xref: /freebsd/sys/vm/vm_map.c (revision 46902503bc85c7b5fcdfb06e027ad756e083b3a4)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	uma_prealloc(kmapentzone, MAX_KMAPENT);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 }
204 
205 static void
206 vmspace_zfini(void *mem, int size)
207 {
208 	struct vmspace *vm;
209 
210 	vm = (struct vmspace *)mem;
211 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212 }
213 
214 static int
215 vmspace_zinit(void *mem, int size, int flags)
216 {
217 	struct vmspace *vm;
218 
219 	vm = (struct vmspace *)mem;
220 
221 	vm->vm_map.pmap = NULL;
222 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 	return (0);
224 }
225 
226 static void
227 vm_map_zfini(void *mem, int size)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	mtx_destroy(&map->system_mtx);
233 	sx_destroy(&map->lock);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	map->nentries = 0;
243 	map->size = 0;
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  */
278 struct vmspace *
279 vmspace_alloc(min, max)
280 	vm_offset_t min, max;
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 void
304 vm_init2(void)
305 {
306 	uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count,
307 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308 	     maxproc * 2 + maxfiles);
309 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310 #ifdef INVARIANTS
311 	    vmspace_zdtor,
312 #else
313 	    NULL,
314 #endif
315 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316 }
317 
318 static void
319 vmspace_container_reset(struct proc *p)
320 {
321 
322 #ifdef RACCT
323 	PROC_LOCK(p);
324 	racct_set(p, RACCT_DATA, 0);
325 	racct_set(p, RACCT_STACK, 0);
326 	racct_set(p, RACCT_RSS, 0);
327 	racct_set(p, RACCT_MEMLOCK, 0);
328 	racct_set(p, RACCT_VMEM, 0);
329 	PROC_UNLOCK(p);
330 #endif
331 }
332 
333 static inline void
334 vmspace_dofree(struct vmspace *vm)
335 {
336 
337 	CTR1(KTR_VM, "vmspace_free: %p", vm);
338 
339 	/*
340 	 * Make sure any SysV shm is freed, it might not have been in
341 	 * exit1().
342 	 */
343 	shmexit(vm);
344 
345 	/*
346 	 * Lock the map, to wait out all other references to it.
347 	 * Delete all of the mappings and pages they hold, then call
348 	 * the pmap module to reclaim anything left.
349 	 */
350 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351 	    vm->vm_map.max_offset);
352 
353 	pmap_release(vmspace_pmap(vm));
354 	vm->vm_map.pmap = NULL;
355 	uma_zfree(vmspace_zone, vm);
356 }
357 
358 void
359 vmspace_free(struct vmspace *vm)
360 {
361 
362 	if (vm->vm_refcnt == 0)
363 		panic("vmspace_free: attempt to free already freed vmspace");
364 
365 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366 		vmspace_dofree(vm);
367 }
368 
369 void
370 vmspace_exitfree(struct proc *p)
371 {
372 	struct vmspace *vm;
373 
374 	PROC_VMSPACE_LOCK(p);
375 	vm = p->p_vmspace;
376 	p->p_vmspace = NULL;
377 	PROC_VMSPACE_UNLOCK(p);
378 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379 	vmspace_free(vm);
380 }
381 
382 void
383 vmspace_exit(struct thread *td)
384 {
385 	int refcnt;
386 	struct vmspace *vm;
387 	struct proc *p;
388 
389 	/*
390 	 * Release user portion of address space.
391 	 * This releases references to vnodes,
392 	 * which could cause I/O if the file has been unlinked.
393 	 * Need to do this early enough that we can still sleep.
394 	 *
395 	 * The last exiting process to reach this point releases as
396 	 * much of the environment as it can. vmspace_dofree() is the
397 	 * slower fallback in case another process had a temporary
398 	 * reference to the vmspace.
399 	 */
400 
401 	p = td->td_proc;
402 	vm = p->p_vmspace;
403 	atomic_add_int(&vmspace0.vm_refcnt, 1);
404 	do {
405 		refcnt = vm->vm_refcnt;
406 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407 			/* Switch now since other proc might free vmspace */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = &vmspace0;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414 	if (refcnt == 1) {
415 		if (p->p_vmspace != vm) {
416 			/* vmspace not yet freed, switch back */
417 			PROC_VMSPACE_LOCK(p);
418 			p->p_vmspace = vm;
419 			PROC_VMSPACE_UNLOCK(p);
420 			pmap_activate(td);
421 		}
422 		pmap_remove_pages(vmspace_pmap(vm));
423 		/* Switch now since this proc will free vmspace */
424 		PROC_VMSPACE_LOCK(p);
425 		p->p_vmspace = &vmspace0;
426 		PROC_VMSPACE_UNLOCK(p);
427 		pmap_activate(td);
428 		vmspace_dofree(vm);
429 	}
430 	vmspace_container_reset(p);
431 }
432 
433 /* Acquire reference to vmspace owned by another process. */
434 
435 struct vmspace *
436 vmspace_acquire_ref(struct proc *p)
437 {
438 	struct vmspace *vm;
439 	int refcnt;
440 
441 	PROC_VMSPACE_LOCK(p);
442 	vm = p->p_vmspace;
443 	if (vm == NULL) {
444 		PROC_VMSPACE_UNLOCK(p);
445 		return (NULL);
446 	}
447 	do {
448 		refcnt = vm->vm_refcnt;
449 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
450 			PROC_VMSPACE_UNLOCK(p);
451 			return (NULL);
452 		}
453 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454 	if (vm != p->p_vmspace) {
455 		PROC_VMSPACE_UNLOCK(p);
456 		vmspace_free(vm);
457 		return (NULL);
458 	}
459 	PROC_VMSPACE_UNLOCK(p);
460 	return (vm);
461 }
462 
463 void
464 _vm_map_lock(vm_map_t map, const char *file, int line)
465 {
466 
467 	if (map->system_map)
468 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
469 	else
470 		sx_xlock_(&map->lock, file, line);
471 	map->timestamp++;
472 }
473 
474 static void
475 vm_map_process_deferred(void)
476 {
477 	struct thread *td;
478 	vm_map_entry_t entry, next;
479 	vm_object_t object;
480 
481 	td = curthread;
482 	entry = td->td_map_def_user;
483 	td->td_map_def_user = NULL;
484 	while (entry != NULL) {
485 		next = entry->next;
486 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
487 			/*
488 			 * Decrement the object's writemappings and
489 			 * possibly the vnode's v_writecount.
490 			 */
491 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
492 			    ("Submap with writecount"));
493 			object = entry->object.vm_object;
494 			KASSERT(object != NULL, ("No object for writecount"));
495 			vnode_pager_release_writecount(object, entry->start,
496 			    entry->end);
497 		}
498 		vm_map_entry_deallocate(entry, FALSE);
499 		entry = next;
500 	}
501 }
502 
503 void
504 _vm_map_unlock(vm_map_t map, const char *file, int line)
505 {
506 
507 	if (map->system_map)
508 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
509 	else {
510 		sx_xunlock_(&map->lock, file, line);
511 		vm_map_process_deferred();
512 	}
513 }
514 
515 void
516 _vm_map_lock_read(vm_map_t map, const char *file, int line)
517 {
518 
519 	if (map->system_map)
520 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
521 	else
522 		sx_slock_(&map->lock, file, line);
523 }
524 
525 void
526 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
527 {
528 
529 	if (map->system_map)
530 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
531 	else {
532 		sx_sunlock_(&map->lock, file, line);
533 		vm_map_process_deferred();
534 	}
535 }
536 
537 int
538 _vm_map_trylock(vm_map_t map, const char *file, int line)
539 {
540 	int error;
541 
542 	error = map->system_map ?
543 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
544 	    !sx_try_xlock_(&map->lock, file, line);
545 	if (error == 0)
546 		map->timestamp++;
547 	return (error == 0);
548 }
549 
550 int
551 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
552 {
553 	int error;
554 
555 	error = map->system_map ?
556 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
557 	    !sx_try_slock_(&map->lock, file, line);
558 	return (error == 0);
559 }
560 
561 /*
562  *	_vm_map_lock_upgrade:	[ internal use only ]
563  *
564  *	Tries to upgrade a read (shared) lock on the specified map to a write
565  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
566  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
567  *	returned without a read or write lock held.
568  *
569  *	Requires that the map be read locked.
570  */
571 int
572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
573 {
574 	unsigned int last_timestamp;
575 
576 	if (map->system_map) {
577 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
578 	} else {
579 		if (!sx_try_upgrade_(&map->lock, file, line)) {
580 			last_timestamp = map->timestamp;
581 			sx_sunlock_(&map->lock, file, line);
582 			vm_map_process_deferred();
583 			/*
584 			 * If the map's timestamp does not change while the
585 			 * map is unlocked, then the upgrade succeeds.
586 			 */
587 			sx_xlock_(&map->lock, file, line);
588 			if (last_timestamp != map->timestamp) {
589 				sx_xunlock_(&map->lock, file, line);
590 				return (1);
591 			}
592 		}
593 	}
594 	map->timestamp++;
595 	return (0);
596 }
597 
598 void
599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
600 {
601 
602 	if (map->system_map) {
603 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
604 	} else
605 		sx_downgrade_(&map->lock, file, line);
606 }
607 
608 /*
609  *	vm_map_locked:
610  *
611  *	Returns a non-zero value if the caller holds a write (exclusive) lock
612  *	on the specified map and the value "0" otherwise.
613  */
614 int
615 vm_map_locked(vm_map_t map)
616 {
617 
618 	if (map->system_map)
619 		return (mtx_owned(&map->system_mtx));
620 	else
621 		return (sx_xlocked(&map->lock));
622 }
623 
624 #ifdef INVARIANTS
625 static void
626 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
627 {
628 
629 	if (map->system_map)
630 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
631 	else
632 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
633 }
634 
635 #define	VM_MAP_ASSERT_LOCKED(map) \
636     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
637 #else
638 #define	VM_MAP_ASSERT_LOCKED(map)
639 #endif
640 
641 /*
642  *	_vm_map_unlock_and_wait:
643  *
644  *	Atomically releases the lock on the specified map and puts the calling
645  *	thread to sleep.  The calling thread will remain asleep until either
646  *	vm_map_wakeup() is performed on the map or the specified timeout is
647  *	exceeded.
648  *
649  *	WARNING!  This function does not perform deferred deallocations of
650  *	objects and map	entries.  Therefore, the calling thread is expected to
651  *	reacquire the map lock after reawakening and later perform an ordinary
652  *	unlock operation, such as vm_map_unlock(), before completing its
653  *	operation on the map.
654  */
655 int
656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
657 {
658 
659 	mtx_lock(&map_sleep_mtx);
660 	if (map->system_map)
661 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
662 	else
663 		sx_xunlock_(&map->lock, file, line);
664 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
665 	    timo));
666 }
667 
668 /*
669  *	vm_map_wakeup:
670  *
671  *	Awaken any threads that have slept on the map using
672  *	vm_map_unlock_and_wait().
673  */
674 void
675 vm_map_wakeup(vm_map_t map)
676 {
677 
678 	/*
679 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
680 	 * from being performed (and lost) between the map unlock
681 	 * and the msleep() in _vm_map_unlock_and_wait().
682 	 */
683 	mtx_lock(&map_sleep_mtx);
684 	mtx_unlock(&map_sleep_mtx);
685 	wakeup(&map->root);
686 }
687 
688 void
689 vm_map_busy(vm_map_t map)
690 {
691 
692 	VM_MAP_ASSERT_LOCKED(map);
693 	map->busy++;
694 }
695 
696 void
697 vm_map_unbusy(vm_map_t map)
698 {
699 
700 	VM_MAP_ASSERT_LOCKED(map);
701 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
702 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
703 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
704 		wakeup(&map->busy);
705 	}
706 }
707 
708 void
709 vm_map_wait_busy(vm_map_t map)
710 {
711 
712 	VM_MAP_ASSERT_LOCKED(map);
713 	while (map->busy) {
714 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
715 		if (map->system_map)
716 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
717 		else
718 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
719 	}
720 	map->timestamp++;
721 }
722 
723 long
724 vmspace_resident_count(struct vmspace *vmspace)
725 {
726 	return pmap_resident_count(vmspace_pmap(vmspace));
727 }
728 
729 /*
730  *	vm_map_create:
731  *
732  *	Creates and returns a new empty VM map with
733  *	the given physical map structure, and having
734  *	the given lower and upper address bounds.
735  */
736 vm_map_t
737 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
738 {
739 	vm_map_t result;
740 
741 	result = uma_zalloc(mapzone, M_WAITOK);
742 	CTR1(KTR_VM, "vm_map_create: %p", result);
743 	_vm_map_init(result, pmap, min, max);
744 	return (result);
745 }
746 
747 /*
748  * Initialize an existing vm_map structure
749  * such as that in the vmspace structure.
750  */
751 static void
752 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
753 {
754 
755 	map->header.next = map->header.prev = &map->header;
756 	map->needs_wakeup = FALSE;
757 	map->system_map = 0;
758 	map->pmap = pmap;
759 	map->min_offset = min;
760 	map->max_offset = max;
761 	map->flags = 0;
762 	map->root = NULL;
763 	map->timestamp = 0;
764 	map->busy = 0;
765 }
766 
767 void
768 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
769 {
770 
771 	_vm_map_init(map, pmap, min, max);
772 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
773 	sx_init(&map->lock, "user map");
774 }
775 
776 /*
777  *	vm_map_entry_dispose:	[ internal use only ]
778  *
779  *	Inverse of vm_map_entry_create.
780  */
781 static void
782 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
783 {
784 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
785 }
786 
787 /*
788  *	vm_map_entry_create:	[ internal use only ]
789  *
790  *	Allocates a VM map entry for insertion.
791  *	No entry fields are filled in.
792  */
793 static vm_map_entry_t
794 vm_map_entry_create(vm_map_t map)
795 {
796 	vm_map_entry_t new_entry;
797 
798 	if (map->system_map)
799 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
800 	else
801 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
802 	if (new_entry == NULL)
803 		panic("vm_map_entry_create: kernel resources exhausted");
804 	return (new_entry);
805 }
806 
807 /*
808  *	vm_map_entry_set_behavior:
809  *
810  *	Set the expected access behavior, either normal, random, or
811  *	sequential.
812  */
813 static inline void
814 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
815 {
816 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
817 	    (behavior & MAP_ENTRY_BEHAV_MASK);
818 }
819 
820 /*
821  *	vm_map_entry_set_max_free:
822  *
823  *	Set the max_free field in a vm_map_entry.
824  */
825 static inline void
826 vm_map_entry_set_max_free(vm_map_entry_t entry)
827 {
828 
829 	entry->max_free = entry->adj_free;
830 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
831 		entry->max_free = entry->left->max_free;
832 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
833 		entry->max_free = entry->right->max_free;
834 }
835 
836 /*
837  *	vm_map_entry_splay:
838  *
839  *	The Sleator and Tarjan top-down splay algorithm with the
840  *	following variation.  Max_free must be computed bottom-up, so
841  *	on the downward pass, maintain the left and right spines in
842  *	reverse order.  Then, make a second pass up each side to fix
843  *	the pointers and compute max_free.  The time bound is O(log n)
844  *	amortized.
845  *
846  *	The new root is the vm_map_entry containing "addr", or else an
847  *	adjacent entry (lower or higher) if addr is not in the tree.
848  *
849  *	The map must be locked, and leaves it so.
850  *
851  *	Returns: the new root.
852  */
853 static vm_map_entry_t
854 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
855 {
856 	vm_map_entry_t llist, rlist;
857 	vm_map_entry_t ltree, rtree;
858 	vm_map_entry_t y;
859 
860 	/* Special case of empty tree. */
861 	if (root == NULL)
862 		return (root);
863 
864 	/*
865 	 * Pass One: Splay down the tree until we find addr or a NULL
866 	 * pointer where addr would go.  llist and rlist are the two
867 	 * sides in reverse order (bottom-up), with llist linked by
868 	 * the right pointer and rlist linked by the left pointer in
869 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
870 	 * the two spines.
