switch (new_inheritance) { 2188 case VM_INHERIT_NONE: 2189 case VM_INHERIT_COPY: 2190 case VM_INHERIT_SHARE: 2191 break; 2192 default: 2193 return (KERN_INVALID_ARGUMENT); 2194 } 2195 vm_map_lock(map); 2196 VM_MAP_RANGE_CHECK(map, start, end); 2197 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2198 entry = temp_entry; 2199 vm_map_clip_start(map, entry, start); 2200 } else 2201 entry = temp_entry->next; 2202 while ((entry != &map->header) && (entry->start < end)) { 2203 vm_map_clip_end(map, entry, end); 2204 entry->inheritance = new_inheritance; 2205 vm_map_simplify_entry(map, entry); 2206 entry = entry->next; 2207 } 2208 vm_map_unlock(map); 2209 return (KERN_SUCCESS); 2210 } 2211 2212 /* 2213 * vm_map_unwire: 2214 * 2215 * Implements both kernel and user unwiring. 2216 */ 2217 int 2218 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2219 int flags) 2220 { 2221 vm_map_entry_t entry, first_entry, tmp_entry; 2222 vm_offset_t saved_start; 2223 unsigned int last_timestamp; 2224 int rv; 2225 boolean_t need_wakeup, result, user_unwire; 2226 2227 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2228 vm_map_lock(map); 2229 VM_MAP_RANGE_CHECK(map, start, end); 2230 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2231 if (flags & VM_MAP_WIRE_HOLESOK) 2232 first_entry = first_entry->next; 2233 else { 2234 vm_map_unlock(map); 2235 return (KERN_INVALID_ADDRESS); 2236 } 2237 } 2238 last_timestamp = map->timestamp; 2239 entry = first_entry; 2240 while (entry != &map->header && entry->start < end) { 2241 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2242 /* 2243 * We have not yet clipped the entry. 2244 */ 2245 saved_start = (start >= entry->start) ? start : 2246 entry->start; 2247 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2248 if (vm_map_unlock_and_wait(map, 0)) { 2249 /* 2250 * Allow interruption of user unwiring? 2251 */ 2252 } 2253 vm_map_lock(map); 2254 if (last_timestamp+1 != map->timestamp) { 2255 /* 2256 * Look again for the entry because the map was 2257 * modified while it was unlocked. 2258 * Specifically, the entry may have been 2259 * clipped, merged, or deleted. 2260 */ 2261 if (!vm_map_lookup_entry(map, saved_start, 2262 &tmp_entry)) { 2263 if (flags & VM_MAP_WIRE_HOLESOK) 2264 tmp_entry = tmp_entry->next; 2265 else { 2266 if (saved_start == start) { 2267 /* 2268 * First_entry has been deleted. 2269 */ 2270 vm_map_unlock(map); 2271 return (KERN_INVALID_ADDRESS); 2272 } 2273 end = saved_start; 2274 rv = KERN_INVALID_ADDRESS; 2275 goto done; 2276 } 2277 } 2278 if (entry == first_entry) 2279 first_entry = tmp_entry; 2280 else 2281 first_entry = NULL; 2282 entry = tmp_entry; 2283 } 2284 last_timestamp = map->timestamp; 2285 continue; 2286 } 2287 vm_map_clip_start(map, entry, start); 2288 vm_map_clip_end(map, entry, end); 2289 /* 2290 * Mark the entry in case the map lock is released. (See 2291 * above.) 2292 */ 2293 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2294 entry->wiring_thread = curthread; 2295 /* 2296 * Check the map for holes in the specified region. 2297 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2298 */ 2299 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2300 (entry->end < end && (entry->next == &map->header || 2301 entry->next->start > entry->end))) { 2302 end = entry->end; 2303 rv = KERN_INVALID_ADDRESS; 2304 goto done; 2305 } 2306 /* 2307 * If system unwiring, require that the entry is system wired. 2308 */ 2309 if (!user_unwire && 2310 vm_map_entry_system_wired_count(entry) == 0) { 2311 end = entry->end; 2312 rv = KERN_INVALID_ARGUMENT; 2313 goto done; 2314 } 2315 entry = entry->next; 2316 } 2317 rv = KERN_SUCCESS; 2318 done: 2319 need_wakeup = FALSE; 2320 if (first_entry == NULL) { 2321 result = vm_map_lookup_entry(map, start, &first_entry); 2322 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2323 first_entry = first_entry->next; 2324 else 2325 KASSERT(result, ("vm_map_unwire: lookup failed")); 2326 } 2327 for (entry = first_entry; entry != &map->header && entry->start < end; 2328 entry = entry->next) { 2329 /* 2330 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2331 * space in the unwired region could have been mapped 2332 * while the map lock was dropped for draining 2333 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2334 * could be simultaneously wiring this new mapping 2335 * entry. Detect these cases and skip any entries 2336 * marked as in transition by us. 2337 */ 2338 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2339 entry->wiring_thread != curthread) { 2340 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2341 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2342 continue; 2343 } 2344 2345 if (rv == KERN_SUCCESS && (!user_unwire || 2346 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2347 if (user_unwire) 2348 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2349 entry->wired_count--; 2350 if (entry->wired_count == 0) { 2351 /* 2352 * Retain the map lock. 2353 */ 2354 vm_fault_unwire(map, entry->start, entry->end, 2355 entry->object.vm_object != NULL && 2356 (entry->object.vm_object->flags & 2357 OBJ_FICTITIOUS) != 0); 2358 } 2359 } 2360 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2361 ("vm_map_unwire: in-transition flag missing")); 2362 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2363 entry->wiring_thread = NULL; 2364 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2365 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2366 need_wakeup = TRUE; 2367 } 2368 vm_map_simplify_entry(map, entry); 2369 } 2370 vm_map_unlock(map); 2371 if (need_wakeup) 2372 vm_map_wakeup(map); 2373 return (rv); 2374 } 2375 2376 /* 2377 * vm_map_wire: 2378 * 2379 * Implements both kernel and user wiring. 2380 */ 2381 int 2382 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2383 int flags) 2384 { 2385 vm_map_entry_t entry, first_entry, tmp_entry; 2386 vm_offset_t saved_end, saved_start; 2387 unsigned int last_timestamp; 2388 int rv; 2389 boolean_t fictitious, need_wakeup, result, user_wire; 2390 vm_prot_t prot; 2391 2392 prot = 0; 2393 if (flags & VM_MAP_WIRE_WRITE) 2394 prot |= VM_PROT_WRITE; 2395 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2396 vm_map_lock(map); 2397 VM_MAP_RANGE_CHECK(map, start, end); 2398 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2399 if (flags & VM_MAP_WIRE_HOLESOK) 2400 first_entry = first_entry->next; 2401 else { 2402 vm_map_unlock(map); 2403 return (KERN_INVALID_ADDRESS); 2404 } 2405 } 2406 last_timestamp = map->timestamp; 2407 entry = first_entry; 2408 while (entry != &map->header && entry->start < end) { 2409 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2410 /* 2411 * We have not yet clipped the entry. 2412 */ 2413 saved_start = (start >= entry->start) ? start : 2414 entry->start; 2415 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2416 if (vm_map_unlock_and_wait(map, 0)) { 2417 /* 2418 * Allow interruption of user wiring? 2419 */ 2420 } 2421 vm_map_lock(map); 2422 if (last_timestamp + 1 != map->timestamp) { 2423 /* 2424 * Look again for the entry because the map was 2425 * modified while it was unlocked. 2426 * Specifically, the entry may have been 2427 * clipped, merged, or deleted. 2428 */ 2429 if (!vm_map_lookup_entry(map, saved_start, 2430 &tmp_entry)) { 2431 if (flags & VM_MAP_WIRE_HOLESOK) 2432 tmp_entry = tmp_entry->next; 2433 else { 2434 if (saved_start == start) { 2435 /* 2436 * first_entry has been deleted. 