1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a single hint is used to speed up lookups. 104 * 105 * Since portions of maps are specified by start/end addresses, 106 * which may not align with existing map entries, all 107 * routines merely "clip" entries to these start/end values. 108 * [That is, an entry is split into two, bordering at a 109 * start or end value.] Note that these clippings may not 110 * always be necessary (as the two resulting entries are then 111 * not changed); however, the clipping is done for convenience. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one map to 115 * another, and then marking both regions as copy-on-write. 116 */ 117 118 /* 119 * vm_map_startup: 120 * 121 * Initialize the vm_map module. Must be called before 122 * any other vm_map routines. 123 * 124 * Map and entry structures are allocated from the general 125 * purpose memory pool with some exceptions: 126 * 127 * - The kernel map and kmem submap are allocated statically. 128 * - Kernel map entries are allocated out of a static pool. 129 * 130 * These restrictions are necessary since malloc() uses the 131 * maps and requires map entries. 132 */ 133 134 static uma_zone_t mapentzone; 135 static uma_zone_t kmapentzone; 136 static uma_zone_t mapzone; 137 static uma_zone_t vmspace_zone; 138 static struct vm_object kmapentobj; 139 static void vmspace_zinit(void *mem, int size); 140 static void vmspace_zfini(void *mem, int size); 141 static void vm_map_zinit(void *mem, int size); 142 static void vm_map_zfini(void *mem, int size); 143 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 144 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 150 void 151 vm_map_startup(void) 152 { 153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 154 #ifdef INVARIANTS 155 vm_map_zdtor, 156 #else 157 NULL, 158 #endif 159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 160 uma_prealloc(mapzone, MAX_KMAP); 161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 163 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 164 uma_prealloc(kmapentzone, MAX_KMAPENT); 165 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 166 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 167 uma_prealloc(mapentzone, MAX_MAPENT); 168 } 169 170 static void 171 vmspace_zfini(void *mem, int size) 172 { 173 struct vmspace *vm; 174 175 vm = (struct vmspace *)mem; 176 177 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 178 } 179 180 static void 181 vmspace_zinit(void *mem, int size) 182 { 183 struct vmspace *vm; 184 185 vm = (struct vmspace *)mem; 186 187 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 188 } 189 190 static void 191 vm_map_zfini(void *mem, int size) 192 { 193 vm_map_t map; 194 195 map = (vm_map_t)mem; 196 197 lockdestroy(&map->lock); 198 } 199 200 static void 201 vm_map_zinit(void *mem, int size) 202 { 203 vm_map_t map; 204 205 map = (vm_map_t)mem; 206 map->nentries = 0; 207 map->size = 0; 208 map->infork = 0; 209 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 210 } 211 212 #ifdef INVARIANTS 213 static void 214 vmspace_zdtor(void *mem, int size, void *arg) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 221 } 222 static void 223 vm_map_zdtor(void *mem, int size, void *arg) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 KASSERT(map->nentries == 0, 229 ("map %p nentries == %d on free.", 230 map, map->nentries)); 231 KASSERT(map->size == 0, 232 ("map %p size == %lu on free.", 233 map, (unsigned long)map->size)); 234 KASSERT(map->infork == 0, 235 ("map %p infork == %d on free.", 236 map, map->infork)); 237 } 238 #endif /* INVARIANTS */ 239 240 /* 241 * Allocate a vmspace structure, including a vm_map and pmap, 242 * and initialize those structures. The refcnt is set to 1. 243 * The remaining fields must be initialized by the caller. 244 */ 245 struct vmspace * 246 vmspace_alloc(min, max) 247 vm_offset_t min, max; 248 { 249 struct vmspace *vm; 250 251 GIANT_REQUIRED; 252 vm = uma_zalloc(vmspace_zone, M_WAITOK); 253 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 254 _vm_map_init(&vm->vm_map, min, max); 255 pmap_pinit(vmspace_pmap(vm)); 256 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 257 vm->vm_refcnt = 1; 258 vm->vm_shm = NULL; 259 vm->vm_freer = NULL; 260 return (vm); 261 } 262 263 void 264 vm_init2(void) 265 { 266 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4); 267 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 268 #ifdef INVARIANTS 269 vmspace_zdtor, 270 #else 271 NULL, 272 #endif 273 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 274 pmap_init2(); 275 vm_object_init2(); 276 } 277 278 static __inline void 279 vmspace_dofree(struct vmspace *vm) 280 { 281 CTR1(KTR_VM, "vmspace_free: %p", vm); 282 /* 283 * Lock the map, to wait out all other references to it. 284 * Delete all of the mappings and pages they hold, then call 285 * the pmap module to reclaim anything left. 286 */ 287 vm_map_lock(&vm->vm_map); 288 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 289 vm->vm_map.max_offset); 290 vm_map_unlock(&vm->vm_map); 291 292 pmap_release(vmspace_pmap(vm)); 293 uma_zfree(vmspace_zone, vm); 294 } 295 296 void 297 vmspace_free(struct vmspace *vm) 298 { 299 GIANT_REQUIRED; 300 301 if (vm->vm_refcnt == 0) 302 panic("vmspace_free: attempt to free already freed vmspace"); 303 304 if (--vm->vm_refcnt == 0) 305 vmspace_dofree(vm); 306 } 307 308 void 309 vmspace_exitfree(struct proc *p) 310 { 311 struct vmspace *vm; 312 313 GIANT_REQUIRED; 314 if (p == p->p_vmspace->vm_freer) { 315 vm = p->p_vmspace; 316 p->p_vmspace = NULL; 317 vmspace_dofree(vm); 318 } 319 } 320 321 /* 322 * vmspace_swap_count() - count the approximate swap useage in pages for a 323 * vmspace. 324 * 325 * Swap useage is determined by taking the proportional swap used by 326 * VM objects backing the VM map. To make up for fractional losses, 327 * if the VM object has any swap use at all the associated map entries 328 * count for at least 1 swap page. 329 */ 330 int 331 vmspace_swap_count(struct vmspace *vmspace) 332 { 333 vm_map_t map = &vmspace->vm_map; 334 vm_map_entry_t cur; 335 int count = 0; 336 337 vm_map_lock_read(map); 338 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 339 vm_object_t object; 340 341 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 342 (object = cur->object.vm_object) != NULL && 343 object->type == OBJT_SWAP 344 ) { 345 int n = (cur->end - cur->start) / PAGE_SIZE; 346 347 if (object->un_pager.swp.swp_bcount) { 348 count += object->un_pager.swp.swp_bcount * 349 SWAP_META_PAGES * n / object->size + 1; 350 } 351 } 352 } 353 vm_map_unlock_read(map); 354 return (count); 355 } 356 357 void 358 _vm_map_lock(vm_map_t map, const char *file, int line) 359 { 360 int error; 361 362 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 363 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 364 map->timestamp++; 365 } 366 367 void 368 _vm_map_unlock(vm_map_t map, const char *file, int line) 369 { 370 371 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 372 } 373 374 void 375 _vm_map_lock_read(vm_map_t map, const char *file, int line) 376 { 377 int error; 378 379 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 380 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 381 } 382 383 void 384 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 385 { 386 387 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 388 } 389 390 int 391 _vm_map_trylock(vm_map_t map, const char *file, int line) 392 { 393 int error; 394 395 error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 396 return (error == 0); 397 } 398 399 int 400 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 401 { 402 403 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 404 ("%s: lock not held", __func__)); 405 map->timestamp++; 406 return (0); 407 } 408 409 void 410 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 411 { 412 413 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 414 ("%s: lock not held", __func__)); 415 } 416 417 /* 418 * vm_map_unlock_and_wait: 419 */ 420 static __inline int 421 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 422 { 423 int retval; 424 425 mtx_lock(&Giant); 426 vm_map_unlock(map); 427 retval = tsleep(&map->root, PVM, "vmmapw", 0); 428 mtx_unlock(&Giant); 429 return (retval); 430 } 431 432 /* 433 * vm_map_wakeup: 434 */ 435 static __inline void 436 vm_map_wakeup(vm_map_t map) 437 { 438 439 /* 440 * Acquire and release Giant to prevent a wakeup() from being 441 * performed (and lost) between the vm_map_unlock() and the 442 * tsleep() in vm_map_unlock_and_wait(). 443 */ 444 mtx_lock(&Giant); 445 mtx_unlock(&Giant); 446 wakeup(&map->root); 447 } 448 449 long 450 vmspace_resident_count(struct vmspace *vmspace) 451 { 452 return pmap_resident_count(vmspace_pmap(vmspace)); 453 } 454 455 /* 456 * vm_map_create: 457 * 458 * Creates and returns a new empty VM map with 459 * the given physical map structure, and having 460 * the given lower and upper address bounds. 461 */ 462 vm_map_t 463 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 464 { 465 vm_map_t result; 466 467 result = uma_zalloc(mapzone, M_WAITOK); 468 CTR1(KTR_VM, "vm_map_create: %p", result); 469 _vm_map_init(result, min, max); 470 result->pmap = pmap; 471 return (result); 472 } 473 474 /* 475 * Initialize an existing vm_map structure 476 * such as that in the vmspace structure. 477 * The pmap is set elsewhere. 478 */ 479 static void 480 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 481 { 482 483 map->header.next = map->header.prev = &map->header; 484 map->system_map = 0; 485 map->min_offset = min; 486 map->max_offset = max; 487 map->first_free = &map->header; 488 map->root = NULL; 489 map->timestamp = 0; 490 } 491 492 void 493 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 494 { 495 _vm_map_init(map, min, max); 496 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 497 } 498 499 /* 500 * vm_map_entry_dispose: [ internal use only ] 501 * 502 * Inverse of vm_map_entry_create. 503 */ 504 static void 505 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 506 { 507 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 508 } 509 510 /* 511 * vm_map_entry_create: [ internal use only ] 512 * 513 * Allocates a VM map entry for insertion. 