1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/uma.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a self-adjusting binary search tree of these 107 * entries is used to speed up lookups. 108 * 109 * Since portions of maps are specified by start/end addresses, 110 * which may not align with existing map entries, all 111 * routines merely "clip" entries to these start/end values. 112 * [That is, an entry is split into two, bordering at a 113 * start or end value.] Note that these clippings may not 114 * always be necessary (as the two resulting entries are then 115 * not changed); however, the clipping is done for convenience. 116 * 117 * As mentioned above, virtual copy operations are performed 118 * by copying VM object references from one map to 119 * another, and then marking both regions as copy-on-write. 120 */ 121 122 static struct mtx map_sleep_mtx; 123 static uma_zone_t mapentzone; 124 static uma_zone_t kmapentzone; 125 static uma_zone_t mapzone; 126 static uma_zone_t vmspace_zone; 127 static struct vm_object kmapentobj; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void vmspace_zfini(void *mem, int size); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void vm_map_zfini(void *mem, int size); 132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 133 vm_offset_t max); 134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 136 #ifdef INVARIANTS 137 static void vm_map_zdtor(void *mem, int size, void *arg); 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 141 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 142 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 143 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 144 145 /* 146 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 147 * stable. 148 */ 149 #define PROC_VMSPACE_LOCK(p) do { } while (0) 150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 151 152 /* 153 * VM_MAP_RANGE_CHECK: [ internal use only ] 154 * 155 * Asserts that the starting and ending region 156 * addresses fall within the valid range of the map. 157 */ 158 #define VM_MAP_RANGE_CHECK(map, start, end) \ 159 { \ 160 if (start < vm_map_min(map)) \ 161 start = vm_map_min(map); \ 162 if (end > vm_map_max(map)) \ 163 end = vm_map_max(map); \ 164 if (start > end) \ 165 start = end; \ 166 } 167 168 /* 169 * vm_map_startup: 170 * 171 * Initialize the vm_map module. Must be called before 172 * any other vm_map routines. 173 * 174 * Map and entry structures are allocated from the general 175 * purpose memory pool with some exceptions: 176 * 177 * - The kernel map and kmem submap are allocated statically. 178 * - Kernel map entries are allocated out of a static pool. 179 * 180 * These restrictions are necessary since malloc() uses the 181 * maps and requires map entries. 182 */ 183 184 void 185 vm_map_startup(void) 186 { 187 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 188 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 189 #ifdef INVARIANTS 190 vm_map_zdtor, 191 #else 192 NULL, 193 #endif 194 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 195 uma_prealloc(mapzone, MAX_KMAP); 196 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 198 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 199 uma_prealloc(kmapentzone, MAX_KMAPENT); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 } 203 204 static void 205 vmspace_zfini(void *mem, int size) 206 { 207 struct vmspace *vm; 208 209 vm = (struct vmspace *)mem; 210 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 211 } 212 213 static int 214 vmspace_zinit(void *mem, int size, int flags) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm->vm_map.pmap = NULL; 221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 222 return (0); 223 } 224 225 static void 226 vm_map_zfini(void *mem, int size) 227 { 228 vm_map_t map; 229 230 map = (vm_map_t)mem; 231 mtx_destroy(&map->system_mtx); 232 sx_destroy(&map->lock); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 map->nentries = 0; 242 map->size = 0; 243 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "user map"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 */ 277 struct vmspace * 278 vmspace_alloc(min, max) 279 vm_offset_t min, max; 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 285 uma_zfree(vmspace_zone, vm); 286 return (NULL); 287 } 288 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 290 vm->vm_refcnt = 1; 291 vm->vm_shm = NULL; 292 vm->vm_swrss = 0; 293 vm->vm_tsize = 0; 294 vm->vm_dsize = 0; 295 vm->vm_ssize = 0; 296 vm->vm_taddr = 0; 297 vm->vm_daddr = 0; 298 vm->vm_maxsaddr = 0; 299 return (vm); 300 } 301 302 void 303 vm_init2(void) 304 { 305 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 306 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 307 maxproc * 2 + maxfiles); 308 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 309 #ifdef INVARIANTS 310 vmspace_zdtor, 311 #else 312 NULL, 313 #endif 314 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 } 316 317 static void 318 vmspace_container_reset(struct proc *p) 319 { 320 321 #ifdef RACCT 322 PROC_LOCK(p); 323 racct_set(p, RACCT_DATA, 0); 324 racct_set(p, RACCT_STACK, 0); 325 racct_set(p, RACCT_RSS, 0); 326 racct_set(p, RACCT_MEMLOCK, 0); 327 racct_set(p, RACCT_VMEM, 0); 328 PROC_UNLOCK(p); 329 #endif 330 } 331 332 static inline void 333 vmspace_dofree(struct vmspace *vm) 334 { 335 336 CTR1(KTR_VM, "vmspace_free: %p", vm); 337 338 /* 339 * Make sure any SysV shm is freed, it might not have been in 340 * exit1(). 341 */ 342 shmexit(vm); 343 344 /* 345 * Lock the map, to wait out all other references to it. 346 * Delete all of the mappings and pages they hold, then call 347 * the pmap module to reclaim anything left. 348 */ 349 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 350 vm->vm_map.max_offset); 351 352 pmap_release(vmspace_pmap(vm)); 353 vm->vm_map.pmap = NULL; 354 uma_zfree(vmspace_zone, vm); 355 } 356 357 void 358 vmspace_free(struct vmspace *vm) 359 { 360 361 if (vm->vm_refcnt == 0) 362 panic("vmspace_free: attempt to free already freed vmspace"); 363 364 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 365 vmspace_dofree(vm); 366 } 367 368 void 369 vmspace_exitfree(struct proc *p) 370 { 371 struct vmspace *vm; 372 373 PROC_VMSPACE_LOCK(p); 374 vm = p->p_vmspace; 375 p->p_vmspace = NULL; 376 PROC_VMSPACE_UNLOCK(p); 377 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 378 vmspace_free(vm); 379 } 380 381 void 382 vmspace_exit(struct thread *td) 383 { 384 int refcnt; 385 struct vmspace *vm; 386 struct proc *p; 387 388 /* 389 * Release user portion of address space. 390 * This releases references to vnodes, 391 * which could cause I/O if the file has been unlinked. 392 * Need to do this early enough that we can still sleep. 393 * 394 * The last exiting process to reach this point releases as 395 * much of the environment as it can. vmspace_dofree() is the 396 * slower fallback in case another process had a temporary 397 * reference to the vmspace. 398 */ 399 400 p = td->td_proc; 401 vm = p->p_vmspace; 402 atomic_add_int(&vmspace0.vm_refcnt, 1); 403 do { 404 refcnt = vm->vm_refcnt; 405 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 406 /* Switch now since other proc might free vmspace */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = &vmspace0; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 413 if (refcnt == 1) { 414 if (p->p_vmspace != vm) { 415 /* vmspace not yet freed, switch back */ 416 PROC_VMSPACE_LOCK(p); 417 p->p_vmspace = vm; 418 PROC_VMSPACE_UNLOCK(p); 419 pmap_activate(td); 420 } 421 pmap_remove_pages(vmspace_pmap(vm)); 422 /* Switch now since this proc will free vmspace */ 423 PROC_VMSPACE_LOCK(p); 424 p->p_vmspace = &vmspace0; 425 PROC_VMSPACE_UNLOCK(p); 426 pmap_activate(td); 427 vmspace_dofree(vm); 428 } 429 vmspace_container_reset(p); 430 } 431 432 /* Acquire reference to vmspace owned by another process. */ 433 434 struct vmspace * 435 vmspace_acquire_ref(struct proc *p) 436 { 437 struct vmspace *vm; 438 int refcnt; 439 440 PROC_VMSPACE_LOCK(p); 441 vm = p->p_vmspace; 442 if (vm == NULL) { 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 do { 447 refcnt = vm->vm_refcnt; 448 if (refcnt <= 0) { /* Avoid 0->1 transition */ 449 PROC_VMSPACE_UNLOCK(p); 450 return (NULL); 451 } 452 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 453 if (vm != p->p_vmspace) { 454 PROC_VMSPACE_UNLOCK(p); 455 vmspace_free(vm); 456 return (NULL); 457 } 458 PROC_VMSPACE_UNLOCK(p); 459 return (vm); 460 } 461 462 void 463 _vm_map_lock(vm_map_t map, const char *file, int line) 464 { 465 466 if (map->system_map) 467 _mtx_lock_flags(&map->system_mtx, 0, file, line); 468 else 469 (void)_sx_xlock(&map->lock, 0, file, line); 470 map->timestamp++; 471 } 472 473 static void 474 vm_map_process_deferred(void) 475 { 476 struct thread *td; 477 vm_map_entry_t entry; 478 479 td = curthread; 480 481 while ((entry = td->td_map_def_user) != NULL) { 482 td->td_map_def_user = entry->next; 483 vm_map_entry_deallocate(entry, FALSE); 484 } 485 } 486 487 void 488 _vm_map_unlock(vm_map_t map, const char *file, int line) 489 { 490 491 if (map->system_map) 492 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 493 else { 494 _sx_xunlock(&map->lock, file, line); 495 vm_map_process_deferred(); 496 } 497 } 498 499 void 500 _vm_map_lock_read(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 _mtx_lock_flags(&map->system_mtx, 0, file, line); 505 else 506 (void)_sx_slock(&map->lock, 0, file, line); 507 } 508 509 void 510 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 511 { 512 513 if (map->system_map) 514 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 515 else { 516 _sx_sunlock(&map->lock, file, line); 517 vm_map_process_deferred(); 518 } 519 } 520 521 int 522 _vm_map_trylock(vm_map_t map, const char *file, int line) 523 { 524 int error; 525 526 error = map->system_map ? 527 !_mtx_trylock(&map->system_mtx, 0, file, line) : 528 !_sx_try_xlock(&map->lock, file, line); 529 if (error == 0) 530 map->timestamp++; 531 return (error == 0); 532 } 533 534 int 535 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 536 { 537 int error; 538 539 error = map->system_map ? 540 !_mtx_trylock(&map->system_mtx, 0, file, line) : 541 !_sx_try_slock(&map->lock, file, line); 542 return (error == 0); 543 } 544 545 /* 546 * _vm_map_lock_upgrade: [ internal use only ] 547 * 548 * Tries to upgrade a read (shared) lock on the specified map to a write 549 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 550 * non-zero value if the upgrade fails. If the upgrade fails, the map is 551 * returned without a read or write lock held. 552 * 553 * Requires that the map be read locked. 554 */ 555 int 556 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 557 { 558 unsigned int last_timestamp; 559 560 if (map->system_map) { 561 #ifdef INVARIANTS 562 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 563 #endif 564 } else { 565 if (!_sx_try_upgrade(&map->lock, file, line)) { 566 last_timestamp = map->timestamp; 567 _sx_sunlock(&map->lock, file, line); 568 vm_map_process_deferred(); 569 /* 570 * If the map's timestamp does not change while the 571 * map is unlocked, then the upgrade succeeds. 572 */ 573 (void)_sx_xlock(&map->lock, 0, file, line); 574 if (last_timestamp != map->timestamp) { 575 _sx_xunlock(&map->lock, file, line); 576 return (1); 577 } 578 } 579 } 580 map->timestamp++; 581 return (0); 582 } 583 584 void 585 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 586 { 587 588 if (map->system_map) { 589 #ifdef INVARIANTS 590 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 591 #endif 592 } else 593 _sx_downgrade(&map->lock, file, line); 594 } 595 596 /* 597 * vm_map_locked: 598 * 599 * Returns a non-zero value if the caller holds a write (exclusive) lock 600 * on the specified map and the value "0" otherwise. 601 */ 602 int 603 vm_map_locked(vm_map_t map) 604 { 605 606 if (map->system_map) 607 return (mtx_owned(&map->system_mtx)); 608 else 609 return (sx_xlocked(&map->lock)); 610 } 611 612 #ifdef INVARIANTS 613 static void 614 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 619 else 620 _sx_assert(&map->lock, SA_XLOCKED, file, line); 621 } 622 623 #if 0 624 static void 625 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 626 { 627 628 if (map->system_map) 629 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 630 else 631 _sx_assert(&map->lock, SA_SLOCKED, file, line); 632 } 633 #endif 634 635 #define VM_MAP_ASSERT_LOCKED(map) \ 636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 637 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 638 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 639 #else 640 #define VM_MAP_ASSERT_LOCKED(map) 641 #define VM_MAP_ASSERT_LOCKED_READ(map) 642 #endif 643 644 /* 645 * _vm_map_unlock_and_wait: 646 * 647 * Atomically releases the lock on the specified map and puts the calling 648 * thread to sleep. The calling thread will remain asleep until either 649 * vm_map_wakeup() is performed on the map or the specified timeout is 650 * exceeded. 651 * 652 * WARNING! This function does not perform deferred deallocations of 653 * objects and map entries. Therefore, the calling thread is expected to 654 * reacquire the map lock after reawakening and later perform an ordinary 655 * unlock operation, such as vm_map_unlock(), before completing its 656 * operation on the map. 657 */ 658 int 659 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 660 { 661 662 mtx_lock(&map_sleep_mtx); 663 if (map->system_map) 664 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 665 else 666 _sx_xunlock(&map->lock, file, line); 667 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 668 timo)); 669 } 670 671 /* 672 * vm_map_wakeup: 673 * 674 * Awaken any threads that have slept on the map using 675 * vm_map_unlock_and_wait(). 676 */ 677 void 678 vm_map_wakeup(vm_map_t map) 679 { 680 681 /* 682 * Acquire and release map_sleep_mtx to prevent a wakeup() 683 * from being performed (and lost) between the map unlock 684 * and the msleep() in _vm_map_unlock_and_wait(). 