2437 */ 2438 vm_map_unlock(map); 2439 return (KERN_INVALID_ADDRESS); 2440 } 2441 end = saved_start; 2442 rv = KERN_INVALID_ADDRESS; 2443 goto done; 2444 } 2445 } 2446 if (entry == first_entry) 2447 first_entry = tmp_entry; 2448 else 2449 first_entry = NULL; 2450 entry = tmp_entry; 2451 } 2452 last_timestamp = map->timestamp; 2453 continue; 2454 } 2455 vm_map_clip_start(map, entry, start); 2456 vm_map_clip_end(map, entry, end); 2457 /* 2458 * Mark the entry in case the map lock is released. (See 2459 * above.) 2460 */ 2461 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2462 entry->wiring_thread = curthread; 2463 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2464 || (entry->protection & prot) != prot) { 2465 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2466 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2467 end = entry->end; 2468 rv = KERN_INVALID_ADDRESS; 2469 goto done; 2470 } 2471 goto next_entry; 2472 } 2473 if (entry->wired_count == 0) { 2474 entry->wired_count++; 2475 saved_start = entry->start; 2476 saved_end = entry->end; 2477 fictitious = entry->object.vm_object != NULL && 2478 (entry->object.vm_object->flags & 2479 OBJ_FICTITIOUS) != 0; 2480 /* 2481 * Release the map lock, relying on the in-transition 2482 * mark. Mark the map busy for fork. 2483 */ 2484 vm_map_busy(map); 2485 vm_map_unlock(map); 2486 rv = vm_fault_wire(map, saved_start, saved_end, 2487 fictitious); 2488 vm_map_lock(map); 2489 vm_map_unbusy(map); 2490 if (last_timestamp + 1 != map->timestamp) { 2491 /* 2492 * Look again for the entry because the map was 2493 * modified while it was unlocked. The entry 2494 * may have been clipped, but NOT merged or 2495 * deleted. 2496 */ 2497 result = vm_map_lookup_entry(map, saved_start, 2498 &tmp_entry); 2499 KASSERT(result, ("vm_map_wire: lookup failed")); 2500 if (entry == first_entry) 2501 first_entry = tmp_entry; 2502 else 2503 first_entry = NULL; 2504 entry = tmp_entry; 2505 while (entry->end < saved_end) { 2506 if (rv != KERN_SUCCESS) { 2507 KASSERT(entry->wired_count == 1, 2508 ("vm_map_wire: bad count")); 2509 entry->wired_count = -1; 2510 } 2511 entry = entry->next; 2512 } 2513 } 2514 last_timestamp = map->timestamp; 2515 if (rv != KERN_SUCCESS) { 2516 KASSERT(entry->wired_count == 1, 2517 ("vm_map_wire: bad count")); 2518 /* 2519 * Assign an out-of-range value to represent 2520 * the failure to wire this entry. 2521 */ 2522 entry->wired_count = -1; 2523 end = entry->end; 2524 goto done; 2525 } 2526 } else if (!user_wire || 2527 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2528 entry->wired_count++; 2529 } 2530 /* 2531 * Check the map for holes in the specified region. 2532 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2533 */ 2534 next_entry: 2535 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2536 (entry->end < end && (entry->next == &map->header || 2537 entry->next->start > entry->end))) { 2538 end = entry->end; 2539 rv = KERN_INVALID_ADDRESS; 2540 goto done; 2541 } 2542 entry = entry->next; 2543 } 2544 rv = KERN_SUCCESS; 2545 done: 2546 need_wakeup = FALSE; 2547 if (first_entry == NULL) { 2548 result = vm_map_lookup_entry(map, start, &first_entry); 2549 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2550 first_entry = first_entry->next; 2551 else 2552 KASSERT(result, ("vm_map_wire: lookup failed")); 2553 } 2554 for (entry = first_entry; entry != &map->header && entry->start < end; 2555 entry = entry->next) { 2556 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2557 goto next_entry_done; 2558 2559 /* 2560 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2561 * space in the unwired region could have been mapped 2562 * while the map lock was dropped for faulting in the 2563 * pages or draining MAP_ENTRY_IN_TRANSITION. 2564 * Moreover, another thread could be simultaneously 2565 * wiring this new mapping entry. Detect these cases 2566 * and skip any entries marked as in transition by us. 2567 */ 2568 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2569 entry->wiring_thread != curthread) { 2570 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2571 ("vm_map_wire: !HOLESOK and new/changed entry")); 2572 continue; 2573 } 2574 2575 if (rv == KERN_SUCCESS) { 2576 if (user_wire) 2577 entry->eflags |= MAP_ENTRY_USER_WIRED; 2578 } else if (entry->wired_count == -1) { 2579 /* 2580 * Wiring failed on this entry. Thus, unwiring is 2581 * unnecessary. 2582 */ 2583 entry->wired_count = 0; 2584 } else { 2585 if (!user_wire || 2586 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2587 entry->wired_count--; 2588 if (entry->wired_count == 0) { 2589 /* 2590 * Retain the map lock. 2591 */ 2592 vm_fault_unwire(map, entry->start, entry->end, 2593 entry->object.vm_object != NULL && 2594 (entry->object.vm_object->flags & 2595 OBJ_FICTITIOUS) != 0); 2596 } 2597 } 2598 next_entry_done: 2599 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2600 ("vm_map_wire: in-transition flag missing %p", entry)); 2601 KASSERT(entry->wiring_thread == curthread, 2602 ("vm_map_wire: alien wire %p", entry)); 2603 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2604 MAP_ENTRY_WIRE_SKIPPED); 2605 entry->wiring_thread = NULL; 2606 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2607 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2608 need_wakeup = TRUE; 2609 } 2610 vm_map_simplify_entry(map, entry); 2611 } 2612 vm_map_unlock(map); 2613 if (need_wakeup) 2614 vm_map_wakeup(map); 2615 return (rv); 2616 } 2617 2618 /* 2619 * vm_map_sync 2620 * 2621 * Push any dirty cached pages in the address range to their pager. 2622 * If syncio is TRUE, dirty pages are written synchronously. 2623 * If invalidate is TRUE, any cached pages are freed as well. 2624 * 2625 * If the size of the region from start to end is zero, we are 2626 * supposed to flush all modified pages within the region containing 2627 * start. Unfortunately, a region can be split or coalesced with 2628 * neighboring regions, making it difficult to determine what the 2629 * original region was. Therefore, we approximate this requirement by 2630 * flushing the current region containing start. 2631 * 2632 * Returns an error if any part of the specified range is not mapped. 2633 */ 2634 int 2635 vm_map_sync( 2636 vm_map_t map, 2637 vm_offset_t start, 2638 vm_offset_t end, 2639 boolean_t syncio, 2640 boolean_t invalidate) 2641 { 2642 vm_map_entry_t current; 2643 vm_map_entry_t entry; 2644 vm_size_t size; 2645 vm_object_t object; 2646 vm_ooffset_t offset; 2647 unsigned int last_timestamp; 2648 boolean_t failed; 2649 2650 vm_map_lock_read(map); 2651 VM_MAP_RANGE_CHECK(map, start, end); 2652 if (!vm_map_lookup_entry(map, start, &entry)) { 2653 vm_map_unlock_read(map); 2654 return (KERN_INVALID_ADDRESS); 2655 } else if (start == end) { 2656 start = entry->start; 2657 end = entry->end; 2658 } 2659 /* 2660 * Make a first pass to check for user-wired memory and holes. 