514 * No entry fields are filled in. 515 */ 516 static vm_map_entry_t 517 vm_map_entry_create(vm_map_t map) 518 { 519 vm_map_entry_t new_entry; 520 521 if (map->system_map) 522 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 523 else 524 new_entry = uma_zalloc(mapentzone, M_WAITOK); 525 if (new_entry == NULL) 526 panic("vm_map_entry_create: kernel resources exhausted"); 527 return (new_entry); 528 } 529 530 /* 531 * vm_map_entry_set_behavior: 532 * 533 * Set the expected access behavior, either normal, random, or 534 * sequential. 535 */ 536 static __inline void 537 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 538 { 539 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 540 (behavior & MAP_ENTRY_BEHAV_MASK); 541 } 542 543 /* 544 * vm_map_entry_splay: 545 * 546 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 547 * the vm_map_entry containing the given address. If, however, that 548 * address is not found in the vm_map, returns a vm_map_entry that is 549 * adjacent to the address, coming before or after it. 550 */ 551 static vm_map_entry_t 552 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 553 { 554 struct vm_map_entry dummy; 555 vm_map_entry_t lefttreemax, righttreemin, y; 556 557 if (root == NULL) 558 return (root); 559 lefttreemax = righttreemin = &dummy; 560 for (;; root = y) { 561 if (address < root->start) { 562 if ((y = root->left) == NULL) 563 break; 564 if (address < y->start) { 565 /* Rotate right. */ 566 root->left = y->right; 567 y->right = root; 568 root = y; 569 if ((y = root->left) == NULL) 570 break; 571 } 572 /* Link into the new root's right tree. */ 573 righttreemin->left = root; 574 righttreemin = root; 575 } else if (address >= root->end) { 576 if ((y = root->right) == NULL) 577 break; 578 if (address >= y->end) { 579 /* Rotate left. */ 580 root->right = y->left; 581 y->left = root; 582 root = y; 583 if ((y = root->right) == NULL) 584 break; 585 } 586 /* Link into the new root's left tree. */ 587 lefttreemax->right = root; 588 lefttreemax = root; 589 } else 590 break; 591 } 592 /* Assemble the new root. */ 593 lefttreemax->right = root->left; 594 righttreemin->left = root->right; 595 root->left = dummy.right; 596 root->right = dummy.left; 597 return (root); 598 } 599 600 /* 601 * vm_map_entry_{un,}link: 602 * 603 * Insert/remove entries from maps. 604 */ 605 static void 606 vm_map_entry_link(vm_map_t map, 607 vm_map_entry_t after_where, 608 vm_map_entry_t entry) 609 { 610 611 CTR4(KTR_VM, 612 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 613 map->nentries, entry, after_where); 614 map->nentries++; 615 entry->prev = after_where; 616 entry->next = after_where->next; 617 entry->next->prev = entry; 618 after_where->next = entry; 619 620 if (after_where != &map->header) { 621 if (after_where != map->root) 622 vm_map_entry_splay(after_where->start, map->root); 623 entry->right = after_where->right; 624 entry->left = after_where; 625 after_where->right = NULL; 626 } else { 627 entry->right = map->root; 628 entry->left = NULL; 629 } 630 map->root = entry; 631 } 632 633 static void 634 vm_map_entry_unlink(vm_map_t map, 635 vm_map_entry_t entry) 636 { 637 vm_map_entry_t next, prev, root; 638 639 if (entry != map->root) 640 vm_map_entry_splay(entry->start, map->root); 641 if (entry->left == NULL) 642 root = entry->right; 643 else { 644 root = vm_map_entry_splay(entry->start, entry->left); 645 root->right = entry->right; 646 } 647 map->root = root; 648 649 prev = entry->prev; 650 next = entry->next; 651 next->prev = prev; 652 prev->next = next; 653 map->nentries--; 654 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 655 map->nentries, entry); 656 } 657 658 /* 659 * vm_map_lookup_entry: [ internal use only ] 660 * 661 * Finds the map entry containing (or 662 * immediately preceding) the specified address 663 * in the given map; the entry is returned 664 * in the "entry" parameter. The boolean 665 * result indicates whether the address is 666 * actually contained in the map. 667 */ 668 boolean_t 669 vm_map_lookup_entry( 670 vm_map_t map, 671 vm_offset_t address, 672 vm_map_entry_t *entry) /* OUT */ 673 { 674 vm_map_entry_t cur; 675 676 cur = vm_map_entry_splay(address, map->root); 677 if (cur == NULL) 678 *entry = &map->header; 679 else { 680 map->root = cur; 681 682 if (address >= cur->start) { 683 *entry = cur; 684 if (cur->end > address) 685 return (TRUE); 686 } else 687 *entry = cur->prev; 688 } 689 return (FALSE); 690 } 691 692 /* 693 * vm_map_insert: 694 * 695 * Inserts the given whole VM object into the target 696 * map at the specified address range. The object's 697 * size should match that of the address range. 698 * 699 * Requires that the map be locked, and leaves it so. 700 * 701 * If object is non-NULL, ref count must be bumped by caller 702 * prior to making call to account for the new entry. 703 */ 704 int 705 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 706 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 707 int cow) 708 { 709 vm_map_entry_t new_entry; 710 vm_map_entry_t prev_entry; 711 vm_map_entry_t temp_entry; 712 vm_eflags_t protoeflags; 713 714 /* 715 * Check that the start and end points are not bogus. 716 */ 717 if ((start < map->min_offset) || (end > map->max_offset) || 718 (start >= end)) 719 return (KERN_INVALID_ADDRESS); 720 721 /* 722 * Find the entry prior to the proposed starting address; if it's part 723 * of an existing entry, this range is bogus. 724 */ 725 if (vm_map_lookup_entry(map, start, &temp_entry)) 726 return (KERN_NO_SPACE); 727 728 prev_entry = temp_entry; 729 730 /* 731 * Assert that the next entry doesn't overlap the end point. 732 */ 733 if ((prev_entry->next != &map->header) && 734 (prev_entry->next->start < end)) 735 return (KERN_NO_SPACE); 736 737 protoeflags = 0; 738 739 if (cow & MAP_COPY_ON_WRITE) 740 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 741 742 if (cow & MAP_NOFAULT) { 743 protoeflags |= MAP_ENTRY_NOFAULT; 744 745 KASSERT(object == NULL, 746 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 747 } 748 if (cow & MAP_DISABLE_SYNCER) 749 protoeflags |= MAP_ENTRY_NOSYNC; 750 if (cow & MAP_DISABLE_COREDUMP) 751 protoeflags |= MAP_ENTRY_NOCOREDUMP; 752 753 if (object) { 754 GIANT_REQUIRED; 755 /* 756 * When object is non-NULL, it could be shared with another 757 * process. We have to set or clear OBJ_ONEMAPPING 758 * appropriately. 759 */ 760 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 761 vm_object_clear_flag(object, OBJ_ONEMAPPING); 762 } 763 } 764 else if ((prev_entry != &map->header) && 765 (prev_entry->eflags == protoeflags) && 766 (prev_entry->end == start) && 767 (prev_entry->wired_count == 0) && 768 ((prev_entry->object.vm_object == NULL) || 769 vm_object_coalesce(prev_entry->object.vm_object, 770 OFF_TO_IDX(prev_entry->offset), 771 (vm_size_t)(prev_entry->end - prev_entry->start), 772 (vm_size_t)(end - prev_entry->end)))) { 773 /* 774 * We were able to extend the object. Determine if we 775 * can extend the previous map entry to include the 776 * new range as well. 777 */ 778 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 779 (prev_entry->protection == prot) && 780 (prev_entry->max_protection == max)) { 781 map->size += (end - prev_entry->end); 782 prev_entry->end = end; 783 vm_map_simplify_entry(map, prev_entry); 784 return (KERN_SUCCESS); 785 } 786 787 /* 788 * If we can extend the object but cannot extend the 789 * map entry, we have to create a new map entry. We 790 * must bump the ref count on the extended object to 791 * account for it. object may be NULL. 792 */ 793 object = prev_entry->object.vm_object; 794 offset = prev_entry->offset + 795 (prev_entry->end - prev_entry->start); 796 vm_object_reference(object); 797 } 798 799 /* 800 * NOTE: if conditionals fail, object can be NULL here. This occurs 801 * in things like the buffer map where we manage kva but do not manage 802 * backing objects. 803 */ 804 805 /* 806 * Create a new entry 807 */ 808 new_entry = vm_map_entry_create(map); 809 new_entry->start = start; 810 new_entry->end = end; 811 812 new_entry->eflags = protoeflags; 813 new_entry->object.vm_object = object; 814 new_entry->offset = offset; 815 new_entry->avail_ssize = 0; 816 817 new_entry->inheritance = VM_INHERIT_DEFAULT; 818 new_entry->protection = prot; 819 new_entry->max_protection = max; 820 new_entry->wired_count = 0; 821 822 /* 823 * Insert the new entry into the list 824 */ 825 vm_map_entry_link(map, prev_entry, new_entry); 826 map->size += new_entry->end - new_entry->start; 827 828 /* 829 * Update the free space hint 830 */ 831 if ((map->first_free == prev_entry) && 832 (prev_entry->end >= new_entry->start)) { 833 map->first_free = new_entry; 834 } 835 836 #if 0 837 /* 838 * Temporarily removed to avoid MAP_STACK panic, due to 839 * MAP_STACK being a huge hack. Will be added back in 840 * when MAP_STACK (and the user stack mapping) is fixed. 841 */ 842 /* 843 * It may be possible to simplify the entry 844 */ 845 vm_map_simplify_entry(map, new_entry); 846 #endif 847 848 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 849 GIANT_REQUIRED; 850 pmap_object_init_pt(map->pmap, start, 851 object, OFF_TO_IDX(offset), end - start, 852 cow & MAP_PREFAULT_PARTIAL); 853 } 854 855 return (KERN_SUCCESS); 856 } 857 858 /* 859 * Find sufficient space for `length' bytes in the given map, starting at 860 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 861 */ 862 int 863 vm_map_findspace( 864 vm_map_t map, 865 vm_offset_t start, 866 vm_size_t length, 867 vm_offset_t *addr) 868 { 869 vm_map_entry_t entry, next; 870 vm_offset_t end; 871 872 GIANT_REQUIRED; 873 if (start < map->min_offset) 874 start = map->min_offset; 875 if (start > map->max_offset) 876 return (1); 877 878 /* 879 * Look for the first possible address; if there's already something 880 * at this address, we have to start after it. 881 */ 882 if (start == map->min_offset) { 883 if ((entry = map->first_free) != &map->header) 884 start = entry->end; 885 } else { 886 vm_map_entry_t tmp; 887 888 if (vm_map_lookup_entry(map, start, &tmp)) 889 start = tmp->end; 890 entry = tmp; 891 } 892 893 /* 894 * Look through the rest of the map, trying to fit a new region in the 895 * gap between existing regions, or after the very last region. 