685 */ 686 mtx_lock(&map_sleep_mtx); 687 mtx_unlock(&map_sleep_mtx); 688 wakeup(&map->root); 689 } 690 691 void 692 vm_map_busy(vm_map_t map) 693 { 694 695 VM_MAP_ASSERT_LOCKED(map); 696 map->busy++; 697 } 698 699 void 700 vm_map_unbusy(vm_map_t map) 701 { 702 703 VM_MAP_ASSERT_LOCKED(map); 704 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 705 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 706 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 707 wakeup(&map->busy); 708 } 709 } 710 711 void 712 vm_map_wait_busy(vm_map_t map) 713 { 714 715 VM_MAP_ASSERT_LOCKED(map); 716 while (map->busy) { 717 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 718 if (map->system_map) 719 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 720 else 721 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 722 } 723 map->timestamp++; 724 } 725 726 long 727 vmspace_resident_count(struct vmspace *vmspace) 728 { 729 return pmap_resident_count(vmspace_pmap(vmspace)); 730 } 731 732 long 733 vmspace_wired_count(struct vmspace *vmspace) 734 { 735 return pmap_wired_count(vmspace_pmap(vmspace)); 736 } 737 738 /* 739 * vm_map_create: 740 * 741 * Creates and returns a new empty VM map with 742 * the given physical map structure, and having 743 * the given lower and upper address bounds. 744 */ 745 vm_map_t 746 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 747 { 748 vm_map_t result; 749 750 result = uma_zalloc(mapzone, M_WAITOK); 751 CTR1(KTR_VM, "vm_map_create: %p", result); 752 _vm_map_init(result, pmap, min, max); 753 return (result); 754 } 755 756 /* 757 * Initialize an existing vm_map structure 758 * such as that in the vmspace structure. 759 */ 760 static void 761 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 762 { 763 764 map->header.next = map->header.prev = &map->header; 765 map->needs_wakeup = FALSE; 766 map->system_map = 0; 767 map->pmap = pmap; 768 map->min_offset = min; 769 map->max_offset = max; 770 map->flags = 0; 771 map->root = NULL; 772 map->timestamp = 0; 773 map->busy = 0; 774 } 775 776 void 777 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 778 { 779 780 _vm_map_init(map, pmap, min, max); 781 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 782 sx_init(&map->lock, "user map"); 783 } 784 785 /* 786 * vm_map_entry_dispose: [ internal use only ] 787 * 788 * Inverse of vm_map_entry_create. 789 */ 790 static void 791 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 792 { 793 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 794 } 795 796 /* 797 * vm_map_entry_create: [ internal use only ] 798 * 799 * Allocates a VM map entry for insertion. 800 * No entry fields are filled in. 801 */ 802 static vm_map_entry_t 803 vm_map_entry_create(vm_map_t map) 804 { 805 vm_map_entry_t new_entry; 806 807 if (map->system_map) 808 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 809 else 810 new_entry = uma_zalloc(mapentzone, M_WAITOK); 811 if (new_entry == NULL) 812 panic("vm_map_entry_create: kernel resources exhausted"); 813 return (new_entry); 814 } 815 816 /* 817 * vm_map_entry_set_behavior: 818 * 819 * Set the expected access behavior, either normal, random, or 820 * sequential. 821 */ 822 static inline void 823 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 824 { 825 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 826 (behavior & MAP_ENTRY_BEHAV_MASK); 827 } 828 829 /* 830 * vm_map_entry_set_max_free: 831 * 832 * Set the max_free field in a vm_map_entry. 833 */ 834 static inline void 835 vm_map_entry_set_max_free(vm_map_entry_t entry) 836 { 837 838 entry->max_free = entry->adj_free; 839 if (entry->left != NULL && entry->left->max_free > entry->max_free) 840 entry->max_free = entry->left->max_free; 841 if (entry->right != NULL && entry->right->max_free > entry->max_free) 842 entry->max_free = entry->right->max_free; 843 } 844 845 /* 846 * vm_map_entry_splay: 847 * 848 * The Sleator and Tarjan top-down splay algorithm with the 849 * following variation. Max_free must be computed bottom-up, so 850 * on the downward pass, maintain the left and right spines in 851 * reverse order. Then, make a second pass up each side to fix 852 * the pointers and compute max_free. The time bound is O(log n) 853 * amortized. 854 * 855 * The new root is the vm_map_entry containing "addr", or else an 856 * adjacent entry (lower or higher) if addr is not in the tree. 857 * 858 * The map must be locked, and leaves it so. 859 * 860 * Returns: the new root. 861 */ 862 static vm_map_entry_t 863 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 864 { 865 vm_map_entry_t llist, rlist; 866 vm_map_entry_t ltree, rtree; 867 vm_map_entry_t y; 868 869 /* Special case of empty tree. */ 870 if (root == NULL) 871 return (root); 872 873 /* 874 * Pass One: Splay down the tree until we find addr or a NULL 875 * pointer where addr would go. llist and rlist are the two 876 * sides in reverse order (bottom-up), with llist linked by 877 * the right pointer and rlist linked by the left pointer in 878 * the vm_map_entry. Wait until Pass Two to set max_free on 879 * the two spines. 880 */ 881 llist = NULL; 882 rlist = NULL; 883 for (;;) { 884 /* root is never NULL in here. */ 885 if (addr < root->start) { 886 y = root->left; 887 if (y == NULL) 888 break; 889 if (addr < y->start && y->left != NULL) { 890 /* Rotate right and put y on rlist. */ 891 root->left = y->right; 892 y->right = root; 893 vm_map_entry_set_max_free(root); 894 root = y->left; 895 y->left = rlist; 896 rlist = y; 897 } else { 898 /* Put root on rlist. */ 899 root->left = rlist; 900 rlist = root; 901 root = y; 902 } 903 } else if (addr >= root->end) { 904 y = root->right; 905 if (y == NULL) 906 break; 907 if (addr >= y->end && y->right != NULL) { 908 /* Rotate left and put y on llist. */ 909 root->right = y->left; 910 y->left = root; 911 vm_map_entry_set_max_free(root); 912 root = y->right; 913 y->right = llist; 914 llist = y; 915 } else { 916 /* Put root on llist. */ 917 root->right = llist; 918 llist = root; 919 root = y; 920 } 921 } else 922 break; 923 } 924 925 /* 926 * Pass Two: Walk back up the two spines, flip the pointers 927 * and set max_free. The subtrees of the root go at the 928 * bottom of llist and rlist. 929 */ 930 ltree = root->left; 931 while (llist != NULL) { 932 y = llist->right; 933 llist->right = ltree; 934 vm_map_entry_set_max_free(llist); 935 ltree = llist; 936 llist = y; 937 } 938 rtree = root->right; 939 while (rlist != NULL) { 940 y = rlist->left; 941 rlist->left = rtree; 942 vm_map_entry_set_max_free(rlist); 943 rtree = rlist; 944 rlist = y; 945 } 946 947 /* 948 * Final assembly: add ltree and rtree as subtrees of root. 949 */ 950 root->left = ltree; 951 root->right = rtree; 952 vm_map_entry_set_max_free(root); 953 954 return (root); 955 } 956 957 /* 958 * vm_map_entry_{un,}link: 959 * 960 * Insert/remove entries from maps. 961 */ 962 static void 963 vm_map_entry_link(vm_map_t map, 964 vm_map_entry_t after_where, 965 vm_map_entry_t entry) 966 { 967 968 CTR4(KTR_VM, 969 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 970 map->nentries, entry, after_where); 971 VM_MAP_ASSERT_LOCKED(map); 972 map->nentries++; 973 entry->prev = after_where; 974 entry->next = after_where->next; 975 entry->next->prev = entry; 976 after_where->next = entry; 977 978 if (after_where != &map->header) { 979 if (after_where != map->root) 980 vm_map_entry_splay(after_where->start, map->root); 981 entry->right = after_where->right; 982 entry->left = after_where; 983 after_where->right = NULL; 984 after_where->adj_free = entry->start - after_where->end; 985 vm_map_entry_set_max_free(after_where); 986 } else { 987 entry->right = map->root; 988 entry->left = NULL; 989 } 990 entry->adj_free = (entry->next == &map->header ? map->max_offset : 991 entry->next->start) - entry->end; 992 vm_map_entry_set_max_free(entry); 993 map->root = entry; 994 } 995 996 static void 997 vm_map_entry_unlink(vm_map_t map, 998 vm_map_entry_t entry) 999 { 1000 vm_map_entry_t next, prev, root; 1001 1002 VM_MAP_ASSERT_LOCKED(map); 1003 if (entry != map->root) 1004 vm_map_entry_splay(entry->start, map->root); 1005 if (entry->left == NULL) 1006 root = entry->right; 1007 else { 1008 root = vm_map_entry_splay(entry->start, entry->left); 1009 root->right = entry->right; 1010 root->adj_free = (entry->next == &map->header ? map->max_offset : 1011 entry->next->start) - root->end; 1012 vm_map_entry_set_max_free(root); 1013 } 1014 map->root = root; 1015 1016 prev = entry->prev; 1017 next = entry->next; 1018 next->prev = prev; 1019 prev->next = next; 1020 map->nentries--; 1021 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1022 map->nentries, entry); 1023 } 1024 1025 /* 1026 * vm_map_entry_resize_free: 1027 * 1028 * Recompute the amount of free space following a vm_map_entry 1029 * and propagate that value up the tree. Call this function after 1030 * resizing a map entry in-place, that is, without a call to 1031 * vm_map_entry_link() or _unlink(). 1032 * 1033 * The map must be locked, and leaves it so. 1034 */ 1035 static void 1036 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1037 { 1038 1039 /* 1040 * Using splay trees without parent pointers, propagating 1041 * max_free up the tree is done by moving the entry to the 1042 * root and making the change there. 1043 */ 1044 if (entry != map->root) 1045 map->root = vm_map_entry_splay(entry->start, map->root); 1046 1047 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1048 entry->next->start) - entry->end; 1049 vm_map_entry_set_max_free(entry); 1050 } 1051 1052 /* 1053 * vm_map_lookup_entry: [ internal use only ] 1054 * 1055 * Finds the map entry containing (or 1056 * immediately preceding) the specified address 1057 * in the given map; the entry is returned 1058 * in the "entry" parameter. The boolean 1059 * result indicates whether the address is 1060 * actually contained in the map. 1061 */ 1062 boolean_t 1063 vm_map_lookup_entry( 1064 vm_map_t map, 1065 vm_offset_t address, 1066 vm_map_entry_t *entry) /* OUT */ 1067 { 1068 vm_map_entry_t cur; 1069 boolean_t locked; 1070 1071 /* 1072 * If the map is empty, then the map entry immediately preceding 1073 * "address" is the map's header. 1074 */ 1075 cur = map->root; 1076 if (cur == NULL) 1077 *entry = &map->header; 1078 else if (address >= cur->start && cur->end > address) { 1079 *entry = cur; 1080 return (TRUE); 1081 } else if ((locked = vm_map_locked(map)) || 1082 sx_try_upgrade(&map->lock)) { 1083 /* 1084 * Splay requires a write lock on the map. However, it only 1085 * restructures the binary search tree; it does not otherwise 1086 * change the map. Thus, the map's timestamp need not change 1087 * on a temporary upgrade. 1088 */ 1089 map->root = cur = vm_map_entry_splay(address, cur); 1090 if (!locked) 1091 sx_downgrade(&map->lock); 1092 1093 /* 1094 * If "address" is contained within a map entry, the new root 1095 * is that map entry. Otherwise, the new root is a map entry 1096 * immediately before or after "address". 1097 */ 1098 if (address >= cur->start) { 1099 *entry = cur; 1100 if (cur->end > address) 1101 return (TRUE); 1102 } else 1103 *entry = cur->prev; 1104 } else 1105 /* 1106 * Since the map is only locked for read access, perform a 1107 * standard binary search tree lookup for "address". 1108 */ 1109 for (;;) { 1110 if (address < cur->start) { 1111 if (cur->left == NULL) { 1112 *entry = cur->prev; 1113 break; 1114 } 1115 cur = cur->left; 1116 } else if (cur->end > address) { 1117 *entry = cur; 1118 return (TRUE); 1119 } else { 1120 if (cur->right == NULL) { 1121 *entry = cur; 1122 break; 1123 } 1124 cur = cur->right; 1125 } 1126 } 1127 return (FALSE); 1128 } 1129 1130 /* 1131 * vm_map_insert: 1132 * 1133 * Inserts the given whole VM object into the target 1134 * map at the specified address range. The object's 1135 * size should match that of the address range. 1136 * 1137 * Requires that the map be locked, and leaves it so. 1138 * 1139 * If object is non-NULL, ref count must be bumped by caller 1140 * prior to making call to account for the new entry. 1141 */ 1142 int 1143 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1144 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1145 int cow) 1146 { 1147 vm_map_entry_t new_entry; 1148 vm_map_entry_t prev_entry; 1149 vm_map_entry_t temp_entry; 1150 vm_eflags_t protoeflags; 1151 struct ucred *cred; 1152 boolean_t charge_prev_obj; 1153 1154 VM_MAP_ASSERT_LOCKED(map); 1155 1156 /* 1157 * Check that the start and end points are not bogus. 1158 */ 1159 if ((start < map->min_offset) || (end > map->max_offset) || 1160 (start >= end)) 1161 return (KERN_INVALID_ADDRESS); 1162 1163 /* 1164 * Find the entry prior to the proposed starting address; if it's part 1165 * of an existing entry, this range is bogus. 1166 */ 1167 if (vm_map_lookup_entry(map, start, &temp_entry)) 1168 return (KERN_NO_SPACE); 1169 1170 prev_entry = temp_entry; 1171 1172 /* 1173 * Assert that the next entry doesn't overlap the end point. 1174 */ 1175 if ((prev_entry->next != &map->header) && 1176 (prev_entry->next->start < end)) 1177 return (KERN_NO_SPACE); 1178 1179 protoeflags = 0; 1180 charge_prev_obj = FALSE; 1181 1182 if (cow & MAP_COPY_ON_WRITE) 1183 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1184 1185 if (cow & MAP_NOFAULT) { 1186 protoeflags |= MAP_ENTRY_NOFAULT; 1187 1188 KASSERT(object == NULL, 1189 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1190 } 1191 if (cow & MAP_DISABLE_SYNCER) 1192 protoeflags |= MAP_ENTRY_NOSYNC; 1193 if (cow & MAP_DISABLE_COREDUMP) 1194 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1195 1196 cred = NULL; 1197 KASSERT((object != kmem_object && object != kernel_object) || 1198 ((object == kmem_object || object == kernel_object) && 1199 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1200 ("kmem or kernel object and cow")); 1201 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1202 goto charged; 1203 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1204 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1205 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1206 return (KERN_RESOURCE_SHORTAGE); 1207 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1208 object->cred == NULL, 1209 ("OVERCOMMIT: vm_map_insert o %p", object)); 1210 cred = curthread->td_ucred; 1211 crhold(cred); 1212 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1213 charge_prev_obj = TRUE; 1214 } 1215 1216 charged: 1217 /* Expand the kernel pmap, if necessary. */ 1218 if (map == kernel_map && end > kernel_vm_end) 1219 pmap_growkernel(end); 1220 if (object != NULL) { 1221 /* 1222 * OBJ_ONEMAPPING must be cleared unless this mapping 1223 * is trivially proven to be the only mapping for any 1224 * of the object's pages. (Object granularity 1225 * reference counting is insufficient to recognize 1226 * aliases with precision.) 