871 	 */
872 	llist = NULL;
873 	rlist = NULL;
874 	for (;;) {
875 		/* root is never NULL in here. */
876 		if (addr < root->start) {
877 			y = root->left;
878 			if (y == NULL)
879 				break;
880 			if (addr < y->start && y->left != NULL) {
881 				/* Rotate right and put y on rlist. */
882 				root->left = y->right;
883 				y->right = root;
884 				vm_map_entry_set_max_free(root);
885 				root = y->left;
886 				y->left = rlist;
887 				rlist = y;
888 			} else {
889 				/* Put root on rlist. */
890 				root->left = rlist;
891 				rlist = root;
892 				root = y;
893 			}
894 		} else if (addr >= root->end) {
895 			y = root->right;
896 			if (y == NULL)
897 				break;
898 			if (addr >= y->end && y->right != NULL) {
899 				/* Rotate left and put y on llist. */
900 				root->right = y->left;
901 				y->left = root;
902 				vm_map_entry_set_max_free(root);
903 				root = y->right;
904 				y->right = llist;
905 				llist = y;
906 			} else {
907 				/* Put root on llist. */
908 				root->right = llist;
909 				llist = root;
910 				root = y;
911 			}
912 		} else
913 			break;
914 	}
915 
916 	/*
917 	 * Pass Two: Walk back up the two spines, flip the pointers
918 	 * and set max_free.  The subtrees of the root go at the
919 	 * bottom of llist and rlist.
920 	 */
921 	ltree = root->left;
922 	while (llist != NULL) {
923 		y = llist->right;
924 		llist->right = ltree;
925 		vm_map_entry_set_max_free(llist);
926 		ltree = llist;
927 		llist = y;
928 	}
929 	rtree = root->right;
930 	while (rlist != NULL) {
931 		y = rlist->left;
932 		rlist->left = rtree;
933 		vm_map_entry_set_max_free(rlist);
934 		rtree = rlist;
935 		rlist = y;
936 	}
937 
938 	/*
939 	 * Final assembly: add ltree and rtree as subtrees of root.
940 	 */
941 	root->left = ltree;
942 	root->right = rtree;
943 	vm_map_entry_set_max_free(root);
944 
945 	return (root);
946 }
947 
948 /*
949  *	vm_map_entry_{un,}link:
950  *
951  *	Insert/remove entries from maps.
952  */
953 static void
954 vm_map_entry_link(vm_map_t map,
955 		  vm_map_entry_t after_where,
956 		  vm_map_entry_t entry)
957 {
958 
959 	CTR4(KTR_VM,
960 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
961 	    map->nentries, entry, after_where);
962 	VM_MAP_ASSERT_LOCKED(map);
963 	map->nentries++;
964 	entry->prev = after_where;
965 	entry->next = after_where->next;
966 	entry->next->prev = entry;
967 	after_where->next = entry;
968 
969 	if (after_where != &map->header) {
970 		if (after_where != map->root)
971 			vm_map_entry_splay(after_where->start, map->root);
972 		entry->right = after_where->right;
973 		entry->left = after_where;
974 		after_where->right = NULL;
975 		after_where->adj_free = entry->start - after_where->end;
976 		vm_map_entry_set_max_free(after_where);
977 	} else {
978 		entry->right = map->root;
979 		entry->left = NULL;
980 	}
981 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
982 	    entry->next->start) - entry->end;
983 	vm_map_entry_set_max_free(entry);
984 	map->root = entry;
985 }
986 
987 static void
988 vm_map_entry_unlink(vm_map_t map,
989 		    vm_map_entry_t entry)
990 {
991 	vm_map_entry_t next, prev, root;
992 
993 	VM_MAP_ASSERT_LOCKED(map);
994 	if (entry != map->root)
995 		vm_map_entry_splay(entry->start, map->root);
996 	if (entry->left == NULL)
997 		root = entry->right;
998 	else {
999 		root = vm_map_entry_splay(entry->start, entry->left);
1000 		root->right = entry->right;
1001 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1002 		    entry->next->start) - root->end;
1003 		vm_map_entry_set_max_free(root);
1004 	}
1005 	map->root = root;
1006 
1007 	prev = entry->prev;
1008 	next = entry->next;
1009 	next->prev = prev;
1010 	prev->next = next;
1011 	map->nentries--;
1012 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1013 	    map->nentries, entry);
1014 }
1015 
1016 /*
1017  *	vm_map_entry_resize_free:
1018  *
1019  *	Recompute the amount of free space following a vm_map_entry
1020  *	and propagate that value up the tree.  Call this function after
1021  *	resizing a map entry in-place, that is, without a call to
1022  *	vm_map_entry_link() or _unlink().
1023  *
1024  *	The map must be locked, and leaves it so.
1025  */
1026 static void
1027 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1028 {
1029 
1030 	/*
1031 	 * Using splay trees without parent pointers, propagating
1032 	 * max_free up the tree is done by moving the entry to the
1033 	 * root and making the change there.
1034 	 */
1035 	if (entry != map->root)
1036 		map->root = vm_map_entry_splay(entry->start, map->root);
1037 
1038 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1039 	    entry->next->start) - entry->end;
1040 	vm_map_entry_set_max_free(entry);
1041 }
1042 
1043 /*
1044  *	vm_map_lookup_entry:	[ internal use only ]
1045  *
1046  *	Finds the map entry containing (or
1047  *	immediately preceding) the specified address
1048  *	in the given map; the entry is returned
1049  *	in the "entry" parameter.  The boolean
1050  *	result indicates whether the address is
1051  *	actually contained in the map.
1052  */
1053 boolean_t
1054 vm_map_lookup_entry(
1055 	vm_map_t map,
1056 	vm_offset_t address,
1057 	vm_map_entry_t *entry)	/* OUT */
1058 {
1059 	vm_map_entry_t cur;
1060 	boolean_t locked;
1061 
1062 	/*
1063 	 * If the map is empty, then the map entry immediately preceding
1064 	 * "address" is the map's header.
1065 	 */
1066 	cur = map->root;
1067 	if (cur == NULL)
1068 		*entry = &map->header;
1069 	else if (address >= cur->start && cur->end > address) {
1070 		*entry = cur;
1071 		return (TRUE);
1072 	} else if ((locked = vm_map_locked(map)) ||
1073 	    sx_try_upgrade(&map->lock)) {
1074 		/*
1075 		 * Splay requires a write lock on the map.  However, it only
1076 		 * restructures the binary search tree; it does not otherwise
1077 		 * change the map.  Thus, the map's timestamp need not change
1078 		 * on a temporary upgrade.
1079 		 */
1080 		map->root = cur = vm_map_entry_splay(address, cur);
1081 		if (!locked)
1082 			sx_downgrade(&map->lock);
1083 
1084 		/*
1085 		 * If "address" is contained within a map entry, the new root
1086 		 * is that map entry.  Otherwise, the new root is a map entry
1087 		 * immediately before or after "address".
1088 		 */
1089 		if (address >= cur->start) {
1090 			*entry = cur;
1091 			if (cur->end > address)
1092 				return (TRUE);
1093 		} else
1094 			*entry = cur->prev;
1095 	} else
1096 		/*
1097 		 * Since the map is only locked for read access, perform a
1098 		 * standard binary search tree lookup for "address".
1099 		 */
1100 		for (;;) {
1101 			if (address < cur->start) {
1102 				if (cur->left == NULL) {
1103 					*entry = cur->prev;
1104 					break;
1105 				}
1106 				cur = cur->left;
1107 			} else if (cur->end > address) {
1108 				*entry = cur;
1109 				return (TRUE);
1110 			} else {
1111 				if (cur->right == NULL) {
1112 					*entry = cur;
1113 					break;
1114 				}
1115 				cur = cur->right;
1116 			}
1117 		}
1118 	return (FALSE);
1119 }
1120 
1121 /*
1122  *	vm_map_insert:
1123  *
1124  *	Inserts the given whole VM object into the target
1125  *	map at the specified address range.  The object's
1126  *	size should match that of the address range.
1127  *
1128  *	Requires that the map be locked, and leaves it so.
1129  *
1130  *	If object is non-NULL, ref count must be bumped by caller
1131  *	prior to making call to account for the new entry.
1132  */
1133 int
1134 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1135 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1136 	      int cow)
1137 {
1138 	vm_map_entry_t new_entry;
1139 	vm_map_entry_t prev_entry;
1140 	vm_map_entry_t temp_entry;
1141 	vm_eflags_t protoeflags;
1142 	struct ucred *cred;
1143 	vm_inherit_t inheritance;
1144 	boolean_t charge_prev_obj;
1145 
1146 	VM_MAP_ASSERT_LOCKED(map);
1147 
1148 	/*
1149 	 * Check that the start and end points are not bogus.
1150 	 */
1151 	if ((start < map->min_offset) || (end > map->max_offset) ||
1152 	    (start >= end))
1153 		return (KERN_INVALID_ADDRESS);
1154 
1155 	/*
1156 	 * Find the entry prior to the proposed starting address; if it's part
1157 	 * of an existing entry, this range is bogus.
1158 	 */
1159 	if (vm_map_lookup_entry(map, start, &temp_entry))
1160 		return (KERN_NO_SPACE);
1161 
1162 	prev_entry = temp_entry;
1163 
1164 	/*
1165 	 * Assert that the next entry doesn't overlap the end point.
1166 	 */
1167 	if ((prev_entry->next != &map->header) &&
1168 	    (prev_entry->next->start < end))
1169 		return (KERN_NO_SPACE);
1170 
1171 	protoeflags = 0;
1172 	charge_prev_obj = FALSE;
1173 
1174 	if (cow & MAP_COPY_ON_WRITE)
1175 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1176 
1177 	if (cow & MAP_NOFAULT) {
1178 		protoeflags |= MAP_ENTRY_NOFAULT;
1179 
1180 		KASSERT(object == NULL,
1181 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1182 	}
1183 	if (cow & MAP_DISABLE_SYNCER)
1184 		protoeflags |= MAP_ENTRY_NOSYNC;
1185 	if (cow & MAP_DISABLE_COREDUMP)
1186 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1187 	if (cow & MAP_VN_WRITECOUNT)
1188 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1189 	if (cow & MAP_INHERIT_SHARE)
1190 		inheritance = VM_INHERIT_SHARE;
1191 	else
1192 		inheritance = VM_INHERIT_DEFAULT;
1193 
1194 	cred = NULL;
1195 	KASSERT((object != kmem_object && object != kernel_object) ||
1196 	    ((object == kmem_object || object == kernel_object) &&
1197 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1198 	    ("kmem or kernel object and cow"));
1199 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1200 		goto charged;
1201 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1202 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1203 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1204 			return (KERN_RESOURCE_SHORTAGE);
1205 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1206 		    object->cred == NULL,
1207 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1208 		cred = curthread->td_ucred;
1209 		crhold(cred);
1210 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1211 			charge_prev_obj = TRUE;
1212 	}
1213 
1214 charged:
1215 	/* Expand the kernel pmap, if necessary. */
1216 	if (map == kernel_map && end > kernel_vm_end)
1217 		pmap_growkernel(end);
1218 	if (object != NULL) {
1219 		/*
1220 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1221 		 * is trivially proven to be the only mapping for any
1222 		 * of the object's pages.  (Object granularity
1223 		 * reference counting is insufficient to recognize
1224 		 * aliases with precision.)
1225 		 */
1226 		VM_OBJECT_WLOCK(object);
1227 		if (object->ref_count > 1 || object->shadow_count != 0)
1228 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1229 		VM_OBJECT_WUNLOCK(object);
1230 	}
1231 	else if ((prev_entry != &map->header) &&
1232 		 (prev_entry->eflags == protoeflags) &&
1233 		 (prev_entry->end == start) &&
1234 		 (prev_entry->wired_count == 0) &&
1235 		 (prev_entry->cred == cred ||
1236 		  (prev_entry->object.vm_object != NULL &&
1237 		   (prev_entry->object.vm_object->cred == cred))) &&
1238 		   vm_object_coalesce(prev_entry->object.vm_object,
1239 		       prev_entry->offset,
1240 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1241 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1242 		/*
1243 		 * We were able to extend the object.  Determine if we
1244 		 * can extend the previous map entry to include the
1245 		 * new range as well.
1246 		 */
1247 		if ((prev_entry->inheritance == inheritance) &&
1248 		    (prev_entry->protection == prot) &&
1249 		    (prev_entry->max_protection == max)) {
1250 			map->size += (end - prev_entry->end);
1251 			prev_entry->end = end;
1252 			vm_map_entry_resize_free(map, prev_entry);
1253 			vm_map_simplify_entry(map, prev_entry);
1254 			if (cred != NULL)
1255 				crfree(cred);
1256 			return (KERN_SUCCESS);
1257 		}
1258 
1259 		/*
1260 		 * If we can extend the object but cannot extend the
1261 		 * map entry, we have to create a new map entry.  We
1262 		 * must bump the ref count on the extended object to
1263 		 * account for it.  object may be NULL.
1264 		 */
1265 		object = prev_entry->object.vm_object;
1266 		offset = prev_entry->offset +
1267 			(prev_entry->end - prev_entry->start);
1268 		vm_object_reference(object);
1269 		if (cred != NULL && object != NULL && object->cred != NULL &&
1270 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1271 			/* Object already accounts for this uid. */
1272 			crfree(cred);
1273 			cred = NULL;
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1279 	 * in things like the buffer map where we manage kva but do not manage
1280 	 * backing objects.
1281 	 */
1282 
1283 	/*
1284 	 * Create a new entry
1285 	 */
1286 	new_entry = vm_map_entry_create(map);
1287 	new_entry->start = start;
1288 	new_entry->end = end;
1289 	new_entry->cred = NULL;
1290 
1291 	new_entry->eflags = protoeflags;
1292 	new_entry->object.vm_object = object;
1293 	new_entry->offset = offset;
1294 	new_entry->avail_ssize = 0;
1295 
1296 	new_entry->inheritance = inheritance;
1297 	new_entry->protection = prot;
1298 	new_entry->max_protection = max;
1299 	new_entry->wired_count = 0;
1300 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1301 	new_entry->next_read = OFF_TO_IDX(offset);
1302 
1303 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1304 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1305 	new_entry->cred = cred;
1306 
1307 	/*
1308 	 * Insert the new entry into the list
1309 	 */
1310 	vm_map_entry_link(map, prev_entry, new_entry);
1311 	map->size += new_entry->end - new_entry->start;
1312 
1313 	/*
1314 	 * It may be possible to merge the new entry with the next and/or
1315 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1316 	 * panic can result from merging such entries.
1317 	 */
1318 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1319 		vm_map_simplify_entry(map, new_entry);
1320 
1321 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1322 		vm_map_pmap_enter(map, start, prot,
1323 				    object, OFF_TO_IDX(offset), end - start,
1324 				    cow & MAP_PREFAULT_PARTIAL);
1325 	}
1326 
1327 	return (KERN_SUCCESS);
1328 }
1329 
1330 /*
1331  *	vm_map_findspace:
1332  *
1333  *	Find the first fit (lowest VM address) for "length" free bytes
1334  *	beginning at address >= start in the given map.
1335  *
1336  *	In a vm_map_entry, "adj_free" is the amount of free space
1337  *	adjacent (higher address) to this entry, and "max_free" is the
1338  *	maximum amount of contiguous free space in its subtree.  This
1339  *	allows finding a free region in one path down the tree, so
1340  *	O(log n) amortized with splay trees.