896 */ 897 for (;; start = (entry = next)->end) { 898 /* 899 * Find the end of the proposed new region. Be sure we didn't 900 * go beyond the end of the map, or wrap around the address; 901 * if so, we lose. Otherwise, if this is the last entry, or 902 * if the proposed new region fits before the next entry, we 903 * win. 904 */ 905 end = start + length; 906 if (end > map->max_offset || end < start) 907 return (1); 908 next = entry->next; 909 if (next == &map->header || next->start >= end) 910 break; 911 } 912 *addr = start; 913 if (map == kernel_map) { 914 vm_offset_t ksize; 915 if ((ksize = round_page(start + length)) > kernel_vm_end) { 916 pmap_growkernel(ksize); 917 } 918 } 919 return (0); 920 } 921 922 /* 923 * vm_map_find finds an unallocated region in the target address 924 * map with the given length. The search is defined to be 925 * first-fit from the specified address; the region found is 926 * returned in the same parameter. 927 * 928 * If object is non-NULL, ref count must be bumped by caller 929 * prior to making call to account for the new entry. 930 */ 931 int 932 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 933 vm_offset_t *addr, /* IN/OUT */ 934 vm_size_t length, boolean_t find_space, vm_prot_t prot, 935 vm_prot_t max, int cow) 936 { 937 vm_offset_t start; 938 int result, s = 0; 939 940 GIANT_REQUIRED; 941 942 start = *addr; 943 944 if (map == kmem_map) 945 s = splvm(); 946 947 vm_map_lock(map); 948 if (find_space) { 949 if (vm_map_findspace(map, start, length, addr)) { 950 vm_map_unlock(map); 951 if (map == kmem_map) 952 splx(s); 953 return (KERN_NO_SPACE); 954 } 955 start = *addr; 956 } 957 result = vm_map_insert(map, object, offset, 958 start, start + length, prot, max, cow); 959 vm_map_unlock(map); 960 961 if (map == kmem_map) 962 splx(s); 963 964 return (result); 965 } 966 967 /* 968 * vm_map_simplify_entry: 969 * 970 * Simplify the given map entry by merging with either neighbor. This 971 * routine also has the ability to merge with both neighbors. 972 * 973 * The map must be locked. 974 * 975 * This routine guarentees that the passed entry remains valid (though 976 * possibly extended). When merging, this routine may delete one or 977 * both neighbors. 978 */ 979 void 980 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 981 { 982 vm_map_entry_t next, prev; 983 vm_size_t prevsize, esize; 984 985 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 986 return; 987 988 prev = entry->prev; 989 if (prev != &map->header) { 990 prevsize = prev->end - prev->start; 991 if ( (prev->end == entry->start) && 992 (prev->object.vm_object == entry->object.vm_object) && 993 (!prev->object.vm_object || 994 (prev->offset + prevsize == entry->offset)) && 995 (prev->eflags == entry->eflags) && 996 (prev->protection == entry->protection) && 997 (prev->max_protection == entry->max_protection) && 998 (prev->inheritance == entry->inheritance) && 999 (prev->wired_count == entry->wired_count)) { 1000 if (map->first_free == prev) 1001 map->first_free = entry; 1002 vm_map_entry_unlink(map, prev); 1003 entry->start = prev->start; 1004 entry->offset = prev->offset; 1005 if (prev->object.vm_object) 1006 vm_object_deallocate(prev->object.vm_object); 1007 vm_map_entry_dispose(map, prev); 1008 } 1009 } 1010 1011 next = entry->next; 1012 if (next != &map->header) { 1013 esize = entry->end - entry->start; 1014 if ((entry->end == next->start) && 1015 (next->object.vm_object == entry->object.vm_object) && 1016 (!entry->object.vm_object || 1017 (entry->offset + esize == next->offset)) && 1018 (next->eflags == entry->eflags) && 1019 (next->protection == entry->protection) && 1020 (next->max_protection == entry->max_protection) && 1021 (next->inheritance == entry->inheritance) && 1022 (next->wired_count == entry->wired_count)) { 1023 if (map->first_free == next) 1024 map->first_free = entry; 1025 vm_map_entry_unlink(map, next); 1026 entry->end = next->end; 1027 if (next->object.vm_object) 1028 vm_object_deallocate(next->object.vm_object); 1029 vm_map_entry_dispose(map, next); 1030 } 1031 } 1032 } 1033 /* 1034 * vm_map_clip_start: [ internal use only ] 1035 * 1036 * Asserts that the given entry begins at or after 1037 * the specified address; if necessary, 1038 * it splits the entry into two. 1039 */ 1040 #define vm_map_clip_start(map, entry, startaddr) \ 1041 { \ 1042 if (startaddr > entry->start) \ 1043 _vm_map_clip_start(map, entry, startaddr); \ 1044 } 1045 1046 /* 1047 * This routine is called only when it is known that 1048 * the entry must be split. 1049 */ 1050 static void 1051 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1052 { 1053 vm_map_entry_t new_entry; 1054 1055 /* 1056 * Split off the front portion -- note that we must insert the new 1057 * entry BEFORE this one, so that this entry has the specified 1058 * starting address. 1059 */ 1060 vm_map_simplify_entry(map, entry); 1061 1062 /* 1063 * If there is no object backing this entry, we might as well create 1064 * one now. If we defer it, an object can get created after the map 1065 * is clipped, and individual objects will be created for the split-up 1066 * map. This is a bit of a hack, but is also about the best place to 1067 * put this improvement. 1068 */ 1069 if (entry->object.vm_object == NULL && !map->system_map) { 1070 vm_object_t object; 1071 object = vm_object_allocate(OBJT_DEFAULT, 1072 atop(entry->end - entry->start)); 1073 entry->object.vm_object = object; 1074 entry->offset = 0; 1075 } 1076 1077 new_entry = vm_map_entry_create(map); 1078 *new_entry = *entry; 1079 1080 new_entry->end = start; 1081 entry->offset += (start - entry->start); 1082 entry->start = start; 1083 1084 vm_map_entry_link(map, entry->prev, new_entry); 1085 1086 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1087 vm_object_reference(new_entry->object.vm_object); 1088 } 1089 } 1090 1091 /* 1092 * vm_map_clip_end: [ internal use only ] 1093 * 1094 * Asserts that the given entry ends at or before 1095 * the specified address; if necessary, 1096 * it splits the entry into two. 1097 */ 1098 #define vm_map_clip_end(map, entry, endaddr) \ 1099 { \ 1100 if (endaddr < entry->end) \ 1101 _vm_map_clip_end(map, entry, endaddr); \ 1102 } 1103 1104 /* 1105 * This routine is called only when it is known that 1106 * the entry must be split. 1107 */ 1108 static void 1109 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1110 { 1111 vm_map_entry_t new_entry; 1112 1113 /* 1114 * If there is no object backing this entry, we might as well create 1115 * one now. If we defer it, an object can get created after the map 1116 * is clipped, and individual objects will be created for the split-up 1117 * map. This is a bit of a hack, but is also about the best place to 1118 * put this improvement. 1119 */ 1120 if (entry->object.vm_object == NULL && !map->system_map) { 1121 vm_object_t object; 1122 object = vm_object_allocate(OBJT_DEFAULT, 1123 atop(entry->end - entry->start)); 1124 entry->object.vm_object = object; 1125 entry->offset = 0; 1126 } 1127 1128 /* 1129 * Create a new entry and insert it AFTER the specified entry 1130 */ 1131 new_entry = vm_map_entry_create(map); 1132 *new_entry = *entry; 1133 1134 new_entry->start = entry->end = end; 1135 new_entry->offset += (end - entry->start); 1136 1137 vm_map_entry_link(map, entry, new_entry); 1138 1139 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1140 vm_object_reference(new_entry->object.vm_object); 1141 } 1142 } 1143 1144 /* 1145 * VM_MAP_RANGE_CHECK: [ internal use only ] 1146 * 1147 * Asserts that the starting and ending region 1148 * addresses fall within the valid range of the map. 1149 */ 1150 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1151 { \ 1152 if (start < vm_map_min(map)) \ 1153 start = vm_map_min(map); \ 1154 if (end > vm_map_max(map)) \ 1155 end = vm_map_max(map); \ 1156 if (start > end) \ 1157 start = end; \ 1158 } 1159 1160 /* 1161 * vm_map_submap: [ kernel use only ] 1162 * 1163 * Mark the given range as handled by a subordinate map. 1164 * 1165 * This range must have been created with vm_map_find, 1166 * and no other operations may have been performed on this 1167 * range prior to calling vm_map_submap. 1168 * 1169 * Only a limited number of operations can be performed 1170 * within this rage after calling vm_map_submap: 1171 * vm_fault 1172 * [Don't try vm_map_copy!] 1173 * 1174 * To remove a submapping, one must first remove the 1175 * range from the superior map, and then destroy the 1176 * submap (if desired). [Better yet, don't try it.] 1177 */ 1178 int 1179 vm_map_submap( 1180 vm_map_t map, 1181 vm_offset_t start, 1182 vm_offset_t end, 1183 vm_map_t submap) 1184 { 1185 vm_map_entry_t entry; 1186 int result = KERN_INVALID_ARGUMENT; 1187 1188 vm_map_lock(map); 1189 1190 VM_MAP_RANGE_CHECK(map, start, end); 1191 1192 if (vm_map_lookup_entry(map, start, &entry)) { 1193 vm_map_clip_start(map, entry, start); 1194 } else 1195 entry = entry->next; 1196 1197 vm_map_clip_end(map, entry, end); 1198 1199 if ((entry->start == start) && (entry->end == end) && 1200 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1201 (entry->object.vm_object == NULL)) { 1202 entry->object.sub_map = submap; 1203 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1204 result = KERN_SUCCESS; 1205 } 1206 vm_map_unlock(map); 1207 1208 return (result); 1209 } 1210 1211 /* 1212 * vm_map_protect: 1213 * 1214 * Sets the protection of the specified address 1215 * region in the target map. If "set_max" is 1216 * specified, the maximum protection is to be set; 1217 * otherwise, only the current protection is affected. 1218 */ 1219 int 1220 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1221 vm_prot_t new_prot, boolean_t set_max) 1222 { 1223 vm_map_entry_t current; 1224 vm_map_entry_t entry; 1225 1226 vm_map_lock(map); 1227 1228 VM_MAP_RANGE_CHECK(map, start, end); 1229 1230 if (vm_map_lookup_entry(map, start, &entry)) { 1231 vm_map_clip_start(map, entry, start); 1232 } else { 1233 entry = entry->next; 1234 } 1235 1236 /* 1237 * Make a first pass to check for protection violations. 