1227 */ 1228 VM_OBJECT_LOCK(object); 1229 if (object->ref_count > 1 || object->shadow_count != 0) 1230 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1231 VM_OBJECT_UNLOCK(object); 1232 } 1233 else if ((prev_entry != &map->header) && 1234 (prev_entry->eflags == protoeflags) && 1235 (prev_entry->end == start) && 1236 (prev_entry->wired_count == 0) && 1237 (prev_entry->cred == cred || 1238 (prev_entry->object.vm_object != NULL && 1239 (prev_entry->object.vm_object->cred == cred))) && 1240 vm_object_coalesce(prev_entry->object.vm_object, 1241 prev_entry->offset, 1242 (vm_size_t)(prev_entry->end - prev_entry->start), 1243 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1244 /* 1245 * We were able to extend the object. Determine if we 1246 * can extend the previous map entry to include the 1247 * new range as well. 1248 */ 1249 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1250 (prev_entry->protection == prot) && 1251 (prev_entry->max_protection == max)) { 1252 map->size += (end - prev_entry->end); 1253 prev_entry->end = end; 1254 vm_map_entry_resize_free(map, prev_entry); 1255 vm_map_simplify_entry(map, prev_entry); 1256 if (cred != NULL) 1257 crfree(cred); 1258 return (KERN_SUCCESS); 1259 } 1260 1261 /* 1262 * If we can extend the object but cannot extend the 1263 * map entry, we have to create a new map entry. We 1264 * must bump the ref count on the extended object to 1265 * account for it. object may be NULL. 1266 */ 1267 object = prev_entry->object.vm_object; 1268 offset = prev_entry->offset + 1269 (prev_entry->end - prev_entry->start); 1270 vm_object_reference(object); 1271 if (cred != NULL && object != NULL && object->cred != NULL && 1272 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1273 /* Object already accounts for this uid. */ 1274 crfree(cred); 1275 cred = NULL; 1276 } 1277 } 1278 1279 /* 1280 * NOTE: if conditionals fail, object can be NULL here. This occurs 1281 * in things like the buffer map where we manage kva but do not manage 1282 * backing objects. 1283 */ 1284 1285 /* 1286 * Create a new entry 1287 */ 1288 new_entry = vm_map_entry_create(map); 1289 new_entry->start = start; 1290 new_entry->end = end; 1291 new_entry->cred = NULL; 1292 1293 new_entry->eflags = protoeflags; 1294 new_entry->object.vm_object = object; 1295 new_entry->offset = offset; 1296 new_entry->avail_ssize = 0; 1297 1298 new_entry->inheritance = VM_INHERIT_DEFAULT; 1299 new_entry->protection = prot; 1300 new_entry->max_protection = max; 1301 new_entry->wired_count = 0; 1302 1303 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1304 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1305 new_entry->cred = cred; 1306 1307 /* 1308 * Insert the new entry into the list 1309 */ 1310 vm_map_entry_link(map, prev_entry, new_entry); 1311 map->size += new_entry->end - new_entry->start; 1312 1313 /* 1314 * It may be possible to merge the new entry with the next and/or 1315 * previous entries. However, due to MAP_STACK_* being a hack, a 1316 * panic can result from merging such entries. 1317 */ 1318 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1319 vm_map_simplify_entry(map, new_entry); 1320 1321 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1322 vm_map_pmap_enter(map, start, prot, 1323 object, OFF_TO_IDX(offset), end - start, 1324 cow & MAP_PREFAULT_PARTIAL); 1325 } 1326 1327 return (KERN_SUCCESS); 1328 } 1329 1330 /* 1331 * vm_map_findspace: 1332 * 1333 * Find the first fit (lowest VM address) for "length" free bytes 1334 * beginning at address >= start in the given map. 1335 * 1336 * In a vm_map_entry, "adj_free" is the amount of free space 1337 * adjacent (higher address) to this entry, and "max_free" is the 1338 * maximum amount of contiguous free space in its subtree. This 1339 * allows finding a free region in one path down the tree, so 1340 * O(log n) amortized with splay trees. 1341 * 1342 * The map must be locked, and leaves it so. 1343 * 1344 * Returns: 0 on success, and starting address in *addr, 1345 * 1 if insufficient space. 1346 */ 1347 int 1348 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1349 vm_offset_t *addr) /* OUT */ 1350 { 1351 vm_map_entry_t entry; 1352 vm_offset_t st; 1353 1354 /* 1355 * Request must fit within min/max VM address and must avoid 1356 * address wrap. 1357 */ 1358 if (start < map->min_offset) 1359 start = map->min_offset; 1360 if (start + length > map->max_offset || start + length < start) 1361 return (1); 1362 1363 /* Empty tree means wide open address space. */ 1364 if (map->root == NULL) { 1365 *addr = start; 1366 return (0); 1367 } 1368 1369 /* 1370 * After splay, if start comes before root node, then there 1371 * must be a gap from start to the root. 1372 */ 1373 map->root = vm_map_entry_splay(start, map->root); 1374 if (start + length <= map->root->start) { 1375 *addr = start; 1376 return (0); 1377 } 1378 1379 /* 1380 * Root is the last node that might begin its gap before 1381 * start, and this is the last comparison where address 1382 * wrap might be a problem. 1383 */ 1384 st = (start > map->root->end) ? start : map->root->end; 1385 if (length <= map->root->end + map->root->adj_free - st) { 1386 *addr = st; 1387 return (0); 1388 } 1389 1390 /* With max_free, can immediately tell if no solution. */ 1391 entry = map->root->right; 1392 if (entry == NULL || length > entry->max_free) 1393 return (1); 1394 1395 /* 1396 * Search the right subtree in the order: left subtree, root, 1397 * right subtree (first fit). The previous splay implies that 1398 * all regions in the right subtree have addresses > start. 1399 */ 1400 while (entry != NULL) { 1401 if (entry->left != NULL && entry->left->max_free >= length) 1402 entry = entry->left; 1403 else if (entry->adj_free >= length) { 1404 *addr = entry->end; 1405 return (0); 1406 } else 1407 entry = entry->right; 1408 } 1409 1410 /* Can't get here, so panic if we do. */ 1411 panic("vm_map_findspace: max_free corrupt"); 1412 } 1413 1414 int 1415 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1416 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1417 vm_prot_t max, int cow) 1418 { 1419 vm_offset_t end; 1420 int result; 1421 1422 end = start + length; 1423 vm_map_lock(map); 1424 VM_MAP_RANGE_CHECK(map, start, end); 1425 (void) vm_map_delete(map, start, end); 1426 result = vm_map_insert(map, object, offset, start, end, prot, 1427 max, cow); 1428 vm_map_unlock(map); 1429 return (result); 1430 } 1431 1432 /* 1433 * vm_map_find finds an unallocated region in the target address 1434 * map with the given length. The search is defined to be 1435 * first-fit from the specified address; the region found is 1436 * returned in the same parameter. 1437 * 1438 * If object is non-NULL, ref count must be bumped by caller 1439 * prior to making call to account for the new entry. 1440 */ 1441 int 1442 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1443 vm_offset_t *addr, /* IN/OUT */ 1444 vm_size_t length, int find_space, vm_prot_t prot, 1445 vm_prot_t max, int cow) 1446 { 1447 vm_offset_t start; 1448 int result; 1449 1450 start = *addr; 1451 vm_map_lock(map); 1452 do { 1453 if (find_space != VMFS_NO_SPACE) { 1454 if (vm_map_findspace(map, start, length, addr)) { 1455 vm_map_unlock(map); 1456 return (KERN_NO_SPACE); 1457 } 1458 switch (find_space) { 1459 case VMFS_ALIGNED_SPACE: 1460 pmap_align_superpage(object, offset, addr, 1461 length); 1462 break; 1463 #ifdef VMFS_TLB_ALIGNED_SPACE 1464 case VMFS_TLB_ALIGNED_SPACE: 1465 pmap_align_tlb(addr); 1466 break; 1467 #endif 1468 default: 1469 break; 1470 } 1471 1472 start = *addr; 1473 } 1474 result = vm_map_insert(map, object, offset, start, start + 1475 length, prot, max, cow); 1476 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1477 #ifdef VMFS_TLB_ALIGNED_SPACE 1478 || find_space == VMFS_TLB_ALIGNED_SPACE 1479 #endif 1480 )); 1481 vm_map_unlock(map); 1482 return (result); 1483 } 1484 1485 /* 1486 * vm_map_simplify_entry: 1487 * 1488 * Simplify the given map entry by merging with either neighbor. This 1489 * routine also has the ability to merge with both neighbors. 1490 * 1491 * The map must be locked. 1492 * 1493 * This routine guarentees that the passed entry remains valid (though 1494 * possibly extended). When merging, this routine may delete one or 1495 * both neighbors. 1496 */ 1497 void 1498 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1499 { 1500 vm_map_entry_t next, prev; 1501 vm_size_t prevsize, esize; 1502 1503 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1504 return; 1505 1506 prev = entry->prev; 1507 if (prev != &map->header) { 1508 prevsize = prev->end - prev->start; 1509 if ( (prev->end == entry->start) && 1510 (prev->object.vm_object == entry->object.vm_object) && 1511 (!prev->object.vm_object || 1512 (prev->offset + prevsize == entry->offset)) && 1513 (prev->eflags == entry->eflags) && 1514 (prev->protection == entry->protection) && 1515 (prev->max_protection == entry->max_protection) && 1516 (prev->inheritance == entry->inheritance) && 1517 (prev->wired_count == entry->wired_count) && 1518 (prev->cred == entry->cred)) { 1519 vm_map_entry_unlink(map, prev); 1520 entry->start = prev->start; 1521 entry->offset = prev->offset; 1522 if (entry->prev != &map->header) 1523 vm_map_entry_resize_free(map, entry->prev); 1524 1525 /* 1526 * If the backing object is a vnode object, 1527 * vm_object_deallocate() calls vrele(). 1528 * However, vrele() does not lock the vnode 1529 * because the vnode has additional 1530 * references. Thus, the map lock can be kept 1531 * without causing a lock-order reversal with 1532 * the vnode lock. 1533 */ 1534 if (prev->object.vm_object) 1535 vm_object_deallocate(prev->object.vm_object); 1536 if (prev->cred != NULL) 1537 crfree(prev->cred); 1538 vm_map_entry_dispose(map, prev); 1539 } 1540 } 1541 1542 next = entry->next; 1543 if (next != &map->header) { 1544 esize = entry->end - entry->start; 1545 if ((entry->end == next->start) && 1546 (next->object.vm_object == entry->object.vm_object) && 1547 (!entry->object.vm_object || 1548 (entry->offset + esize == next->offset)) && 1549 (next->eflags == entry->eflags) && 1550 (next->protection == entry->protection) && 1551 (next->max_protection == entry->max_protection) && 1552 (next->inheritance == entry->inheritance) && 1553 (next->wired_count == entry->wired_count) && 1554 (next->cred == entry->cred)) { 1555 vm_map_entry_unlink(map, next); 1556 entry->end = next->end; 1557 vm_map_entry_resize_free(map, entry); 1558 1559 /* 1560 * See comment above. 1561 */ 1562 if (next->object.vm_object) 1563 vm_object_deallocate(next->object.vm_object); 1564 if (next->cred != NULL) 1565 crfree(next->cred); 1566 vm_map_entry_dispose(map, next); 1567 } 1568 } 1569 } 1570 /* 1571 * vm_map_clip_start: [ internal use only ] 1572 * 1573 * Asserts that the given entry begins at or after 1574 * the specified address; if necessary, 1575 * it splits the entry into two. 1576 */ 1577 #define vm_map_clip_start(map, entry, startaddr) \ 1578 { \ 1579 if (startaddr > entry->start) \ 1580 _vm_map_clip_start(map, entry, startaddr); \ 1581 } 1582 1583 /* 1584 * This routine is called only when it is known that 1585 * the entry must be split. 1586 */ 1587 static void 1588 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1589 { 1590 vm_map_entry_t new_entry; 1591 1592 VM_MAP_ASSERT_LOCKED(map); 1593 1594 /* 1595 * Split off the front portion -- note that we must insert the new 1596 * entry BEFORE this one, so that this entry has the specified 1597 * starting address. 1598 */ 1599 vm_map_simplify_entry(map, entry); 1600 1601 /* 1602 * If there is no object backing this entry, we might as well create 1603 * one now. If we defer it, an object can get created after the map 1604 * is clipped, and individual objects will be created for the split-up 1605 * map. This is a bit of a hack, but is also about the best place to 1606 * put this improvement. 1607 */ 1608 if (entry->object.vm_object == NULL && !map->system_map) { 1609 vm_object_t object; 1610 object = vm_object_allocate(OBJT_DEFAULT, 1611 atop(entry->end - entry->start)); 1612 entry->object.vm_object = object; 1613 entry->offset = 0; 1614 if (entry->cred != NULL) { 1615 object->cred = entry->cred; 1616 object->charge = entry->end - entry->start; 1617 entry->cred = NULL; 1618 } 1619 } else if (entry->object.vm_object != NULL && 1620 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1621 entry->cred != NULL) { 1622 VM_OBJECT_LOCK(entry->object.vm_object); 1623 KASSERT(entry->object.vm_object->cred == NULL, 1624 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1625 entry->object.vm_object->cred = entry->cred; 1626 entry->object.vm_object->charge = entry->end - entry->start; 1627 VM_OBJECT_UNLOCK(entry->object.vm_object); 1628 entry->cred = NULL; 1629 } 1630 1631 new_entry = vm_map_entry_create(map); 1632 *new_entry = *entry; 1633 1634 new_entry->end = start; 1635 entry->offset += (start - entry->start); 1636 entry->start = start; 1637 if (new_entry->cred != NULL) 1638 crhold(entry->cred); 1639 1640 vm_map_entry_link(map, entry->prev, new_entry); 1641 1642 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1643 vm_object_reference(new_entry->object.vm_object); 1644 } 1645 } 1646 1647 /* 1648 * vm_map_clip_end: [ internal use only ] 1649 * 1650 * Asserts that the given entry ends at or before 1651 * the specified address; if necessary, 1652 * it splits the entry into two. 1653 */ 1654 #define vm_map_clip_end(map, entry, endaddr) \ 1655 { \ 1656 if ((endaddr) < (entry->end)) \ 1657 _vm_map_clip_end((map), (entry), (endaddr)); \ 1658 } 1659 1660 /* 1661 * This routine is called only when it is known that 1662 * the entry must be split. 