1341  *
1342  *	The map must be locked, and leaves it so.
1343  *
1344  *	Returns: 0 on success, and starting address in *addr,
1345  *		 1 if insufficient space.
1346  */
1347 int
1348 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1349     vm_offset_t *addr)	/* OUT */
1350 {
1351 	vm_map_entry_t entry;
1352 	vm_offset_t st;
1353 
1354 	/*
1355 	 * Request must fit within min/max VM address and must avoid
1356 	 * address wrap.
1357 	 */
1358 	if (start < map->min_offset)
1359 		start = map->min_offset;
1360 	if (start + length > map->max_offset || start + length < start)
1361 		return (1);
1362 
1363 	/* Empty tree means wide open address space. */
1364 	if (map->root == NULL) {
1365 		*addr = start;
1366 		return (0);
1367 	}
1368 
1369 	/*
1370 	 * After splay, if start comes before root node, then there
1371 	 * must be a gap from start to the root.
1372 	 */
1373 	map->root = vm_map_entry_splay(start, map->root);
1374 	if (start + length <= map->root->start) {
1375 		*addr = start;
1376 		return (0);
1377 	}
1378 
1379 	/*
1380 	 * Root is the last node that might begin its gap before
1381 	 * start, and this is the last comparison where address
1382 	 * wrap might be a problem.
1383 	 */
1384 	st = (start > map->root->end) ? start : map->root->end;
1385 	if (length <= map->root->end + map->root->adj_free - st) {
1386 		*addr = st;
1387 		return (0);
1388 	}
1389 
1390 	/* With max_free, can immediately tell if no solution. */
1391 	entry = map->root->right;
1392 	if (entry == NULL || length > entry->max_free)
1393 		return (1);
1394 
1395 	/*
1396 	 * Search the right subtree in the order: left subtree, root,
1397 	 * right subtree (first fit).  The previous splay implies that
1398 	 * all regions in the right subtree have addresses > start.
1399 	 */
1400 	while (entry != NULL) {
1401 		if (entry->left != NULL && entry->left->max_free >= length)
1402 			entry = entry->left;
1403 		else if (entry->adj_free >= length) {
1404 			*addr = entry->end;
1405 			return (0);
1406 		} else
1407 			entry = entry->right;
1408 	}
1409 
1410 	/* Can't get here, so panic if we do. */
1411 	panic("vm_map_findspace: max_free corrupt");
1412 }
1413 
1414 int
1415 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1416     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1417     vm_prot_t max, int cow)
1418 {
1419 	vm_offset_t end;
1420 	int result;
1421 
1422 	end = start + length;
1423 	vm_map_lock(map);
1424 	VM_MAP_RANGE_CHECK(map, start, end);
1425 	(void) vm_map_delete(map, start, end);
1426 	result = vm_map_insert(map, object, offset, start, end, prot,
1427 	    max, cow);
1428 	vm_map_unlock(map);
1429 	return (result);
1430 }
1431 
1432 /*
1433  *	vm_map_find finds an unallocated region in the target address
1434  *	map with the given length.  The search is defined to be
1435  *	first-fit from the specified address; the region found is
1436  *	returned in the same parameter.
1437  *
1438  *	If object is non-NULL, ref count must be bumped by caller
1439  *	prior to making call to account for the new entry.
1440  */
1441 int
1442 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1443 	    vm_offset_t *addr,	/* IN/OUT */
1444 	    vm_size_t length, int find_space, vm_prot_t prot,
1445 	    vm_prot_t max, int cow)
1446 {
1447 	vm_offset_t start, initial_addr;
1448 	int result;
1449 
1450 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1451 	    (object->flags & OBJ_COLORED) == 0))
1452 			find_space = VMFS_ANY_SPACE;
1453 	initial_addr = *addr;
1454 again:
1455 	start = initial_addr;
1456 	vm_map_lock(map);
1457 	do {
1458 		if (find_space != VMFS_NO_SPACE) {
1459 			if (vm_map_findspace(map, start, length, addr)) {
1460 				vm_map_unlock(map);
1461 				if (find_space == VMFS_OPTIMAL_SPACE) {
1462 					find_space = VMFS_ANY_SPACE;
1463 					goto again;
1464 				}
1465 				return (KERN_NO_SPACE);
1466 			}
1467 			switch (find_space) {
1468 			case VMFS_ALIGNED_SPACE:
1469 			case VMFS_OPTIMAL_SPACE:
1470 				pmap_align_superpage(object, offset, addr,
1471 				    length);
1472 				break;
1473 #ifdef VMFS_TLB_ALIGNED_SPACE
1474 			case VMFS_TLB_ALIGNED_SPACE:
1475 				pmap_align_tlb(addr);
1476 				break;
1477 #endif
1478 			default:
1479 				break;
1480 			}
1481 
1482 			start = *addr;
1483 		}
1484 		result = vm_map_insert(map, object, offset, start, start +
1485 		    length, prot, max, cow);
1486 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE ||
1487 #ifdef VMFS_TLB_ALIGNED_SPACE
1488 	    find_space == VMFS_TLB_ALIGNED_SPACE ||
1489 #endif
1490 	    find_space == VMFS_OPTIMAL_SPACE));
1491 	vm_map_unlock(map);
1492 	return (result);
1493 }
1494 
1495 /*
1496  *	vm_map_simplify_entry:
1497  *
1498  *	Simplify the given map entry by merging with either neighbor.  This
1499  *	routine also has the ability to merge with both neighbors.
1500  *
1501  *	The map must be locked.
1502  *
1503  *	This routine guarentees that the passed entry remains valid (though
1504  *	possibly extended).  When merging, this routine may delete one or
1505  *	both neighbors.
1506  */
1507 void
1508 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1509 {
1510 	vm_map_entry_t next, prev;
1511 	vm_size_t prevsize, esize;
1512 
1513 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1514 		return;
1515 
1516 	prev = entry->prev;
1517 	if (prev != &map->header) {
1518 		prevsize = prev->end - prev->start;
1519 		if ( (prev->end == entry->start) &&
1520 		     (prev->object.vm_object == entry->object.vm_object) &&
1521 		     (!prev->object.vm_object ||
1522 			(prev->offset + prevsize == entry->offset)) &&
1523 		     (prev->eflags == entry->eflags) &&
1524 		     (prev->protection == entry->protection) &&
1525 		     (prev->max_protection == entry->max_protection) &&
1526 		     (prev->inheritance == entry->inheritance) &&
1527 		     (prev->wired_count == entry->wired_count) &&
1528 		     (prev->cred == entry->cred)) {
1529 			vm_map_entry_unlink(map, prev);
1530 			entry->start = prev->start;
1531 			entry->offset = prev->offset;
1532 			if (entry->prev != &map->header)
1533 				vm_map_entry_resize_free(map, entry->prev);
1534 
1535 			/*
1536 			 * If the backing object is a vnode object,
1537 			 * vm_object_deallocate() calls vrele().
1538 			 * However, vrele() does not lock the vnode
1539 			 * because the vnode has additional
1540 			 * references.  Thus, the map lock can be kept
1541 			 * without causing a lock-order reversal with
1542 			 * the vnode lock.
1543 			 *
1544 			 * Since we count the number of virtual page
1545 			 * mappings in object->un_pager.vnp.writemappings,
1546 			 * the writemappings value should not be adjusted
1547 			 * when the entry is disposed of.
1548 			 */
1549 			if (prev->object.vm_object)
1550 				vm_object_deallocate(prev->object.vm_object);
1551 			if (prev->cred != NULL)
1552 				crfree(prev->cred);
1553 			vm_map_entry_dispose(map, prev);
1554 		}
1555 	}
1556 
1557 	next = entry->next;
1558 	if (next != &map->header) {
1559 		esize = entry->end - entry->start;
1560 		if ((entry->end == next->start) &&
1561 		    (next->object.vm_object == entry->object.vm_object) &&
1562 		     (!entry->object.vm_object ||
1563 			(entry->offset + esize == next->offset)) &&
1564 		    (next->eflags == entry->eflags) &&
1565 		    (next->protection == entry->protection) &&
1566 		    (next->max_protection == entry->max_protection) &&
1567 		    (next->inheritance == entry->inheritance) &&
1568 		    (next->wired_count == entry->wired_count) &&
1569 		    (next->cred == entry->cred)) {
1570 			vm_map_entry_unlink(map, next);
1571 			entry->end = next->end;
1572 			vm_map_entry_resize_free(map, entry);
1573 
1574 			/*
1575 			 * See comment above.
1576 			 */
1577 			if (next->object.vm_object)
1578 				vm_object_deallocate(next->object.vm_object);
1579 			if (next->cred != NULL)
1580 				crfree(next->cred);
1581 			vm_map_entry_dispose(map, next);
1582 		}
1583 	}
1584 }
1585 /*
1586  *	vm_map_clip_start:	[ internal use only ]
1587  *
1588  *	Asserts that the given entry begins at or after
1589  *	the specified address; if necessary,
1590  *	it splits the entry into two.
1591  */
1592 #define vm_map_clip_start(map, entry, startaddr) \
1593 { \
1594 	if (startaddr > entry->start) \
1595 		_vm_map_clip_start(map, entry, startaddr); \
1596 }
1597 
1598 /*
1599  *	This routine is called only when it is known that
1600  *	the entry must be split.
1601  */
1602 static void
1603 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1604 {
1605 	vm_map_entry_t new_entry;
1606 
1607 	VM_MAP_ASSERT_LOCKED(map);
1608 
1609 	/*
1610 	 * Split off the front portion -- note that we must insert the new
1611 	 * entry BEFORE this one, so that this entry has the specified
1612 	 * starting address.
1613 	 */
1614 	vm_map_simplify_entry(map, entry);
1615 
1616 	/*
1617 	 * If there is no object backing this entry, we might as well create
1618 	 * one now.  If we defer it, an object can get created after the map
1619 	 * is clipped, and individual objects will be created for the split-up
1620 	 * map.  This is a bit of a hack, but is also about the best place to
1621 	 * put this improvement.
1622 	 */
1623 	if (entry->object.vm_object == NULL && !map->system_map) {
1624 		vm_object_t object;
1625 		object = vm_object_allocate(OBJT_DEFAULT,
1626 				atop(entry->end - entry->start));
1627 		entry->object.vm_object = object;
1628 		entry->offset = 0;
1629 		if (entry->cred != NULL) {
1630 			object->cred = entry->cred;
1631 			object->charge = entry->end - entry->start;
1632 			entry->cred = NULL;
1633 		}
1634 	} else if (entry->object.vm_object != NULL &&
1635 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1636 		   entry->cred != NULL) {
1637 		VM_OBJECT_WLOCK(entry->object.vm_object);
1638 		KASSERT(entry->object.vm_object->cred == NULL,
1639 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1640 		entry->object.vm_object->cred = entry->cred;
1641 		entry->object.vm_object->charge = entry->end - entry->start;
1642 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1643 		entry->cred = NULL;
1644 	}
1645 
1646 	new_entry = vm_map_entry_create(map);
1647 	*new_entry = *entry;
1648 
1649 	new_entry->end = start;
1650 	entry->offset += (start - entry->start);
1651 	entry->start = start;
1652 	if (new_entry->cred != NULL)
1653 		crhold(entry->cred);
1654 
1655 	vm_map_entry_link(map, entry->prev, new_entry);
1656 
1657 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1658 		vm_object_reference(new_entry->object.vm_object);
1659 		/*
1660 		 * The object->un_pager.vnp.writemappings for the
1661 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1662 		 * kept as is here.  The virtual pages are
1663 		 * re-distributed among the clipped entries, so the sum is
1664 		 * left the same.
1665 		 */
1666 	}
1667 }
1668 
1669 /*
1670  *	vm_map_clip_end:	[ internal use only ]
1671  *
1672  *	Asserts that the given entry ends at or before
1673  *	the specified address; if necessary,
1674  *	it splits the entry into two.
1675  */
1676 #define vm_map_clip_end(map, entry, endaddr) \
1677 { \
1678 	if ((endaddr) < (entry->end)) \
1679 		_vm_map_clip_end((map), (entry), (endaddr)); \
1680 }
1681 
1682 /*
1683  *	This routine is called only when it is known that
1684  *	the entry must be split.
1685  */
1686 static void
1687 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1688 {
1689 	vm_map_entry_t new_entry;
1690 
1691 	VM_MAP_ASSERT_LOCKED(map);
1692 
1693 	/*
1694 	 * If there is no object backing this entry, we might as well create
1695 	 * one now.  If we defer it, an object can get created after the map
1696 	 * is clipped, and individual objects will be created for the split-up
1697 	 * map.  This is a bit of a hack, but is also about the best place to
1698 	 * put this improvement.
1699 	 */
1700 	if (entry->object.vm_object == NULL && !map->system_map) {
1701 		vm_object_t object;
1702 		object = vm_object_allocate(OBJT_DEFAULT,
1703 				atop(entry->end - entry->start));
1704 		entry->object.vm_object = object;
1705 		entry->offset = 0;
1706 		if (entry->cred != NULL) {
1707 			object->cred = entry->cred;
1708 			object->charge = entry->end - entry->start;
1709 			entry->cred = NULL;
1710 		}
1711 	} else if (entry->object.vm_object != NULL &&
1712 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1713 		   entry->cred != NULL) {
1714 		VM_OBJECT_WLOCK(entry->object.vm_object);
1715 		KASSERT(entry->object.vm_object->cred == NULL,
1716 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1717 		entry->object.vm_object->cred = entry->cred;
1718 		entry->object.vm_object->charge = entry->end - entry->start;
1719 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1720 		entry->cred = NULL;
1721 	}
1722 
1723 	/*
1724 	 * Create a new entry and insert it AFTER the specified entry
1725 	 */
1726 	new_entry = vm_map_entry_create(map);
1727 	*new_entry = *entry;
1728 
1729 	new_entry->start = entry->end = end;
1730 	new_entry->offset += (end - entry->start);
1731 	if (new_entry->cred != NULL)
1732 		crhold(entry->cred);
1733 
1734 	vm_map_entry_link(map, entry, new_entry);
1735 
1736 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1737 		vm_object_reference(new_entry->object.vm_object);
1738 	}
1739 }
1740 
1741 /*
1742  *	vm_map_submap:		[ kernel use only ]
1743  *
1744  *	Mark the given range as handled by a subordinate map.
1745  *
1746  *	This range must have been created with vm_map_find,
1747  *	and no other operations may have been performed on this
1748  *	range prior to calling vm_map_submap.
1749  *
1750  *	Only a limited number of operations can be performed
1751  *	within this rage after calling vm_map_submap:
1752  *		vm_fault
1753  *	[Don't try vm_map_copy!]
1754  *
1755  *	To remove a submapping, one must first remove the
1756  *	range from the superior map, and then destroy the
1757  *	submap (if desired).  [Better yet, don't try it.]
1758  */
1759 int
1760 vm_map_submap(
1761 	vm_map_t map,
1762 	vm_offset_t start,
1763 	vm_offset_t end,
1764 	vm_map_t submap)
1765 {
1766 	vm_map_entry_t entry;
1767 	int result = KERN_INVALID_ARGUMENT;
1768 
1769 	vm_map_lock(map);
1770 
1771 	VM_MAP_RANGE_CHECK(map, start, end);
1772 
1773 	if (vm_map_lookup_entry(map, start, &entry)) {
1774 		vm_map_clip_start(map, entry, start);
1775 	} else
1776 		entry = entry->next;
1777 
1778 	vm_map_clip_end(map, entry, end);
1779 
1780 	if ((entry->start == start) && (entry->end == end) &&
1781 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1782 	    (entry->object.vm_object == NULL)) {
1783 		entry->object.sub_map = submap;
1784 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1785 		result = KERN_SUCCESS;
1786 	}
1787 	vm_map_unlock(map);
1788 
1789 	return (result);
1790 }
1791 
1792 /*
1793  * The maximum number of pages to map
1794  */
1795 #define	MAX_INIT_PT	96
1796 
1797 /*
1798  *	vm_map_pmap_enter:
1799  *
1800  *	Preload read-only mappings for the specified object's resident pages
1801  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1802  *	the resident pages within the address range [addr, addr + ulmin(size,
1803  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1804  *	the specified address range are mapped.  This eliminates many soft
1805  *	faults on process startup and immediately after an mmap(2).  Because
1806  *	these are speculative mappings, cached pages are not reactivated and
1807  *	mapped.