2661 */ 2662 for (current = entry; current != &map->header && current->start < end; 2663 current = current->next) { 2664 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2665 vm_map_unlock_read(map); 2666 return (KERN_INVALID_ARGUMENT); 2667 } 2668 if (end > current->end && 2669 (current->next == &map->header || 2670 current->end != current->next->start)) { 2671 vm_map_unlock_read(map); 2672 return (KERN_INVALID_ADDRESS); 2673 } 2674 } 2675 2676 if (invalidate) 2677 pmap_remove(map->pmap, start, end); 2678 failed = FALSE; 2679 2680 /* 2681 * Make a second pass, cleaning/uncaching pages from the indicated 2682 * objects as we go. 2683 */ 2684 for (current = entry; current != &map->header && current->start < end;) { 2685 offset = current->offset + (start - current->start); 2686 size = (end <= current->end ? end : current->end) - start; 2687 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2688 vm_map_t smap; 2689 vm_map_entry_t tentry; 2690 vm_size_t tsize; 2691 2692 smap = current->object.sub_map; 2693 vm_map_lock_read(smap); 2694 (void) vm_map_lookup_entry(smap, offset, &tentry); 2695 tsize = tentry->end - offset; 2696 if (tsize < size) 2697 size = tsize; 2698 object = tentry->object.vm_object; 2699 offset = tentry->offset + (offset - tentry->start); 2700 vm_map_unlock_read(smap); 2701 } else { 2702 object = current->object.vm_object; 2703 } 2704 vm_object_reference(object); 2705 last_timestamp = map->timestamp; 2706 vm_map_unlock_read(map); 2707 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2708 failed = TRUE; 2709 start += size; 2710 vm_object_deallocate(object); 2711 vm_map_lock_read(map); 2712 if (last_timestamp == map->timestamp || 2713 !vm_map_lookup_entry(map, start, ¤t)) 2714 current = current->next; 2715 } 2716 2717 vm_map_unlock_read(map); 2718 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2719 } 2720 2721 /* 2722 * vm_map_entry_unwire: [ internal use only ] 2723 * 2724 * Make the region specified by this entry pageable. 2725 * 2726 * The map in question should be locked. 2727 * [This is the reason for this routine's existence.] 2728 */ 2729 static void 2730 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2731 { 2732 vm_fault_unwire(map, entry->start, entry->end, 2733 entry->object.vm_object != NULL && 2734 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2735 entry->wired_count = 0; 2736 } 2737 2738 static void 2739 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2740 { 2741 2742 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2743 vm_object_deallocate(entry->object.vm_object); 2744 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2745 } 2746 2747 /* 2748 * vm_map_entry_delete: [ internal use only ] 2749 * 2750 * Deallocate the given entry from the target map. 2751 */ 2752 static void 2753 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2754 { 2755 vm_object_t object; 2756 vm_pindex_t offidxstart, offidxend, count, size1; 2757 vm_ooffset_t size; 2758 2759 vm_map_entry_unlink(map, entry); 2760 object = entry->object.vm_object; 2761 size = entry->end - entry->start; 2762 map->size -= size; 2763 2764 if (entry->cred != NULL) { 2765 swap_release_by_cred(size, entry->cred); 2766 crfree(entry->cred); 2767 } 2768 2769 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2770 (object != NULL)) { 2771 KASSERT(entry->cred == NULL || object->cred == NULL || 2772 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2773 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2774 count = OFF_TO_IDX(size); 2775 offidxstart = OFF_TO_IDX(entry->offset); 2776 offidxend = offidxstart + count; 2777 VM_OBJECT_WLOCK(object); 2778 if (object->ref_count != 1 && 2779 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2780 object == kernel_object || object == kmem_object)) { 2781 vm_object_collapse(object); 2782 2783 /* 2784 * The option OBJPR_NOTMAPPED can be passed here 2785 * because vm_map_delete() already performed 2786 * pmap_remove() on the only mapping to this range 2787 * of pages. 2788 */ 2789 vm_object_page_remove(object, offidxstart, offidxend, 2790 OBJPR_NOTMAPPED); 2791 if (object->type == OBJT_SWAP) 2792 swap_pager_freespace(object, offidxstart, count); 2793 if (offidxend >= object->size && 2794 offidxstart < object->size) { 2795 size1 = object->size; 2796 object->size = offidxstart; 2797 if (object->cred != NULL) { 2798 size1 -= object->size; 2799 KASSERT(object->charge >= ptoa(size1), 2800 ("vm_map_entry_delete: object->charge < 0")); 2801 swap_release_by_cred(ptoa(size1), object->cred); 2802 object->charge -= ptoa(size1); 2803 } 2804 } 2805 } 2806 VM_OBJECT_WUNLOCK(object); 2807 } else 2808 entry->object.vm_object = NULL; 2809 if (map->system_map) 2810 vm_map_entry_deallocate(entry, TRUE); 2811 else { 2812 entry->next = curthread->td_map_def_user; 2813 curthread->td_map_def_user = entry; 2814 } 2815 } 2816 2817 /* 2818 * vm_map_delete: [ internal use only ] 2819 * 2820 * Deallocates the given address range from the target 2821 * map. 2822 */ 2823 int 2824 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2825 { 2826 vm_map_entry_t entry; 2827 vm_map_entry_t first_entry; 2828 2829 VM_MAP_ASSERT_LOCKED(map); 2830 2831 /* 2832 * Find the start of the region, and clip it 2833 */ 2834 if (!vm_map_lookup_entry(map, start, &first_entry)) 2835 entry = first_entry->next; 2836 else { 2837 entry = first_entry; 2838 vm_map_clip_start(map, entry, start); 2839 } 2840 2841 /* 2842 * Step through all entries in this region 2843 */ 2844 while ((entry != &map->header) && (entry->start < end)) { 2845 vm_map_entry_t next; 2846 2847 /* 2848 * Wait for wiring or unwiring of an entry to complete. 2849 * Also wait for any system wirings to disappear on 2850 * user maps. 2851 */ 2852 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2853 (vm_map_pmap(map) != kernel_pmap && 2854 vm_map_entry_system_wired_count(entry) != 0)) { 2855 unsigned int last_timestamp; 2856 vm_offset_t saved_start; 2857 vm_map_entry_t tmp_entry; 2858 2859 saved_start = entry->start; 2860 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2861 last_timestamp = map->timestamp; 2862 (void) vm_map_unlock_and_wait(map, 0); 2863 vm_map_lock(map); 2864 if (last_timestamp + 1 != map->timestamp) { 2865 /* 2866 * Look again for the entry because the map was 2867 * modified while it was unlocked. 2868 * Specifically, the entry may have been 2869 * clipped, merged, or deleted. 2870 */ 2871 if (!vm_map_lookup_entry(map, saved_start, 2872 &tmp_entry)) 2873 entry = tmp_entry->next; 2874 else { 2875 entry = tmp_entry; 2876 vm_map_clip_start(map, entry, 2877 saved_start); 2878 } 2879 } 2880 continue; 2881 } 2882 vm_map_clip_end(map, entry, end); 2883 2884 next = entry->next; 2885 2886 /* 2887 * Unwire before removing addresses from the pmap; otherwise, 2888 * unwiring will put the entries back in the pmap. 2889 */ 2890 if (entry->wired_count != 0) { 2891 vm_map_entry_unwire(map, entry); 2892 } 2893 2894 pmap_remove(map->pmap, entry->start, entry->end); 2895 2896 /* 2897 * Delete the entry only after removing all pmap 2898 * entries pointing to its pages. (Otherwise, its 2899 * page frames may be reallocated, and any modify bits 2900 * will be set in the wrong object!) 2901 */ 2902 vm_map_entry_delete(map, entry); 2903 entry = next; 2904 } 2905 return (KERN_SUCCESS); 2906 } 2907 2908 /* 2909 * vm_map_remove: 2910 * 2911 * Remove the given address range from the target map. 2912 * This is the exported form of vm_map_delete. 2913 */ 2914 int 2915 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2916 { 2917 int result; 2918 2919 vm_map_lock(map); 2920 VM_MAP_RANGE_CHECK(map, start, end); 2921 result = vm_map_delete(map, start, end); 2922 vm_map_unlock(map); 2923 return (result); 2924 } 2925 2926 /* 2927 * vm_map_check_protection: 2928 * 2929 * Assert that the target map allows the specified privilege on the 2930 * entire address region given. The entire region must be allocated. 2931 * 2932 * WARNING! This code does not and should not check whether the 2933 * contents of the region is accessible. For example a smaller file 2934 * might be mapped into a larger address space. 