1663 */ 1664 static void 1665 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1666 { 1667 vm_map_entry_t new_entry; 1668 1669 VM_MAP_ASSERT_LOCKED(map); 1670 1671 /* 1672 * If there is no object backing this entry, we might as well create 1673 * one now. If we defer it, an object can get created after the map 1674 * is clipped, and individual objects will be created for the split-up 1675 * map. This is a bit of a hack, but is also about the best place to 1676 * put this improvement. 1677 */ 1678 if (entry->object.vm_object == NULL && !map->system_map) { 1679 vm_object_t object; 1680 object = vm_object_allocate(OBJT_DEFAULT, 1681 atop(entry->end - entry->start)); 1682 entry->object.vm_object = object; 1683 entry->offset = 0; 1684 if (entry->cred != NULL) { 1685 object->cred = entry->cred; 1686 object->charge = entry->end - entry->start; 1687 entry->cred = NULL; 1688 } 1689 } else if (entry->object.vm_object != NULL && 1690 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1691 entry->cred != NULL) { 1692 VM_OBJECT_LOCK(entry->object.vm_object); 1693 KASSERT(entry->object.vm_object->cred == NULL, 1694 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1695 entry->object.vm_object->cred = entry->cred; 1696 entry->object.vm_object->charge = entry->end - entry->start; 1697 VM_OBJECT_UNLOCK(entry->object.vm_object); 1698 entry->cred = NULL; 1699 } 1700 1701 /* 1702 * Create a new entry and insert it AFTER the specified entry 1703 */ 1704 new_entry = vm_map_entry_create(map); 1705 *new_entry = *entry; 1706 1707 new_entry->start = entry->end = end; 1708 new_entry->offset += (end - entry->start); 1709 if (new_entry->cred != NULL) 1710 crhold(entry->cred); 1711 1712 vm_map_entry_link(map, entry, new_entry); 1713 1714 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1715 vm_object_reference(new_entry->object.vm_object); 1716 } 1717 } 1718 1719 /* 1720 * vm_map_submap: [ kernel use only ] 1721 * 1722 * Mark the given range as handled by a subordinate map. 1723 * 1724 * This range must have been created with vm_map_find, 1725 * and no other operations may have been performed on this 1726 * range prior to calling vm_map_submap. 1727 * 1728 * Only a limited number of operations can be performed 1729 * within this rage after calling vm_map_submap: 1730 * vm_fault 1731 * [Don't try vm_map_copy!] 1732 * 1733 * To remove a submapping, one must first remove the 1734 * range from the superior map, and then destroy the 1735 * submap (if desired). [Better yet, don't try it.] 1736 */ 1737 int 1738 vm_map_submap( 1739 vm_map_t map, 1740 vm_offset_t start, 1741 vm_offset_t end, 1742 vm_map_t submap) 1743 { 1744 vm_map_entry_t entry; 1745 int result = KERN_INVALID_ARGUMENT; 1746 1747 vm_map_lock(map); 1748 1749 VM_MAP_RANGE_CHECK(map, start, end); 1750 1751 if (vm_map_lookup_entry(map, start, &entry)) { 1752 vm_map_clip_start(map, entry, start); 1753 } else 1754 entry = entry->next; 1755 1756 vm_map_clip_end(map, entry, end); 1757 1758 if ((entry->start == start) && (entry->end == end) && 1759 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1760 (entry->object.vm_object == NULL)) { 1761 entry->object.sub_map = submap; 1762 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1763 result = KERN_SUCCESS; 1764 } 1765 vm_map_unlock(map); 1766 1767 return (result); 1768 } 1769 1770 /* 1771 * The maximum number of pages to map 1772 */ 1773 #define MAX_INIT_PT 96 1774 1775 /* 1776 * vm_map_pmap_enter: 1777 * 1778 * Preload read-only mappings for the given object's resident pages into 1779 * the given map. This eliminates the soft faults on process startup and 1780 * immediately after an mmap(2). Because these are speculative mappings, 1781 * cached pages are not reactivated and mapped. 1782 */ 1783 void 1784 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1785 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1786 { 1787 vm_offset_t start; 1788 vm_page_t p, p_start; 1789 vm_pindex_t psize, tmpidx; 1790 1791 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1792 return; 1793 VM_OBJECT_LOCK(object); 1794 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1795 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1796 goto unlock_return; 1797 } 1798 1799 psize = atop(size); 1800 1801 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1802 object->resident_page_count > MAX_INIT_PT) 1803 goto unlock_return; 1804 1805 if (psize + pindex > object->size) { 1806 if (object->size < pindex) 1807 goto unlock_return; 1808 psize = object->size - pindex; 1809 } 1810 1811 start = 0; 1812 p_start = NULL; 1813 1814 p = vm_page_find_least(object, pindex); 1815 /* 1816 * Assert: the variable p is either (1) the page with the 1817 * least pindex greater than or equal to the parameter pindex 1818 * or (2) NULL. 1819 */ 1820 for (; 1821 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1822 p = TAILQ_NEXT(p, listq)) { 1823 /* 1824 * don't allow an madvise to blow away our really 1825 * free pages allocating pv entries. 1826 */ 1827 if ((flags & MAP_PREFAULT_MADVISE) && 1828 cnt.v_free_count < cnt.v_free_reserved) { 1829 psize = tmpidx; 1830 break; 1831 } 1832 if (p->valid == VM_PAGE_BITS_ALL) { 1833 if (p_start == NULL) { 1834 start = addr + ptoa(tmpidx); 1835 p_start = p; 1836 } 1837 } else if (p_start != NULL) { 1838 pmap_enter_object(map->pmap, start, addr + 1839 ptoa(tmpidx), p_start, prot); 1840 p_start = NULL; 1841 } 1842 } 1843 if (p_start != NULL) 1844 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1845 p_start, prot); 1846 unlock_return: 1847 VM_OBJECT_UNLOCK(object); 1848 } 1849 1850 /* 1851 * vm_map_protect: 1852 * 1853 * Sets the protection of the specified address 1854 * region in the target map. If "set_max" is 1855 * specified, the maximum protection is to be set; 1856 * otherwise, only the current protection is affected. 1857 */ 1858 int 1859 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1860 vm_prot_t new_prot, boolean_t set_max) 1861 { 1862 vm_map_entry_t current, entry; 1863 vm_object_t obj; 1864 struct ucred *cred; 1865 vm_prot_t old_prot; 1866 1867 vm_map_lock(map); 1868 1869 VM_MAP_RANGE_CHECK(map, start, end); 1870 1871 if (vm_map_lookup_entry(map, start, &entry)) { 1872 vm_map_clip_start(map, entry, start); 1873 } else { 1874 entry = entry->next; 1875 } 1876 1877 /* 1878 * Make a first pass to check for protection violations. 1879 */ 1880 current = entry; 1881 while ((current != &map->header) && (current->start < end)) { 1882 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1883 vm_map_unlock(map); 1884 return (KERN_INVALID_ARGUMENT); 1885 } 1886 if ((new_prot & current->max_protection) != new_prot) { 1887 vm_map_unlock(map); 1888 return (KERN_PROTECTION_FAILURE); 1889 } 1890 current = current->next; 1891 } 1892 1893 1894 /* 1895 * Do an accounting pass for private read-only mappings that 1896 * now will do cow due to allowed write (e.g. debugger sets 1897 * breakpoint on text segment) 1898 */ 1899 for (current = entry; (current != &map->header) && 1900 (current->start < end); current = current->next) { 1901 1902 vm_map_clip_end(map, current, end); 1903 1904 if (set_max || 1905 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1906 ENTRY_CHARGED(current)) { 1907 continue; 1908 } 1909 1910 cred = curthread->td_ucred; 1911 obj = current->object.vm_object; 1912 1913 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1914 if (!swap_reserve(current->end - current->start)) { 1915 vm_map_unlock(map); 1916 return (KERN_RESOURCE_SHORTAGE); 1917 } 1918 crhold(cred); 1919 current->cred = cred; 1920 continue; 1921 } 1922 1923 VM_OBJECT_LOCK(obj); 1924 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1925 VM_OBJECT_UNLOCK(obj); 1926 continue; 1927 } 1928 1929 /* 1930 * Charge for the whole object allocation now, since 1931 * we cannot distinguish between non-charged and 1932 * charged clipped mapping of the same object later. 1933 */ 1934 KASSERT(obj->charge == 0, 1935 ("vm_map_protect: object %p overcharged\n", obj)); 1936 if (!swap_reserve(ptoa(obj->size))) { 1937 VM_OBJECT_UNLOCK(obj); 1938 vm_map_unlock(map); 1939 return (KERN_RESOURCE_SHORTAGE); 1940 } 1941 1942 crhold(cred); 1943 obj->cred = cred; 1944 obj->charge = ptoa(obj->size); 1945 VM_OBJECT_UNLOCK(obj); 1946 } 1947 1948 /* 1949 * Go back and fix up protections. [Note that clipping is not 1950 * necessary the second time.] 1951 */ 1952 current = entry; 1953 while ((current != &map->header) && (current->start < end)) { 1954 old_prot = current->protection; 1955 1956 if (set_max) 1957 current->protection = 1958 (current->max_protection = new_prot) & 1959 old_prot; 1960 else 1961 current->protection = new_prot; 1962 1963 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1964 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1965 (current->protection & VM_PROT_WRITE) != 0 && 1966 (old_prot & VM_PROT_WRITE) == 0) { 1967 vm_fault_copy_entry(map, map, current, current, NULL); 1968 } 1969 1970 /* 1971 * When restricting access, update the physical map. Worry 1972 * about copy-on-write here. 1973 */ 1974 if ((old_prot & ~current->protection) != 0) { 1975 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1976 VM_PROT_ALL) 1977 pmap_protect(map->pmap, current->start, 1978 current->end, 1979 current->protection & MASK(current)); 1980 #undef MASK 1981 } 1982 vm_map_simplify_entry(map, current); 1983 current = current->next; 1984 } 1985 vm_map_unlock(map); 1986 return (KERN_SUCCESS); 1987 } 1988 1989 /* 1990 * vm_map_madvise: 1991 * 1992 * This routine traverses a processes map handling the madvise 1993 * system call. Advisories are classified as either those effecting 1994 * the vm_map_entry structure, or those effecting the underlying 1995 * objects. 1996 */ 1997 int 1998 vm_map_madvise( 1999 vm_map_t map, 2000 vm_offset_t start, 2001 vm_offset_t end, 2002 int behav) 2003 { 2004 vm_map_entry_t current, entry; 2005 int modify_map = 0; 2006 2007 /* 2008 * Some madvise calls directly modify the vm_map_entry, in which case 2009 * we need to use an exclusive lock on the map and we need to perform 2010 * various clipping operations. Otherwise we only need a read-lock 2011 * on the map. 2012 */ 2013 switch(behav) { 2014 case MADV_NORMAL: 2015 case MADV_SEQUENTIAL: 2016 case MADV_RANDOM: 2017 case MADV_NOSYNC: 2018 case MADV_AUTOSYNC: 2019 case MADV_NOCORE: 2020 case MADV_CORE: 2021 modify_map = 1; 2022 vm_map_lock(map); 2023 break; 2024 case MADV_WILLNEED: 2025 case MADV_DONTNEED: 2026 case MADV_FREE: 2027 vm_map_lock_read(map); 2028 break; 2029 default: 2030 return (KERN_INVALID_ARGUMENT); 2031 } 2032 2033 /* 2034 * Locate starting entry and clip if necessary. 2035 */ 2036 VM_MAP_RANGE_CHECK(map, start, end); 2037 2038 if (vm_map_lookup_entry(map, start, &entry)) { 2039 if (modify_map) 2040 vm_map_clip_start(map, entry, start); 2041 } else { 2042 entry = entry->next; 2043 } 2044 2045 if (modify_map) { 2046 /* 2047 * madvise behaviors that are implemented in the vm_map_entry. 2048 * 2049 * We clip the vm_map_entry so that behavioral changes are 2050 * limited to the specified address range. 2051 */ 2052 for (current = entry; 2053 (current != &map->header) && (current->start < end); 2054 current = current->next 2055 ) { 2056 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2057 continue; 2058 2059 vm_map_clip_end(map, current, end); 2060 2061 switch (behav) { 2062 case MADV_NORMAL: 2063 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2064 break; 2065 case MADV_SEQUENTIAL: 2066 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2067 break; 2068 case MADV_RANDOM: 2069 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2070 break; 2071 case MADV_NOSYNC: 2072 current->eflags |= MAP_ENTRY_NOSYNC; 2073 break; 2074 case MADV_AUTOSYNC: 2075 current->eflags &= ~MAP_ENTRY_NOSYNC; 2076 break; 2077 case MADV_NOCORE: 2078 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2079 break; 2080 case MADV_CORE: 2081 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2082 break; 2083 default: 2084 break; 2085 } 2086 vm_map_simplify_entry(map, current); 2087 } 2088 vm_map_unlock(map); 2089 } else { 2090 vm_pindex_t pindex; 2091 int count; 2092 2093 /* 2094 * madvise behaviors that are implemented in the underlying 2095 * vm_object. 2096 * 2097 * Since we don't clip the vm_map_entry, we have to clip 2098 * the vm_object pindex and count. 