1808  */
1809 void
1810 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1811     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1812 {
1813 	vm_offset_t start;
1814 	vm_page_t p, p_start;
1815 	vm_pindex_t psize, tmpidx;
1816 
1817 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1818 		return;
1819 	VM_OBJECT_RLOCK(object);
1820 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1821 		VM_OBJECT_RUNLOCK(object);
1822 		VM_OBJECT_WLOCK(object);
1823 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1824 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1825 			    size);
1826 			VM_OBJECT_WUNLOCK(object);
1827 			return;
1828 		}
1829 		VM_OBJECT_LOCK_DOWNGRADE(object);
1830 	}
1831 
1832 	psize = atop(size);
1833 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1834 		psize = MAX_INIT_PT;
1835 	if (psize + pindex > object->size) {
1836 		if (object->size < pindex) {
1837 			VM_OBJECT_RUNLOCK(object);
1838 			return;
1839 		}
1840 		psize = object->size - pindex;
1841 	}
1842 
1843 	start = 0;
1844 	p_start = NULL;
1845 
1846 	p = vm_page_find_least(object, pindex);
1847 	/*
1848 	 * Assert: the variable p is either (1) the page with the
1849 	 * least pindex greater than or equal to the parameter pindex
1850 	 * or (2) NULL.
1851 	 */
1852 	for (;
1853 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1854 	     p = TAILQ_NEXT(p, listq)) {
1855 		/*
1856 		 * don't allow an madvise to blow away our really
1857 		 * free pages allocating pv entries.
1858 		 */
1859 		if ((flags & MAP_PREFAULT_MADVISE) &&
1860 		    cnt.v_free_count < cnt.v_free_reserved) {
1861 			psize = tmpidx;
1862 			break;
1863 		}
1864 		if (p->valid == VM_PAGE_BITS_ALL) {
1865 			if (p_start == NULL) {
1866 				start = addr + ptoa(tmpidx);
1867 				p_start = p;
1868 			}
1869 		} else if (p_start != NULL) {
1870 			pmap_enter_object(map->pmap, start, addr +
1871 			    ptoa(tmpidx), p_start, prot);
1872 			p_start = NULL;
1873 		}
1874 	}
1875 	if (p_start != NULL)
1876 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1877 		    p_start, prot);
1878 	VM_OBJECT_RUNLOCK(object);
1879 }
1880 
1881 /*
1882  *	vm_map_protect:
1883  *
1884  *	Sets the protection of the specified address
1885  *	region in the target map.  If "set_max" is
1886  *	specified, the maximum protection is to be set;
1887  *	otherwise, only the current protection is affected.
1888  */
1889 int
1890 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1891 	       vm_prot_t new_prot, boolean_t set_max)
1892 {
1893 	vm_map_entry_t current, entry;
1894 	vm_object_t obj;
1895 	struct ucred *cred;
1896 	vm_prot_t old_prot;
1897 
1898 	vm_map_lock(map);
1899 
1900 	VM_MAP_RANGE_CHECK(map, start, end);
1901 
1902 	if (vm_map_lookup_entry(map, start, &entry)) {
1903 		vm_map_clip_start(map, entry, start);
1904 	} else {
1905 		entry = entry->next;
1906 	}
1907 
1908 	/*
1909 	 * Make a first pass to check for protection violations.
1910 	 */
1911 	current = entry;
1912 	while ((current != &map->header) && (current->start < end)) {
1913 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1914 			vm_map_unlock(map);
1915 			return (KERN_INVALID_ARGUMENT);
1916 		}
1917 		if ((new_prot & current->max_protection) != new_prot) {
1918 			vm_map_unlock(map);
1919 			return (KERN_PROTECTION_FAILURE);
1920 		}
1921 		current = current->next;
1922 	}
1923 
1924 
1925 	/*
1926 	 * Do an accounting pass for private read-only mappings that
1927 	 * now will do cow due to allowed write (e.g. debugger sets
1928 	 * breakpoint on text segment)
1929 	 */
1930 	for (current = entry; (current != &map->header) &&
1931 	     (current->start < end); current = current->next) {
1932 
1933 		vm_map_clip_end(map, current, end);
1934 
1935 		if (set_max ||
1936 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1937 		    ENTRY_CHARGED(current)) {
1938 			continue;
1939 		}
1940 
1941 		cred = curthread->td_ucred;
1942 		obj = current->object.vm_object;
1943 
1944 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1945 			if (!swap_reserve(current->end - current->start)) {
1946 				vm_map_unlock(map);
1947 				return (KERN_RESOURCE_SHORTAGE);
1948 			}
1949 			crhold(cred);
1950 			current->cred = cred;
1951 			continue;
1952 		}
1953 
1954 		VM_OBJECT_WLOCK(obj);
1955 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1956 			VM_OBJECT_WUNLOCK(obj);
1957 			continue;
1958 		}
1959 
1960 		/*
1961 		 * Charge for the whole object allocation now, since
1962 		 * we cannot distinguish between non-charged and
1963 		 * charged clipped mapping of the same object later.
1964 		 */
1965 		KASSERT(obj->charge == 0,
1966 		    ("vm_map_protect: object %p overcharged\n", obj));
1967 		if (!swap_reserve(ptoa(obj->size))) {
1968 			VM_OBJECT_WUNLOCK(obj);
1969 			vm_map_unlock(map);
1970 			return (KERN_RESOURCE_SHORTAGE);
1971 		}
1972 
1973 		crhold(cred);
1974 		obj->cred = cred;
1975 		obj->charge = ptoa(obj->size);
1976 		VM_OBJECT_WUNLOCK(obj);
1977 	}
1978 
1979 	/*
1980 	 * Go back and fix up protections. [Note that clipping is not
1981 	 * necessary the second time.]
1982 	 */
1983 	current = entry;
1984 	while ((current != &map->header) && (current->start < end)) {
1985 		old_prot = current->protection;
1986 
1987 		if (set_max)
1988 			current->protection =
1989 			    (current->max_protection = new_prot) &
1990 			    old_prot;
1991 		else
1992 			current->protection = new_prot;
1993 
1994 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1995 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1996 		    (current->protection & VM_PROT_WRITE) != 0 &&
1997 		    (old_prot & VM_PROT_WRITE) == 0) {
1998 			vm_fault_copy_entry(map, map, current, current, NULL);
1999 		}
2000 
2001 		/*
2002 		 * When restricting access, update the physical map.  Worry
2003 		 * about copy-on-write here.
2004 		 */
2005 		if ((old_prot & ~current->protection) != 0) {
2006 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2007 							VM_PROT_ALL)
2008 			pmap_protect(map->pmap, current->start,
2009 			    current->end,
2010 			    current->protection & MASK(current));
2011 #undef	MASK
2012 		}
2013 		vm_map_simplify_entry(map, current);
2014 		current = current->next;
2015 	}
2016 	vm_map_unlock(map);
2017 	return (KERN_SUCCESS);
2018 }
2019 
2020 /*
2021  *	vm_map_madvise:
2022  *
2023  *	This routine traverses a processes map handling the madvise
2024  *	system call.  Advisories are classified as either those effecting
2025  *	the vm_map_entry structure, or those effecting the underlying
2026  *	objects.
2027  */
2028 int
2029 vm_map_madvise(
2030 	vm_map_t map,
2031 	vm_offset_t start,
2032 	vm_offset_t end,
2033 	int behav)
2034 {
2035 	vm_map_entry_t current, entry;
2036 	int modify_map = 0;
2037 
2038 	/*
2039 	 * Some madvise calls directly modify the vm_map_entry, in which case
2040 	 * we need to use an exclusive lock on the map and we need to perform
2041 	 * various clipping operations.  Otherwise we only need a read-lock
2042 	 * on the map.
2043 	 */
2044 	switch(behav) {
2045 	case MADV_NORMAL:
2046 	case MADV_SEQUENTIAL:
2047 	case MADV_RANDOM:
2048 	case MADV_NOSYNC:
2049 	case MADV_AUTOSYNC:
2050 	case MADV_NOCORE:
2051 	case MADV_CORE:
2052 		modify_map = 1;
2053 		vm_map_lock(map);
2054 		break;
2055 	case MADV_WILLNEED:
2056 	case MADV_DONTNEED:
2057 	case MADV_FREE:
2058 		vm_map_lock_read(map);
2059 		break;
2060 	default:
2061 		return (KERN_INVALID_ARGUMENT);
2062 	}
2063 
2064 	/*
2065 	 * Locate starting entry and clip if necessary.
2066 	 */
2067 	VM_MAP_RANGE_CHECK(map, start, end);
2068 
2069 	if (vm_map_lookup_entry(map, start, &entry)) {
2070 		if (modify_map)
2071 			vm_map_clip_start(map, entry, start);
2072 	} else {
2073 		entry = entry->next;
2074 	}
2075 
2076 	if (modify_map) {
2077 		/*
2078 		 * madvise behaviors that are implemented in the vm_map_entry.
2079 		 *
2080 		 * We clip the vm_map_entry so that behavioral changes are
2081 		 * limited to the specified address range.
2082 		 */
2083 		for (current = entry;
2084 		     (current != &map->header) && (current->start < end);
2085 		     current = current->next
2086 		) {
2087 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2088 				continue;
2089 
2090 			vm_map_clip_end(map, current, end);
2091 
2092 			switch (behav) {
2093 			case MADV_NORMAL:
2094 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2095 				break;
2096 			case MADV_SEQUENTIAL:
2097 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2098 				break;
2099 			case MADV_RANDOM:
2100 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2101 				break;
2102 			case MADV_NOSYNC:
2103 				current->eflags |= MAP_ENTRY_NOSYNC;
2104 				break;
2105 			case MADV_AUTOSYNC:
2106 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2107 				break;
2108 			case MADV_NOCORE:
2109 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2110 				break;
2111 			case MADV_CORE:
2112 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2113 				break;
2114 			default:
2115 				break;
2116 			}
2117 			vm_map_simplify_entry(map, current);
2118 		}
2119 		vm_map_unlock(map);
2120 	} else {
2121 		vm_pindex_t pstart, pend;
2122 
2123 		/*
2124 		 * madvise behaviors that are implemented in the underlying
2125 		 * vm_object.
2126 		 *
2127 		 * Since we don't clip the vm_map_entry, we have to clip
2128 		 * the vm_object pindex and count.
2129 		 */
2130 		for (current = entry;
2131 		     (current != &map->header) && (current->start < end);
2132 		     current = current->next
2133 		) {
2134 			vm_offset_t useStart;
2135 
2136 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2137 				continue;
2138 
2139 			pstart = OFF_TO_IDX(current->offset);
2140 			pend = pstart + atop(current->end - current->start);
2141 			useStart = current->start;
2142 
2143 			if (current->start < start) {
2144 				pstart += atop(start - current->start);
2145 				useStart = start;
2146 			}
2147 			if (current->end > end)
2148 				pend -= atop(current->end - end);
2149 
2150 			if (pstart >= pend)
2151 				continue;
2152 
2153 			vm_object_madvise(current->object.vm_object, pstart,
2154 			    pend, behav);
2155 			if (behav == MADV_WILLNEED) {
2156 				vm_map_pmap_enter(map,
2157 				    useStart,
2158 				    current->protection,
2159 				    current->object.vm_object,
2160 				    pstart,
2161 				    ptoa(pend - pstart),
2162 				    MAP_PREFAULT_MADVISE
2163 				);
2164 			}
2165 		}
2166 		vm_map_unlock_read(map);
2167 	}
2168 	return (0);
2169 }
2170 
2171 
2172 /*
2173  *	vm_map_inherit:
2174  *
2175  *	Sets the inheritance of the specified address
2176  *	range in the target map.  Inheritance
2177  *	affects how the map will be shared with
2178  *	child maps at the time of vmspace_fork.
2179  */
2180 int
2181 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2182 	       vm_inherit_t new_inheritance)
2183 {
2184 	vm_map_entry_t entry;
2185 	vm_map_entry_t temp_entry;
2186 
2187 	switch (new_inheritance) {
2188 	case VM_INHERIT_NONE:
2189 	case VM_INHERIT_COPY:
2190 	case VM_INHERIT_SHARE:
2191 		break;
2192 	default:
2193 		return (KERN_INVALID_ARGUMENT);
2194 	}
2195 	vm_map_lock(map);
2196 	VM_MAP_RANGE_CHECK(map, start, end);
2197 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2198 		entry = temp_entry;
2199 		vm_map_clip_start(map, entry, start);
2200 	} else
2201 		entry = temp_entry->next;
2202 	while ((entry != &map->header) && (entry->start < end)) {
2203 		vm_map_clip_end(map, entry, end);
2204 		entry->inheritance = new_inheritance;
2205 		vm_map_simplify_entry(map, entry);
2206 		entry = entry->next;
2207 	}
2208 	vm_map_unlock(map);
2209 	return (KERN_SUCCESS);
2210 }
2211 
2212 /*
2213  *	vm_map_unwire:
2214  *
2215  *	Implements both kernel and user unwiring.
2216  */
2217 int
2218 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2219     int flags)
2220 {
2221 	vm_map_entry_t entry, first_entry, tmp_entry;
2222 	vm_offset_t saved_start;
2223 	unsigned int last_timestamp;
2224 	int rv;
2225 	boolean_t need_wakeup, result, user_unwire;
2226 
2227 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2228 	vm_map_lock(map);
2229 	VM_MAP_RANGE_CHECK(map, start, end);
2230 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2231 		if (flags & VM_MAP_WIRE_HOLESOK)
2232 			first_entry = first_entry->next;
2233 		else {
2234 			vm_map_unlock(map);
2235 			return (KERN_INVALID_ADDRESS);
2236 		}
2237 	}
2238 	last_timestamp = map->timestamp;
2239 	entry = first_entry;
2240 	while (entry != &map->header && entry->start < end) {
2241 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2242 			/*
2243 			 * We have not yet clipped the entry.
2244 			 */
2245 			saved_start = (start >= entry->start) ? start :
2246 			    entry->start;
2247 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2248 			if (vm_map_unlock_and_wait(map, 0)) {
2249 				/*
2250 				 * Allow interruption of user unwiring?
2251 				 */
2252 			}
2253 			vm_map_lock(map);
2254 			if (last_timestamp+1 != map->timestamp) {
2255 				/*
2256 				 * Look again for the entry because the map was
2257 				 * modified while it was unlocked.
2258 				 * Specifically, the entry may have been
2259 				 * clipped, merged, or deleted.
2260 				 */
2261 				if (!vm_map_lookup_entry(map, saved_start,
2262 				    &tmp_entry)) {
2263 					if (flags & VM_MAP_WIRE_HOLESOK)
2264 						tmp_entry = tmp_entry->next;
2265 					else {
2266 						if (saved_start == start) {
2267 							/*
2268 							 * First_entry has been deleted.
2269 							 */
2270 							vm_map_unlock(map);
2271 							return (KERN_INVALID_ADDRESS);
2272 						}
2273 						end = saved_start;
2274 						rv = KERN_INVALID_ADDRESS;
2275 						goto done;
2276 					}
2277 				}
2278 				if (entry == first_entry)
2279 					first_entry = tmp_entry;
2280 				else
2281 					first_entry = NULL;
2282 				entry = tmp_entry;
2283 			}
2284 			last_timestamp = map->timestamp;
2285 			continue;
2286 		}
2287 		vm_map_clip_start(map, entry, start);
2288 		vm_map_clip_end(map, entry, end);
2289 		/*
2290 		 * Mark the entry in case the map lock is released.  (See
2291 		 * above.)