1238 */ 1239 current = entry; 1240 while ((current != &map->header) && (current->start < end)) { 1241 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1242 vm_map_unlock(map); 1243 return (KERN_INVALID_ARGUMENT); 1244 } 1245 if ((new_prot & current->max_protection) != new_prot) { 1246 vm_map_unlock(map); 1247 return (KERN_PROTECTION_FAILURE); 1248 } 1249 current = current->next; 1250 } 1251 1252 /* 1253 * Go back and fix up protections. [Note that clipping is not 1254 * necessary the second time.] 1255 */ 1256 current = entry; 1257 while ((current != &map->header) && (current->start < end)) { 1258 vm_prot_t old_prot; 1259 1260 vm_map_clip_end(map, current, end); 1261 1262 old_prot = current->protection; 1263 if (set_max) 1264 current->protection = 1265 (current->max_protection = new_prot) & 1266 old_prot; 1267 else 1268 current->protection = new_prot; 1269 1270 /* 1271 * Update physical map if necessary. Worry about copy-on-write 1272 * here -- CHECK THIS XXX 1273 */ 1274 if (current->protection != old_prot) { 1275 mtx_lock(&Giant); 1276 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1277 VM_PROT_ALL) 1278 pmap_protect(map->pmap, current->start, 1279 current->end, 1280 current->protection & MASK(current)); 1281 #undef MASK 1282 mtx_unlock(&Giant); 1283 } 1284 vm_map_simplify_entry(map, current); 1285 current = current->next; 1286 } 1287 vm_map_unlock(map); 1288 return (KERN_SUCCESS); 1289 } 1290 1291 /* 1292 * vm_map_madvise: 1293 * 1294 * This routine traverses a processes map handling the madvise 1295 * system call. Advisories are classified as either those effecting 1296 * the vm_map_entry structure, or those effecting the underlying 1297 * objects. 1298 */ 1299 int 1300 vm_map_madvise( 1301 vm_map_t map, 1302 vm_offset_t start, 1303 vm_offset_t end, 1304 int behav) 1305 { 1306 vm_map_entry_t current, entry; 1307 int modify_map = 0; 1308 1309 /* 1310 * Some madvise calls directly modify the vm_map_entry, in which case 1311 * we need to use an exclusive lock on the map and we need to perform 1312 * various clipping operations. Otherwise we only need a read-lock 1313 * on the map. 1314 */ 1315 switch(behav) { 1316 case MADV_NORMAL: 1317 case MADV_SEQUENTIAL: 1318 case MADV_RANDOM: 1319 case MADV_NOSYNC: 1320 case MADV_AUTOSYNC: 1321 case MADV_NOCORE: 1322 case MADV_CORE: 1323 modify_map = 1; 1324 vm_map_lock(map); 1325 break; 1326 case MADV_WILLNEED: 1327 case MADV_DONTNEED: 1328 case MADV_FREE: 1329 vm_map_lock_read(map); 1330 break; 1331 default: 1332 return (KERN_INVALID_ARGUMENT); 1333 } 1334 1335 /* 1336 * Locate starting entry and clip if necessary. 1337 */ 1338 VM_MAP_RANGE_CHECK(map, start, end); 1339 1340 if (vm_map_lookup_entry(map, start, &entry)) { 1341 if (modify_map) 1342 vm_map_clip_start(map, entry, start); 1343 } else { 1344 entry = entry->next; 1345 } 1346 1347 if (modify_map) { 1348 /* 1349 * madvise behaviors that are implemented in the vm_map_entry. 1350 * 1351 * We clip the vm_map_entry so that behavioral changes are 1352 * limited to the specified address range. 1353 */ 1354 for (current = entry; 1355 (current != &map->header) && (current->start < end); 1356 current = current->next 1357 ) { 1358 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1359 continue; 1360 1361 vm_map_clip_end(map, current, end); 1362 1363 switch (behav) { 1364 case MADV_NORMAL: 1365 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1366 break; 1367 case MADV_SEQUENTIAL: 1368 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1369 break; 1370 case MADV_RANDOM: 1371 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1372 break; 1373 case MADV_NOSYNC: 1374 current->eflags |= MAP_ENTRY_NOSYNC; 1375 break; 1376 case MADV_AUTOSYNC: 1377 current->eflags &= ~MAP_ENTRY_NOSYNC; 1378 break; 1379 case MADV_NOCORE: 1380 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1381 break; 1382 case MADV_CORE: 1383 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1384 break; 1385 default: 1386 break; 1387 } 1388 vm_map_simplify_entry(map, current); 1389 } 1390 vm_map_unlock(map); 1391 } else { 1392 vm_pindex_t pindex; 1393 int count; 1394 1395 /* 1396 * madvise behaviors that are implemented in the underlying 1397 * vm_object. 1398 * 1399 * Since we don't clip the vm_map_entry, we have to clip 1400 * the vm_object pindex and count. 1401 */ 1402 for (current = entry; 1403 (current != &map->header) && (current->start < end); 1404 current = current->next 1405 ) { 1406 vm_offset_t useStart; 1407 1408 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1409 continue; 1410 1411 pindex = OFF_TO_IDX(current->offset); 1412 count = atop(current->end - current->start); 1413 useStart = current->start; 1414 1415 if (current->start < start) { 1416 pindex += atop(start - current->start); 1417 count -= atop(start - current->start); 1418 useStart = start; 1419 } 1420 if (current->end > end) 1421 count -= atop(current->end - end); 1422 1423 if (count <= 0) 1424 continue; 1425 1426 vm_object_madvise(current->object.vm_object, 1427 pindex, count, behav); 1428 if (behav == MADV_WILLNEED) { 1429 mtx_lock(&Giant); 1430 pmap_object_init_pt( 1431 map->pmap, 1432 useStart, 1433 current->object.vm_object, 1434 pindex, 1435 (count << PAGE_SHIFT), 1436 MAP_PREFAULT_MADVISE 1437 ); 1438 mtx_unlock(&Giant); 1439 } 1440 } 1441 vm_map_unlock_read(map); 1442 } 1443 return (0); 1444 } 1445 1446 1447 /* 1448 * vm_map_inherit: 1449 * 1450 * Sets the inheritance of the specified address 1451 * range in the target map. Inheritance 1452 * affects how the map will be shared with 1453 * child maps at the time of vm_map_fork. 1454 */ 1455 int 1456 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1457 vm_inherit_t new_inheritance) 1458 { 1459 vm_map_entry_t entry; 1460 vm_map_entry_t temp_entry; 1461 1462 switch (new_inheritance) { 1463 case VM_INHERIT_NONE: 1464 case VM_INHERIT_COPY: 1465 case VM_INHERIT_SHARE: 1466 break; 1467 default: 1468 return (KERN_INVALID_ARGUMENT); 1469 } 1470 vm_map_lock(map); 1471 VM_MAP_RANGE_CHECK(map, start, end); 1472 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1473 entry = temp_entry; 1474 vm_map_clip_start(map, entry, start); 1475 } else 1476 entry = temp_entry->next; 1477 while ((entry != &map->header) && (entry->start < end)) { 1478 vm_map_clip_end(map, entry, end); 1479 entry->inheritance = new_inheritance; 1480 vm_map_simplify_entry(map, entry); 1481 entry = entry->next; 1482 } 1483 vm_map_unlock(map); 1484 return (KERN_SUCCESS); 1485 } 1486 1487 /* 1488 * vm_map_unwire: 1489 * 1490 * Implements both kernel and user unwiring. 1491 */ 1492 int 1493 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1494 boolean_t user_unwire) 1495 { 1496 vm_map_entry_t entry, first_entry, tmp_entry; 1497 vm_offset_t saved_start; 1498 unsigned int last_timestamp; 1499 int rv; 1500 boolean_t need_wakeup, result; 1501 1502 vm_map_lock(map); 1503 VM_MAP_RANGE_CHECK(map, start, end); 1504 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1505 vm_map_unlock(map); 1506 return (KERN_INVALID_ADDRESS); 1507 } 1508 last_timestamp = map->timestamp; 1509 entry = first_entry; 1510 while (entry != &map->header && entry->start < end) { 1511 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1512 /* 1513 * We have not yet clipped the entry. 1514 */ 1515 saved_start = (start >= entry->start) ? start : 1516 entry->start; 1517 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1518 if (vm_map_unlock_and_wait(map, user_unwire)) { 1519 /* 1520 * Allow interruption of user unwiring? 1521 */ 1522 } 1523 vm_map_lock(map); 1524 if (last_timestamp+1 != map->timestamp) { 1525 /* 1526 * Look again for the entry because the map was 1527 * modified while it was unlocked. 1528 * Specifically, the entry may have been 1529 * clipped, merged, or deleted. 1530 */ 1531 if (!vm_map_lookup_entry(map, saved_start, 1532 &tmp_entry)) { 1533 if (saved_start == start) { 1534 /* 1535 * First_entry has been deleted. 1536 */ 1537 vm_map_unlock(map); 1538 return (KERN_INVALID_ADDRESS); 1539 } 1540 end = saved_start; 1541 rv = KERN_INVALID_ADDRESS; 1542 goto done; 1543 } 1544 if (entry == first_entry) 1545 first_entry = tmp_entry; 1546 else 1547 first_entry = NULL; 1548 entry = tmp_entry; 1549 } 1550 last_timestamp = map->timestamp; 1551 continue; 1552 } 1553 vm_map_clip_start(map, entry, start); 1554 vm_map_clip_end(map, entry, end); 1555 /* 1556 * Mark the entry in case the map lock is released. (See 1557 * above.) 1558 */ 1559 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1560 /* 1561 * Check the map for holes in the specified region. 1562 */ 1563 if (entry->end < end && (entry->next == &map->header || 1564 entry->next->start > entry->end)) { 1565 end = entry->end; 1566 rv = KERN_INVALID_ADDRESS; 1567 goto done; 1568 } 1569 /* 1570 * Require that the entry is wired. 1571 */ 1572 if (entry->wired_count == 0 || (user_unwire && 1573 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1574 end = entry->end; 1575 rv = KERN_INVALID_ARGUMENT; 1576 goto done; 1577 } 1578 entry = entry->next; 1579 } 1580 rv = KERN_SUCCESS; 1581 done: 1582 need_wakeup = FALSE; 1583 if (first_entry == NULL) { 1584 result = vm_map_lookup_entry(map, start, &first_entry); 1585 KASSERT(result, ("vm_map_unwire: lookup failed")); 1586 } 1587 entry = first_entry; 1588 while (entry != &map->header && entry->start < end) { 1589 if (rv == KERN_SUCCESS) { 1590 if (user_unwire) 1591 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1592 entry->wired_count--; 1593 if (entry->wired_count == 0) { 1594 /* 1595 * Retain the map lock. 1596 */ 1597 vm_fault_unwire(map, entry->start, entry->end); 1598 } 1599 } 1600 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1601 ("vm_map_unwire: in-transition flag missing")); 1602 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1603 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1604 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1605 need_wakeup = TRUE; 1606 } 1607 vm_map_simplify_entry(map, entry); 1608 entry = entry->next; 1609 } 1610 vm_map_unlock(map); 1611 if (need_wakeup) 1612 vm_map_wakeup(map); 1613 return (rv); 1614 } 1615 1616 /* 1617 * vm_map_wire: 1618 * 1619 * Implements both kernel and user wiring. 1620 */ 1621 int 1622 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1623 boolean_t user_wire) 1624 { 1625 vm_map_entry_t entry, first_entry, tmp_entry; 1626 vm_offset_t saved_end, saved_start; 1627 unsigned int last_timestamp; 1628 int rv; 1629 boolean_t need_wakeup, result; 1630 1631 vm_map_lock(map); 1632 VM_MAP_RANGE_CHECK(map, start, end); 1633 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1634 vm_map_unlock(map); 1635 return (KERN_INVALID_ADDRESS); 1636 } 1637 last_timestamp = map->timestamp; 1638 entry = first_entry; 1639 while (entry != &map->header && entry->start < end) { 1640 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1641 /* 1642 * We have not yet clipped the entry. 1643 */ 1644 saved_start = (start >= entry->start) ? start : 1645 entry->start; 1646 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1647 if (vm_map_unlock_and_wait(map, user_wire)) { 1648 /* 1649 * Allow interruption of user wiring? 