2099 */ 2100 for (current = entry; 2101 (current != &map->header) && (current->start < end); 2102 current = current->next 2103 ) { 2104 vm_offset_t useStart; 2105 2106 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2107 continue; 2108 2109 pindex = OFF_TO_IDX(current->offset); 2110 count = atop(current->end - current->start); 2111 useStart = current->start; 2112 2113 if (current->start < start) { 2114 pindex += atop(start - current->start); 2115 count -= atop(start - current->start); 2116 useStart = start; 2117 } 2118 if (current->end > end) 2119 count -= atop(current->end - end); 2120 2121 if (count <= 0) 2122 continue; 2123 2124 vm_object_madvise(current->object.vm_object, 2125 pindex, count, behav); 2126 if (behav == MADV_WILLNEED) { 2127 vm_map_pmap_enter(map, 2128 useStart, 2129 current->protection, 2130 current->object.vm_object, 2131 pindex, 2132 (count << PAGE_SHIFT), 2133 MAP_PREFAULT_MADVISE 2134 ); 2135 } 2136 } 2137 vm_map_unlock_read(map); 2138 } 2139 return (0); 2140 } 2141 2142 2143 /* 2144 * vm_map_inherit: 2145 * 2146 * Sets the inheritance of the specified address 2147 * range in the target map. Inheritance 2148 * affects how the map will be shared with 2149 * child maps at the time of vmspace_fork. 2150 */ 2151 int 2152 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2153 vm_inherit_t new_inheritance) 2154 { 2155 vm_map_entry_t entry; 2156 vm_map_entry_t temp_entry; 2157 2158 switch (new_inheritance) { 2159 case VM_INHERIT_NONE: 2160 case VM_INHERIT_COPY: 2161 case VM_INHERIT_SHARE: 2162 break; 2163 default: 2164 return (KERN_INVALID_ARGUMENT); 2165 } 2166 vm_map_lock(map); 2167 VM_MAP_RANGE_CHECK(map, start, end); 2168 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2169 entry = temp_entry; 2170 vm_map_clip_start(map, entry, start); 2171 } else 2172 entry = temp_entry->next; 2173 while ((entry != &map->header) && (entry->start < end)) { 2174 vm_map_clip_end(map, entry, end); 2175 entry->inheritance = new_inheritance; 2176 vm_map_simplify_entry(map, entry); 2177 entry = entry->next; 2178 } 2179 vm_map_unlock(map); 2180 return (KERN_SUCCESS); 2181 } 2182 2183 /* 2184 * vm_map_unwire: 2185 * 2186 * Implements both kernel and user unwiring. 2187 */ 2188 int 2189 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2190 int flags) 2191 { 2192 vm_map_entry_t entry, first_entry, tmp_entry; 2193 vm_offset_t saved_start; 2194 unsigned int last_timestamp; 2195 int rv; 2196 boolean_t need_wakeup, result, user_unwire; 2197 2198 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2199 vm_map_lock(map); 2200 VM_MAP_RANGE_CHECK(map, start, end); 2201 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2202 if (flags & VM_MAP_WIRE_HOLESOK) 2203 first_entry = first_entry->next; 2204 else { 2205 vm_map_unlock(map); 2206 return (KERN_INVALID_ADDRESS); 2207 } 2208 } 2209 last_timestamp = map->timestamp; 2210 entry = first_entry; 2211 while (entry != &map->header && entry->start < end) { 2212 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2213 /* 2214 * We have not yet clipped the entry. 2215 */ 2216 saved_start = (start >= entry->start) ? start : 2217 entry->start; 2218 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2219 if (vm_map_unlock_and_wait(map, 0)) { 2220 /* 2221 * Allow interruption of user unwiring? 2222 */ 2223 } 2224 vm_map_lock(map); 2225 if (last_timestamp+1 != map->timestamp) { 2226 /* 2227 * Look again for the entry because the map was 2228 * modified while it was unlocked. 2229 * Specifically, the entry may have been 2230 * clipped, merged, or deleted. 2231 */ 2232 if (!vm_map_lookup_entry(map, saved_start, 2233 &tmp_entry)) { 2234 if (flags & VM_MAP_WIRE_HOLESOK) 2235 tmp_entry = tmp_entry->next; 2236 else { 2237 if (saved_start == start) { 2238 /* 2239 * First_entry has been deleted. 2240 */ 2241 vm_map_unlock(map); 2242 return (KERN_INVALID_ADDRESS); 2243 } 2244 end = saved_start; 2245 rv = KERN_INVALID_ADDRESS; 2246 goto done; 2247 } 2248 } 2249 if (entry == first_entry) 2250 first_entry = tmp_entry; 2251 else 2252 first_entry = NULL; 2253 entry = tmp_entry; 2254 } 2255 last_timestamp = map->timestamp; 2256 continue; 2257 } 2258 vm_map_clip_start(map, entry, start); 2259 vm_map_clip_end(map, entry, end); 2260 /* 2261 * Mark the entry in case the map lock is released. (See 2262 * above.) 2263 */ 2264 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2265 /* 2266 * Check the map for holes in the specified region. 2267 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2268 */ 2269 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2270 (entry->end < end && (entry->next == &map->header || 2271 entry->next->start > entry->end))) { 2272 end = entry->end; 2273 rv = KERN_INVALID_ADDRESS; 2274 goto done; 2275 } 2276 /* 2277 * If system unwiring, require that the entry is system wired. 2278 */ 2279 if (!user_unwire && 2280 vm_map_entry_system_wired_count(entry) == 0) { 2281 end = entry->end; 2282 rv = KERN_INVALID_ARGUMENT; 2283 goto done; 2284 } 2285 entry = entry->next; 2286 } 2287 rv = KERN_SUCCESS; 2288 done: 2289 need_wakeup = FALSE; 2290 if (first_entry == NULL) { 2291 result = vm_map_lookup_entry(map, start, &first_entry); 2292 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2293 first_entry = first_entry->next; 2294 else 2295 KASSERT(result, ("vm_map_unwire: lookup failed")); 2296 } 2297 entry = first_entry; 2298 while (entry != &map->header && entry->start < end) { 2299 if (rv == KERN_SUCCESS && (!user_unwire || 2300 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2301 if (user_unwire) 2302 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2303 entry->wired_count--; 2304 if (entry->wired_count == 0) { 2305 /* 2306 * Retain the map lock. 2307 */ 2308 vm_fault_unwire(map, entry->start, entry->end, 2309 entry->object.vm_object != NULL && 2310 (entry->object.vm_object->type == OBJT_DEVICE || 2311 entry->object.vm_object->type == OBJT_SG)); 2312 } 2313 } 2314 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2315 ("vm_map_unwire: in-transition flag missing")); 2316 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2317 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2318 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2319 need_wakeup = TRUE; 2320 } 2321 vm_map_simplify_entry(map, entry); 2322 entry = entry->next; 2323 } 2324 vm_map_unlock(map); 2325 if (need_wakeup) 2326 vm_map_wakeup(map); 2327 return (rv); 2328 } 2329 2330 /* 2331 * vm_map_wire: 2332 * 2333 * Implements both kernel and user wiring. 2334 */ 2335 int 2336 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2337 int flags) 2338 { 2339 vm_map_entry_t entry, first_entry, tmp_entry; 2340 vm_offset_t saved_end, saved_start; 2341 unsigned int last_timestamp; 2342 int rv; 2343 boolean_t fictitious, need_wakeup, result, user_wire; 2344 vm_prot_t prot; 2345 2346 prot = 0; 2347 if (flags & VM_MAP_WIRE_WRITE) 2348 prot |= VM_PROT_WRITE; 2349 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2350 vm_map_lock(map); 2351 VM_MAP_RANGE_CHECK(map, start, end); 2352 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2353 if (flags & VM_MAP_WIRE_HOLESOK) 2354 first_entry = first_entry->next; 2355 else { 2356 vm_map_unlock(map); 2357 return (KERN_INVALID_ADDRESS); 2358 } 2359 } 2360 last_timestamp = map->timestamp; 2361 entry = first_entry; 2362 while (entry != &map->header && entry->start < end) { 2363 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2364 /* 2365 * We have not yet clipped the entry. 2366 */ 2367 saved_start = (start >= entry->start) ? start : 2368 entry->start; 2369 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2370 if (vm_map_unlock_and_wait(map, 0)) { 2371 /* 2372 * Allow interruption of user wiring? 2373 */ 2374 } 2375 vm_map_lock(map); 2376 if (last_timestamp + 1 != map->timestamp) { 2377 /* 2378 * Look again for the entry because the map was 2379 * modified while it was unlocked. 2380 * Specifically, the entry may have been 2381 * clipped, merged, or deleted. 2382 */ 2383 if (!vm_map_lookup_entry(map, saved_start, 2384 &tmp_entry)) { 2385 if (flags & VM_MAP_WIRE_HOLESOK) 2386 tmp_entry = tmp_entry->next; 2387 else { 2388 if (saved_start == start) { 2389 /* 2390 * first_entry has been deleted. 2391 */ 2392 vm_map_unlock(map); 2393 return (KERN_INVALID_ADDRESS); 2394 } 2395 end = saved_start; 2396 rv = KERN_INVALID_ADDRESS; 2397 goto done; 2398 } 2399 } 2400 if (entry == first_entry) 2401 first_entry = tmp_entry; 2402 else 2403 first_entry = NULL; 2404 entry = tmp_entry; 2405 } 2406 last_timestamp = map->timestamp; 2407 continue; 2408 } 2409 vm_map_clip_start(map, entry, start); 2410 vm_map_clip_end(map, entry, end); 2411 /* 2412 * Mark the entry in case the map lock is released. (See 2413 * above.) 2414 */ 2415 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2416 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2417 || (entry->protection & prot) != prot) { 2418 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2419 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2420 end = entry->end; 2421 rv = KERN_INVALID_ADDRESS; 2422 goto done; 2423 } 2424 goto next_entry; 2425 } 2426 if (entry->wired_count == 0) { 2427 entry->wired_count++; 2428 saved_start = entry->start; 2429 saved_end = entry->end; 2430 fictitious = entry->object.vm_object != NULL && 2431 (entry->object.vm_object->type == OBJT_DEVICE || 2432 entry->object.vm_object->type == OBJT_SG); 2433 /* 2434 * Release the map lock, relying on the in-transition 2435 * mark. Mark the map busy for fork. 2436 */ 2437 vm_map_busy(map); 2438 vm_map_unlock(map); 2439 rv = vm_fault_wire(map, saved_start, saved_end, 2440 fictitious); 2441 vm_map_lock(map); 2442 vm_map_unbusy(map); 2443 if (last_timestamp + 1 != map->timestamp) { 2444 /* 2445 * Look again for the entry because the map was 2446 * modified while it was unlocked. The entry 2447 * may have been clipped, but NOT merged or 2448 * deleted. 2449 */ 2450 result = vm_map_lookup_entry(map, saved_start, 2451 &tmp_entry); 2452 KASSERT(result, ("vm_map_wire: lookup failed")); 2453 if (entry == first_entry) 2454 first_entry = tmp_entry; 2455 else 2456 first_entry = NULL; 2457 entry = tmp_entry; 2458 while (entry->end < saved_end) { 2459 if (rv != KERN_SUCCESS) { 2460 KASSERT(entry->wired_count == 1, 2461 ("vm_map_wire: bad count")); 2462 entry->wired_count = -1; 2463 } 2464 entry = entry->next; 2465 } 2466 } 2467 last_timestamp = map->timestamp; 2468 if (rv != KERN_SUCCESS) { 2469 KASSERT(entry->wired_count == 1, 2470 ("vm_map_wire: bad count")); 2471 /* 2472 * Assign an out-of-range value to represent 2473 * the failure to wire this entry. 2474 */ 2475 entry->wired_count = -1; 2476 end = entry->end; 2477 goto done; 2478 } 2479 } else if (!user_wire || 2480 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2481 entry->wired_count++; 2482 } 2483 /* 2484 * Check the map for holes in the specified region. 2485 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2486 */ 2487 next_entry: 2488 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2489 (entry->end < end && (entry->next == &map->header || 2490 entry->next->start > entry->end))) { 2491 end = entry->end; 2492 rv = KERN_INVALID_ADDRESS; 2493 goto done; 2494 } 2495 entry = entry->next; 2496 } 2497 rv = KERN_SUCCESS; 2498 done: 2499 need_wakeup = FALSE; 2500 if (first_entry == NULL) { 2501 result = vm_map_lookup_entry(map, start, &first_entry); 2502 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2503 first_entry = first_entry->next; 2504 else 2505 KASSERT(result, ("vm_map_wire: lookup failed")); 2506 } 2507 entry = first_entry; 2508 while (entry != &map->header && entry->start < end) { 2509 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2510 goto next_entry_done; 2511 if (rv == KERN_SUCCESS) { 2512 if (user_wire) 2513 entry->eflags |= MAP_ENTRY_USER_WIRED; 2514 } else if (entry->wired_count == -1) { 2515 /* 2516 * Wiring failed on this entry. Thus, unwiring is 2517 * unnecessary. 2518 */ 2519 entry->wired_count = 0; 2520 } else { 2521 if (!user_wire || 2522 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2523 entry->wired_count--; 2524 if (entry->wired_count == 0) { 2525 /* 2526 * Retain the map lock. 2527 */ 2528 vm_fault_unwire(map, entry->start, entry->end, 2529 entry->object.vm_object != NULL && 2530 (entry->object.vm_object->type == OBJT_DEVICE || 2531 entry->object.vm_object->type == OBJT_SG)); 2532 } 2533 } 2534 next_entry_done: 2535 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2536 ("vm_map_wire: in-transition flag missing")); 2537 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2538 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2539 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2540 need_wakeup = TRUE; 2541 } 2542 vm_map_simplify_entry(map, entry); 2543 entry = entry->next; 2544 } 2545 vm_map_unlock(map); 2546 if (need_wakeup) 2547 vm_map_wakeup(map); 2548 return (rv); 2549 } 2550 2551 /* 2552 * vm_map_sync 2553 * 2554 * Push any dirty cached pages in the address range to their pager. 2555 * If syncio is TRUE, dirty pages are written synchronously. 2556 * If invalidate is TRUE, any cached pages are freed as well. 2557 * 2558 * If the size of the region from start to end is zero, we are 2559 * supposed to flush all modified pages within the region containing 2560 * start. Unfortunately, a region can be split or coalesced with 2561 * neighboring regions, making it difficult to determine what the 2562 * original region was. Therefore, we approximate this requirement by 2563 * flushing the current region containing start. 2564 * 2565 * Returns an error if any part of the specified range is not mapped. 2566 */ 2567 int 2568 vm_map_sync( 2569 vm_map_t map, 2570 vm_offset_t start, 2571 vm_offset_t end, 2572 boolean_t syncio, 2573 boolean_t invalidate) 2574 { 2575 vm_map_entry_t current; 2576 vm_map_entry_t entry; 2577 vm_size_t size; 2578 vm_object_t object; 2579 vm_ooffset_t offset; 2580 unsigned int last_timestamp; 2581 2582 vm_map_lock_read(map); 2583 VM_MAP_RANGE_CHECK(map, start, end); 2584 if (!vm_map_lookup_entry(map, start, &entry)) { 2585 vm_map_unlock_read(map); 2586 return (KERN_INVALID_ADDRESS); 2587 } else if (start == end) { 2588 start = entry->start; 2589 end = entry->end; 2590 } 2591 /* 2592 * Make a first pass to check for user-wired memory and holes. 