2292 		 */
2293 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2294 		entry->wiring_thread = curthread;
2295 		/*
2296 		 * Check the map for holes in the specified region.
2297 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2298 		 */
2299 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2300 		    (entry->end < end && (entry->next == &map->header ||
2301 		    entry->next->start > entry->end))) {
2302 			end = entry->end;
2303 			rv = KERN_INVALID_ADDRESS;
2304 			goto done;
2305 		}
2306 		/*
2307 		 * If system unwiring, require that the entry is system wired.
2308 		 */
2309 		if (!user_unwire &&
2310 		    vm_map_entry_system_wired_count(entry) == 0) {
2311 			end = entry->end;
2312 			rv = KERN_INVALID_ARGUMENT;
2313 			goto done;
2314 		}
2315 		entry = entry->next;
2316 	}
2317 	rv = KERN_SUCCESS;
2318 done:
2319 	need_wakeup = FALSE;
2320 	if (first_entry == NULL) {
2321 		result = vm_map_lookup_entry(map, start, &first_entry);
2322 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2323 			first_entry = first_entry->next;
2324 		else
2325 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2326 	}
2327 	for (entry = first_entry; entry != &map->header && entry->start < end;
2328 	    entry = entry->next) {
2329 		/*
2330 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2331 		 * space in the unwired region could have been mapped
2332 		 * while the map lock was dropped for draining
2333 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2334 		 * could be simultaneously wiring this new mapping
2335 		 * entry.  Detect these cases and skip any entries
2336 		 * marked as in transition by us.
2337 		 */
2338 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2339 		    entry->wiring_thread != curthread) {
2340 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2341 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2342 			continue;
2343 		}
2344 
2345 		if (rv == KERN_SUCCESS && (!user_unwire ||
2346 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2347 			if (user_unwire)
2348 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2349 			entry->wired_count--;
2350 			if (entry->wired_count == 0) {
2351 				/*
2352 				 * Retain the map lock.
2353 				 */
2354 				vm_fault_unwire(map, entry->start, entry->end,
2355 				    entry->object.vm_object != NULL &&
2356 				    (entry->object.vm_object->flags &
2357 				    OBJ_FICTITIOUS) != 0);
2358 			}
2359 		}
2360 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2361 		    ("vm_map_unwire: in-transition flag missing"));
2362 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2363 		entry->wiring_thread = NULL;
2364 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2365 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2366 			need_wakeup = TRUE;
2367 		}
2368 		vm_map_simplify_entry(map, entry);
2369 	}
2370 	vm_map_unlock(map);
2371 	if (need_wakeup)
2372 		vm_map_wakeup(map);
2373 	return (rv);
2374 }
2375 
2376 /*
2377  *	vm_map_wire:
2378  *
2379  *	Implements both kernel and user wiring.
2380  */
2381 int
2382 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2383     int flags)
2384 {
2385 	vm_map_entry_t entry, first_entry, tmp_entry;
2386 	vm_offset_t saved_end, saved_start;
2387 	unsigned int last_timestamp;
2388 	int rv;
2389 	boolean_t fictitious, need_wakeup, result, user_wire;
2390 	vm_prot_t prot;
2391 
2392 	prot = 0;
2393 	if (flags & VM_MAP_WIRE_WRITE)
2394 		prot |= VM_PROT_WRITE;
2395 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2396 	vm_map_lock(map);
2397 	VM_MAP_RANGE_CHECK(map, start, end);
2398 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2399 		if (flags & VM_MAP_WIRE_HOLESOK)
2400 			first_entry = first_entry->next;
2401 		else {
2402 			vm_map_unlock(map);
2403 			return (KERN_INVALID_ADDRESS);
2404 		}
2405 	}
2406 	last_timestamp = map->timestamp;
2407 	entry = first_entry;
2408 	while (entry != &map->header && entry->start < end) {
2409 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2410 			/*
2411 			 * We have not yet clipped the entry.
2412 			 */
2413 			saved_start = (start >= entry->start) ? start :
2414 			    entry->start;
2415 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2416 			if (vm_map_unlock_and_wait(map, 0)) {
2417 				/*
2418 				 * Allow interruption of user wiring?
2419 				 */
2420 			}
2421 			vm_map_lock(map);
2422 			if (last_timestamp + 1 != map->timestamp) {
2423 				/*
2424 				 * Look again for the entry because the map was
2425 				 * modified while it was unlocked.
2426 				 * Specifically, the entry may have been
2427 				 * clipped, merged, or deleted.
2428 				 */
2429 				if (!vm_map_lookup_entry(map, saved_start,
2430 				    &tmp_entry)) {
2431 					if (flags & VM_MAP_WIRE_HOLESOK)
2432 						tmp_entry = tmp_entry->next;
2433 					else {
2434 						if (saved_start == start) {
2435 							/*
2436 							 * first_entry has been deleted.
2437 							 */
2438 							vm_map_unlock(map);
2439 							return (KERN_INVALID_ADDRESS);
2440 						}
2441 						end = saved_start;
2442 						rv = KERN_INVALID_ADDRESS;
2443 						goto done;
2444 					}
2445 				}
2446 				if (entry == first_entry)
2447 					first_entry = tmp_entry;
2448 				else
2449 					first_entry = NULL;
2450 				entry = tmp_entry;
2451 			}
2452 			last_timestamp = map->timestamp;
2453 			continue;
2454 		}
2455 		vm_map_clip_start(map, entry, start);
2456 		vm_map_clip_end(map, entry, end);
2457 		/*
2458 		 * Mark the entry in case the map lock is released.  (See
2459 		 * above.)
2460 		 */
2461 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2462 		entry->wiring_thread = curthread;
2463 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2464 		    || (entry->protection & prot) != prot) {
2465 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2466 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2467 				end = entry->end;
2468 				rv = KERN_INVALID_ADDRESS;
2469 				goto done;
2470 			}
2471 			goto next_entry;
2472 		}
2473 		if (entry->wired_count == 0) {
2474 			entry->wired_count++;
2475 			saved_start = entry->start;
2476 			saved_end = entry->end;
2477 			fictitious = entry->object.vm_object != NULL &&
2478 			    (entry->object.vm_object->flags &
2479 			    OBJ_FICTITIOUS) != 0;
2480 			/*
2481 			 * Release the map lock, relying on the in-transition
2482 			 * mark.  Mark the map busy for fork.
2483 			 */
2484 			vm_map_busy(map);
2485 			vm_map_unlock(map);
2486 			rv = vm_fault_wire(map, saved_start, saved_end,
2487 			    fictitious);
2488 			vm_map_lock(map);
2489 			vm_map_unbusy(map);
2490 			if (last_timestamp + 1 != map->timestamp) {
2491 				/*
2492 				 * Look again for the entry because the map was
2493 				 * modified while it was unlocked.  The entry
2494 				 * may have been clipped, but NOT merged or
2495 				 * deleted.
2496 				 */
2497 				result = vm_map_lookup_entry(map, saved_start,
2498 				    &tmp_entry);
2499 				KASSERT(result, ("vm_map_wire: lookup failed"));
2500 				if (entry == first_entry)
2501 					first_entry = tmp_entry;
2502 				else
2503 					first_entry = NULL;
2504 				entry = tmp_entry;
2505 				while (entry->end < saved_end) {
2506 					if (rv != KERN_SUCCESS) {
2507 						KASSERT(entry->wired_count == 1,
2508 						    ("vm_map_wire: bad count"));
2509 						entry->wired_count = -1;
2510 					}
2511 					entry = entry->next;
2512 				}
2513 			}
2514 			last_timestamp = map->timestamp;
2515 			if (rv != KERN_SUCCESS) {
2516 				KASSERT(entry->wired_count == 1,
2517 				    ("vm_map_wire: bad count"));
2518 				/*
2519 				 * Assign an out-of-range value to represent
2520 				 * the failure to wire this entry.
2521 				 */
2522 				entry->wired_count = -1;
2523 				end = entry->end;
2524 				goto done;
2525 			}
2526 		} else if (!user_wire ||
2527 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2528 			entry->wired_count++;
2529 		}
2530 		/*
2531 		 * Check the map for holes in the specified region.
2532 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2533 		 */
2534 	next_entry:
2535 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2536 		    (entry->end < end && (entry->next == &map->header ||
2537 		    entry->next->start > entry->end))) {
2538 			end = entry->end;
2539 			rv = KERN_INVALID_ADDRESS;
2540 			goto done;
2541 		}
2542 		entry = entry->next;
2543 	}
2544 	rv = KERN_SUCCESS;
2545 done:
2546 	need_wakeup = FALSE;
2547 	if (first_entry == NULL) {
2548 		result = vm_map_lookup_entry(map, start, &first_entry);
2549 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2550 			first_entry = first_entry->next;
2551 		else
2552 			KASSERT(result, ("vm_map_wire: lookup failed"));
2553 	}
2554 	for (entry = first_entry; entry != &map->header && entry->start < end;
2555 	    entry = entry->next) {
2556 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2557 			goto next_entry_done;
2558 
2559 		/*
2560 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2561 		 * space in the unwired region could have been mapped
2562 		 * while the map lock was dropped for faulting in the
2563 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2564 		 * Moreover, another thread could be simultaneously
2565 		 * wiring this new mapping entry.  Detect these cases
2566 		 * and skip any entries marked as in transition by us.
2567 		 */
2568 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2569 		    entry->wiring_thread != curthread) {
2570 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2571 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2572 			continue;
2573 		}
2574 
2575 		if (rv == KERN_SUCCESS) {
2576 			if (user_wire)
2577 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2578 		} else if (entry->wired_count == -1) {
2579 			/*
2580 			 * Wiring failed on this entry.  Thus, unwiring is
2581 			 * unnecessary.
2582 			 */
2583 			entry->wired_count = 0;
2584 		} else {
2585 			if (!user_wire ||
2586 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2587 				entry->wired_count--;
2588 			if (entry->wired_count == 0) {
2589 				/*
2590 				 * Retain the map lock.
2591 				 */
2592 				vm_fault_unwire(map, entry->start, entry->end,
2593 				    entry->object.vm_object != NULL &&
2594 				    (entry->object.vm_object->flags &
2595 				    OBJ_FICTITIOUS) != 0);
2596 			}
2597 		}
2598 	next_entry_done:
2599 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2600 		    ("vm_map_wire: in-transition flag missing %p", entry));
2601 		KASSERT(entry->wiring_thread == curthread,
2602 		    ("vm_map_wire: alien wire %p", entry));
2603 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2604 		    MAP_ENTRY_WIRE_SKIPPED);
2605 		entry->wiring_thread = NULL;
2606 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2607 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2608 			need_wakeup = TRUE;
2609 		}
2610 		vm_map_simplify_entry(map, entry);
2611 	}
2612 	vm_map_unlock(map);
2613 	if (need_wakeup)
2614 		vm_map_wakeup(map);
2615 	return (rv);
2616 }
2617 
2618 /*
2619  * vm_map_sync
2620  *
2621  * Push any dirty cached pages in the address range to their pager.
2622  * If syncio is TRUE, dirty pages are written synchronously.
2623  * If invalidate is TRUE, any cached pages are freed as well.
2624  *
2625  * If the size of the region from start to end is zero, we are
2626  * supposed to flush all modified pages within the region containing
2627  * start.  Unfortunately, a region can be split or coalesced with
2628  * neighboring regions, making it difficult to determine what the
2629  * original region was.  Therefore, we approximate this requirement by
2630  * flushing the current region containing start.
2631  *
2632  * Returns an error if any part of the specified range is not mapped.
2633  */
2634 int
2635 vm_map_sync(
2636 	vm_map_t map,
2637 	vm_offset_t start,
2638 	vm_offset_t end,
2639 	boolean_t syncio,
2640 	boolean_t invalidate)
2641 {
2642 	vm_map_entry_t current;
2643 	vm_map_entry_t entry;
2644 	vm_size_t size;
2645 	vm_object_t object;
2646 	vm_ooffset_t offset;
2647 	unsigned int last_timestamp;
2648 	boolean_t failed;
2649 
2650 	vm_map_lock_read(map);
2651 	VM_MAP_RANGE_CHECK(map, start, end);
2652 	if (!vm_map_lookup_entry(map, start, &entry)) {
2653 		vm_map_unlock_read(map);
2654 		return (KERN_INVALID_ADDRESS);
2655 	} else if (start == end) {
2656 		start = entry->start;
2657 		end = entry->end;
2658 	}
2659 	/*
2660 	 * Make a first pass to check for user-wired memory and holes.
2661 	 */
2662 	for (current = entry; current != &map->header && current->start < end;
2663 	    current = current->next) {
2664 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2665 			vm_map_unlock_read(map);
2666 			return (KERN_INVALID_ARGUMENT);
2667 		}
2668 		if (end > current->end &&
2669 		    (current->next == &map->header ||
2670 			current->end != current->next->start)) {
2671 			vm_map_unlock_read(map);
2672 			return (KERN_INVALID_ADDRESS);
2673 		}
2674 	}
2675 
2676 	if (invalidate)
2677 		pmap_remove(map->pmap, start, end);
2678 	failed = FALSE;
2679 
2680 	/*
2681 	 * Make a second pass, cleaning/uncaching pages from the indicated
2682 	 * objects as we go.
2683 	 */
2684 	for (current = entry; current != &map->header && current->start < end;) {
2685 		offset = current->offset + (start - current->start);
2686 		size = (end <= current->end ? end : current->end) - start;
2687 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2688 			vm_map_t smap;
2689 			vm_map_entry_t tentry;
2690 			vm_size_t tsize;
2691 
2692 			smap = current->object.sub_map;
2693 			vm_map_lock_read(smap);
2694 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2695 			tsize = tentry->end - offset;
2696 			if (tsize < size)
2697 				size = tsize;
2698 			object = tentry->object.vm_object;
2699 			offset = tentry->offset + (offset - tentry->start);
2700 			vm_map_unlock_read(smap);
2701 		} else {
2702 			object = current->object.vm_object;
2703 		}
2704 		vm_object_reference(object);
2705 		last_timestamp = map->timestamp;
2706 		vm_map_unlock_read(map);
2707 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2708 			failed = TRUE;
2709 		start += size;
2710 		vm_object_deallocate(object);
2711 		vm_map_lock_read(map);
2712 		if (last_timestamp == map->timestamp ||
2713 		    !vm_map_lookup_entry(map, start, &current))
2714 			current = current->next;
2715 	}
2716 
2717 	vm_map_unlock_read(map);
2718 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2719 }
2720 
2721 /*
2722  *	vm_map_entry_unwire:	[ internal use only ]
2723  *
2724  *	Make the region specified by this entry pageable.
2725  *
2726  *	The map in question should be locked.
2727  *	[This is the reason for this routine's existence.]
2728  */
2729 static void
2730 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2731 {
2732 	vm_fault_unwire(map, entry->start, entry->end,
2733 	    entry->object.vm_object != NULL &&
2734 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2735 	entry->wired_count = 0;
2736 }
2737 
2738 static void
2739 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2740 {
2741 
2742 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2743 		vm_object_deallocate(entry->object.vm_object);
2744 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2745 }
2746 
2747 /*
2748  *	vm_map_entry_delete:	[ internal use only ]
2749  *
2750  *	Deallocate the given entry from the target map.