1650 */ 1651 } 1652 vm_map_lock(map); 1653 if (last_timestamp + 1 != map->timestamp) { 1654 /* 1655 * Look again for the entry because the map was 1656 * modified while it was unlocked. 1657 * Specifically, the entry may have been 1658 * clipped, merged, or deleted. 1659 */ 1660 if (!vm_map_lookup_entry(map, saved_start, 1661 &tmp_entry)) { 1662 if (saved_start == start) { 1663 /* 1664 * first_entry has been deleted. 1665 */ 1666 vm_map_unlock(map); 1667 return (KERN_INVALID_ADDRESS); 1668 } 1669 end = saved_start; 1670 rv = KERN_INVALID_ADDRESS; 1671 goto done; 1672 } 1673 if (entry == first_entry) 1674 first_entry = tmp_entry; 1675 else 1676 first_entry = NULL; 1677 entry = tmp_entry; 1678 } 1679 last_timestamp = map->timestamp; 1680 continue; 1681 } 1682 vm_map_clip_start(map, entry, start); 1683 vm_map_clip_end(map, entry, end); 1684 /* 1685 * Mark the entry in case the map lock is released. (See 1686 * above.) 1687 */ 1688 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1689 /* 1690 * 1691 */ 1692 if (entry->wired_count == 0) { 1693 entry->wired_count++; 1694 saved_start = entry->start; 1695 saved_end = entry->end; 1696 /* 1697 * Release the map lock, relying on the in-transition 1698 * mark. 1699 */ 1700 vm_map_unlock(map); 1701 if (user_wire) 1702 rv = vm_fault_user_wire(map, saved_start, 1703 saved_end); 1704 else 1705 rv = vm_fault_wire(map, saved_start, saved_end); 1706 vm_map_lock(map); 1707 if (last_timestamp + 1 != map->timestamp) { 1708 /* 1709 * Look again for the entry because the map was 1710 * modified while it was unlocked. The entry 1711 * may have been clipped, but NOT merged or 1712 * deleted. 1713 */ 1714 result = vm_map_lookup_entry(map, saved_start, 1715 &tmp_entry); 1716 KASSERT(result, ("vm_map_wire: lookup failed")); 1717 if (entry == first_entry) 1718 first_entry = tmp_entry; 1719 else 1720 first_entry = NULL; 1721 entry = tmp_entry; 1722 while (entry->end < saved_end) { 1723 if (rv != KERN_SUCCESS) { 1724 KASSERT(entry->wired_count == 1, 1725 ("vm_map_wire: bad count")); 1726 entry->wired_count = -1; 1727 } 1728 entry = entry->next; 1729 } 1730 } 1731 last_timestamp = map->timestamp; 1732 if (rv != KERN_SUCCESS) { 1733 KASSERT(entry->wired_count == 1, 1734 ("vm_map_wire: bad count")); 1735 /* 1736 * Assign an out-of-range value to represent 1737 * the failure to wire this entry. 1738 */ 1739 entry->wired_count = -1; 1740 end = entry->end; 1741 goto done; 1742 } 1743 } else if (!user_wire || 1744 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1745 entry->wired_count++; 1746 } 1747 /* 1748 * Check the map for holes in the specified region. 1749 */ 1750 if (entry->end < end && (entry->next == &map->header || 1751 entry->next->start > entry->end)) { 1752 end = entry->end; 1753 rv = KERN_INVALID_ADDRESS; 1754 goto done; 1755 } 1756 entry = entry->next; 1757 } 1758 rv = KERN_SUCCESS; 1759 done: 1760 need_wakeup = FALSE; 1761 if (first_entry == NULL) { 1762 result = vm_map_lookup_entry(map, start, &first_entry); 1763 KASSERT(result, ("vm_map_wire: lookup failed")); 1764 } 1765 entry = first_entry; 1766 while (entry != &map->header && entry->start < end) { 1767 if (rv == KERN_SUCCESS) { 1768 if (user_wire) 1769 entry->eflags |= MAP_ENTRY_USER_WIRED; 1770 } else if (entry->wired_count == -1) { 1771 /* 1772 * Wiring failed on this entry. Thus, unwiring is 1773 * unnecessary. 1774 */ 1775 entry->wired_count = 0; 1776 } else { 1777 if (!user_wire || (entry->wired_count == 1 && 1778 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) 1779 entry->wired_count--; 1780 if (entry->wired_count == 0) { 1781 /* 1782 * Retain the map lock. 1783 */ 1784 vm_fault_unwire(map, entry->start, entry->end); 1785 } 1786 } 1787 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1788 ("vm_map_wire: in-transition flag missing")); 1789 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1790 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1791 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1792 need_wakeup = TRUE; 1793 } 1794 vm_map_simplify_entry(map, entry); 1795 entry = entry->next; 1796 } 1797 vm_map_unlock(map); 1798 if (need_wakeup) 1799 vm_map_wakeup(map); 1800 return (rv); 1801 } 1802 1803 /* 1804 * vm_map_clean 1805 * 1806 * Push any dirty cached pages in the address range to their pager. 1807 * If syncio is TRUE, dirty pages are written synchronously. 1808 * If invalidate is TRUE, any cached pages are freed as well. 1809 * 1810 * Returns an error if any part of the specified range is not mapped. 1811 */ 1812 int 1813 vm_map_clean( 1814 vm_map_t map, 1815 vm_offset_t start, 1816 vm_offset_t end, 1817 boolean_t syncio, 1818 boolean_t invalidate) 1819 { 1820 vm_map_entry_t current; 1821 vm_map_entry_t entry; 1822 vm_size_t size; 1823 vm_object_t object; 1824 vm_ooffset_t offset; 1825 1826 GIANT_REQUIRED; 1827 1828 vm_map_lock_read(map); 1829 VM_MAP_RANGE_CHECK(map, start, end); 1830 if (!vm_map_lookup_entry(map, start, &entry)) { 1831 vm_map_unlock_read(map); 1832 return (KERN_INVALID_ADDRESS); 1833 } 1834 /* 1835 * Make a first pass to check for holes. 1836 */ 1837 for (current = entry; current->start < end; current = current->next) { 1838 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1839 vm_map_unlock_read(map); 1840 return (KERN_INVALID_ARGUMENT); 1841 } 1842 if (end > current->end && 1843 (current->next == &map->header || 1844 current->end != current->next->start)) { 1845 vm_map_unlock_read(map); 1846 return (KERN_INVALID_ADDRESS); 1847 } 1848 } 1849 1850 if (invalidate) 1851 pmap_remove(vm_map_pmap(map), start, end); 1852 /* 1853 * Make a second pass, cleaning/uncaching pages from the indicated 1854 * objects as we go. 1855 */ 1856 for (current = entry; current->start < end; current = current->next) { 1857 offset = current->offset + (start - current->start); 1858 size = (end <= current->end ? end : current->end) - start; 1859 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1860 vm_map_t smap; 1861 vm_map_entry_t tentry; 1862 vm_size_t tsize; 1863 1864 smap = current->object.sub_map; 1865 vm_map_lock_read(smap); 1866 (void) vm_map_lookup_entry(smap, offset, &tentry); 1867 tsize = tentry->end - offset; 1868 if (tsize < size) 1869 size = tsize; 1870 object = tentry->object.vm_object; 1871 offset = tentry->offset + (offset - tentry->start); 1872 vm_map_unlock_read(smap); 1873 } else { 1874 object = current->object.vm_object; 1875 } 1876 /* 1877 * Note that there is absolutely no sense in writing out 1878 * anonymous objects, so we track down the vnode object 1879 * to write out. 1880 * We invalidate (remove) all pages from the address space 1881 * anyway, for semantic correctness. 1882 * 1883 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1884 * may start out with a NULL object. 1885 */ 1886 while (object && object->backing_object) { 1887 object = object->backing_object; 1888 offset += object->backing_object_offset; 1889 if (object->size < OFF_TO_IDX(offset + size)) 1890 size = IDX_TO_OFF(object->size) - offset; 1891 } 1892 if (object && (object->type == OBJT_VNODE) && 1893 (current->protection & VM_PROT_WRITE)) { 1894 /* 1895 * Flush pages if writing is allowed, invalidate them 1896 * if invalidation requested. Pages undergoing I/O 1897 * will be ignored by vm_object_page_remove(). 1898 * 1899 * We cannot lock the vnode and then wait for paging 1900 * to complete without deadlocking against vm_fault. 1901 * Instead we simply call vm_object_page_remove() and 1902 * allow it to block internally on a page-by-page 1903 * basis when it encounters pages undergoing async 1904 * I/O. 1905 */ 1906 int flags; 1907 1908 vm_object_reference(object); 1909 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1910 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1911 flags |= invalidate ? OBJPC_INVAL : 0; 1912 vm_object_page_clean(object, 1913 OFF_TO_IDX(offset), 1914 OFF_TO_IDX(offset + size + PAGE_MASK), 1915 flags); 1916 if (invalidate) { 1917 /*vm_object_pip_wait(object, "objmcl");*/ 1918 vm_object_page_remove(object, 1919 OFF_TO_IDX(offset), 1920 OFF_TO_IDX(offset + size + PAGE_MASK), 1921 FALSE); 1922 } 1923 VOP_UNLOCK(object->handle, 0, curthread); 1924 vm_object_deallocate(object); 1925 } 1926 start += size; 1927 } 1928 1929 vm_map_unlock_read(map); 1930 return (KERN_SUCCESS); 1931 } 1932 1933 /* 1934 * vm_map_entry_unwire: [ internal use only ] 1935 * 1936 * Make the region specified by this entry pageable. 1937 * 1938 * The map in question should be locked. 1939 * [This is the reason for this routine's existence.] 1940 */ 1941 static void 1942 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 1943 { 1944 vm_fault_unwire(map, entry->start, entry->end); 1945 entry->wired_count = 0; 1946 } 1947 1948 /* 1949 * vm_map_entry_delete: [ internal use only ] 1950 * 1951 * Deallocate the given entry from the target map. 1952 */ 1953 static void 1954 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 1955 { 1956 vm_map_entry_unlink(map, entry); 1957 map->size -= entry->end - entry->start; 1958 1959 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1960 vm_object_deallocate(entry->object.vm_object); 1961 } 1962 1963 vm_map_entry_dispose(map, entry); 1964 } 1965 1966 /* 1967 * vm_map_delete: [ internal use only ] 1968 * 1969 * Deallocates the given address range from the target 1970 * map. 1971 */ 1972 int 1973 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 1974 { 1975 vm_object_t object; 1976 vm_map_entry_t entry; 1977 vm_map_entry_t first_entry; 1978 1979 /* 1980 * Find the start of the region, and clip it 1981 */ 1982 if (!vm_map_lookup_entry(map, start, &first_entry)) 1983 entry = first_entry->next; 1984 else { 1985 entry = first_entry; 1986 vm_map_clip_start(map, entry, start); 1987 } 1988 1989 /* 1990 * Save the free space hint 1991 */ 1992 if (entry == &map->header) { 1993 map->first_free = &map->header; 1994 } else if (map->first_free->start >= start) { 1995 map->first_free = entry->prev; 1996 } 1997 1998 /* 1999 * Step through all entries in this region 2000 */ 2001 while ((entry != &map->header) && (entry->start < end)) { 2002 vm_map_entry_t next; 2003 vm_offset_t s, e; 2004 vm_pindex_t offidxstart, offidxend, count; 2005 2006 /* 2007 * Wait for wiring or unwiring of an entry to complete. 