2935 * 2936 * NOTE! This code is also called by munmap(). 2937 * 2938 * The map must be locked. A read lock is sufficient. 2939 */ 2940 boolean_t 2941 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2942 vm_prot_t protection) 2943 { 2944 vm_map_entry_t entry; 2945 vm_map_entry_t tmp_entry; 2946 2947 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2948 return (FALSE); 2949 entry = tmp_entry; 2950 2951 while (start < end) { 2952 if (entry == &map->header) 2953 return (FALSE); 2954 /* 2955 * No holes allowed! 2956 */ 2957 if (start < entry->start) 2958 return (FALSE); 2959 /* 2960 * Check protection associated with entry. 2961 */ 2962 if ((entry->protection & protection) != protection) 2963 return (FALSE); 2964 /* go to next entry */ 2965 start = entry->end; 2966 entry = entry->next; 2967 } 2968 return (TRUE); 2969 } 2970 2971 /* 2972 * vm_map_copy_entry: 2973 * 2974 * Copies the contents of the source entry to the destination 2975 * entry. The entries *must* be aligned properly. 2976 */ 2977 static void 2978 vm_map_copy_entry( 2979 vm_map_t src_map, 2980 vm_map_t dst_map, 2981 vm_map_entry_t src_entry, 2982 vm_map_entry_t dst_entry, 2983 vm_ooffset_t *fork_charge) 2984 { 2985 vm_object_t src_object; 2986 vm_map_entry_t fake_entry; 2987 vm_offset_t size; 2988 struct ucred *cred; 2989 int charged; 2990 2991 VM_MAP_ASSERT_LOCKED(dst_map); 2992 2993 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2994 return; 2995 2996 if (src_entry->wired_count == 0) { 2997 2998 /* 2999 * If the source entry is marked needs_copy, it is already 3000 * write-protected. 3001 */ 3002 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3003 pmap_protect(src_map->pmap, 3004 src_entry->start, 3005 src_entry->end, 3006 src_entry->protection & ~VM_PROT_WRITE); 3007 } 3008 3009 /* 3010 * Make a copy of the object. 3011 */ 3012 size = src_entry->end - src_entry->start; 3013 if ((src_object = src_entry->object.vm_object) != NULL) { 3014 VM_OBJECT_WLOCK(src_object); 3015 charged = ENTRY_CHARGED(src_entry); 3016 if ((src_object->handle == NULL) && 3017 (src_object->type == OBJT_DEFAULT || 3018 src_object->type == OBJT_SWAP)) { 3019 vm_object_collapse(src_object); 3020 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3021 vm_object_split(src_entry); 3022 src_object = src_entry->object.vm_object; 3023 } 3024 } 3025 vm_object_reference_locked(src_object); 3026 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3027 if (src_entry->cred != NULL && 3028 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3029 KASSERT(src_object->cred == NULL, 3030 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3031 src_object)); 3032 src_object->cred = src_entry->cred; 3033 src_object->charge = size; 3034 } 3035 VM_OBJECT_WUNLOCK(src_object); 3036 dst_entry->object.vm_object = src_object; 3037 if (charged) { 3038 cred = curthread->td_ucred; 3039 crhold(cred); 3040 dst_entry->cred = cred; 3041 *fork_charge += size; 3042 if (!(src_entry->eflags & 3043 MAP_ENTRY_NEEDS_COPY)) { 3044 crhold(cred); 3045 src_entry->cred = cred; 3046 *fork_charge += size; 3047 } 3048 } 3049 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3050 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3051 dst_entry->offset = src_entry->offset; 3052 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3053 /* 3054 * MAP_ENTRY_VN_WRITECNT cannot 3055 * indicate write reference from 3056 * src_entry, since the entry is 3057 * marked as needs copy. Allocate a 3058 * fake entry that is used to 3059 * decrement object->un_pager.vnp.writecount 3060 * at the appropriate time. Attach 3061 * fake_entry to the deferred list. 3062 */ 3063 fake_entry = vm_map_entry_create(dst_map); 3064 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3065 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3066 vm_object_reference(src_object); 3067 fake_entry->object.vm_object = src_object; 3068 fake_entry->start = src_entry->start; 3069 fake_entry->end = src_entry->end; 3070 fake_entry->next = curthread->td_map_def_user; 3071 curthread->td_map_def_user = fake_entry; 3072 } 3073 } else { 3074 dst_entry->object.vm_object = NULL; 3075 dst_entry->offset = 0; 3076 if (src_entry->cred != NULL) { 3077 dst_entry->cred = curthread->td_ucred; 3078 crhold(dst_entry->cred); 3079 *fork_charge += size; 3080 } 3081 } 3082 3083 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3084 dst_entry->end - dst_entry->start, src_entry->start); 3085 } else { 3086 /* 3087 * Of course, wired down pages can't be set copy-on-write. 3088 * Cause wired pages to be copied into the new map by 3089 * simulating faults (the new pages are pageable) 3090 */ 3091 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3092 fork_charge); 3093 } 3094 } 3095 3096 /* 3097 * vmspace_map_entry_forked: 3098 * Update the newly-forked vmspace each time a map entry is inherited 3099 * or copied. The values for vm_dsize and vm_tsize are approximate 3100 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3101 */ 3102 static void 3103 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3104 vm_map_entry_t entry) 3105 { 3106 vm_size_t entrysize; 3107 vm_offset_t newend; 3108 3109 entrysize = entry->end - entry->start; 3110 vm2->vm_map.size += entrysize; 3111 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3112 vm2->vm_ssize += btoc(entrysize); 3113 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3114 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3115 newend = MIN(entry->end, 3116 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3117 vm2->vm_dsize += btoc(newend - entry->start); 3118 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3119 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3120 newend = MIN(entry->end, 3121 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3122 vm2->vm_tsize += btoc(newend - entry->start); 3123 } 3124 } 3125 3126 /* 3127 * vmspace_fork: 3128 * Create a new process vmspace structure and vm_map 3129 * based on those of an existing process. The new map 3130 * is based on the old map, according to the inheritance 3131 * values on the regions in that map. 3132 * 3133 * XXX It might be worth coalescing the entries added to the new vmspace. 3134 * 3135 * The source map must not be locked. 3136 */ 3137 struct vmspace * 3138 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3139 { 3140 struct vmspace *vm2; 3141 vm_map_t new_map, old_map; 3142 vm_map_entry_t new_entry, old_entry; 3143 vm_object_t object; 3144 int locked; 3145 3146 old_map = &vm1->vm_map; 3147 /* Copy immutable fields of vm1 to vm2. */ 3148 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3149 if (vm2 == NULL) 3150 return (NULL); 3151 vm2->vm_taddr = vm1->vm_taddr; 3152 vm2->vm_daddr = vm1->vm_daddr; 3153 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3154 vm_map_lock(old_map); 3155 if (old_map->busy) 3156 vm_map_wait_busy(old_map); 3157 new_map = &vm2->vm_map; 3158 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3159 KASSERT(locked, ("vmspace_fork: lock failed")); 3160 3161 old_entry = old_map->header.next; 3162 3163 while (old_entry != &old_map->header) { 3164 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3165 panic("vm_map_fork: encountered a submap"); 3166 3167 switch (old_entry->inheritance) { 3168 case VM_INHERIT_NONE: 3169 break; 3170 3171 case VM_INHERIT_SHARE: 3172 /* 3173 * Clone the entry, creating the shared object if necessary. 