2593 */ 2594 for (current = entry; current != &map->header && current->start < end; 2595 current = current->next) { 2596 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2597 vm_map_unlock_read(map); 2598 return (KERN_INVALID_ARGUMENT); 2599 } 2600 if (end > current->end && 2601 (current->next == &map->header || 2602 current->end != current->next->start)) { 2603 vm_map_unlock_read(map); 2604 return (KERN_INVALID_ADDRESS); 2605 } 2606 } 2607 2608 if (invalidate) 2609 pmap_remove(map->pmap, start, end); 2610 2611 /* 2612 * Make a second pass, cleaning/uncaching pages from the indicated 2613 * objects as we go. 2614 */ 2615 for (current = entry; current != &map->header && current->start < end;) { 2616 offset = current->offset + (start - current->start); 2617 size = (end <= current->end ? end : current->end) - start; 2618 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2619 vm_map_t smap; 2620 vm_map_entry_t tentry; 2621 vm_size_t tsize; 2622 2623 smap = current->object.sub_map; 2624 vm_map_lock_read(smap); 2625 (void) vm_map_lookup_entry(smap, offset, &tentry); 2626 tsize = tentry->end - offset; 2627 if (tsize < size) 2628 size = tsize; 2629 object = tentry->object.vm_object; 2630 offset = tentry->offset + (offset - tentry->start); 2631 vm_map_unlock_read(smap); 2632 } else { 2633 object = current->object.vm_object; 2634 } 2635 vm_object_reference(object); 2636 last_timestamp = map->timestamp; 2637 vm_map_unlock_read(map); 2638 vm_object_sync(object, offset, size, syncio, invalidate); 2639 start += size; 2640 vm_object_deallocate(object); 2641 vm_map_lock_read(map); 2642 if (last_timestamp == map->timestamp || 2643 !vm_map_lookup_entry(map, start, ¤t)) 2644 current = current->next; 2645 } 2646 2647 vm_map_unlock_read(map); 2648 return (KERN_SUCCESS); 2649 } 2650 2651 /* 2652 * vm_map_entry_unwire: [ internal use only ] 2653 * 2654 * Make the region specified by this entry pageable. 2655 * 2656 * The map in question should be locked. 2657 * [This is the reason for this routine's existence.] 2658 */ 2659 static void 2660 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2661 { 2662 vm_fault_unwire(map, entry->start, entry->end, 2663 entry->object.vm_object != NULL && 2664 (entry->object.vm_object->type == OBJT_DEVICE || 2665 entry->object.vm_object->type == OBJT_SG)); 2666 entry->wired_count = 0; 2667 } 2668 2669 static void 2670 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2671 { 2672 2673 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2674 vm_object_deallocate(entry->object.vm_object); 2675 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2676 } 2677 2678 /* 2679 * vm_map_entry_delete: [ internal use only ] 2680 * 2681 * Deallocate the given entry from the target map. 2682 */ 2683 static void 2684 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2685 { 2686 vm_object_t object; 2687 vm_pindex_t offidxstart, offidxend, count, size1; 2688 vm_ooffset_t size; 2689 2690 vm_map_entry_unlink(map, entry); 2691 object = entry->object.vm_object; 2692 size = entry->end - entry->start; 2693 map->size -= size; 2694 2695 if (entry->cred != NULL) { 2696 swap_release_by_cred(size, entry->cred); 2697 crfree(entry->cred); 2698 } 2699 2700 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2701 (object != NULL)) { 2702 KASSERT(entry->cred == NULL || object->cred == NULL || 2703 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2704 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2705 count = OFF_TO_IDX(size); 2706 offidxstart = OFF_TO_IDX(entry->offset); 2707 offidxend = offidxstart + count; 2708 VM_OBJECT_LOCK(object); 2709 if (object->ref_count != 1 && 2710 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2711 object == kernel_object || object == kmem_object)) { 2712 vm_object_collapse(object); 2713 2714 /* 2715 * The option OBJPR_NOTMAPPED can be passed here 2716 * because vm_map_delete() already performed 2717 * pmap_remove() on the only mapping to this range 2718 * of pages. 2719 */ 2720 vm_object_page_remove(object, offidxstart, offidxend, 2721 OBJPR_NOTMAPPED); 2722 if (object->type == OBJT_SWAP) 2723 swap_pager_freespace(object, offidxstart, count); 2724 if (offidxend >= object->size && 2725 offidxstart < object->size) { 2726 size1 = object->size; 2727 object->size = offidxstart; 2728 if (object->cred != NULL) { 2729 size1 -= object->size; 2730 KASSERT(object->charge >= ptoa(size1), 2731 ("vm_map_entry_delete: object->charge < 0")); 2732 swap_release_by_cred(ptoa(size1), object->cred); 2733 object->charge -= ptoa(size1); 2734 } 2735 } 2736 } 2737 VM_OBJECT_UNLOCK(object); 2738 } else 2739 entry->object.vm_object = NULL; 2740 if (map->system_map) 2741 vm_map_entry_deallocate(entry, TRUE); 2742 else { 2743 entry->next = curthread->td_map_def_user; 2744 curthread->td_map_def_user = entry; 2745 } 2746 } 2747 2748 /* 2749 * vm_map_delete: [ internal use only ] 2750 * 2751 * Deallocates the given address range from the target 2752 * map. 2753 */ 2754 int 2755 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2756 { 2757 vm_map_entry_t entry; 2758 vm_map_entry_t first_entry; 2759 2760 VM_MAP_ASSERT_LOCKED(map); 2761 2762 /* 2763 * Find the start of the region, and clip it 2764 */ 2765 if (!vm_map_lookup_entry(map, start, &first_entry)) 2766 entry = first_entry->next; 2767 else { 2768 entry = first_entry; 2769 vm_map_clip_start(map, entry, start); 2770 } 2771 2772 /* 2773 * Step through all entries in this region 2774 */ 2775 while ((entry != &map->header) && (entry->start < end)) { 2776 vm_map_entry_t next; 2777 2778 /* 2779 * Wait for wiring or unwiring of an entry to complete. 2780 * Also wait for any system wirings to disappear on 2781 * user maps. 2782 */ 2783 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2784 (vm_map_pmap(map) != kernel_pmap && 2785 vm_map_entry_system_wired_count(entry) != 0)) { 2786 unsigned int last_timestamp; 2787 vm_offset_t saved_start; 2788 vm_map_entry_t tmp_entry; 2789 2790 saved_start = entry->start; 2791 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2792 last_timestamp = map->timestamp; 2793 (void) vm_map_unlock_and_wait(map, 0); 2794 vm_map_lock(map); 2795 if (last_timestamp + 1 != map->timestamp) { 2796 /* 2797 * Look again for the entry because the map was 2798 * modified while it was unlocked. 2799 * Specifically, the entry may have been 2800 * clipped, merged, or deleted. 2801 */ 2802 if (!vm_map_lookup_entry(map, saved_start, 2803 &tmp_entry)) 2804 entry = tmp_entry->next; 2805 else { 2806 entry = tmp_entry; 2807 vm_map_clip_start(map, entry, 2808 saved_start); 2809 } 2810 } 2811 continue; 2812 } 2813 vm_map_clip_end(map, entry, end); 2814 2815 next = entry->next; 2816 2817 /* 2818 * Unwire before removing addresses from the pmap; otherwise, 2819 * unwiring will put the entries back in the pmap. 2820 */ 2821 if (entry->wired_count != 0) { 2822 vm_map_entry_unwire(map, entry); 2823 } 2824 2825 pmap_remove(map->pmap, entry->start, entry->end); 2826 2827 /* 2828 * Delete the entry only after removing all pmap 2829 * entries pointing to its pages. (Otherwise, its 2830 * page frames may be reallocated, and any modify bits 2831 * will be set in the wrong object!) 2832 */ 2833 vm_map_entry_delete(map, entry); 2834 entry = next; 2835 } 2836 return (KERN_SUCCESS); 2837 } 2838 2839 /* 2840 * vm_map_remove: 2841 * 2842 * Remove the given address range from the target map. 2843 * This is the exported form of vm_map_delete. 2844 */ 2845 int 2846 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2847 { 2848 int result; 2849 2850 vm_map_lock(map); 2851 VM_MAP_RANGE_CHECK(map, start, end); 2852 result = vm_map_delete(map, start, end); 2853 vm_map_unlock(map); 2854 return (result); 2855 } 2856 2857 /* 2858 * vm_map_check_protection: 2859 * 2860 * Assert that the target map allows the specified privilege on the 2861 * entire address region given. The entire region must be allocated. 2862 * 2863 * WARNING! This code does not and should not check whether the 2864 * contents of the region is accessible. For example a smaller file 2865 * might be mapped into a larger address space. 2866 * 2867 * NOTE! This code is also called by munmap(). 2868 * 2869 * The map must be locked. A read lock is sufficient. 2870 */ 2871 boolean_t 2872 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2873 vm_prot_t protection) 2874 { 2875 vm_map_entry_t entry; 2876 vm_map_entry_t tmp_entry; 2877 2878 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2879 return (FALSE); 2880 entry = tmp_entry; 2881 2882 while (start < end) { 2883 if (entry == &map->header) 2884 return (FALSE); 2885 /* 2886 * No holes allowed! 2887 */ 2888 if (start < entry->start) 2889 return (FALSE); 2890 /* 2891 * Check protection associated with entry. 2892 */ 2893 if ((entry->protection & protection) != protection) 2894 return (FALSE); 2895 /* go to next entry */ 2896 start = entry->end; 2897 entry = entry->next; 2898 } 2899 return (TRUE); 2900 } 2901 2902 /* 2903 * vm_map_copy_entry: 2904 * 2905 * Copies the contents of the source entry to the destination 2906 * entry. The entries *must* be aligned properly. 2907 */ 2908 static void 2909 vm_map_copy_entry( 2910 vm_map_t src_map, 2911 vm_map_t dst_map, 2912 vm_map_entry_t src_entry, 2913 vm_map_entry_t dst_entry, 2914 vm_ooffset_t *fork_charge) 2915 { 2916 vm_object_t src_object; 2917 vm_offset_t size; 2918 struct ucred *cred; 2919 int charged; 2920 2921 VM_MAP_ASSERT_LOCKED(dst_map); 2922 2923 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2924 return; 2925 2926 if (src_entry->wired_count == 0) { 2927 2928 /* 2929 * If the source entry is marked needs_copy, it is already 2930 * write-protected. 2931 */ 2932 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2933 pmap_protect(src_map->pmap, 2934 src_entry->start, 2935 src_entry->end, 2936 src_entry->protection & ~VM_PROT_WRITE); 2937 } 2938 2939 /* 2940 * Make a copy of the object. 2941 */ 2942 size = src_entry->end - src_entry->start; 2943 if ((src_object = src_entry->object.vm_object) != NULL) { 2944 VM_OBJECT_LOCK(src_object); 2945 charged = ENTRY_CHARGED(src_entry); 2946 if ((src_object->handle == NULL) && 2947 (src_object->type == OBJT_DEFAULT || 2948 src_object->type == OBJT_SWAP)) { 2949 vm_object_collapse(src_object); 2950 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2951 vm_object_split(src_entry); 2952 src_object = src_entry->object.vm_object; 2953 } 2954 } 2955 vm_object_reference_locked(src_object); 2956 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2957 if (src_entry->cred != NULL && 2958 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2959 KASSERT(src_object->cred == NULL, 2960 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2961 src_object)); 2962 src_object->cred = src_entry->cred; 2963 src_object->charge = size; 2964 } 2965 VM_OBJECT_UNLOCK(src_object); 2966 dst_entry->object.vm_object = src_object; 2967 if (charged) { 2968 cred = curthread->td_ucred; 2969 crhold(cred); 2970 dst_entry->cred = cred; 2971 *fork_charge += size; 2972 if (!(src_entry->eflags & 2973 MAP_ENTRY_NEEDS_COPY)) { 2974 crhold(cred); 2975 src_entry->cred = cred; 2976 *fork_charge += size; 2977 } 2978 } 2979 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2980 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2981 dst_entry->offset = src_entry->offset; 2982 } else { 2983 dst_entry->object.vm_object = NULL; 2984 dst_entry->offset = 0; 2985 if (src_entry->cred != NULL) { 2986 dst_entry->cred = curthread->td_ucred; 2987 crhold(dst_entry->cred); 2988 *fork_charge += size; 2989 } 2990 } 2991 2992 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2993 dst_entry->end - dst_entry->start, src_entry->start); 2994 } else { 2995 /* 2996 * Of course, wired down pages can't be set copy-on-write. 2997 * Cause wired pages to be copied into the new map by 2998 * simulating faults (the new pages are pageable) 2999 */ 3000 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3001 fork_charge); 3002 } 3003 } 3004 3005 /* 3006 * vmspace_map_entry_forked: 3007 * Update the newly-forked vmspace each time a map entry is inherited 3008 * or copied. The values for vm_dsize and vm_tsize are approximate 3009 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3010 */ 3011 static void 3012 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3013 vm_map_entry_t entry) 3014 { 3015 vm_size_t entrysize; 3016 vm_offset_t newend; 3017 3018 entrysize = entry->end - entry->start; 3019 vm2->vm_map.size += entrysize; 3020 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3021 vm2->vm_ssize += btoc(entrysize); 3022 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3023 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3024 newend = MIN(entry->end, 3025 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3026 vm2->vm_dsize += btoc(newend - entry->start); 3027 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3028 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3029 newend = MIN(entry->end, 3030 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3031 vm2->vm_tsize += btoc(newend - entry->start); 3032 } 3033 } 3034 3035 /* 3036 * vmspace_fork: 3037 * Create a new process vmspace structure and vm_map 3038 * based on those of an existing process. The new map 3039 * is based on the old map, according to the inheritance 3040 * values on the regions in that map. 3041 * 3042 * XXX It might be worth coalescing the entries added to the new vmspace. 3043 * 3044 * The source map must not be locked. 3045 */ 3046 struct vmspace * 3047 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3048 { 3049 struct vmspace *vm2; 3050 vm_map_t old_map = &vm1->vm_map; 3051 vm_map_t new_map; 3052 vm_map_entry_t old_entry; 3053 vm_map_entry_t new_entry; 3054 vm_object_t object; 3055 int locked; 3056 3057 vm_map_lock(old_map); 3058 if (old_map->busy) 3059 vm_map_wait_busy(old_map); 3060 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3061 if (vm2 == NULL) 3062 goto unlock_and_return; 3063 vm2->vm_taddr = vm1->vm_taddr; 3064 vm2->vm_daddr = vm1->vm_daddr; 3065 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3066 new_map = &vm2->vm_map; /* XXX */ 3067 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3068 KASSERT(locked, ("vmspace_fork: lock failed")); 3069 new_map->timestamp = 1; 3070 3071 old_entry = old_map->header.next; 3072 3073 while (old_entry != &old_map->header) { 3074 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3075 panic("vm_map_fork: encountered a submap"); 3076 3077 switch (old_entry->inheritance) { 3078 case VM_INHERIT_NONE: 3079 break; 3080 3081 case VM_INHERIT_SHARE: 3082 /* 3083 * Clone the entry, creating the shared object if necessary. 