2008 */ 2009 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2010 unsigned int last_timestamp; 2011 vm_offset_t saved_start; 2012 vm_map_entry_t tmp_entry; 2013 2014 saved_start = entry->start; 2015 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2016 last_timestamp = map->timestamp; 2017 (void) vm_map_unlock_and_wait(map, FALSE); 2018 vm_map_lock(map); 2019 if (last_timestamp + 1 != map->timestamp) { 2020 /* 2021 * Look again for the entry because the map was 2022 * modified while it was unlocked. 2023 * Specifically, the entry may have been 2024 * clipped, merged, or deleted. 2025 */ 2026 if (!vm_map_lookup_entry(map, saved_start, 2027 &tmp_entry)) 2028 entry = tmp_entry->next; 2029 else { 2030 entry = tmp_entry; 2031 vm_map_clip_start(map, entry, 2032 saved_start); 2033 } 2034 } 2035 continue; 2036 } 2037 vm_map_clip_end(map, entry, end); 2038 2039 s = entry->start; 2040 e = entry->end; 2041 next = entry->next; 2042 2043 offidxstart = OFF_TO_IDX(entry->offset); 2044 count = OFF_TO_IDX(e - s); 2045 object = entry->object.vm_object; 2046 2047 /* 2048 * Unwire before removing addresses from the pmap; otherwise, 2049 * unwiring will put the entries back in the pmap. 2050 */ 2051 if (entry->wired_count != 0) { 2052 vm_map_entry_unwire(map, entry); 2053 } 2054 2055 offidxend = offidxstart + count; 2056 2057 if ((object == kernel_object) || (object == kmem_object)) { 2058 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2059 } else { 2060 mtx_lock(&Giant); 2061 pmap_remove(map->pmap, s, e); 2062 if (object != NULL && 2063 object->ref_count != 1 && 2064 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2065 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2066 vm_object_collapse(object); 2067 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2068 if (object->type == OBJT_SWAP) { 2069 swap_pager_freespace(object, offidxstart, count); 2070 } 2071 if (offidxend >= object->size && 2072 offidxstart < object->size) { 2073 object->size = offidxstart; 2074 } 2075 } 2076 mtx_unlock(&Giant); 2077 } 2078 2079 /* 2080 * Delete the entry (which may delete the object) only after 2081 * removing all pmap entries pointing to its pages. 2082 * (Otherwise, its page frames may be reallocated, and any 2083 * modify bits will be set in the wrong object!) 2084 */ 2085 vm_map_entry_delete(map, entry); 2086 entry = next; 2087 } 2088 return (KERN_SUCCESS); 2089 } 2090 2091 /* 2092 * vm_map_remove: 2093 * 2094 * Remove the given address range from the target map. 2095 * This is the exported form of vm_map_delete. 2096 */ 2097 int 2098 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2099 { 2100 int result, s = 0; 2101 2102 if (map == kmem_map) 2103 s = splvm(); 2104 2105 vm_map_lock(map); 2106 VM_MAP_RANGE_CHECK(map, start, end); 2107 result = vm_map_delete(map, start, end); 2108 vm_map_unlock(map); 2109 2110 if (map == kmem_map) 2111 splx(s); 2112 2113 return (result); 2114 } 2115 2116 /* 2117 * vm_map_check_protection: 2118 * 2119 * Assert that the target map allows the specified 2120 * privilege on the entire address region given. 2121 * The entire region must be allocated. 2122 */ 2123 boolean_t 2124 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2125 vm_prot_t protection) 2126 { 2127 vm_map_entry_t entry; 2128 vm_map_entry_t tmp_entry; 2129 2130 vm_map_lock_read(map); 2131 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2132 vm_map_unlock_read(map); 2133 return (FALSE); 2134 } 2135 entry = tmp_entry; 2136 2137 while (start < end) { 2138 if (entry == &map->header) { 2139 vm_map_unlock_read(map); 2140 return (FALSE); 2141 } 2142 /* 2143 * No holes allowed! 2144 */ 2145 if (start < entry->start) { 2146 vm_map_unlock_read(map); 2147 return (FALSE); 2148 } 2149 /* 2150 * Check protection associated with entry. 2151 */ 2152 if ((entry->protection & protection) != protection) { 2153 vm_map_unlock_read(map); 2154 return (FALSE); 2155 } 2156 /* go to next entry */ 2157 start = entry->end; 2158 entry = entry->next; 2159 } 2160 vm_map_unlock_read(map); 2161 return (TRUE); 2162 } 2163 2164 /* 2165 * vm_map_copy_entry: 2166 * 2167 * Copies the contents of the source entry to the destination 2168 * entry. The entries *must* be aligned properly. 2169 */ 2170 static void 2171 vm_map_copy_entry( 2172 vm_map_t src_map, 2173 vm_map_t dst_map, 2174 vm_map_entry_t src_entry, 2175 vm_map_entry_t dst_entry) 2176 { 2177 vm_object_t src_object; 2178 2179 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2180 return; 2181 2182 if (src_entry->wired_count == 0) { 2183 2184 /* 2185 * If the source entry is marked needs_copy, it is already 2186 * write-protected. 2187 */ 2188 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2189 pmap_protect(src_map->pmap, 2190 src_entry->start, 2191 src_entry->end, 2192 src_entry->protection & ~VM_PROT_WRITE); 2193 } 2194 2195 /* 2196 * Make a copy of the object. 2197 */ 2198 if ((src_object = src_entry->object.vm_object) != NULL) { 2199 2200 if ((src_object->handle == NULL) && 2201 (src_object->type == OBJT_DEFAULT || 2202 src_object->type == OBJT_SWAP)) { 2203 vm_object_collapse(src_object); 2204 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2205 vm_object_split(src_entry); 2206 src_object = src_entry->object.vm_object; 2207 } 2208 } 2209 2210 vm_object_reference(src_object); 2211 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2212 dst_entry->object.vm_object = src_object; 2213 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2214 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2215 dst_entry->offset = src_entry->offset; 2216 } else { 2217 dst_entry->object.vm_object = NULL; 2218 dst_entry->offset = 0; 2219 } 2220 2221 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2222 dst_entry->end - dst_entry->start, src_entry->start); 2223 } else { 2224 /* 2225 * Of course, wired down pages can't be set copy-on-write. 2226 * Cause wired pages to be copied into the new map by 2227 * simulating faults (the new pages are pageable) 2228 */ 2229 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2230 } 2231 } 2232 2233 /* 2234 * vmspace_fork: 2235 * Create a new process vmspace structure and vm_map 2236 * based on those of an existing process. The new map 2237 * is based on the old map, according to the inheritance 2238 * values on the regions in that map. 2239 * 2240 * The source map must not be locked. 2241 */ 2242 struct vmspace * 2243 vmspace_fork(struct vmspace *vm1) 2244 { 2245 struct vmspace *vm2; 2246 vm_map_t old_map = &vm1->vm_map; 2247 vm_map_t new_map; 2248 vm_map_entry_t old_entry; 2249 vm_map_entry_t new_entry; 2250 vm_object_t object; 2251 2252 GIANT_REQUIRED; 2253 2254 vm_map_lock(old_map); 2255 old_map->infork = 1; 2256 2257 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2258 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2259 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2260 new_map = &vm2->vm_map; /* XXX */ 2261 new_map->timestamp = 1; 2262 2263 old_entry = old_map->header.next; 2264 2265 while (old_entry != &old_map->header) { 2266 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2267 panic("vm_map_fork: encountered a submap"); 2268 2269 switch (old_entry->inheritance) { 2270 case VM_INHERIT_NONE: 2271 break; 2272 2273 case VM_INHERIT_SHARE: 2274 /* 2275 * Clone the entry, creating the shared object if necessary. 2276 */ 2277 object = old_entry->object.vm_object; 2278 if (object == NULL) { 2279 object = vm_object_allocate(OBJT_DEFAULT, 2280 atop(old_entry->end - old_entry->start)); 2281 old_entry->object.vm_object = object; 2282 old_entry->offset = (vm_offset_t) 0; 2283 } 2284 2285 /* 2286 * Add the reference before calling vm_object_shadow 2287 * to insure that a shadow object is created. 2288 */ 2289 vm_object_reference(object); 2290 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2291 vm_object_shadow(&old_entry->object.vm_object, 2292 &old_entry->offset, 2293 atop(old_entry->end - old_entry->start)); 2294 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2295 /* Transfer the second reference too. */ 2296 vm_object_reference( 2297 old_entry->object.vm_object); 2298 vm_object_deallocate(object); 2299 object = old_entry->object.vm_object; 2300 } 2301 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2302 2303 /* 2304 * Clone the entry, referencing the shared object. 2305 */ 2306 new_entry = vm_map_entry_create(new_map); 2307 *new_entry = *old_entry; 2308 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2309 new_entry->wired_count = 0; 2310 2311 /* 2312 * Insert the entry into the new map -- we know we're 2313 * inserting at the end of the new map. 2314 */ 2315 vm_map_entry_link(new_map, new_map->header.prev, 2316 new_entry); 2317 2318 /* 2319 * Update the physical map 2320 */ 2321 pmap_copy(new_map->pmap, old_map->pmap, 2322 new_entry->start, 2323 (old_entry->end - old_entry->start), 2324 old_entry->start); 2325 break; 2326 2327 case VM_INHERIT_COPY: 2328 /* 2329 * Clone the entry and link into the map. 2330 */ 2331 new_entry = vm_map_entry_create(new_map); 2332 *new_entry = *old_entry; 2333 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2334 new_entry->wired_count = 0; 2335 new_entry->object.vm_object = NULL; 2336 vm_map_entry_link(new_map, new_map->header.prev, 2337 new_entry); 2338 vm_map_copy_entry(old_map, new_map, old_entry, 2339 new_entry); 2340 break; 2341 } 2342 old_entry = old_entry->next; 2343 } 2344 2345 new_map->size = old_map->size; 2346 old_map->infork = 0; 2347 vm_map_unlock(old_map); 2348 2349 return (vm2); 2350 } 2351 2352 int 2353 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2354 vm_prot_t prot, vm_prot_t max, int cow) 2355 { 2356 vm_map_entry_t prev_entry; 2357 vm_map_entry_t new_stack_entry; 2358 vm_size_t init_ssize; 2359 int rv; 2360 2361 GIANT_REQUIRED; 2362 2363 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2364 return (KERN_NO_SPACE); 2365 2366 if (max_ssize < sgrowsiz) 2367 init_ssize = max_ssize; 2368 else 2369 init_ssize = sgrowsiz; 2370 2371 vm_map_lock(map); 2372 2373 /* If addr is already mapped, no go */ 2374 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2375 vm_map_unlock(map); 2376 return (KERN_NO_SPACE); 2377 } 2378 2379 /* If we can't accomodate max_ssize in the current mapping, 2380 * no go. However, we need to be aware that subsequent user 2381 * mappings might map into the space we have reserved for 2382 * stack, and currently this space is not protected. 2383 * 2384 * Hopefully we will at least detect this condition 2385 * when we try to grow the stack. 