3174 */ 3175 object = old_entry->object.vm_object; 3176 if (object == NULL) { 3177 object = vm_object_allocate(OBJT_DEFAULT, 3178 atop(old_entry->end - old_entry->start)); 3179 old_entry->object.vm_object = object; 3180 old_entry->offset = 0; 3181 if (old_entry->cred != NULL) { 3182 object->cred = old_entry->cred; 3183 object->charge = old_entry->end - 3184 old_entry->start; 3185 old_entry->cred = NULL; 3186 } 3187 } 3188 3189 /* 3190 * Add the reference before calling vm_object_shadow 3191 * to insure that a shadow object is created. 3192 */ 3193 vm_object_reference(object); 3194 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3195 vm_object_shadow(&old_entry->object.vm_object, 3196 &old_entry->offset, 3197 old_entry->end - old_entry->start); 3198 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3199 /* Transfer the second reference too. */ 3200 vm_object_reference( 3201 old_entry->object.vm_object); 3202 3203 /* 3204 * As in vm_map_simplify_entry(), the 3205 * vnode lock will not be acquired in 3206 * this call to vm_object_deallocate(). 3207 */ 3208 vm_object_deallocate(object); 3209 object = old_entry->object.vm_object; 3210 } 3211 VM_OBJECT_WLOCK(object); 3212 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3213 if (old_entry->cred != NULL) { 3214 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3215 object->cred = old_entry->cred; 3216 object->charge = old_entry->end - old_entry->start; 3217 old_entry->cred = NULL; 3218 } 3219 3220 /* 3221 * Assert the correct state of the vnode 3222 * v_writecount while the object is locked, to 3223 * not relock it later for the assertion 3224 * correctness. 3225 */ 3226 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3227 object->type == OBJT_VNODE) { 3228 KASSERT(((struct vnode *)object->handle)-> 3229 v_writecount > 0, 3230 ("vmspace_fork: v_writecount %p", object)); 3231 KASSERT(object->un_pager.vnp.writemappings > 0, 3232 ("vmspace_fork: vnp.writecount %p", 3233 object)); 3234 } 3235 VM_OBJECT_WUNLOCK(object); 3236 3237 /* 3238 * Clone the entry, referencing the shared object. 3239 */ 3240 new_entry = vm_map_entry_create(new_map); 3241 *new_entry = *old_entry; 3242 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3243 MAP_ENTRY_IN_TRANSITION); 3244 new_entry->wiring_thread = NULL; 3245 new_entry->wired_count = 0; 3246 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3247 vnode_pager_update_writecount(object, 3248 new_entry->start, new_entry->end); 3249 } 3250 3251 /* 3252 * Insert the entry into the new map -- we know we're 3253 * inserting at the end of the new map. 3254 */ 3255 vm_map_entry_link(new_map, new_map->header.prev, 3256 new_entry); 3257 vmspace_map_entry_forked(vm1, vm2, new_entry); 3258 3259 /* 3260 * Update the physical map 3261 */ 3262 pmap_copy(new_map->pmap, old_map->pmap, 3263 new_entry->start, 3264 (old_entry->end - old_entry->start), 3265 old_entry->start); 3266 break; 3267 3268 case VM_INHERIT_COPY: 3269 /* 3270 * Clone the entry and link into the map. 3271 */ 3272 new_entry = vm_map_entry_create(new_map); 3273 *new_entry = *old_entry; 3274 /* 3275 * Copied entry is COW over the old object. 3276 */ 3277 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3278 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3279 new_entry->wiring_thread = NULL; 3280 new_entry->wired_count = 0; 3281 new_entry->object.vm_object = NULL; 3282 new_entry->cred = NULL; 3283 vm_map_entry_link(new_map, new_map->header.prev, 3284 new_entry); 3285 vmspace_map_entry_forked(vm1, vm2, new_entry); 3286 vm_map_copy_entry(old_map, new_map, old_entry, 3287 new_entry, fork_charge); 3288 break; 3289 } 3290 old_entry = old_entry->next; 3291 } 3292 /* 3293 * Use inlined vm_map_unlock() to postpone handling the deferred 3294 * map entries, which cannot be done until both old_map and 3295 * new_map locks are released. 3296 */ 3297 sx_xunlock(&old_map->lock); 3298 sx_xunlock(&new_map->lock); 3299 vm_map_process_deferred(); 3300 3301 return (vm2); 3302 } 3303 3304 int 3305 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3306 vm_prot_t prot, vm_prot_t max, int cow) 3307 { 3308 vm_map_entry_t new_entry, prev_entry; 3309 vm_offset_t bot, top; 3310 vm_size_t growsize, init_ssize; 3311 int orient, rv; 3312 rlim_t lmemlim, vmemlim; 3313 3314 /* 3315 * The stack orientation is piggybacked with the cow argument. 3316 * Extract it into orient and mask the cow argument so that we 3317 * don't pass it around further. 3318 * NOTE: We explicitly allow bi-directional stacks. 3319 */ 3320 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3321 cow &= ~orient; 3322 KASSERT(orient != 0, ("No stack grow direction")); 3323 3324 if (addrbos < vm_map_min(map) || 3325 addrbos > vm_map_max(map) || 3326 addrbos + max_ssize < addrbos) 3327 return (KERN_NO_SPACE); 3328 3329 growsize = sgrowsiz; 3330 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3331 3332 PROC_LOCK(curproc); 3333 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3334 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3335 PROC_UNLOCK(curproc); 3336 3337 vm_map_lock(map); 3338 3339 /* If addr is already mapped, no go */ 3340 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3341 vm_map_unlock(map); 3342 return (KERN_NO_SPACE); 3343 } 3344 3345 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3346 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3347 vm_map_unlock(map); 3348 return (KERN_NO_SPACE); 3349 } 3350 } 3351 3352 /* If we would blow our VMEM resource limit, no go */ 3353 if (map->size + init_ssize > vmemlim) { 3354 vm_map_unlock(map); 3355 return (KERN_NO_SPACE); 3356 } 3357 3358 /* 3359 * If we can't accomodate max_ssize in the current mapping, no go. 3360 * However, we need to be aware that subsequent user mappings might 3361 * map into the space we have reserved for stack, and currently this 3362 * space is not protected. 3363 * 3364 * Hopefully we will at least detect this condition when we try to 3365 * grow the stack. 3366 */ 3367 if ((prev_entry->next != &map->header) && 3368 (prev_entry->next->start < addrbos + max_ssize)) { 3369 vm_map_unlock(map); 3370 return (KERN_NO_SPACE); 3371 } 3372 3373 /* 3374 * We initially map a stack of only init_ssize. We will grow as 3375 * needed later. Depending on the orientation of the stack (i.e. 3376 * the grow direction) we either map at the top of the range, the 3377 * bottom of the range or in the middle. 3378 * 3379 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3380 * and cow to be 0. Possibly we should eliminate these as input 3381 * parameters, and just pass these values here in the insert call. 3382 */ 3383 if (orient == MAP_STACK_GROWS_DOWN) 3384 bot = addrbos + max_ssize - init_ssize; 3385 else if (orient == MAP_STACK_GROWS_UP) 3386 bot = addrbos; 3387 else 3388 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3389 top = bot + init_ssize; 3390 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3391 3392 /* Now set the avail_ssize amount. */ 3393 if (rv == KERN_SUCCESS) { 3394 if (prev_entry != &map->header) 3395 vm_map_clip_end(map, prev_entry, bot); 3396 new_entry = prev_entry->next; 3397 if (new_entry->end != top || new_entry->start != bot) 3398 panic("Bad entry start/end for new stack entry"); 3399 3400 new_entry->avail_ssize = max_ssize - init_ssize; 3401 if (orient & MAP_STACK_GROWS_DOWN) 3402 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3403 if (orient & MAP_STACK_GROWS_UP) 3404 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3405 } 3406 3407 vm_map_unlock(map); 3408 return (rv); 3409 } 3410 3411 static int stack_guard_page = 0; 3412 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3413 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3414 &stack_guard_page, 0, 3415 "Insert stack guard page ahead of the growable segments."); 3416 3417 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3418 * desired address is already mapped, or if we successfully grow 3419 * the stack. Also returns KERN_SUCCESS if addr is outside the 3420 * stack range (this is strange, but preserves compatibility with 3421 * the grow function in vm_machdep.c). 