3084 */ 3085 object = old_entry->object.vm_object; 3086 if (object == NULL) { 3087 object = vm_object_allocate(OBJT_DEFAULT, 3088 atop(old_entry->end - old_entry->start)); 3089 old_entry->object.vm_object = object; 3090 old_entry->offset = 0; 3091 if (old_entry->cred != NULL) { 3092 object->cred = old_entry->cred; 3093 object->charge = old_entry->end - 3094 old_entry->start; 3095 old_entry->cred = NULL; 3096 } 3097 } 3098 3099 /* 3100 * Add the reference before calling vm_object_shadow 3101 * to insure that a shadow object is created. 3102 */ 3103 vm_object_reference(object); 3104 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3105 vm_object_shadow(&old_entry->object.vm_object, 3106 &old_entry->offset, 3107 old_entry->end - old_entry->start); 3108 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3109 /* Transfer the second reference too. */ 3110 vm_object_reference( 3111 old_entry->object.vm_object); 3112 3113 /* 3114 * As in vm_map_simplify_entry(), the 3115 * vnode lock will not be acquired in 3116 * this call to vm_object_deallocate(). 3117 */ 3118 vm_object_deallocate(object); 3119 object = old_entry->object.vm_object; 3120 } 3121 VM_OBJECT_LOCK(object); 3122 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3123 if (old_entry->cred != NULL) { 3124 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3125 object->cred = old_entry->cred; 3126 object->charge = old_entry->end - old_entry->start; 3127 old_entry->cred = NULL; 3128 } 3129 VM_OBJECT_UNLOCK(object); 3130 3131 /* 3132 * Clone the entry, referencing the shared object. 3133 */ 3134 new_entry = vm_map_entry_create(new_map); 3135 *new_entry = *old_entry; 3136 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3137 MAP_ENTRY_IN_TRANSITION); 3138 new_entry->wired_count = 0; 3139 3140 /* 3141 * Insert the entry into the new map -- we know we're 3142 * inserting at the end of the new map. 3143 */ 3144 vm_map_entry_link(new_map, new_map->header.prev, 3145 new_entry); 3146 vmspace_map_entry_forked(vm1, vm2, new_entry); 3147 3148 /* 3149 * Update the physical map 3150 */ 3151 pmap_copy(new_map->pmap, old_map->pmap, 3152 new_entry->start, 3153 (old_entry->end - old_entry->start), 3154 old_entry->start); 3155 break; 3156 3157 case VM_INHERIT_COPY: 3158 /* 3159 * Clone the entry and link into the map. 3160 */ 3161 new_entry = vm_map_entry_create(new_map); 3162 *new_entry = *old_entry; 3163 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3164 MAP_ENTRY_IN_TRANSITION); 3165 new_entry->wired_count = 0; 3166 new_entry->object.vm_object = NULL; 3167 new_entry->cred = NULL; 3168 vm_map_entry_link(new_map, new_map->header.prev, 3169 new_entry); 3170 vmspace_map_entry_forked(vm1, vm2, new_entry); 3171 vm_map_copy_entry(old_map, new_map, old_entry, 3172 new_entry, fork_charge); 3173 break; 3174 } 3175 old_entry = old_entry->next; 3176 } 3177 unlock_and_return: 3178 vm_map_unlock(old_map); 3179 if (vm2 != NULL) 3180 vm_map_unlock(new_map); 3181 3182 return (vm2); 3183 } 3184 3185 int 3186 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3187 vm_prot_t prot, vm_prot_t max, int cow) 3188 { 3189 vm_map_entry_t new_entry, prev_entry; 3190 vm_offset_t bot, top; 3191 vm_size_t init_ssize; 3192 int orient, rv; 3193 rlim_t vmemlim; 3194 3195 /* 3196 * The stack orientation is piggybacked with the cow argument. 3197 * Extract it into orient and mask the cow argument so that we 3198 * don't pass it around further. 3199 * NOTE: We explicitly allow bi-directional stacks. 3200 */ 3201 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3202 cow &= ~orient; 3203 KASSERT(orient != 0, ("No stack grow direction")); 3204 3205 if (addrbos < vm_map_min(map) || 3206 addrbos > vm_map_max(map) || 3207 addrbos + max_ssize < addrbos) 3208 return (KERN_NO_SPACE); 3209 3210 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3211 3212 PROC_LOCK(curthread->td_proc); 3213 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3214 PROC_UNLOCK(curthread->td_proc); 3215 3216 vm_map_lock(map); 3217 3218 /* If addr is already mapped, no go */ 3219 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3220 vm_map_unlock(map); 3221 return (KERN_NO_SPACE); 3222 } 3223 3224 /* If we would blow our VMEM resource limit, no go */ 3225 if (map->size + init_ssize > vmemlim) { 3226 vm_map_unlock(map); 3227 return (KERN_NO_SPACE); 3228 } 3229 3230 /* 3231 * If we can't accomodate max_ssize in the current mapping, no go. 3232 * However, we need to be aware that subsequent user mappings might 3233 * map into the space we have reserved for stack, and currently this 3234 * space is not protected. 3235 * 3236 * Hopefully we will at least detect this condition when we try to 3237 * grow the stack. 3238 */ 3239 if ((prev_entry->next != &map->header) && 3240 (prev_entry->next->start < addrbos + max_ssize)) { 3241 vm_map_unlock(map); 3242 return (KERN_NO_SPACE); 3243 } 3244 3245 /* 3246 * We initially map a stack of only init_ssize. We will grow as 3247 * needed later. Depending on the orientation of the stack (i.e. 3248 * the grow direction) we either map at the top of the range, the 3249 * bottom of the range or in the middle. 3250 * 3251 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3252 * and cow to be 0. Possibly we should eliminate these as input 3253 * parameters, and just pass these values here in the insert call. 3254 */ 3255 if (orient == MAP_STACK_GROWS_DOWN) 3256 bot = addrbos + max_ssize - init_ssize; 3257 else if (orient == MAP_STACK_GROWS_UP) 3258 bot = addrbos; 3259 else 3260 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3261 top = bot + init_ssize; 3262 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3263 3264 /* Now set the avail_ssize amount. */ 3265 if (rv == KERN_SUCCESS) { 3266 if (prev_entry != &map->header) 3267 vm_map_clip_end(map, prev_entry, bot); 3268 new_entry = prev_entry->next; 3269 if (new_entry->end != top || new_entry->start != bot) 3270 panic("Bad entry start/end for new stack entry"); 3271 3272 new_entry->avail_ssize = max_ssize - init_ssize; 3273 if (orient & MAP_STACK_GROWS_DOWN) 3274 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3275 if (orient & MAP_STACK_GROWS_UP) 3276 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3277 } 3278 3279 vm_map_unlock(map); 3280 return (rv); 3281 } 3282 3283 static int stack_guard_page = 0; 3284 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3285 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3286 &stack_guard_page, 0, 3287 "Insert stack guard page ahead of the growable segments."); 3288 3289 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3290 * desired address is already mapped, or if we successfully grow 3291 * the stack. Also returns KERN_SUCCESS if addr is outside the 3292 * stack range (this is strange, but preserves compatibility with 3293 * the grow function in vm_machdep.c). 3294 */ 3295 int 3296 vm_map_growstack(struct proc *p, vm_offset_t addr) 3297 { 3298 vm_map_entry_t next_entry, prev_entry; 3299 vm_map_entry_t new_entry, stack_entry; 3300 struct vmspace *vm = p->p_vmspace; 3301 vm_map_t map = &vm->vm_map; 3302 vm_offset_t end; 3303 size_t grow_amount, max_grow; 3304 rlim_t stacklim, vmemlim; 3305 int is_procstack, rv; 3306 struct ucred *cred; 3307 #ifdef notyet 3308 uint64_t limit; 3309 #endif 3310 #ifdef RACCT 3311 int error; 3312 #endif 3313 3314 Retry: 3315 PROC_LOCK(p); 3316 stacklim = lim_cur(p, RLIMIT_STACK); 3317 vmemlim = lim_cur(p, RLIMIT_VMEM); 3318 PROC_UNLOCK(p); 3319 3320 vm_map_lock_read(map); 3321 3322 /* If addr is already in the entry range, no need to grow.*/ 3323 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3324 vm_map_unlock_read(map); 3325 return (KERN_SUCCESS); 3326 } 3327 3328 next_entry = prev_entry->next; 3329 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3330 /* 3331 * This entry does not grow upwards. Since the address lies 3332 * beyond this entry, the next entry (if one exists) has to 3333 * be a downward growable entry. The entry list header is 3334 * never a growable entry, so it suffices to check the flags. 3335 */ 3336 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3337 vm_map_unlock_read(map); 3338 return (KERN_SUCCESS); 3339 } 3340 stack_entry = next_entry; 3341 } else { 3342 /* 3343 * This entry grows upward. If the next entry does not at 3344 * least grow downwards, this is the entry we need to grow. 3345 * otherwise we have two possible choices and we have to 3346 * select one. 3347 */ 3348 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3349 /* 3350 * We have two choices; grow the entry closest to 3351 * the address to minimize the amount of growth. 3352 */ 3353 if (addr - prev_entry->end <= next_entry->start - addr) 3354 stack_entry = prev_entry; 3355 else 3356 stack_entry = next_entry; 3357 } else 3358 stack_entry = prev_entry; 3359 } 3360 3361 if (stack_entry == next_entry) { 3362 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3363 KASSERT(addr < stack_entry->start, ("foo")); 3364 end = (prev_entry != &map->header) ? prev_entry->end : 3365 stack_entry->start - stack_entry->avail_ssize; 3366 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3367 max_grow = stack_entry->start - end; 3368 } else { 3369 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3370 KASSERT(addr >= stack_entry->end, ("foo")); 3371 end = (next_entry != &map->header) ? next_entry->start : 3372 stack_entry->end + stack_entry->avail_ssize; 3373 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3374 max_grow = end - stack_entry->end; 3375 } 3376 3377 if (grow_amount > stack_entry->avail_ssize) { 3378 vm_map_unlock_read(map); 3379 return (KERN_NO_SPACE); 3380 } 3381 3382 /* 3383 * If there is no longer enough space between the entries nogo, and 3384 * adjust the available space. Note: this should only happen if the 3385 * user has mapped into the stack area after the stack was created, 3386 * and is probably an error. 3387 * 3388 * This also effectively destroys any guard page the user might have 3389 * intended by limiting the stack size. 3390 */ 3391 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3392 if (vm_map_lock_upgrade(map)) 3393 goto Retry; 3394 3395 stack_entry->avail_ssize = max_grow; 3396 3397 vm_map_unlock(map); 3398 return (KERN_NO_SPACE); 3399 } 3400 3401 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3402 3403 /* 3404 * If this is the main process stack, see if we're over the stack 3405 * limit. 3406 */ 3407 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3408 vm_map_unlock_read(map); 3409 return (KERN_NO_SPACE); 3410 } 3411 #ifdef RACCT 3412 PROC_LOCK(p); 3413 if (is_procstack && 3414 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3415 PROC_UNLOCK(p); 3416 vm_map_unlock_read(map); 3417 return (KERN_NO_SPACE); 3418 } 3419 PROC_UNLOCK(p); 3420 #endif 3421 3422 /* Round up the grow amount modulo SGROWSIZ */ 3423 grow_amount = roundup (grow_amount, sgrowsiz); 3424 if (grow_amount > stack_entry->avail_ssize) 3425 grow_amount = stack_entry->avail_ssize; 3426 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3427 grow_amount = trunc_page((vm_size_t)stacklim) - 3428 ctob(vm->vm_ssize); 3429 } 3430 #ifdef notyet 3431 PROC_LOCK(p); 3432 limit = racct_get_available(p, RACCT_STACK); 3433 PROC_UNLOCK(p); 3434 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3435 grow_amount = limit - ctob(vm->vm_ssize); 3436 #endif 3437 3438 /* If we would blow our VMEM resource limit, no go */ 3439 if (map->size + grow_amount > vmemlim) { 3440 vm_map_unlock_read(map); 3441 rv = KERN_NO_SPACE; 3442 goto out; 3443 } 3444 #ifdef RACCT 3445 PROC_LOCK(p); 3446 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3447 PROC_UNLOCK(p); 3448 vm_map_unlock_read(map); 3449 rv = KERN_NO_SPACE; 3450 goto out; 3451 } 3452 PROC_UNLOCK(p); 3453 #endif 3454 3455 if (vm_map_lock_upgrade(map)) 3456 goto Retry; 3457 3458 if (stack_entry == next_entry) { 3459 /* 3460 * Growing downward. 3461 */ 3462 /* Get the preliminary new entry start value */ 3463 addr = stack_entry->start - grow_amount; 3464 3465 /* 3466 * If this puts us into the previous entry, cut back our 3467 * growth to the available space. Also, see the note above. 3468 */ 3469 if (addr < end) { 3470 stack_entry->avail_ssize = max_grow; 3471 addr = end; 3472 if (stack_guard_page) 3473 addr += PAGE_SIZE; 3474 } 3475 3476 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3477 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3478 3479 /* Adjust the available stack space by the amount we grew. */ 3480 if (rv == KERN_SUCCESS) { 3481 if (prev_entry != &map->header) 3482 vm_map_clip_end(map, prev_entry, addr); 3483 new_entry = prev_entry->next; 3484 KASSERT(new_entry == stack_entry->prev, ("foo")); 3485 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3486 KASSERT(new_entry->start == addr, ("foo")); 3487 grow_amount = new_entry->end - new_entry->start; 3488 new_entry->avail_ssize = stack_entry->avail_ssize - 3489 grow_amount; 3490 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3491 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3492 } 3493 } else { 3494 /* 3495 * Growing upward. 3496 */ 3497 addr = stack_entry->end + grow_amount; 3498 3499 /* 3500 * If this puts us into the next entry, cut back our growth 3501 * to the available space. Also, see the note above. 