2386 */ 2387 if ((prev_entry->next != &map->header) && 2388 (prev_entry->next->start < addrbos + max_ssize)) { 2389 vm_map_unlock(map); 2390 return (KERN_NO_SPACE); 2391 } 2392 2393 /* We initially map a stack of only init_ssize. We will 2394 * grow as needed later. Since this is to be a grow 2395 * down stack, we map at the top of the range. 2396 * 2397 * Note: we would normally expect prot and max to be 2398 * VM_PROT_ALL, and cow to be 0. Possibly we should 2399 * eliminate these as input parameters, and just 2400 * pass these values here in the insert call. 2401 */ 2402 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2403 addrbos + max_ssize, prot, max, cow); 2404 2405 /* Now set the avail_ssize amount */ 2406 if (rv == KERN_SUCCESS){ 2407 if (prev_entry != &map->header) 2408 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2409 new_stack_entry = prev_entry->next; 2410 if (new_stack_entry->end != addrbos + max_ssize || 2411 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2412 panic ("Bad entry start/end for new stack entry"); 2413 else 2414 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2415 } 2416 2417 vm_map_unlock(map); 2418 return (rv); 2419 } 2420 2421 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2422 * desired address is already mapped, or if we successfully grow 2423 * the stack. Also returns KERN_SUCCESS if addr is outside the 2424 * stack range (this is strange, but preserves compatibility with 2425 * the grow function in vm_machdep.c). 2426 */ 2427 int 2428 vm_map_growstack (struct proc *p, vm_offset_t addr) 2429 { 2430 vm_map_entry_t prev_entry; 2431 vm_map_entry_t stack_entry; 2432 vm_map_entry_t new_stack_entry; 2433 struct vmspace *vm = p->p_vmspace; 2434 vm_map_t map = &vm->vm_map; 2435 vm_offset_t end; 2436 int grow_amount; 2437 int rv; 2438 int is_procstack; 2439 2440 GIANT_REQUIRED; 2441 2442 Retry: 2443 vm_map_lock_read(map); 2444 2445 /* If addr is already in the entry range, no need to grow.*/ 2446 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2447 vm_map_unlock_read(map); 2448 return (KERN_SUCCESS); 2449 } 2450 2451 if ((stack_entry = prev_entry->next) == &map->header) { 2452 vm_map_unlock_read(map); 2453 return (KERN_SUCCESS); 2454 } 2455 if (prev_entry == &map->header) 2456 end = stack_entry->start - stack_entry->avail_ssize; 2457 else 2458 end = prev_entry->end; 2459 2460 /* This next test mimics the old grow function in vm_machdep.c. 2461 * It really doesn't quite make sense, but we do it anyway 2462 * for compatibility. 2463 * 2464 * If not growable stack, return success. This signals the 2465 * caller to proceed as he would normally with normal vm. 2466 */ 2467 if (stack_entry->avail_ssize < 1 || 2468 addr >= stack_entry->start || 2469 addr < stack_entry->start - stack_entry->avail_ssize) { 2470 vm_map_unlock_read(map); 2471 return (KERN_SUCCESS); 2472 } 2473 2474 /* Find the minimum grow amount */ 2475 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2476 if (grow_amount > stack_entry->avail_ssize) { 2477 vm_map_unlock_read(map); 2478 return (KERN_NO_SPACE); 2479 } 2480 2481 /* If there is no longer enough space between the entries 2482 * nogo, and adjust the available space. Note: this 2483 * should only happen if the user has mapped into the 2484 * stack area after the stack was created, and is 2485 * probably an error. 2486 * 2487 * This also effectively destroys any guard page the user 2488 * might have intended by limiting the stack size. 2489 */ 2490 if (grow_amount > stack_entry->start - end) { 2491 if (vm_map_lock_upgrade(map)) 2492 goto Retry; 2493 2494 stack_entry->avail_ssize = stack_entry->start - end; 2495 2496 vm_map_unlock(map); 2497 return (KERN_NO_SPACE); 2498 } 2499 2500 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2501 2502 /* If this is the main process stack, see if we're over the 2503 * stack limit. 2504 */ 2505 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2506 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2507 vm_map_unlock_read(map); 2508 return (KERN_NO_SPACE); 2509 } 2510 2511 /* Round up the grow amount modulo SGROWSIZ */ 2512 grow_amount = roundup (grow_amount, sgrowsiz); 2513 if (grow_amount > stack_entry->avail_ssize) { 2514 grow_amount = stack_entry->avail_ssize; 2515 } 2516 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2517 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2518 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2519 ctob(vm->vm_ssize); 2520 } 2521 2522 if (vm_map_lock_upgrade(map)) 2523 goto Retry; 2524 2525 /* Get the preliminary new entry start value */ 2526 addr = stack_entry->start - grow_amount; 2527 2528 /* If this puts us into the previous entry, cut back our growth 2529 * to the available space. Also, see the note above. 2530 */ 2531 if (addr < end) { 2532 stack_entry->avail_ssize = stack_entry->start - end; 2533 addr = end; 2534 } 2535 2536 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2537 VM_PROT_ALL, 2538 VM_PROT_ALL, 2539 0); 2540 2541 /* Adjust the available stack space by the amount we grew. */ 2542 if (rv == KERN_SUCCESS) { 2543 if (prev_entry != &map->header) 2544 vm_map_clip_end(map, prev_entry, addr); 2545 new_stack_entry = prev_entry->next; 2546 if (new_stack_entry->end != stack_entry->start || 2547 new_stack_entry->start != addr) 2548 panic ("Bad stack grow start/end in new stack entry"); 2549 else { 2550 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2551 (new_stack_entry->end - 2552 new_stack_entry->start); 2553 if (is_procstack) 2554 vm->vm_ssize += btoc(new_stack_entry->end - 2555 new_stack_entry->start); 2556 } 2557 } 2558 2559 vm_map_unlock(map); 2560 return (rv); 2561 } 2562 2563 /* 2564 * Unshare the specified VM space for exec. If other processes are 2565 * mapped to it, then create a new one. The new vmspace is null. 2566 */ 2567 void 2568 vmspace_exec(struct proc *p) 2569 { 2570 struct vmspace *oldvmspace = p->p_vmspace; 2571 struct vmspace *newvmspace; 2572 vm_map_t map = &p->p_vmspace->vm_map; 2573 2574 GIANT_REQUIRED; 2575 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2576 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2577 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2578 /* 2579 * This code is written like this for prototype purposes. The 2580 * goal is to avoid running down the vmspace here, but let the 2581 * other process's that are still using the vmspace to finally 2582 * run it down. Even though there is little or no chance of blocking 2583 * here, it is a good idea to keep this form for future mods. 2584 */ 2585 p->p_vmspace = newvmspace; 2586 pmap_pinit2(vmspace_pmap(newvmspace)); 2587 vmspace_free(oldvmspace); 2588 if (p == curthread->td_proc) /* XXXKSE ? */ 2589 pmap_activate(curthread); 2590 } 2591 2592 /* 2593 * Unshare the specified VM space for forcing COW. This 2594 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2595 */ 2596 void 2597 vmspace_unshare(struct proc *p) 2598 { 2599 struct vmspace *oldvmspace = p->p_vmspace; 2600 struct vmspace *newvmspace; 2601 2602 GIANT_REQUIRED; 2603 if (oldvmspace->vm_refcnt == 1) 2604 return; 2605 newvmspace = vmspace_fork(oldvmspace); 2606 p->p_vmspace = newvmspace; 2607 pmap_pinit2(vmspace_pmap(newvmspace)); 2608 vmspace_free(oldvmspace); 2609 if (p == curthread->td_proc) /* XXXKSE ? */ 2610 pmap_activate(curthread); 2611 } 2612 2613 /* 2614 * vm_map_lookup: 2615 * 2616 * Finds the VM object, offset, and 2617 * protection for a given virtual address in the 2618 * specified map, assuming a page fault of the 2619 * type specified. 2620 * 2621 * Leaves the map in question locked for read; return 2622 * values are guaranteed until a vm_map_lookup_done 2623 * call is performed. Note that the map argument 2624 * is in/out; the returned map must be used in 2625 * the call to vm_map_lookup_done. 2626 * 2627 * A handle (out_entry) is returned for use in 2628 * vm_map_lookup_done, to make that fast. 2629 * 2630 * If a lookup is requested with "write protection" 2631 * specified, the map may be changed to perform virtual 2632 * copying operations, although the data referenced will 2633 * remain the same. 2634 */ 2635 int 2636 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2637 vm_offset_t vaddr, 2638 vm_prot_t fault_typea, 2639 vm_map_entry_t *out_entry, /* OUT */ 2640 vm_object_t *object, /* OUT */ 2641 vm_pindex_t *pindex, /* OUT */ 2642 vm_prot_t *out_prot, /* OUT */ 2643 boolean_t *wired) /* OUT */ 2644 { 2645 vm_map_entry_t entry; 2646 vm_map_t map = *var_map; 2647 vm_prot_t prot; 2648 vm_prot_t fault_type = fault_typea; 2649 2650 RetryLookup:; 2651 /* 2652 * Lookup the faulting address. 2653 */ 2654 2655 vm_map_lock_read(map); 2656 #define RETURN(why) \ 2657 { \ 2658 vm_map_unlock_read(map); \ 2659 return (why); \ 2660 } 2661 2662 /* 2663 * If the map has an interesting hint, try it before calling full 2664 * blown lookup routine. 2665 */ 2666 entry = map->root; 2667 *out_entry = entry; 2668 if (entry == NULL || 2669 (vaddr < entry->start) || (vaddr >= entry->end)) { 2670 /* 2671 * Entry was either not a valid hint, or the vaddr was not 2672 * contained in the entry, so do a full lookup. 2673 */ 2674 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2675 RETURN(KERN_INVALID_ADDRESS); 2676 2677 entry = *out_entry; 2678 } 2679 2680 /* 2681 * Handle submaps. 2682 */ 2683 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2684 vm_map_t old_map = map; 2685 2686 *var_map = map = entry->object.sub_map; 2687 vm_map_unlock_read(old_map); 2688 goto RetryLookup; 2689 } 2690 2691 /* 2692 * Check whether this task is allowed to have this page. 2693 * Note the special case for MAP_ENTRY_COW 2694 * pages with an override. This is to implement a forced 2695 * COW for debuggers. 2696 */ 2697 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2698 prot = entry->max_protection; 2699 else 2700 prot = entry->protection; 2701 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2702 if ((fault_type & prot) != fault_type) { 2703 RETURN(KERN_PROTECTION_FAILURE); 2704 } 2705 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2706 (entry->eflags & MAP_ENTRY_COW) && 2707 (fault_type & VM_PROT_WRITE) && 2708 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2709 RETURN(KERN_PROTECTION_FAILURE); 2710 } 2711 2712 /* 2713 * If this page is not pageable, we have to get it for all possible 2714 * accesses. 2715 */ 2716 *wired = (entry->wired_count != 0); 2717 if (*wired) 2718 prot = fault_type = entry->protection; 2719 2720 /* 2721 * If the entry was copy-on-write, we either ... 