3422 */ 3423 int 3424 vm_map_growstack(struct proc *p, vm_offset_t addr) 3425 { 3426 vm_map_entry_t next_entry, prev_entry; 3427 vm_map_entry_t new_entry, stack_entry; 3428 struct vmspace *vm = p->p_vmspace; 3429 vm_map_t map = &vm->vm_map; 3430 vm_offset_t end; 3431 vm_size_t growsize; 3432 size_t grow_amount, max_grow; 3433 rlim_t lmemlim, stacklim, vmemlim; 3434 int is_procstack, rv; 3435 struct ucred *cred; 3436 #ifdef notyet 3437 uint64_t limit; 3438 #endif 3439 #ifdef RACCT 3440 int error; 3441 #endif 3442 3443 Retry: 3444 PROC_LOCK(p); 3445 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3446 stacklim = lim_cur(p, RLIMIT_STACK); 3447 vmemlim = lim_cur(p, RLIMIT_VMEM); 3448 PROC_UNLOCK(p); 3449 3450 vm_map_lock_read(map); 3451 3452 /* If addr is already in the entry range, no need to grow.*/ 3453 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3454 vm_map_unlock_read(map); 3455 return (KERN_SUCCESS); 3456 } 3457 3458 next_entry = prev_entry->next; 3459 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3460 /* 3461 * This entry does not grow upwards. Since the address lies 3462 * beyond this entry, the next entry (if one exists) has to 3463 * be a downward growable entry. The entry list header is 3464 * never a growable entry, so it suffices to check the flags. 3465 */ 3466 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3467 vm_map_unlock_read(map); 3468 return (KERN_SUCCESS); 3469 } 3470 stack_entry = next_entry; 3471 } else { 3472 /* 3473 * This entry grows upward. If the next entry does not at 3474 * least grow downwards, this is the entry we need to grow. 3475 * otherwise we have two possible choices and we have to 3476 * select one. 3477 */ 3478 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3479 /* 3480 * We have two choices; grow the entry closest to 3481 * the address to minimize the amount of growth. 3482 */ 3483 if (addr - prev_entry->end <= next_entry->start - addr) 3484 stack_entry = prev_entry; 3485 else 3486 stack_entry = next_entry; 3487 } else 3488 stack_entry = prev_entry; 3489 } 3490 3491 if (stack_entry == next_entry) { 3492 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3493 KASSERT(addr < stack_entry->start, ("foo")); 3494 end = (prev_entry != &map->header) ? prev_entry->end : 3495 stack_entry->start - stack_entry->avail_ssize; 3496 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3497 max_grow = stack_entry->start - end; 3498 } else { 3499 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3500 KASSERT(addr >= stack_entry->end, ("foo")); 3501 end = (next_entry != &map->header) ? next_entry->start : 3502 stack_entry->end + stack_entry->avail_ssize; 3503 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3504 max_grow = end - stack_entry->end; 3505 } 3506 3507 if (grow_amount > stack_entry->avail_ssize) { 3508 vm_map_unlock_read(map); 3509 return (KERN_NO_SPACE); 3510 } 3511 3512 /* 3513 * If there is no longer enough space between the entries nogo, and 3514 * adjust the available space. Note: this should only happen if the 3515 * user has mapped into the stack area after the stack was created, 3516 * and is probably an error. 3517 * 3518 * This also effectively destroys any guard page the user might have 3519 * intended by limiting the stack size. 3520 */ 3521 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3522 if (vm_map_lock_upgrade(map)) 3523 goto Retry; 3524 3525 stack_entry->avail_ssize = max_grow; 3526 3527 vm_map_unlock(map); 3528 return (KERN_NO_SPACE); 3529 } 3530 3531 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3532 3533 /* 3534 * If this is the main process stack, see if we're over the stack 3535 * limit. 3536 */ 3537 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3538 vm_map_unlock_read(map); 3539 return (KERN_NO_SPACE); 3540 } 3541 #ifdef RACCT 3542 PROC_LOCK(p); 3543 if (is_procstack && 3544 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3545 PROC_UNLOCK(p); 3546 vm_map_unlock_read(map); 3547 return (KERN_NO_SPACE); 3548 } 3549 PROC_UNLOCK(p); 3550 #endif 3551 3552 /* Round up the grow amount modulo sgrowsiz */ 3553 growsize = sgrowsiz; 3554 grow_amount = roundup(grow_amount, growsize); 3555 if (grow_amount > stack_entry->avail_ssize) 3556 grow_amount = stack_entry->avail_ssize; 3557 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3558 grow_amount = trunc_page((vm_size_t)stacklim) - 3559 ctob(vm->vm_ssize); 3560 } 3561 #ifdef notyet 3562 PROC_LOCK(p); 3563 limit = racct_get_available(p, RACCT_STACK); 3564 PROC_UNLOCK(p); 3565 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3566 grow_amount = limit - ctob(vm->vm_ssize); 3567 #endif 3568 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3569 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3570 vm_map_unlock_read(map); 3571 rv = KERN_NO_SPACE; 3572 goto out; 3573 } 3574 #ifdef RACCT 3575 PROC_LOCK(p); 3576 if (racct_set(p, RACCT_MEMLOCK, 3577 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3578 PROC_UNLOCK(p); 3579 vm_map_unlock_read(map); 3580 rv = KERN_NO_SPACE; 3581 goto out; 3582 } 3583 PROC_UNLOCK(p); 3584 #endif 3585 } 3586 /* If we would blow our VMEM resource limit, no go */ 3587 if (map->size + grow_amount > vmemlim) { 3588 vm_map_unlock_read(map); 3589 rv = KERN_NO_SPACE; 3590 goto out; 3591 } 3592 #ifdef RACCT 3593 PROC_LOCK(p); 3594 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3595 PROC_UNLOCK(p); 3596 vm_map_unlock_read(map); 3597 rv = KERN_NO_SPACE; 3598 goto out; 3599 } 3600 PROC_UNLOCK(p); 3601 #endif 3602 3603 if (vm_map_lock_upgrade(map)) 3604 goto Retry; 3605 3606 if (stack_entry == next_entry) { 3607 /* 3608 * Growing downward. 3609 */ 3610 /* Get the preliminary new entry start value */ 3611 addr = stack_entry->start - grow_amount; 3612 3613 /* 3614 * If this puts us into the previous entry, cut back our 3615 * growth to the available space. Also, see the note above. 3616 */ 3617 if (addr < end) { 3618 stack_entry->avail_ssize = max_grow; 3619 addr = end; 3620 if (stack_guard_page) 3621 addr += PAGE_SIZE; 3622 } 3623 3624 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3625 next_entry->protection, next_entry->max_protection, 0); 3626 3627 /* Adjust the available stack space by the amount we grew. */ 3628 if (rv == KERN_SUCCESS) { 3629 if (prev_entry != &map->header) 3630 vm_map_clip_end(map, prev_entry, addr); 3631 new_entry = prev_entry->next; 3632 KASSERT(new_entry == stack_entry->prev, ("foo")); 3633 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3634 KASSERT(new_entry->start == addr, ("foo")); 3635 grow_amount = new_entry->end - new_entry->start; 3636 new_entry->avail_ssize = stack_entry->avail_ssize - 3637 grow_amount; 3638 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3639 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3640 } 3641 } else { 3642 /* 3643 * Growing upward. 3644 */ 3645 addr = stack_entry->end + grow_amount; 3646 3647 /* 3648 * If this puts us into the next entry, cut back our growth 3649 * to the available space. Also, see the note above. 