2751  */
2752 static void
2753 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2754 {
2755 	vm_object_t object;
2756 	vm_pindex_t offidxstart, offidxend, count, size1;
2757 	vm_ooffset_t size;
2758 
2759 	vm_map_entry_unlink(map, entry);
2760 	object = entry->object.vm_object;
2761 	size = entry->end - entry->start;
2762 	map->size -= size;
2763 
2764 	if (entry->cred != NULL) {
2765 		swap_release_by_cred(size, entry->cred);
2766 		crfree(entry->cred);
2767 	}
2768 
2769 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2770 	    (object != NULL)) {
2771 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2772 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2773 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2774 		count = OFF_TO_IDX(size);
2775 		offidxstart = OFF_TO_IDX(entry->offset);
2776 		offidxend = offidxstart + count;
2777 		VM_OBJECT_WLOCK(object);
2778 		if (object->ref_count != 1 &&
2779 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2780 		    object == kernel_object || object == kmem_object)) {
2781 			vm_object_collapse(object);
2782 
2783 			/*
2784 			 * The option OBJPR_NOTMAPPED can be passed here
2785 			 * because vm_map_delete() already performed
2786 			 * pmap_remove() on the only mapping to this range
2787 			 * of pages.
2788 			 */
2789 			vm_object_page_remove(object, offidxstart, offidxend,
2790 			    OBJPR_NOTMAPPED);
2791 			if (object->type == OBJT_SWAP)
2792 				swap_pager_freespace(object, offidxstart, count);
2793 			if (offidxend >= object->size &&
2794 			    offidxstart < object->size) {
2795 				size1 = object->size;
2796 				object->size = offidxstart;
2797 				if (object->cred != NULL) {
2798 					size1 -= object->size;
2799 					KASSERT(object->charge >= ptoa(size1),
2800 					    ("vm_map_entry_delete: object->charge < 0"));
2801 					swap_release_by_cred(ptoa(size1), object->cred);
2802 					object->charge -= ptoa(size1);
2803 				}
2804 			}
2805 		}
2806 		VM_OBJECT_WUNLOCK(object);
2807 	} else
2808 		entry->object.vm_object = NULL;
2809 	if (map->system_map)
2810 		vm_map_entry_deallocate(entry, TRUE);
2811 	else {
2812 		entry->next = curthread->td_map_def_user;
2813 		curthread->td_map_def_user = entry;
2814 	}
2815 }
2816 
2817 /*
2818  *	vm_map_delete:	[ internal use only ]
2819  *
2820  *	Deallocates the given address range from the target
2821  *	map.
2822  */
2823 int
2824 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2825 {
2826 	vm_map_entry_t entry;
2827 	vm_map_entry_t first_entry;
2828 
2829 	VM_MAP_ASSERT_LOCKED(map);
2830 
2831 	/*
2832 	 * Find the start of the region, and clip it
2833 	 */
2834 	if (!vm_map_lookup_entry(map, start, &first_entry))
2835 		entry = first_entry->next;
2836 	else {
2837 		entry = first_entry;
2838 		vm_map_clip_start(map, entry, start);
2839 	}
2840 
2841 	/*
2842 	 * Step through all entries in this region
2843 	 */
2844 	while ((entry != &map->header) && (entry->start < end)) {
2845 		vm_map_entry_t next;
2846 
2847 		/*
2848 		 * Wait for wiring or unwiring of an entry to complete.
2849 		 * Also wait for any system wirings to disappear on
2850 		 * user maps.
2851 		 */
2852 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2853 		    (vm_map_pmap(map) != kernel_pmap &&
2854 		    vm_map_entry_system_wired_count(entry) != 0)) {
2855 			unsigned int last_timestamp;
2856 			vm_offset_t saved_start;
2857 			vm_map_entry_t tmp_entry;
2858 
2859 			saved_start = entry->start;
2860 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2861 			last_timestamp = map->timestamp;
2862 			(void) vm_map_unlock_and_wait(map, 0);
2863 			vm_map_lock(map);
2864 			if (last_timestamp + 1 != map->timestamp) {
2865 				/*
2866 				 * Look again for the entry because the map was
2867 				 * modified while it was unlocked.
2868 				 * Specifically, the entry may have been
2869 				 * clipped, merged, or deleted.
2870 				 */
2871 				if (!vm_map_lookup_entry(map, saved_start,
2872 							 &tmp_entry))
2873 					entry = tmp_entry->next;
2874 				else {
2875 					entry = tmp_entry;
2876 					vm_map_clip_start(map, entry,
2877 							  saved_start);
2878 				}
2879 			}
2880 			continue;
2881 		}
2882 		vm_map_clip_end(map, entry, end);
2883 
2884 		next = entry->next;
2885 
2886 		/*
2887 		 * Unwire before removing addresses from the pmap; otherwise,
2888 		 * unwiring will put the entries back in the pmap.
2889 		 */
2890 		if (entry->wired_count != 0) {
2891 			vm_map_entry_unwire(map, entry);
2892 		}
2893 
2894 		pmap_remove(map->pmap, entry->start, entry->end);
2895 
2896 		/*
2897 		 * Delete the entry only after removing all pmap
2898 		 * entries pointing to its pages.  (Otherwise, its
2899 		 * page frames may be reallocated, and any modify bits
2900 		 * will be set in the wrong object!)
2901 		 */
2902 		vm_map_entry_delete(map, entry);
2903 		entry = next;
2904 	}
2905 	return (KERN_SUCCESS);
2906 }
2907 
2908 /*
2909  *	vm_map_remove:
2910  *
2911  *	Remove the given address range from the target map.
2912  *	This is the exported form of vm_map_delete.
2913  */
2914 int
2915 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2916 {
2917 	int result;
2918 
2919 	vm_map_lock(map);
2920 	VM_MAP_RANGE_CHECK(map, start, end);
2921 	result = vm_map_delete(map, start, end);
2922 	vm_map_unlock(map);
2923 	return (result);
2924 }
2925 
2926 /*
2927  *	vm_map_check_protection:
2928  *
2929  *	Assert that the target map allows the specified privilege on the
2930  *	entire address region given.  The entire region must be allocated.
2931  *
2932  *	WARNING!  This code does not and should not check whether the
2933  *	contents of the region is accessible.  For example a smaller file
2934  *	might be mapped into a larger address space.
2935  *
2936  *	NOTE!  This code is also called by munmap().
2937  *
2938  *	The map must be locked.  A read lock is sufficient.
2939  */
2940 boolean_t
2941 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2942 			vm_prot_t protection)
2943 {
2944 	vm_map_entry_t entry;
2945 	vm_map_entry_t tmp_entry;
2946 
2947 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2948 		return (FALSE);
2949 	entry = tmp_entry;
2950 
2951 	while (start < end) {
2952 		if (entry == &map->header)
2953 			return (FALSE);
2954 		/*
2955 		 * No holes allowed!
2956 		 */
2957 		if (start < entry->start)
2958 			return (FALSE);
2959 		/*
2960 		 * Check protection associated with entry.
2961 		 */
2962 		if ((entry->protection & protection) != protection)
2963 			return (FALSE);
2964 		/* go to next entry */
2965 		start = entry->end;
2966 		entry = entry->next;
2967 	}
2968 	return (TRUE);
2969 }
2970 
2971 /*
2972  *	vm_map_copy_entry:
2973  *
2974  *	Copies the contents of the source entry to the destination
2975  *	entry.  The entries *must* be aligned properly.
2976  */
2977 static void
2978 vm_map_copy_entry(
2979 	vm_map_t src_map,
2980 	vm_map_t dst_map,
2981 	vm_map_entry_t src_entry,
2982 	vm_map_entry_t dst_entry,
2983 	vm_ooffset_t *fork_charge)
2984 {
2985 	vm_object_t src_object;
2986 	vm_map_entry_t fake_entry;
2987 	vm_offset_t size;
2988 	struct ucred *cred;
2989 	int charged;
2990 
2991 	VM_MAP_ASSERT_LOCKED(dst_map);
2992 
2993 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2994 		return;
2995 
2996 	if (src_entry->wired_count == 0) {
2997 
2998 		/*
2999 		 * If the source entry is marked needs_copy, it is already
3000 		 * write-protected.
3001 		 */
3002 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3003 			pmap_protect(src_map->pmap,
3004 			    src_entry->start,
3005 			    src_entry->end,
3006 			    src_entry->protection & ~VM_PROT_WRITE);
3007 		}
3008 
3009 		/*
3010 		 * Make a copy of the object.
3011 		 */
3012 		size = src_entry->end - src_entry->start;
3013 		if ((src_object = src_entry->object.vm_object) != NULL) {
3014 			VM_OBJECT_WLOCK(src_object);
3015 			charged = ENTRY_CHARGED(src_entry);
3016 			if ((src_object->handle == NULL) &&
3017 				(src_object->type == OBJT_DEFAULT ||
3018 				 src_object->type == OBJT_SWAP)) {
3019 				vm_object_collapse(src_object);
3020 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3021 					vm_object_split(src_entry);
3022 					src_object = src_entry->object.vm_object;
3023 				}
3024 			}
3025 			vm_object_reference_locked(src_object);
3026 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3027 			if (src_entry->cred != NULL &&
3028 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3029 				KASSERT(src_object->cred == NULL,
3030 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3031 				     src_object));
3032 				src_object->cred = src_entry->cred;
3033 				src_object->charge = size;
3034 			}
3035 			VM_OBJECT_WUNLOCK(src_object);
3036 			dst_entry->object.vm_object = src_object;
3037 			if (charged) {
3038 				cred = curthread->td_ucred;
3039 				crhold(cred);
3040 				dst_entry->cred = cred;
3041 				*fork_charge += size;
3042 				if (!(src_entry->eflags &
3043 				      MAP_ENTRY_NEEDS_COPY)) {
3044 					crhold(cred);
3045 					src_entry->cred = cred;
3046 					*fork_charge += size;
3047 				}
3048 			}
3049 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3050 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3051 			dst_entry->offset = src_entry->offset;
3052 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3053 				/*
3054 				 * MAP_ENTRY_VN_WRITECNT cannot
3055 				 * indicate write reference from
3056 				 * src_entry, since the entry is
3057 				 * marked as needs copy.  Allocate a
3058 				 * fake entry that is used to
3059 				 * decrement object->un_pager.vnp.writecount
3060 				 * at the appropriate time.  Attach
3061 				 * fake_entry to the deferred list.
3062 				 */
3063 				fake_entry = vm_map_entry_create(dst_map);
3064 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3065 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3066 				vm_object_reference(src_object);
3067 				fake_entry->object.vm_object = src_object;
3068 				fake_entry->start = src_entry->start;
3069 				fake_entry->end = src_entry->end;
3070 				fake_entry->next = curthread->td_map_def_user;
3071 				curthread->td_map_def_user = fake_entry;
3072 			}
3073 		} else {
3074 			dst_entry->object.vm_object = NULL;
3075 			dst_entry->offset = 0;
3076 			if (src_entry->cred != NULL) {
3077 				dst_entry->cred = curthread->td_ucred;
3078 				crhold(dst_entry->cred);
3079 				*fork_charge += size;
3080 			}
3081 		}
3082 
3083 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3084 		    dst_entry->end - dst_entry->start, src_entry->start);
3085 	} else {
3086 		/*
3087 		 * Of course, wired down pages can't be set copy-on-write.
3088 		 * Cause wired pages to be copied into the new map by
3089 		 * simulating faults (the new pages are pageable)
3090 		 */
3091 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3092 		    fork_charge);
3093 	}
3094 }
3095 
3096 /*
3097  * vmspace_map_entry_forked:
3098  * Update the newly-forked vmspace each time a map entry is inherited
3099  * or copied.  The values for vm_dsize and vm_tsize are approximate
3100  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3101  */
3102 static void
3103 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3104     vm_map_entry_t entry)
3105 {
3106 	vm_size_t entrysize;
3107 	vm_offset_t newend;
3108 
3109 	entrysize = entry->end - entry->start;
3110 	vm2->vm_map.size += entrysize;
3111 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3112 		vm2->vm_ssize += btoc(entrysize);
3113 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3114 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3115 		newend = MIN(entry->end,
3116 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3117 		vm2->vm_dsize += btoc(newend - entry->start);
3118 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3119 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3120 		newend = MIN(entry->end,
3121 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3122 		vm2->vm_tsize += btoc(newend - entry->start);
3123 	}
3124 }
3125 
3126 /*
3127  * vmspace_fork:
3128  * Create a new process vmspace structure and vm_map
3129  * based on those of an existing process.  The new map
3130  * is based on the old map, according to the inheritance
3131  * values on the regions in that map.
3132  *
3133  * XXX It might be worth coalescing the entries added to the new vmspace.
3134  *
3135  * The source map must not be locked.
3136  */
3137 struct vmspace *
3138 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3139 {
3140 	struct vmspace *vm2;
3141 	vm_map_t new_map, old_map;
3142 	vm_map_entry_t new_entry, old_entry;
3143 	vm_object_t object;
3144 	int locked;
3145 
3146 	old_map = &vm1->vm_map;
3147 	/* Copy immutable fields of vm1 to vm2. */
3148 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3149 	if (vm2 == NULL)
3150 		return (NULL);
3151 	vm2->vm_taddr = vm1->vm_taddr;
3152 	vm2->vm_daddr = vm1->vm_daddr;
3153 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3154 	vm_map_lock(old_map);
3155 	if (old_map->busy)
3156 		vm_map_wait_busy(old_map);
3157 	new_map = &vm2->vm_map;
3158 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3159 	KASSERT(locked, ("vmspace_fork: lock failed"));
3160 
3161 	old_entry = old_map->header.next;
3162 
3163 	while (old_entry != &old_map->header) {
3164 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3165 			panic("vm_map_fork: encountered a submap");
3166 
3167 		switch (old_entry->inheritance) {
3168 		case VM_INHERIT_NONE:
3169 			break;
3170 
3171 		case VM_INHERIT_SHARE:
3172 			/*
3173 			 * Clone the entry, creating the shared object if necessary.
3174 			 */
3175 			object = old_entry->object.vm_object;
3176 			if (object == NULL) {
3177 				object = vm_object_allocate(OBJT_DEFAULT,
3178 					atop(old_entry->end - old_entry->start));
3179 				old_entry->object.vm_object = object;
3180 				old_entry->offset = 0;
3181 				if (old_entry->cred != NULL) {
3182 					object->cred = old_entry->cred;
3183 					object->charge = old_entry->end -
3184 					    old_entry->start;
3185 					old_entry->cred = NULL;
3186 				}
3187 			}
3188 
3189 			/*
3190 			 * Add the reference before calling vm_object_shadow
3191 			 * to insure that a shadow object is created.
3192 			 */
3193 			vm_object_reference(object);
3194 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3195 				vm_object_shadow(&old_entry->object.vm_object,
3196 				    &old_entry->offset,
3197 				    old_entry->end - old_entry->start);
3198 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3199 				/* Transfer the second reference too. */
3200 				vm_object_reference(
3201 				    old_entry->object.vm_object);
3202 
3203 				/*
3204 				 * As in vm_map_simplify_entry(), the
3205 				 * vnode lock will not be acquired in
3206 				 * this call to vm_object_deallocate().
3207 				 */
3208 				vm_object_deallocate(object);
3209 				object = old_entry->object.vm_object;
3210 			}
3211 			VM_OBJECT_WLOCK(object);
3212 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3213 			if (old_entry->cred != NULL) {
3214 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3215 				object->cred = old_entry->cred;
3216 				object->charge = old_entry->end - old_entry->start;
3217 				old_entry->cred = NULL;
3218 			}
3219 
3220 			/*
3221 			 * Assert the correct state of the vnode
3222 			 * v_writecount while the object is locked, to
3223 			 * not relock it later for the assertion
3224 			 * correctness.