2722 */ 2723 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2724 /* 2725 * If we want to write the page, we may as well handle that 2726 * now since we've got the map locked. 2727 * 2728 * If we don't need to write the page, we just demote the 2729 * permissions allowed. 2730 */ 2731 if (fault_type & VM_PROT_WRITE) { 2732 /* 2733 * Make a new object, and place it in the object 2734 * chain. Note that no new references have appeared 2735 * -- one just moved from the map to the new 2736 * object. 2737 */ 2738 if (vm_map_lock_upgrade(map)) 2739 goto RetryLookup; 2740 2741 vm_object_shadow( 2742 &entry->object.vm_object, 2743 &entry->offset, 2744 atop(entry->end - entry->start)); 2745 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2746 2747 vm_map_lock_downgrade(map); 2748 } else { 2749 /* 2750 * We're attempting to read a copy-on-write page -- 2751 * don't allow writes. 2752 */ 2753 prot &= ~VM_PROT_WRITE; 2754 } 2755 } 2756 2757 /* 2758 * Create an object if necessary. 2759 */ 2760 if (entry->object.vm_object == NULL && 2761 !map->system_map) { 2762 if (vm_map_lock_upgrade(map)) 2763 goto RetryLookup; 2764 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2765 atop(entry->end - entry->start)); 2766 entry->offset = 0; 2767 vm_map_lock_downgrade(map); 2768 } 2769 2770 /* 2771 * Return the object/offset from this entry. If the entry was 2772 * copy-on-write or empty, it has been fixed up. 2773 */ 2774 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2775 *object = entry->object.vm_object; 2776 2777 /* 2778 * Return whether this is the only map sharing this data. 2779 */ 2780 *out_prot = prot; 2781 return (KERN_SUCCESS); 2782 2783 #undef RETURN 2784 } 2785 2786 /* 2787 * vm_map_lookup_done: 2788 * 2789 * Releases locks acquired by a vm_map_lookup 2790 * (according to the handle returned by that lookup). 2791 */ 2792 void 2793 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2794 { 2795 /* 2796 * Unlock the main-level map 2797 */ 2798 vm_map_unlock_read(map); 2799 } 2800 2801 #ifdef ENABLE_VFS_IOOPT 2802 /* 2803 * Experimental support for zero-copy I/O 2804 * 2805 * Implement uiomove with VM operations. This handles (and collateral changes) 2806 * support every combination of source object modification, and COW type 2807 * operations. 2808 */ 2809 int 2810 vm_uiomove( 2811 vm_map_t mapa, 2812 vm_object_t srcobject, 2813 off_t cp, 2814 int cnta, 2815 vm_offset_t uaddra, 2816 int *npages) 2817 { 2818 vm_map_t map; 2819 vm_object_t first_object, oldobject, object; 2820 vm_map_entry_t entry; 2821 vm_prot_t prot; 2822 boolean_t wired; 2823 int tcnt, rv; 2824 vm_offset_t uaddr, start, end, tend; 2825 vm_pindex_t first_pindex, osize, oindex; 2826 off_t ooffset; 2827 int cnt; 2828 2829 GIANT_REQUIRED; 2830 2831 if (npages) 2832 *npages = 0; 2833 2834 cnt = cnta; 2835 uaddr = uaddra; 2836 2837 while (cnt > 0) { 2838 map = mapa; 2839 2840 if ((vm_map_lookup(&map, uaddr, 2841 VM_PROT_READ, &entry, &first_object, 2842 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2843 return EFAULT; 2844 } 2845 2846 vm_map_clip_start(map, entry, uaddr); 2847 2848 tcnt = cnt; 2849 tend = uaddr + tcnt; 2850 if (tend > entry->end) { 2851 tcnt = entry->end - uaddr; 2852 tend = entry->end; 2853 } 2854 2855 vm_map_clip_end(map, entry, tend); 2856 2857 start = entry->start; 2858 end = entry->end; 2859 2860 osize = atop(tcnt); 2861 2862 oindex = OFF_TO_IDX(cp); 2863 if (npages) { 2864 vm_pindex_t idx; 2865 for (idx = 0; idx < osize; idx++) { 2866 vm_page_t m; 2867 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2868 vm_map_lookup_done(map, entry); 2869 return 0; 2870 } 2871 /* 2872 * disallow busy or invalid pages, but allow 2873 * m->busy pages if they are entirely valid. 2874 */ 2875 if ((m->flags & PG_BUSY) || 2876 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2877 vm_map_lookup_done(map, entry); 2878 return 0; 2879 } 2880 } 2881 } 2882 2883 /* 2884 * If we are changing an existing map entry, just redirect 2885 * the object, and change mappings. 2886 */ 2887 if ((first_object->type == OBJT_VNODE) && 2888 ((oldobject = entry->object.vm_object) == first_object)) { 2889 2890 if ((entry->offset != cp) || (oldobject != srcobject)) { 2891 /* 2892 * Remove old window into the file 2893 */ 2894 pmap_remove (map->pmap, uaddr, tend); 2895 2896 /* 2897 * Force copy on write for mmaped regions 2898 */ 2899 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2900 2901 /* 2902 * Point the object appropriately 2903 */ 2904 if (oldobject != srcobject) { 2905 2906 /* 2907 * Set the object optimization hint flag 2908 */ 2909 vm_object_set_flag(srcobject, OBJ_OPT); 2910 vm_object_reference(srcobject); 2911 entry->object.vm_object = srcobject; 2912 2913 if (oldobject) { 2914 vm_object_deallocate(oldobject); 2915 } 2916 } 2917 2918 entry->offset = cp; 2919 map->timestamp++; 2920 } else { 2921 pmap_remove (map->pmap, uaddr, tend); 2922 } 2923 2924 } else if ((first_object->ref_count == 1) && 2925 (first_object->size == osize) && 2926 ((first_object->type == OBJT_DEFAULT) || 2927 (first_object->type == OBJT_SWAP)) ) { 2928 2929 oldobject = first_object->backing_object; 2930 2931 if ((first_object->backing_object_offset != cp) || 2932 (oldobject != srcobject)) { 2933 /* 2934 * Remove old window into the file 2935 */ 2936 pmap_remove (map->pmap, uaddr, tend); 2937 2938 /* 2939 * Remove unneeded old pages 2940 */ 2941 vm_object_page_remove(first_object, 0, 0, 0); 2942 2943 /* 2944 * Invalidate swap space 2945 */ 2946 if (first_object->type == OBJT_SWAP) { 2947 swap_pager_freespace(first_object, 2948 0, 2949 first_object->size); 2950 } 2951 2952 /* 2953 * Force copy on write for mmaped regions 2954 */ 2955 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2956 2957 /* 2958 * Point the object appropriately 2959 */ 2960 if (oldobject != srcobject) { 2961 /* 2962 * Set the object optimization hint flag 2963 */ 2964 vm_object_set_flag(srcobject, OBJ_OPT); 2965 vm_object_reference(srcobject); 2966 2967 if (oldobject) { 2968 TAILQ_REMOVE(&oldobject->shadow_head, 2969 first_object, shadow_list); 2970 oldobject->shadow_count--; 2971 /* XXX bump generation? */ 2972 vm_object_deallocate(oldobject); 2973 } 2974 2975 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2976 first_object, shadow_list); 2977 srcobject->shadow_count++; 2978 /* XXX bump generation? */ 2979 2980 first_object->backing_object = srcobject; 2981 } 2982 first_object->backing_object_offset = cp; 2983 map->timestamp++; 2984 } else { 2985 pmap_remove (map->pmap, uaddr, tend); 2986 } 2987 /* 2988 * Otherwise, we have to do a logical mmap. 2989 */ 2990 } else { 2991 2992 vm_object_set_flag(srcobject, OBJ_OPT); 2993 vm_object_reference(srcobject); 2994 2995 pmap_remove (map->pmap, uaddr, tend); 2996 2997 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2998 vm_map_lock_upgrade(map); 2999 3000 if (entry == &map->header) { 3001 map->first_free = &map->header; 3002 } else if (map->first_free->start >= start) { 3003 map->first_free = entry->prev; 3004 } 3005 3006 vm_map_entry_delete(map, entry); 3007 3008 object = srcobject; 3009 ooffset = cp; 3010 3011 rv = vm_map_insert(map, object, ooffset, start, tend, 3012 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3013 3014 if (rv != KERN_SUCCESS) 3015 panic("vm_uiomove: could not insert new entry: %d", rv); 3016 } 3017 3018 /* 3019 * Map the window directly, if it is already in memory 3020 */ 3021 pmap_object_init_pt(map->pmap, uaddr, 3022 srcobject, oindex, tcnt, 0); 3023 3024 map->timestamp++; 3025 vm_map_unlock(map); 3026 3027 cnt -= tcnt; 3028 uaddr += tcnt; 3029 cp += tcnt; 3030 if (npages) 3031 *npages += osize; 3032 } 3033 return 0; 3034 } 3035 #endif 3036 3037 #include "opt_ddb.h" 3038 #ifdef DDB 3039 #include <sys/kernel.h> 3040 3041 #include <ddb/ddb.h> 3042 3043 /* 3044 * vm_map_print: [ debug ] 3045 */ 3046 DB_SHOW_COMMAND(map, vm_map_print) 3047 { 3048 static int nlines; 3049 /* XXX convert args. */ 3050 vm_map_t map = (vm_map_t)addr; 3051 boolean_t full = have_addr; 3052 3053 vm_map_entry_t entry; 3054 3055 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3056 (void *)map, 3057 (void *)map->pmap, map->nentries, map->timestamp); 3058 nlines++; 3059 3060 if (!full && db_indent) 3061 return; 3062 3063 db_indent += 2; 3064 for (entry = map->header.next; entry != &map->header; 3065 entry = entry->next) { 3066 db_iprintf("map entry %p: start=%p, end=%p\n", 3067 (void *)entry, (void *)entry->start, (void *)entry->end); 3068 nlines++; 3069 { 3070 static char *inheritance_name[4] = 3071 {"share", "copy", "none", "donate_copy"}; 3072 3073 db_iprintf(" prot=%x/%x/%s", 3074 entry->protection, 3075 entry->max_protection, 3076 inheritance_name[(int)(unsigned char)entry->inheritance]); 3077 if (entry->wired_count != 0) 3078 db_printf(", wired"); 3079 } 3080 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3081 /* XXX no %qd in kernel. Truncate entry->offset. */ 3082 db_printf(", share=%p, offset=0x%lx\n", 3083 (void *)entry->object.sub_map, 3084 (long)entry->offset); 3085 nlines++; 3086 if ((entry->prev == &map->header) || 3087 (entry->prev->object.sub_map != 3088 entry->object.sub_map)) { 3089 db_indent += 2; 3090 vm_map_print((db_expr_t)(intptr_t) 3091 entry->object.sub_map, 3092 full, 0, (char *)0); 3093 db_indent -= 2; 3094 } 3095 } else { 3096 /* XXX no %qd in kernel. Truncate entry->offset. */ 3097 db_printf(", object=%p, offset=0x%lx", 3098 (void *)entry->object.vm_object, 3099 (long)entry->offset); 3100 if (entry->eflags & MAP_ENTRY_COW) 3101 db_printf(", copy (%s)", 3102 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3103 db_printf("\n"); 3104 nlines++; 3105 3106 if ((entry->prev == &map->header) || 3107 (entry->prev->object.vm_object != 3108 entry->object.vm_object)) { 3109 db_indent += 2; 3110 vm_object_print((db_expr_t)(intptr_t) 3111 entry->object.vm_object, 3112 full, 0, (char *)0); 3113 nlines += 4; 3114 db_indent -= 2; 3115 } 3116 } 3117 } 3118 db_indent -= 2; 3119 if (db_indent == 0) 3120 nlines = 0; 3121 } 3122 3123 3124 DB_SHOW_COMMAND(procvm, procvm) 3125 { 3126 struct proc *p; 3127 3128 if (have_addr) { 3129 p = (struct proc *) addr; 3130 } else { 3131 p = curproc; 3132 } 3133 3134 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3135 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3136 (void *)vmspace_pmap(p->p_vmspace)); 3137 3138 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3139 } 3140 3141 #endif /* DDB */ 3142