3650 */ 3651 if (addr > end) { 3652 stack_entry->avail_ssize = end - stack_entry->end; 3653 addr = end; 3654 if (stack_guard_page) 3655 addr -= PAGE_SIZE; 3656 } 3657 3658 grow_amount = addr - stack_entry->end; 3659 cred = stack_entry->cred; 3660 if (cred == NULL && stack_entry->object.vm_object != NULL) 3661 cred = stack_entry->object.vm_object->cred; 3662 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3663 rv = KERN_NO_SPACE; 3664 /* Grow the underlying object if applicable. */ 3665 else if (stack_entry->object.vm_object == NULL || 3666 vm_object_coalesce(stack_entry->object.vm_object, 3667 stack_entry->offset, 3668 (vm_size_t)(stack_entry->end - stack_entry->start), 3669 (vm_size_t)grow_amount, cred != NULL)) { 3670 map->size += (addr - stack_entry->end); 3671 /* Update the current entry. */ 3672 stack_entry->end = addr; 3673 stack_entry->avail_ssize -= grow_amount; 3674 vm_map_entry_resize_free(map, stack_entry); 3675 rv = KERN_SUCCESS; 3676 3677 if (next_entry != &map->header) 3678 vm_map_clip_start(map, next_entry, addr); 3679 } else 3680 rv = KERN_FAILURE; 3681 } 3682 3683 if (rv == KERN_SUCCESS && is_procstack) 3684 vm->vm_ssize += btoc(grow_amount); 3685 3686 vm_map_unlock(map); 3687 3688 /* 3689 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3690 */ 3691 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3692 vm_map_wire(map, 3693 (stack_entry == next_entry) ? addr : addr - grow_amount, 3694 (stack_entry == next_entry) ? stack_entry->start : addr, 3695 (p->p_flag & P_SYSTEM) 3696 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3697 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3698 } 3699 3700 out: 3701 #ifdef RACCT 3702 if (rv != KERN_SUCCESS) { 3703 PROC_LOCK(p); 3704 error = racct_set(p, RACCT_VMEM, map->size); 3705 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3706 if (!old_mlock) { 3707 error = racct_set(p, RACCT_MEMLOCK, 3708 ptoa(pmap_wired_count(map->pmap))); 3709 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3710 } 3711 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3712 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3713 PROC_UNLOCK(p); 3714 } 3715 #endif 3716 3717 return (rv); 3718 } 3719 3720 /* 3721 * Unshare the specified VM space for exec. If other processes are 3722 * mapped to it, then create a new one. The new vmspace is null. 3723 */ 3724 int 3725 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3726 { 3727 struct vmspace *oldvmspace = p->p_vmspace; 3728 struct vmspace *newvmspace; 3729 3730 newvmspace = vmspace_alloc(minuser, maxuser); 3731 if (newvmspace == NULL) 3732 return (ENOMEM); 3733 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3734 /* 3735 * This code is written like this for prototype purposes. The 3736 * goal is to avoid running down the vmspace here, but let the 3737 * other process's that are still using the vmspace to finally 3738 * run it down. Even though there is little or no chance of blocking 3739 * here, it is a good idea to keep this form for future mods. 3740 */ 3741 PROC_VMSPACE_LOCK(p); 3742 p->p_vmspace = newvmspace; 3743 PROC_VMSPACE_UNLOCK(p); 3744 if (p == curthread->td_proc) 3745 pmap_activate(curthread); 3746 vmspace_free(oldvmspace); 3747 return (0); 3748 } 3749 3750 /* 3751 * Unshare the specified VM space for forcing COW. This 3752 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3753 */ 3754 int 3755 vmspace_unshare(struct proc *p) 3756 { 3757 struct vmspace *oldvmspace = p->p_vmspace; 3758 struct vmspace *newvmspace; 3759 vm_ooffset_t fork_charge; 3760 3761 if (oldvmspace->vm_refcnt == 1) 3762 return (0); 3763 fork_charge = 0; 3764 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3765 if (newvmspace == NULL) 3766 return (ENOMEM); 3767 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3768 vmspace_free(newvmspace); 3769 return (ENOMEM); 3770 } 3771 PROC_VMSPACE_LOCK(p); 3772 p->p_vmspace = newvmspace; 3773 PROC_VMSPACE_UNLOCK(p); 3774 if (p == curthread->td_proc) 3775 pmap_activate(curthread); 3776 vmspace_free(oldvmspace); 3777 return (0); 3778 } 3779 3780 /* 3781 * vm_map_lookup: 3782 * 3783 * Finds the VM object, offset, and 3784 * protection for a given virtual address in the 3785 * specified map, assuming a page fault of the 3786 * type specified. 3787 * 3788 * Leaves the map in question locked for read; return 3789 * values are guaranteed until a vm_map_lookup_done 3790 * call is performed. Note that the map argument 3791 * is in/out; the returned map must be used in 3792 * the call to vm_map_lookup_done. 3793 * 3794 * A handle (out_entry) is returned for use in 3795 * vm_map_lookup_done, to make that fast. 3796 * 3797 * If a lookup is requested with "write protection" 3798 * specified, the map may be changed to perform virtual 3799 * copying operations, although the data referenced will 3800 * remain the same. 3801 */ 3802 int 3803 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3804 vm_offset_t vaddr, 3805 vm_prot_t fault_typea, 3806 vm_map_entry_t *out_entry, /* OUT */ 3807 vm_object_t *object, /* OUT */ 3808 vm_pindex_t *pindex, /* OUT */ 3809 vm_prot_t *out_prot, /* OUT */ 3810 boolean_t *wired) /* OUT */ 3811 { 3812 vm_map_entry_t entry; 3813 vm_map_t map = *var_map; 3814 vm_prot_t prot; 3815 vm_prot_t fault_type = fault_typea; 3816 vm_object_t eobject; 3817 vm_size_t size; 3818 struct ucred *cred; 3819 3820 RetryLookup:; 3821 3822 vm_map_lock_read(map); 3823 3824 /* 3825 * Lookup the faulting address. 3826 */ 3827 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3828 vm_map_unlock_read(map); 3829 return (KERN_INVALID_ADDRESS); 3830 } 3831 3832 entry = *out_entry; 3833 3834 /* 3835 * Handle submaps. 3836 */ 3837 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3838 vm_map_t old_map = map; 3839 3840 *var_map = map = entry->object.sub_map; 3841 vm_map_unlock_read(old_map); 3842 goto RetryLookup; 3843 } 3844 3845 /* 3846 * Check whether this task is allowed to have this page. 3847 */ 3848 prot = entry->protection; 3849 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3850 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3851 vm_map_unlock_read(map); 3852 return (KERN_PROTECTION_FAILURE); 3853 } 3854 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3855 (entry->eflags & MAP_ENTRY_COW) && 3856 (fault_type & VM_PROT_WRITE)) { 3857 vm_map_unlock_read(map); 3858 return (KERN_PROTECTION_FAILURE); 3859 } 3860 if ((fault_typea & VM_PROT_COPY) != 0 && 3861 (entry->max_protection & VM_PROT_WRITE) == 0 && 3862 (entry->eflags & MAP_ENTRY_COW) == 0) { 3863 vm_map_unlock_read(map); 3864 return (KERN_PROTECTION_FAILURE); 3865 } 3866 3867 /* 3868 * If this page is not pageable, we have to get it for all possible 3869 * accesses. 3870 */ 3871 *wired = (entry->wired_count != 0); 3872 if (*wired) 3873 fault_type = entry->protection; 3874 size = entry->end - entry->start; 3875 /* 3876 * If the entry was copy-on-write, we either ... 3877 */ 3878 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3879 /* 3880 * If we want to write the page, we may as well handle that 3881 * now since we've got the map locked. 3882 * 3883 * If we don't need to write the page, we just demote the 3884 * permissions allowed. 3885 */ 3886 if ((fault_type & VM_PROT_WRITE) != 0 || 3887 (fault_typea & VM_PROT_COPY) != 0) { 3888 /* 3889 * Make a new object, and place it in the object 3890 * chain. Note that no new references have appeared 3891 * -- one just moved from the map to the new 3892 * object. 