3225 			 */
3226 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3227 			    object->type == OBJT_VNODE) {
3228 				KASSERT(((struct vnode *)object->handle)->
3229 				    v_writecount > 0,
3230 				    ("vmspace_fork: v_writecount %p", object));
3231 				KASSERT(object->un_pager.vnp.writemappings > 0,
3232 				    ("vmspace_fork: vnp.writecount %p",
3233 				    object));
3234 			}
3235 			VM_OBJECT_WUNLOCK(object);
3236 
3237 			/*
3238 			 * Clone the entry, referencing the shared object.
3239 			 */
3240 			new_entry = vm_map_entry_create(new_map);
3241 			*new_entry = *old_entry;
3242 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3243 			    MAP_ENTRY_IN_TRANSITION);
3244 			new_entry->wiring_thread = NULL;
3245 			new_entry->wired_count = 0;
3246 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3247 				vnode_pager_update_writecount(object,
3248 				    new_entry->start, new_entry->end);
3249 			}
3250 
3251 			/*
3252 			 * Insert the entry into the new map -- we know we're
3253 			 * inserting at the end of the new map.
3254 			 */
3255 			vm_map_entry_link(new_map, new_map->header.prev,
3256 			    new_entry);
3257 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3258 
3259 			/*
3260 			 * Update the physical map
3261 			 */
3262 			pmap_copy(new_map->pmap, old_map->pmap,
3263 			    new_entry->start,
3264 			    (old_entry->end - old_entry->start),
3265 			    old_entry->start);
3266 			break;
3267 
3268 		case VM_INHERIT_COPY:
3269 			/*
3270 			 * Clone the entry and link into the map.
3271 			 */
3272 			new_entry = vm_map_entry_create(new_map);
3273 			*new_entry = *old_entry;
3274 			/*
3275 			 * Copied entry is COW over the old object.
3276 			 */
3277 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3278 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3279 			new_entry->wiring_thread = NULL;
3280 			new_entry->wired_count = 0;
3281 			new_entry->object.vm_object = NULL;
3282 			new_entry->cred = NULL;
3283 			vm_map_entry_link(new_map, new_map->header.prev,
3284 			    new_entry);
3285 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3286 			vm_map_copy_entry(old_map, new_map, old_entry,
3287 			    new_entry, fork_charge);
3288 			break;
3289 		}
3290 		old_entry = old_entry->next;
3291 	}
3292 	/*
3293 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3294 	 * map entries, which cannot be done until both old_map and
3295 	 * new_map locks are released.
3296 	 */
3297 	sx_xunlock(&old_map->lock);
3298 	sx_xunlock(&new_map->lock);
3299 	vm_map_process_deferred();
3300 
3301 	return (vm2);
3302 }
3303 
3304 int
3305 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3306     vm_prot_t prot, vm_prot_t max, int cow)
3307 {
3308 	vm_map_entry_t new_entry, prev_entry;
3309 	vm_offset_t bot, top;
3310 	vm_size_t growsize, init_ssize;
3311 	int orient, rv;
3312 	rlim_t lmemlim, vmemlim;
3313 
3314 	/*
3315 	 * The stack orientation is piggybacked with the cow argument.
3316 	 * Extract it into orient and mask the cow argument so that we
3317 	 * don't pass it around further.
3318 	 * NOTE: We explicitly allow bi-directional stacks.
3319 	 */
3320 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3321 	cow &= ~orient;
3322 	KASSERT(orient != 0, ("No stack grow direction"));
3323 
3324 	if (addrbos < vm_map_min(map) ||
3325 	    addrbos > vm_map_max(map) ||
3326 	    addrbos + max_ssize < addrbos)
3327 		return (KERN_NO_SPACE);
3328 
3329 	growsize = sgrowsiz;
3330 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3331 
3332 	PROC_LOCK(curproc);
3333 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3334 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3335 	PROC_UNLOCK(curproc);
3336 
3337 	vm_map_lock(map);
3338 
3339 	/* If addr is already mapped, no go */
3340 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3341 		vm_map_unlock(map);
3342 		return (KERN_NO_SPACE);
3343 	}
3344 
3345 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3346 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3347 			vm_map_unlock(map);
3348 			return (KERN_NO_SPACE);
3349 		}
3350 	}
3351 
3352 	/* If we would blow our VMEM resource limit, no go */
3353 	if (map->size + init_ssize > vmemlim) {
3354 		vm_map_unlock(map);
3355 		return (KERN_NO_SPACE);
3356 	}
3357 
3358 	/*
3359 	 * If we can't accomodate max_ssize in the current mapping, no go.
3360 	 * However, we need to be aware that subsequent user mappings might
3361 	 * map into the space we have reserved for stack, and currently this
3362 	 * space is not protected.
3363 	 *
3364 	 * Hopefully we will at least detect this condition when we try to
3365 	 * grow the stack.
3366 	 */
3367 	if ((prev_entry->next != &map->header) &&
3368 	    (prev_entry->next->start < addrbos + max_ssize)) {
3369 		vm_map_unlock(map);
3370 		return (KERN_NO_SPACE);
3371 	}
3372 
3373 	/*
3374 	 * We initially map a stack of only init_ssize.  We will grow as
3375 	 * needed later.  Depending on the orientation of the stack (i.e.
3376 	 * the grow direction) we either map at the top of the range, the
3377 	 * bottom of the range or in the middle.
3378 	 *
3379 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3380 	 * and cow to be 0.  Possibly we should eliminate these as input
3381 	 * parameters, and just pass these values here in the insert call.
3382 	 */
3383 	if (orient == MAP_STACK_GROWS_DOWN)
3384 		bot = addrbos + max_ssize - init_ssize;
3385 	else if (orient == MAP_STACK_GROWS_UP)
3386 		bot = addrbos;
3387 	else
3388 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3389 	top = bot + init_ssize;
3390 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3391 
3392 	/* Now set the avail_ssize amount. */
3393 	if (rv == KERN_SUCCESS) {
3394 		if (prev_entry != &map->header)
3395 			vm_map_clip_end(map, prev_entry, bot);
3396 		new_entry = prev_entry->next;
3397 		if (new_entry->end != top || new_entry->start != bot)
3398 			panic("Bad entry start/end for new stack entry");
3399 
3400 		new_entry->avail_ssize = max_ssize - init_ssize;
3401 		if (orient & MAP_STACK_GROWS_DOWN)
3402 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3403 		if (orient & MAP_STACK_GROWS_UP)
3404 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3405 	}
3406 
3407 	vm_map_unlock(map);
3408 	return (rv);
3409 }
3410 
3411 static int stack_guard_page = 0;
3412 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3413 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3414     &stack_guard_page, 0,
3415     "Insert stack guard page ahead of the growable segments.");
3416 
3417 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3418  * desired address is already mapped, or if we successfully grow
3419  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3420  * stack range (this is strange, but preserves compatibility with
3421  * the grow function in vm_machdep.c).
3422  */
3423 int
3424 vm_map_growstack(struct proc *p, vm_offset_t addr)
3425 {
3426 	vm_map_entry_t next_entry, prev_entry;
3427 	vm_map_entry_t new_entry, stack_entry;
3428 	struct vmspace *vm = p->p_vmspace;
3429 	vm_map_t map = &vm->vm_map;
3430 	vm_offset_t end;
3431 	vm_size_t growsize;
3432 	size_t grow_amount, max_grow;
3433 	rlim_t lmemlim, stacklim, vmemlim;
3434 	int is_procstack, rv;
3435 	struct ucred *cred;
3436 #ifdef notyet
3437 	uint64_t limit;
3438 #endif
3439 #ifdef RACCT
3440 	int error;
3441 #endif
3442 
3443 Retry:
3444 	PROC_LOCK(p);
3445 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3446 	stacklim = lim_cur(p, RLIMIT_STACK);
3447 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3448 	PROC_UNLOCK(p);
3449 
3450 	vm_map_lock_read(map);
3451 
3452 	/* If addr is already in the entry range, no need to grow.*/
3453 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3454 		vm_map_unlock_read(map);
3455 		return (KERN_SUCCESS);
3456 	}
3457 
3458 	next_entry = prev_entry->next;
3459 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3460 		/*
3461 		 * This entry does not grow upwards. Since the address lies
3462 		 * beyond this entry, the next entry (if one exists) has to
3463 		 * be a downward growable entry. The entry list header is
3464 		 * never a growable entry, so it suffices to check the flags.
3465 		 */
3466 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3467 			vm_map_unlock_read(map);
3468 			return (KERN_SUCCESS);
3469 		}
3470 		stack_entry = next_entry;
3471 	} else {
3472 		/*
3473 		 * This entry grows upward. If the next entry does not at
3474 		 * least grow downwards, this is the entry we need to grow.
3475 		 * otherwise we have two possible choices and we have to
3476 		 * select one.
3477 		 */
3478 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3479 			/*
3480 			 * We have two choices; grow the entry closest to
3481 			 * the address to minimize the amount of growth.
3482 			 */
3483 			if (addr - prev_entry->end <= next_entry->start - addr)
3484 				stack_entry = prev_entry;
3485 			else
3486 				stack_entry = next_entry;
3487 		} else
3488 			stack_entry = prev_entry;
3489 	}
3490 
3491 	if (stack_entry == next_entry) {
3492 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3493 		KASSERT(addr < stack_entry->start, ("foo"));
3494 		end = (prev_entry != &map->header) ? prev_entry->end :
3495 		    stack_entry->start - stack_entry->avail_ssize;
3496 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3497 		max_grow = stack_entry->start - end;
3498 	} else {
3499 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3500 		KASSERT(addr >= stack_entry->end, ("foo"));
3501 		end = (next_entry != &map->header) ? next_entry->start :
3502 		    stack_entry->end + stack_entry->avail_ssize;
3503 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3504 		max_grow = end - stack_entry->end;
3505 	}
3506 
3507 	if (grow_amount > stack_entry->avail_ssize) {
3508 		vm_map_unlock_read(map);
3509 		return (KERN_NO_SPACE);
3510 	}
3511 
3512 	/*
3513 	 * If there is no longer enough space between the entries nogo, and
3514 	 * adjust the available space.  Note: this  should only happen if the
3515 	 * user has mapped into the stack area after the stack was created,
3516 	 * and is probably an error.
3517 	 *
3518 	 * This also effectively destroys any guard page the user might have
3519 	 * intended by limiting the stack size.
3520 	 */
3521 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3522 		if (vm_map_lock_upgrade(map))
3523 			goto Retry;
3524 
3525 		stack_entry->avail_ssize = max_grow;
3526 
3527 		vm_map_unlock(map);
3528 		return (KERN_NO_SPACE);
3529 	}
3530 
3531 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3532 
3533 	/*
3534 	 * If this is the main process stack, see if we're over the stack
3535 	 * limit.
3536 	 */
3537 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3538 		vm_map_unlock_read(map);
3539 		return (KERN_NO_SPACE);
3540 	}
3541 #ifdef RACCT
3542 	PROC_LOCK(p);
3543 	if (is_procstack &&
3544 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3545 		PROC_UNLOCK(p);
3546 		vm_map_unlock_read(map);
3547 		return (KERN_NO_SPACE);
3548 	}
3549 	PROC_UNLOCK(p);
3550 #endif
3551 
3552 	/* Round up the grow amount modulo sgrowsiz */
3553 	growsize = sgrowsiz;
3554 	grow_amount = roundup(grow_amount, growsize);
3555 	if (grow_amount > stack_entry->avail_ssize)
3556 		grow_amount = stack_entry->avail_ssize;
3557 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3558 		grow_amount = trunc_page((vm_size_t)stacklim) -
3559 		    ctob(vm->vm_ssize);
3560 	}
3561 #ifdef notyet
3562 	PROC_LOCK(p);
3563 	limit = racct_get_available(p, RACCT_STACK);
3564 	PROC_UNLOCK(p);
3565 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3566 		grow_amount = limit - ctob(vm->vm_ssize);
3567 #endif
3568 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3569 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3570 			vm_map_unlock_read(map);
3571 			rv = KERN_NO_SPACE;
3572 			goto out;
3573 		}
3574 #ifdef RACCT
3575 		PROC_LOCK(p);
3576 		if (racct_set(p, RACCT_MEMLOCK,
3577 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3578 			PROC_UNLOCK(p);
3579 			vm_map_unlock_read(map);
3580 			rv = KERN_NO_SPACE;
3581 			goto out;
3582 		}
3583 		PROC_UNLOCK(p);
3584 #endif
3585 	}
3586 	/* If we would blow our VMEM resource limit, no go */
3587 	if (map->size + grow_amount > vmemlim) {
3588 		vm_map_unlock_read(map);
3589 		rv = KERN_NO_SPACE;
3590 		goto out;
3591 	}
3592 #ifdef RACCT
3593 	PROC_LOCK(p);
3594 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3595 		PROC_UNLOCK(p);
3596 		vm_map_unlock_read(map);
3597 		rv = KERN_NO_SPACE;
3598 		goto out;
3599 	}
3600 	PROC_UNLOCK(p);
3601 #endif
3602 
3603 	if (vm_map_lock_upgrade(map))
3604 		goto Retry;
3605 
3606 	if (stack_entry == next_entry) {
3607 		/*
3608 		 * Growing downward.
3609 		 */
3610 		/* Get the preliminary new entry start value */
3611 		addr = stack_entry->start - grow_amount;
3612 
3613 		/*
3614 		 * If this puts us into the previous entry, cut back our
3615 		 * growth to the available space. Also, see the note above.
3616 		 */
3617 		if (addr < end) {
3618 			stack_entry->avail_ssize = max_grow;
3619 			addr = end;
3620 			if (stack_guard_page)
3621 				addr += PAGE_SIZE;
3622 		}
3623 
3624 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3625 		    next_entry->protection, next_entry->max_protection, 0);
3626 
3627 		/* Adjust the available stack space by the amount we grew. */
3628 		if (rv == KERN_SUCCESS) {
3629 			if (prev_entry != &map->header)
3630 				vm_map_clip_end(map, prev_entry, addr);
3631 			new_entry = prev_entry->next;
3632 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3633 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3634 			KASSERT(new_entry->start == addr, ("foo"));
3635 			grow_amount = new_entry->end - new_entry->start;
3636 			new_entry->avail_ssize = stack_entry->avail_ssize -
3637 			    grow_amount;
3638 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3639 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3640 		}
3641 	} else {
3642 		/*
3643 		 * Growing upward.
3644 		 */
3645 		addr = stack_entry->end + grow_amount;
3646 
3647 		/*
3648 		 * If this puts us into the next entry, cut back our growth
3649 		 * to the available space. Also, see the note above.
3650 		 */
3651 		if (addr > end) {
3652 			stack_entry->avail_ssize = end - stack_entry->end;
3653 			addr = end;
3654 			if (stack_guard_page)
3655 				addr -= PAGE_SIZE;
3656 		}
3657 
3658 		grow_amount = addr - stack_entry->end;
3659 		cred = stack_entry->cred;
3660 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3661 			cred = stack_entry->object.vm_object->cred;
3662 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3663 			rv = KERN_NO_SPACE;
3664 		/* Grow the underlying object if applicable. */
3665 		else if (stack_entry->object.vm_object == NULL ||
3666 			 vm_object_coalesce(stack_entry->object.vm_object,
3667 			 stack_entry->offset,
3668 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3669 			 (vm_size_t)grow_amount, cred != NULL)) {
3670 			map->size += (addr - stack_entry->end);
3671 			/* Update the current entry. */
3672 			stack_entry->end = addr;
3673 			stack_entry->avail_ssize -= grow_amount;
3674 			vm_map_entry_resize_free(map, stack_entry);
3675 			rv = KERN_SUCCESS;
3676 
3677 			if (next_entry != &map->header)
3678 				vm_map_clip_start(map, next_entry, addr);
3679 		} else
3680 			rv = KERN_FAILURE;
3681 	}
3682 
3683 	if (rv == KERN_SUCCESS && is_procstack)
3684 		vm->vm_ssize += btoc(grow_amount);
3685 
3686 	vm_map_unlock(map);
3687 
3688 	/*
3689 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3690 	 */
3691 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3692 		vm_map_wire(map,
3693 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3694 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3695 		    (p->p_flag & P_SYSTEM)
3696 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3697 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3698 	}
3699 
3700 out:
3701 #ifdef RACCT
3702 	if (rv != KERN_SUCCESS) {
3703 		PROC_LOCK(p);
3704 		error = racct_set(p, RACCT_VMEM, map->size);
3705 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3706 		if (!old_mlock) {
3707 			error = racct_set(p, RACCT_MEMLOCK,
3708 			    ptoa(pmap_wired_count(map->pmap)));
3709 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3710 		}
3711 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3712 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3713 		PROC_UNLOCK(p);
3714 	}
3715 #endif
3716 
3717 	return (rv);
3718 }
3719 
3720 /*
3721  * Unshare the specified VM space for exec.  If other processes are
3722  * mapped to it, then create a new one.  The new vmspace is null.