3502 */ 3503 if (addr > end) { 3504 stack_entry->avail_ssize = end - stack_entry->end; 3505 addr = end; 3506 if (stack_guard_page) 3507 addr -= PAGE_SIZE; 3508 } 3509 3510 grow_amount = addr - stack_entry->end; 3511 cred = stack_entry->cred; 3512 if (cred == NULL && stack_entry->object.vm_object != NULL) 3513 cred = stack_entry->object.vm_object->cred; 3514 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3515 rv = KERN_NO_SPACE; 3516 /* Grow the underlying object if applicable. */ 3517 else if (stack_entry->object.vm_object == NULL || 3518 vm_object_coalesce(stack_entry->object.vm_object, 3519 stack_entry->offset, 3520 (vm_size_t)(stack_entry->end - stack_entry->start), 3521 (vm_size_t)grow_amount, cred != NULL)) { 3522 map->size += (addr - stack_entry->end); 3523 /* Update the current entry. */ 3524 stack_entry->end = addr; 3525 stack_entry->avail_ssize -= grow_amount; 3526 vm_map_entry_resize_free(map, stack_entry); 3527 rv = KERN_SUCCESS; 3528 3529 if (next_entry != &map->header) 3530 vm_map_clip_start(map, next_entry, addr); 3531 } else 3532 rv = KERN_FAILURE; 3533 } 3534 3535 if (rv == KERN_SUCCESS && is_procstack) 3536 vm->vm_ssize += btoc(grow_amount); 3537 3538 vm_map_unlock(map); 3539 3540 /* 3541 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3542 */ 3543 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3544 vm_map_wire(map, 3545 (stack_entry == next_entry) ? addr : addr - grow_amount, 3546 (stack_entry == next_entry) ? stack_entry->start : addr, 3547 (p->p_flag & P_SYSTEM) 3548 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3549 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3550 } 3551 3552 out: 3553 #ifdef RACCT 3554 if (rv != KERN_SUCCESS) { 3555 PROC_LOCK(p); 3556 error = racct_set(p, RACCT_VMEM, map->size); 3557 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3558 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3559 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3560 PROC_UNLOCK(p); 3561 } 3562 #endif 3563 3564 return (rv); 3565 } 3566 3567 /* 3568 * Unshare the specified VM space for exec. If other processes are 3569 * mapped to it, then create a new one. The new vmspace is null. 3570 */ 3571 int 3572 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3573 { 3574 struct vmspace *oldvmspace = p->p_vmspace; 3575 struct vmspace *newvmspace; 3576 3577 newvmspace = vmspace_alloc(minuser, maxuser); 3578 if (newvmspace == NULL) 3579 return (ENOMEM); 3580 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3581 /* 3582 * This code is written like this for prototype purposes. The 3583 * goal is to avoid running down the vmspace here, but let the 3584 * other process's that are still using the vmspace to finally 3585 * run it down. Even though there is little or no chance of blocking 3586 * here, it is a good idea to keep this form for future mods. 3587 */ 3588 PROC_VMSPACE_LOCK(p); 3589 p->p_vmspace = newvmspace; 3590 PROC_VMSPACE_UNLOCK(p); 3591 if (p == curthread->td_proc) 3592 pmap_activate(curthread); 3593 vmspace_free(oldvmspace); 3594 return (0); 3595 } 3596 3597 /* 3598 * Unshare the specified VM space for forcing COW. This 3599 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3600 */ 3601 int 3602 vmspace_unshare(struct proc *p) 3603 { 3604 struct vmspace *oldvmspace = p->p_vmspace; 3605 struct vmspace *newvmspace; 3606 vm_ooffset_t fork_charge; 3607 3608 if (oldvmspace->vm_refcnt == 1) 3609 return (0); 3610 fork_charge = 0; 3611 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3612 if (newvmspace == NULL) 3613 return (ENOMEM); 3614 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3615 vmspace_free(newvmspace); 3616 return (ENOMEM); 3617 } 3618 PROC_VMSPACE_LOCK(p); 3619 p->p_vmspace = newvmspace; 3620 PROC_VMSPACE_UNLOCK(p); 3621 if (p == curthread->td_proc) 3622 pmap_activate(curthread); 3623 vmspace_free(oldvmspace); 3624 return (0); 3625 } 3626 3627 /* 3628 * vm_map_lookup: 3629 * 3630 * Finds the VM object, offset, and 3631 * protection for a given virtual address in the 3632 * specified map, assuming a page fault of the 3633 * type specified. 3634 * 3635 * Leaves the map in question locked for read; return 3636 * values are guaranteed until a vm_map_lookup_done 3637 * call is performed. Note that the map argument 3638 * is in/out; the returned map must be used in 3639 * the call to vm_map_lookup_done. 3640 * 3641 * A handle (out_entry) is returned for use in 3642 * vm_map_lookup_done, to make that fast. 3643 * 3644 * If a lookup is requested with "write protection" 3645 * specified, the map may be changed to perform virtual 3646 * copying operations, although the data referenced will 3647 * remain the same. 3648 */ 3649 int 3650 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3651 vm_offset_t vaddr, 3652 vm_prot_t fault_typea, 3653 vm_map_entry_t *out_entry, /* OUT */ 3654 vm_object_t *object, /* OUT */ 3655 vm_pindex_t *pindex, /* OUT */ 3656 vm_prot_t *out_prot, /* OUT */ 3657 boolean_t *wired) /* OUT */ 3658 { 3659 vm_map_entry_t entry; 3660 vm_map_t map = *var_map; 3661 vm_prot_t prot; 3662 vm_prot_t fault_type = fault_typea; 3663 vm_object_t eobject; 3664 vm_size_t size; 3665 struct ucred *cred; 3666 3667 RetryLookup:; 3668 3669 vm_map_lock_read(map); 3670 3671 /* 3672 * Lookup the faulting address. 3673 */ 3674 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3675 vm_map_unlock_read(map); 3676 return (KERN_INVALID_ADDRESS); 3677 } 3678 3679 entry = *out_entry; 3680 3681 /* 3682 * Handle submaps. 3683 */ 3684 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3685 vm_map_t old_map = map; 3686 3687 *var_map = map = entry->object.sub_map; 3688 vm_map_unlock_read(old_map); 3689 goto RetryLookup; 3690 } 3691 3692 /* 3693 * Check whether this task is allowed to have this page. 3694 */ 3695 prot = entry->protection; 3696 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3697 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3698 vm_map_unlock_read(map); 3699 return (KERN_PROTECTION_FAILURE); 3700 } 3701 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3702 (entry->eflags & MAP_ENTRY_COW) && 3703 (fault_type & VM_PROT_WRITE)) { 3704 vm_map_unlock_read(map); 3705 return (KERN_PROTECTION_FAILURE); 3706 } 3707 3708 /* 3709 * If this page is not pageable, we have to get it for all possible 3710 * accesses. 3711 */ 3712 *wired = (entry->wired_count != 0); 3713 if (*wired) 3714 fault_type = entry->protection; 3715 size = entry->end - entry->start; 3716 /* 3717 * If the entry was copy-on-write, we either ... 3718 */ 3719 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3720 /* 3721 * If we want to write the page, we may as well handle that 3722 * now since we've got the map locked. 3723 * 3724 * If we don't need to write the page, we just demote the 3725 * permissions allowed. 3726 */ 3727 if ((fault_type & VM_PROT_WRITE) != 0 || 3728 (fault_typea & VM_PROT_COPY) != 0) { 3729 /* 3730 * Make a new object, and place it in the object 3731 * chain. Note that no new references have appeared 3732 * -- one just moved from the map to the new 3733 * object. 3734 */ 3735 if (vm_map_lock_upgrade(map)) 3736 goto RetryLookup; 3737 3738 if (entry->cred == NULL) { 3739 /* 3740 * The debugger owner is charged for 3741 * the memory. 3742 */ 3743 cred = curthread->td_ucred; 3744 crhold(cred); 3745 if (!swap_reserve_by_cred(size, cred)) { 3746 crfree(cred); 3747 vm_map_unlock(map); 3748 return (KERN_RESOURCE_SHORTAGE); 3749 } 3750 entry->cred = cred; 3751 } 3752 vm_object_shadow(&entry->object.vm_object, 3753 &entry->offset, size); 3754 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3755 eobject = entry->object.vm_object; 3756 if (eobject->cred != NULL) { 3757 /* 3758 * The object was not shadowed. 3759 */ 3760 swap_release_by_cred(size, entry->cred); 3761 crfree(entry->cred); 3762 entry->cred = NULL; 3763 } else if (entry->cred != NULL) { 3764 VM_OBJECT_LOCK(eobject); 3765 eobject->cred = entry->cred; 3766 eobject->charge = size; 3767 VM_OBJECT_UNLOCK(eobject); 3768 entry->cred = NULL; 3769 } 3770 3771 vm_map_lock_downgrade(map); 3772 } else { 3773 /* 3774 * We're attempting to read a copy-on-write page -- 3775 * don't allow writes. 3776 */ 3777 prot &= ~VM_PROT_WRITE; 3778 } 3779 } 3780 3781 /* 3782 * Create an object if necessary. 3783 */ 3784 if (entry->object.vm_object == NULL && 3785 !map->system_map) { 3786 if (vm_map_lock_upgrade(map)) 3787 goto RetryLookup; 3788 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3789 atop(size)); 3790 entry->offset = 0; 3791 if (entry->cred != NULL) { 3792 VM_OBJECT_LOCK(entry->object.vm_object); 3793 entry->object.vm_object->cred = entry->cred; 3794 entry->object.vm_object->charge = size; 3795 VM_OBJECT_UNLOCK(entry->object.vm_object); 3796 entry->cred = NULL; 3797 } 3798 vm_map_lock_downgrade(map); 3799 } 3800 3801 /* 3802 * Return the object/offset from this entry. If the entry was 3803 * copy-on-write or empty, it has been fixed up. 3804 */ 3805 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3806 *object = entry->object.vm_object; 3807 3808 *out_prot = prot; 3809 return (KERN_SUCCESS); 3810 } 3811 3812 /* 3813 * vm_map_lookup_locked: 3814 * 3815 * Lookup the faulting address. A version of vm_map_lookup that returns 3816 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3817 */ 3818 int 3819 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3820 vm_offset_t vaddr, 3821 vm_prot_t fault_typea, 3822 vm_map_entry_t *out_entry, /* OUT */ 3823 vm_object_t *object, /* OUT */ 3824 vm_pindex_t *pindex, /* OUT */ 3825 vm_prot_t *out_prot, /* OUT */ 3826 boolean_t *wired) /* OUT */ 3827 { 3828 vm_map_entry_t entry; 3829 vm_map_t map = *var_map; 3830 vm_prot_t prot; 3831 vm_prot_t fault_type = fault_typea; 3832 3833 /* 3834 * Lookup the faulting address. 3835 */ 3836 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3837 return (KERN_INVALID_ADDRESS); 3838 3839 entry = *out_entry; 3840 3841 /* 3842 * Fail if the entry refers to a submap. 3843 */ 3844 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3845 return (KERN_FAILURE); 3846 3847 /* 3848 * Check whether this task is allowed to have this page. 3849 */ 3850 prot = entry->protection; 3851 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3852 if ((fault_type & prot) != fault_type) 3853 return (KERN_PROTECTION_FAILURE); 3854 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3855 (entry->eflags & MAP_ENTRY_COW) && 3856 (fault_type & VM_PROT_WRITE)) 3857 return (KERN_PROTECTION_FAILURE); 3858 3859 /* 3860 * If this page is not pageable, we have to get it for all possible 3861 * accesses. 3862 */ 3863 *wired = (entry->wired_count != 0); 3864 if (*wired) 3865 fault_type = entry->protection; 3866 3867 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3868 /* 3869 * Fail if the entry was copy-on-write for a write fault. 3870 */ 3871 if (fault_type & VM_PROT_WRITE) 3872 return (KERN_FAILURE); 3873 /* 3874 * We're attempting to read a copy-on-write page -- 3875 * don't allow writes. 3876 */ 3877 prot &= ~VM_PROT_WRITE; 3878 } 3879 3880 /* 3881 * Fail if an object should be created. 3882 */ 3883 if (entry->object.vm_object == NULL && !map->system_map) 3884 return (KERN_FAILURE); 3885 3886 /* 3887 * Return the object/offset from this entry. If the entry was 3888 * copy-on-write or empty, it has been fixed up. 3889 */ 3890 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3891 *object = entry->object.vm_object; 3892 3893 *out_prot = prot; 3894 return (KERN_SUCCESS); 3895 } 3896 3897 /* 3898 * vm_map_lookup_done: 3899 * 3900 * Releases locks acquired by a vm_map_lookup 3901 * (according to the handle returned by that lookup). 3902 */ 3903 void 3904 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3905 { 3906 /* 3907 * Unlock the main-level map 3908 */ 3909 vm_map_unlock_read(map); 3910 } 3911 3912 #include "opt_ddb.h" 3913 #ifdef DDB 3914 #include <sys/kernel.h> 3915 3916 #include <ddb/ddb.h> 3917 3918 /* 3919 * vm_map_print: [ debug ] 3920 */ 3921 DB_SHOW_COMMAND(map, vm_map_print) 3922 { 3923 static int nlines; 3924 /* XXX convert args. */ 3925 vm_map_t map = (vm_map_t)addr; 3926 boolean_t full = have_addr; 3927 3928 vm_map_entry_t entry; 3929 3930 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3931 (void *)map, 3932 (void *)map->pmap, map->nentries, map->timestamp); 3933 nlines++; 3934 3935 if (!full && db_indent) 3936 return; 3937 3938 db_indent += 2; 3939 for (entry = map->header.next; entry != &map->header; 3940 entry = entry->next) { 3941 db_iprintf("map entry %p: start=%p, end=%p\n", 3942 (void *)entry, (void *)entry->start, (void *)entry->end); 3943 nlines++; 3944 { 3945 static char *inheritance_name[4] = 3946 {"share", "copy", "none", "donate_copy"}; 3947 3948 db_iprintf(" prot=%x/%x/%s", 3949 entry->protection, 3950 entry->max_protection, 3951 inheritance_name[(int)(unsigned char)entry->inheritance]); 3952 if (entry->wired_count != 0) 3953 db_printf(", wired"); 3954 } 3955 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3956 db_printf(", share=%p, offset=0x%jx\n", 3957 (void *)entry->object.sub_map, 3958 (uintmax_t)entry->offset); 3959 nlines++; 3960 if ((entry->prev == &map->header) || 3961 (entry->prev->object.sub_map != 3962 entry->object.sub_map)) { 3963 db_indent += 2; 3964 vm_map_print((db_expr_t)(intptr_t) 3965 entry->object.sub_map, 3966 full, 0, (char *)0); 3967 db_indent -= 2; 3968 } 3969 } else { 3970 if (entry->cred != NULL) 3971 db_printf(", ruid %d", entry->cred->cr_ruid); 3972 db_printf(", object=%p, offset=0x%jx", 3973 (void *)entry->object.vm_object, 3974 (uintmax_t)entry->offset); 3975 if (entry->object.vm_object && entry->object.vm_object->cred) 3976 db_printf(", obj ruid %d charge %jx", 3977 entry->object.vm_object->cred->cr_ruid, 3978 (uintmax_t)entry->object.vm_object->charge); 3979 if (entry->eflags & MAP_ENTRY_COW) 3980 db_printf(", copy (%s)", 3981 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3982 db_printf("\n"); 3983 nlines++; 3984 3985 if ((entry->prev == &map->header) || 3986 (entry->prev->object.vm_object != 3987 entry->object.vm_object)) { 3988 db_indent += 2; 3989 vm_object_print((db_expr_t)(intptr_t) 3990 entry->object.vm_object, 3991 full, 0, (char *)0); 3992 nlines += 4; 3993 db_indent -= 2; 3994 } 3995 } 3996 } 3997 db_indent -= 2; 3998 if (db_indent == 0) 3999 nlines = 0; 4000 } 4001 4002 4003 DB_SHOW_COMMAND(procvm, procvm) 4004 { 4005 struct proc *p; 4006 4007 if (have_addr) { 4008 p = (struct proc *) addr; 4009 } else { 4010 p = curproc; 4011 } 4012 4013 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4014 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4015 (void *)vmspace_pmap(p->p_vmspace)); 4016 4017 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4018 } 4019 4020 #endif /* DDB */ 4021