3893 */ 3894 if (vm_map_lock_upgrade(map)) 3895 goto RetryLookup; 3896 3897 if (entry->cred == NULL) { 3898 /* 3899 * The debugger owner is charged for 3900 * the memory. 3901 */ 3902 cred = curthread->td_ucred; 3903 crhold(cred); 3904 if (!swap_reserve_by_cred(size, cred)) { 3905 crfree(cred); 3906 vm_map_unlock(map); 3907 return (KERN_RESOURCE_SHORTAGE); 3908 } 3909 entry->cred = cred; 3910 } 3911 vm_object_shadow(&entry->object.vm_object, 3912 &entry->offset, size); 3913 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3914 eobject = entry->object.vm_object; 3915 if (eobject->cred != NULL) { 3916 /* 3917 * The object was not shadowed. 3918 */ 3919 swap_release_by_cred(size, entry->cred); 3920 crfree(entry->cred); 3921 entry->cred = NULL; 3922 } else if (entry->cred != NULL) { 3923 VM_OBJECT_WLOCK(eobject); 3924 eobject->cred = entry->cred; 3925 eobject->charge = size; 3926 VM_OBJECT_WUNLOCK(eobject); 3927 entry->cred = NULL; 3928 } 3929 3930 vm_map_lock_downgrade(map); 3931 } else { 3932 /* 3933 * We're attempting to read a copy-on-write page -- 3934 * don't allow writes. 3935 */ 3936 prot &= ~VM_PROT_WRITE; 3937 } 3938 } 3939 3940 /* 3941 * Create an object if necessary. 3942 */ 3943 if (entry->object.vm_object == NULL && 3944 !map->system_map) { 3945 if (vm_map_lock_upgrade(map)) 3946 goto RetryLookup; 3947 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3948 atop(size)); 3949 entry->offset = 0; 3950 if (entry->cred != NULL) { 3951 VM_OBJECT_WLOCK(entry->object.vm_object); 3952 entry->object.vm_object->cred = entry->cred; 3953 entry->object.vm_object->charge = size; 3954 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3955 entry->cred = NULL; 3956 } 3957 vm_map_lock_downgrade(map); 3958 } 3959 3960 /* 3961 * Return the object/offset from this entry. If the entry was 3962 * copy-on-write or empty, it has been fixed up. 3963 */ 3964 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3965 *object = entry->object.vm_object; 3966 3967 *out_prot = prot; 3968 return (KERN_SUCCESS); 3969 } 3970 3971 /* 3972 * vm_map_lookup_locked: 3973 * 3974 * Lookup the faulting address. A version of vm_map_lookup that returns 3975 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3976 */ 3977 int 3978 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3979 vm_offset_t vaddr, 3980 vm_prot_t fault_typea, 3981 vm_map_entry_t *out_entry, /* OUT */ 3982 vm_object_t *object, /* OUT */ 3983 vm_pindex_t *pindex, /* OUT */ 3984 vm_prot_t *out_prot, /* OUT */ 3985 boolean_t *wired) /* OUT */ 3986 { 3987 vm_map_entry_t entry; 3988 vm_map_t map = *var_map; 3989 vm_prot_t prot; 3990 vm_prot_t fault_type = fault_typea; 3991 3992 /* 3993 * Lookup the faulting address. 3994 */ 3995 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3996 return (KERN_INVALID_ADDRESS); 3997 3998 entry = *out_entry; 3999 4000 /* 4001 * Fail if the entry refers to a submap. 4002 */ 4003 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4004 return (KERN_FAILURE); 4005 4006 /* 4007 * Check whether this task is allowed to have this page. 4008 */ 4009 prot = entry->protection; 4010 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4011 if ((fault_type & prot) != fault_type) 4012 return (KERN_PROTECTION_FAILURE); 4013 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4014 (entry->eflags & MAP_ENTRY_COW) && 4015 (fault_type & VM_PROT_WRITE)) 4016 return (KERN_PROTECTION_FAILURE); 4017 4018 /* 4019 * If this page is not pageable, we have to get it for all possible 4020 * accesses. 4021 */ 4022 *wired = (entry->wired_count != 0); 4023 if (*wired) 4024 fault_type = entry->protection; 4025 4026 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4027 /* 4028 * Fail if the entry was copy-on-write for a write fault. 4029 */ 4030 if (fault_type & VM_PROT_WRITE) 4031 return (KERN_FAILURE); 4032 /* 4033 * We're attempting to read a copy-on-write page -- 4034 * don't allow writes. 4035 */ 4036 prot &= ~VM_PROT_WRITE; 4037 } 4038 4039 /* 4040 * Fail if an object should be created. 4041 */ 4042 if (entry->object.vm_object == NULL && !map->system_map) 4043 return (KERN_FAILURE); 4044 4045 /* 4046 * Return the object/offset from this entry. If the entry was 4047 * copy-on-write or empty, it has been fixed up. 4048 */ 4049 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4050 *object = entry->object.vm_object; 4051 4052 *out_prot = prot; 4053 return (KERN_SUCCESS); 4054 } 4055 4056 /* 4057 * vm_map_lookup_done: 4058 * 4059 * Releases locks acquired by a vm_map_lookup 4060 * (according to the handle returned by that lookup). 4061 */ 4062 void 4063 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4064 { 4065 /* 4066 * Unlock the main-level map 4067 */ 4068 vm_map_unlock_read(map); 4069 } 4070 4071 #include "opt_ddb.h" 4072 #ifdef DDB 4073 #include <sys/kernel.h> 4074 4075 #include <ddb/ddb.h> 4076 4077 static void 4078 vm_map_print(vm_map_t map) 4079 { 4080 vm_map_entry_t entry; 4081 4082 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4083 (void *)map, 4084 (void *)map->pmap, map->nentries, map->timestamp); 4085 4086 db_indent += 2; 4087 for (entry = map->header.next; entry != &map->header; 4088 entry = entry->next) { 4089 db_iprintf("map entry %p: start=%p, end=%p\n", 4090 (void *)entry, (void *)entry->start, (void *)entry->end); 4091 { 4092 static char *inheritance_name[4] = 4093 {"share", "copy", "none", "donate_copy"}; 4094 4095 db_iprintf(" prot=%x/%x/%s", 4096 entry->protection, 4097 entry->max_protection, 4098 inheritance_name[(int)(unsigned char)entry->inheritance]); 4099 if (entry->wired_count != 0) 4100 db_printf(", wired"); 4101 } 4102 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4103 db_printf(", share=%p, offset=0x%jx\n", 4104 (void *)entry->object.sub_map, 4105 (uintmax_t)entry->offset); 4106 if ((entry->prev == &map->header) || 4107 (entry->prev->object.sub_map != 4108 entry->object.sub_map)) { 4109 db_indent += 2; 4110 vm_map_print((vm_map_t)entry->object.sub_map); 4111 db_indent -= 2; 4112 } 4113 } else { 4114 if (entry->cred != NULL) 4115 db_printf(", ruid %d", entry->cred->cr_ruid); 4116 db_printf(", object=%p, offset=0x%jx", 4117 (void *)entry->object.vm_object, 4118 (uintmax_t)entry->offset); 4119 if (entry->object.vm_object && entry->object.vm_object->cred) 4120 db_printf(", obj ruid %d charge %jx", 4121 entry->object.vm_object->cred->cr_ruid, 4122 (uintmax_t)entry->object.vm_object->charge); 4123 if (entry->eflags & MAP_ENTRY_COW) 4124 db_printf(", copy (%s)", 4125 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4126 db_printf("\n"); 4127 4128 if ((entry->prev == &map->header) || 4129 (entry->prev->object.vm_object != 4130 entry->object.vm_object)) { 4131 db_indent += 2; 4132 vm_object_print((db_expr_t)(intptr_t) 4133 entry->object.vm_object, 4134 1, 0, (char *)0); 4135 db_indent -= 2; 4136 } 4137 } 4138 } 4139 db_indent -= 2; 4140 } 4141 4142 DB_SHOW_COMMAND(map, map) 4143 { 4144 4145 if (!have_addr) { 4146 db_printf("usage: show map <addr>\n"); 4147 return; 4148 } 4149 vm_map_print((vm_map_t)addr); 4150 } 4151 4152 DB_SHOW_COMMAND(procvm, procvm) 4153 { 4154 struct proc *p; 4155 4156 if (have_addr) { 4157 p = (struct proc *) addr; 4158 } else { 4159 p = curproc; 4160 } 4161 4162 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4163 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4164 (void *)vmspace_pmap(p->p_vmspace)); 4165 4166 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4167 } 4168 4169 #endif /* DDB */ 4170