3723  */
3724 int
3725 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3726 {
3727 	struct vmspace *oldvmspace = p->p_vmspace;
3728 	struct vmspace *newvmspace;
3729 
3730 	newvmspace = vmspace_alloc(minuser, maxuser);
3731 	if (newvmspace == NULL)
3732 		return (ENOMEM);
3733 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3734 	/*
3735 	 * This code is written like this for prototype purposes.  The
3736 	 * goal is to avoid running down the vmspace here, but let the
3737 	 * other process's that are still using the vmspace to finally
3738 	 * run it down.  Even though there is little or no chance of blocking
3739 	 * here, it is a good idea to keep this form for future mods.
3740 	 */
3741 	PROC_VMSPACE_LOCK(p);
3742 	p->p_vmspace = newvmspace;
3743 	PROC_VMSPACE_UNLOCK(p);
3744 	if (p == curthread->td_proc)
3745 		pmap_activate(curthread);
3746 	vmspace_free(oldvmspace);
3747 	return (0);
3748 }
3749 
3750 /*
3751  * Unshare the specified VM space for forcing COW.  This
3752  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3753  */
3754 int
3755 vmspace_unshare(struct proc *p)
3756 {
3757 	struct vmspace *oldvmspace = p->p_vmspace;
3758 	struct vmspace *newvmspace;
3759 	vm_ooffset_t fork_charge;
3760 
3761 	if (oldvmspace->vm_refcnt == 1)
3762 		return (0);
3763 	fork_charge = 0;
3764 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3765 	if (newvmspace == NULL)
3766 		return (ENOMEM);
3767 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3768 		vmspace_free(newvmspace);
3769 		return (ENOMEM);
3770 	}
3771 	PROC_VMSPACE_LOCK(p);
3772 	p->p_vmspace = newvmspace;
3773 	PROC_VMSPACE_UNLOCK(p);
3774 	if (p == curthread->td_proc)
3775 		pmap_activate(curthread);
3776 	vmspace_free(oldvmspace);
3777 	return (0);
3778 }
3779 
3780 /*
3781  *	vm_map_lookup:
3782  *
3783  *	Finds the VM object, offset, and
3784  *	protection for a given virtual address in the
3785  *	specified map, assuming a page fault of the
3786  *	type specified.
3787  *
3788  *	Leaves the map in question locked for read; return
3789  *	values are guaranteed until a vm_map_lookup_done
3790  *	call is performed.  Note that the map argument
3791  *	is in/out; the returned map must be used in
3792  *	the call to vm_map_lookup_done.
3793  *
3794  *	A handle (out_entry) is returned for use in
3795  *	vm_map_lookup_done, to make that fast.
3796  *
3797  *	If a lookup is requested with "write protection"
3798  *	specified, the map may be changed to perform virtual
3799  *	copying operations, although the data referenced will
3800  *	remain the same.
3801  */
3802 int
3803 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3804 	      vm_offset_t vaddr,
3805 	      vm_prot_t fault_typea,
3806 	      vm_map_entry_t *out_entry,	/* OUT */
3807 	      vm_object_t *object,		/* OUT */
3808 	      vm_pindex_t *pindex,		/* OUT */
3809 	      vm_prot_t *out_prot,		/* OUT */
3810 	      boolean_t *wired)			/* OUT */
3811 {
3812 	vm_map_entry_t entry;
3813 	vm_map_t map = *var_map;
3814 	vm_prot_t prot;
3815 	vm_prot_t fault_type = fault_typea;
3816 	vm_object_t eobject;
3817 	vm_size_t size;
3818 	struct ucred *cred;
3819 
3820 RetryLookup:;
3821 
3822 	vm_map_lock_read(map);
3823 
3824 	/*
3825 	 * Lookup the faulting address.
3826 	 */
3827 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3828 		vm_map_unlock_read(map);
3829 		return (KERN_INVALID_ADDRESS);
3830 	}
3831 
3832 	entry = *out_entry;
3833 
3834 	/*
3835 	 * Handle submaps.
3836 	 */
3837 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3838 		vm_map_t old_map = map;
3839 
3840 		*var_map = map = entry->object.sub_map;
3841 		vm_map_unlock_read(old_map);
3842 		goto RetryLookup;
3843 	}
3844 
3845 	/*
3846 	 * Check whether this task is allowed to have this page.
3847 	 */
3848 	prot = entry->protection;
3849 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3850 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3851 		vm_map_unlock_read(map);
3852 		return (KERN_PROTECTION_FAILURE);
3853 	}
3854 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3855 	    (entry->eflags & MAP_ENTRY_COW) &&
3856 	    (fault_type & VM_PROT_WRITE)) {
3857 		vm_map_unlock_read(map);
3858 		return (KERN_PROTECTION_FAILURE);
3859 	}
3860 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3861 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3862 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3863 		vm_map_unlock_read(map);
3864 		return (KERN_PROTECTION_FAILURE);
3865 	}
3866 
3867 	/*
3868 	 * If this page is not pageable, we have to get it for all possible
3869 	 * accesses.
3870 	 */
3871 	*wired = (entry->wired_count != 0);
3872 	if (*wired)
3873 		fault_type = entry->protection;
3874 	size = entry->end - entry->start;
3875 	/*
3876 	 * If the entry was copy-on-write, we either ...
3877 	 */
3878 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3879 		/*
3880 		 * If we want to write the page, we may as well handle that
3881 		 * now since we've got the map locked.
3882 		 *
3883 		 * If we don't need to write the page, we just demote the
3884 		 * permissions allowed.
3885 		 */
3886 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3887 		    (fault_typea & VM_PROT_COPY) != 0) {
3888 			/*
3889 			 * Make a new object, and place it in the object
3890 			 * chain.  Note that no new references have appeared
3891 			 * -- one just moved from the map to the new
3892 			 * object.
3893 			 */
3894 			if (vm_map_lock_upgrade(map))
3895 				goto RetryLookup;
3896 
3897 			if (entry->cred == NULL) {
3898 				/*
3899 				 * The debugger owner is charged for
3900 				 * the memory.
3901 				 */
3902 				cred = curthread->td_ucred;
3903 				crhold(cred);
3904 				if (!swap_reserve_by_cred(size, cred)) {
3905 					crfree(cred);
3906 					vm_map_unlock(map);
3907 					return (KERN_RESOURCE_SHORTAGE);
3908 				}
3909 				entry->cred = cred;
3910 			}
3911 			vm_object_shadow(&entry->object.vm_object,
3912 			    &entry->offset, size);
3913 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3914 			eobject = entry->object.vm_object;
3915 			if (eobject->cred != NULL) {
3916 				/*
3917 				 * The object was not shadowed.
3918 				 */
3919 				swap_release_by_cred(size, entry->cred);
3920 				crfree(entry->cred);
3921 				entry->cred = NULL;
3922 			} else if (entry->cred != NULL) {
3923 				VM_OBJECT_WLOCK(eobject);
3924 				eobject->cred = entry->cred;
3925 				eobject->charge = size;
3926 				VM_OBJECT_WUNLOCK(eobject);
3927 				entry->cred = NULL;
3928 			}
3929 
3930 			vm_map_lock_downgrade(map);
3931 		} else {
3932 			/*
3933 			 * We're attempting to read a copy-on-write page --
3934 			 * don't allow writes.
3935 			 */
3936 			prot &= ~VM_PROT_WRITE;
3937 		}
3938 	}
3939 
3940 	/*
3941 	 * Create an object if necessary.
3942 	 */
3943 	if (entry->object.vm_object == NULL &&
3944 	    !map->system_map) {
3945 		if (vm_map_lock_upgrade(map))
3946 			goto RetryLookup;
3947 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3948 		    atop(size));
3949 		entry->offset = 0;
3950 		if (entry->cred != NULL) {
3951 			VM_OBJECT_WLOCK(entry->object.vm_object);
3952 			entry->object.vm_object->cred = entry->cred;
3953 			entry->object.vm_object->charge = size;
3954 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3955 			entry->cred = NULL;
3956 		}
3957 		vm_map_lock_downgrade(map);
3958 	}
3959 
3960 	/*
3961 	 * Return the object/offset from this entry.  If the entry was
3962 	 * copy-on-write or empty, it has been fixed up.
3963 	 */
3964 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3965 	*object = entry->object.vm_object;
3966 
3967 	*out_prot = prot;
3968 	return (KERN_SUCCESS);
3969 }
3970 
3971 /*
3972  *	vm_map_lookup_locked:
3973  *
3974  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3975  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3976  */
3977 int
3978 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3979 		     vm_offset_t vaddr,
3980 		     vm_prot_t fault_typea,
3981 		     vm_map_entry_t *out_entry,	/* OUT */
3982 		     vm_object_t *object,	/* OUT */
3983 		     vm_pindex_t *pindex,	/* OUT */
3984 		     vm_prot_t *out_prot,	/* OUT */
3985 		     boolean_t *wired)		/* OUT */
3986 {
3987 	vm_map_entry_t entry;
3988 	vm_map_t map = *var_map;
3989 	vm_prot_t prot;
3990 	vm_prot_t fault_type = fault_typea;
3991 
3992 	/*
3993 	 * Lookup the faulting address.
3994 	 */
3995 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3996 		return (KERN_INVALID_ADDRESS);
3997 
3998 	entry = *out_entry;
3999 
4000 	/*
4001 	 * Fail if the entry refers to a submap.
4002 	 */
4003 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4004 		return (KERN_FAILURE);
4005 
4006 	/*
4007 	 * Check whether this task is allowed to have this page.
4008 	 */
4009 	prot = entry->protection;
4010 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4011 	if ((fault_type & prot) != fault_type)
4012 		return (KERN_PROTECTION_FAILURE);
4013 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4014 	    (entry->eflags & MAP_ENTRY_COW) &&
4015 	    (fault_type & VM_PROT_WRITE))
4016 		return (KERN_PROTECTION_FAILURE);
4017 
4018 	/*
4019 	 * If this page is not pageable, we have to get it for all possible
4020 	 * accesses.
4021 	 */
4022 	*wired = (entry->wired_count != 0);
4023 	if (*wired)
4024 		fault_type = entry->protection;
4025 
4026 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4027 		/*
4028 		 * Fail if the entry was copy-on-write for a write fault.
4029 		 */
4030 		if (fault_type & VM_PROT_WRITE)
4031 			return (KERN_FAILURE);
4032 		/*
4033 		 * We're attempting to read a copy-on-write page --
4034 		 * don't allow writes.
4035 		 */
4036 		prot &= ~VM_PROT_WRITE;
4037 	}
4038 
4039 	/*
4040 	 * Fail if an object should be created.
4041 	 */
4042 	if (entry->object.vm_object == NULL && !map->system_map)
4043 		return (KERN_FAILURE);
4044 
4045 	/*
4046 	 * Return the object/offset from this entry.  If the entry was
4047 	 * copy-on-write or empty, it has been fixed up.
4048 	 */
4049 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4050 	*object = entry->object.vm_object;
4051 
4052 	*out_prot = prot;
4053 	return (KERN_SUCCESS);
4054 }
4055 
4056 /*
4057  *	vm_map_lookup_done:
4058  *
4059  *	Releases locks acquired by a vm_map_lookup
4060  *	(according to the handle returned by that lookup).
4061  */
4062 void
4063 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4064 {
4065 	/*
4066 	 * Unlock the main-level map
4067 	 */
4068 	vm_map_unlock_read(map);
4069 }
4070 
4071 #include "opt_ddb.h"
4072 #ifdef DDB
4073 #include <sys/kernel.h>
4074 
4075 #include <ddb/ddb.h>
4076 
4077 static void
4078 vm_map_print(vm_map_t map)
4079 {
4080 	vm_map_entry_t entry;
4081 
4082 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4083 	    (void *)map,
4084 	    (void *)map->pmap, map->nentries, map->timestamp);
4085 
4086 	db_indent += 2;
4087 	for (entry = map->header.next; entry != &map->header;
4088 	    entry = entry->next) {
4089 		db_iprintf("map entry %p: start=%p, end=%p\n",
4090 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4091 		{
4092 			static char *inheritance_name[4] =
4093 			{"share", "copy", "none", "donate_copy"};
4094 
4095 			db_iprintf(" prot=%x/%x/%s",
4096 			    entry->protection,
4097 			    entry->max_protection,
4098 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4099 			if (entry->wired_count != 0)
4100 				db_printf(", wired");
4101 		}
4102 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4103 			db_printf(", share=%p, offset=0x%jx\n",
4104 			    (void *)entry->object.sub_map,
4105 			    (uintmax_t)entry->offset);
4106 			if ((entry->prev == &map->header) ||
4107 			    (entry->prev->object.sub_map !=
4108 				entry->object.sub_map)) {
4109 				db_indent += 2;
4110 				vm_map_print((vm_map_t)entry->object.sub_map);
4111 				db_indent -= 2;
4112 			}
4113 		} else {
4114 			if (entry->cred != NULL)
4115 				db_printf(", ruid %d", entry->cred->cr_ruid);
4116 			db_printf(", object=%p, offset=0x%jx",
4117 			    (void *)entry->object.vm_object,
4118 			    (uintmax_t)entry->offset);
4119 			if (entry->object.vm_object && entry->object.vm_object->cred)
4120 				db_printf(", obj ruid %d charge %jx",
4121 				    entry->object.vm_object->cred->cr_ruid,
4122 				    (uintmax_t)entry->object.vm_object->charge);
4123 			if (entry->eflags & MAP_ENTRY_COW)
4124 				db_printf(", copy (%s)",
4125 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4126 			db_printf("\n");
4127 
4128 			if ((entry->prev == &map->header) ||
4129 			    (entry->prev->object.vm_object !=
4130 				entry->object.vm_object)) {
4131 				db_indent += 2;
4132 				vm_object_print((db_expr_t)(intptr_t)
4133 						entry->object.vm_object,
4134 						1, 0, (char *)0);
4135 				db_indent -= 2;
4136 			}
4137 		}
4138 	}
4139 	db_indent -= 2;
4140 }
4141 
4142 DB_SHOW_COMMAND(map, map)
4143 {
4144 
4145 	if (!have_addr) {
4146 		db_printf("usage: show map <addr>\n");
4147 		return;
4148 	}
4149 	vm_map_print((vm_map_t)addr);
4150 }
4151 
4152 DB_SHOW_COMMAND(procvm, procvm)
4153 {
4154 	struct proc *p;
4155 
4156 	if (have_addr) {
4157 		p = (struct proc *) addr;
4158 	} else {
4159 		p = curproc;
4160 	}
4161 
4162 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4163 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4164 	    (void *)vmspace_pmap(p->p_vmspace));
4165 
4166 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4167 }
4168 
4169 #endif /* DDB */
4170