xref: /freebsd/sys/vm/vm_map.c (revision 3a92d97ff0f22d21608e1c19b83104c4937523b6)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 
140 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143 
144 /*
145  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146  * stable.
147  */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150 
151 /*
152  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153  *
154  *	Asserts that the starting and ending region
155  *	addresses fall within the valid range of the map.
156  */
157 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
158 		{					\
159 		if (start < vm_map_min(map))		\
160 			start = vm_map_min(map);	\
161 		if (end > vm_map_max(map))		\
162 			end = vm_map_max(map);		\
163 		if (start > end)			\
164 			start = end;			\
165 		}
166 
167 /*
168  *	vm_map_startup:
169  *
170  *	Initialize the vm_map module.  Must be called before
171  *	any other vm_map routines.
172  *
173  *	Map and entry structures are allocated from the general
174  *	purpose memory pool with some exceptions:
175  *
176  *	- The kernel map and kmem submap are allocated statically.
177  *	- Kernel map entries are allocated out of a static pool.
178  *
179  *	These restrictions are necessary since malloc() uses the
180  *	maps and requires map entries.
181  */
182 
183 void
184 vm_map_startup(void)
185 {
186 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 	    vm_map_zdtor,
190 #else
191 	    NULL,
192 #endif
193 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_prealloc(mapzone, MAX_KMAP);
195 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 	    vmspace_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208 
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 	struct vmspace *vm;
213 
214 	vm = (struct vmspace *)mem;
215 
216 	vm->vm_map.pmap = NULL;
217 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 	PMAP_LOCK_INIT(vmspace_pmap(vm));
219 	return (0);
220 }
221 
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	memset(map, 0, sizeof(*map));
229 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 	sx_init(&map->lock, "vm map (user)");
231 	return (0);
232 }
233 
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 	struct vmspace *vm;
239 
240 	vm = (struct vmspace *)mem;
241 
242 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 	vm_map_t map;
248 
249 	map = (vm_map_t)mem;
250 	KASSERT(map->nentries == 0,
251 	    ("map %p nentries == %d on free.",
252 	    map, map->nentries));
253 	KASSERT(map->size == 0,
254 	    ("map %p size == %lu on free.",
255 	    map, (unsigned long)map->size));
256 }
257 #endif	/* INVARIANTS */
258 
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap,
261  * and initialize those structures.  The refcnt is set to 1.
262  *
263  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264  */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 	struct vmspace *vm;
269 
270 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271 
272 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273 
274 	if (pinit == NULL)
275 		pinit = &pmap_pinit;
276 
277 	if (!pinit(vmspace_pmap(vm))) {
278 		uma_zfree(vmspace_zone, vm);
279 		return (NULL);
280 	}
281 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 	vm->vm_refcnt = 1;
284 	vm->vm_shm = NULL;
285 	vm->vm_swrss = 0;
286 	vm->vm_tsize = 0;
287 	vm->vm_dsize = 0;
288 	vm->vm_ssize = 0;
289 	vm->vm_taddr = 0;
290 	vm->vm_daddr = 0;
291 	vm->vm_maxsaddr = 0;
292 	return (vm);
293 }
294 
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298 
299 #ifdef RACCT
300 	PROC_LOCK(p);
301 	racct_set(p, RACCT_DATA, 0);
302 	racct_set(p, RACCT_STACK, 0);
303 	racct_set(p, RACCT_RSS, 0);
304 	racct_set(p, RACCT_MEMLOCK, 0);
305 	racct_set(p, RACCT_VMEM, 0);
306 	PROC_UNLOCK(p);
307 #endif
308 }
309 
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313 
314 	CTR1(KTR_VM, "vmspace_free: %p", vm);
315 
316 	/*
317 	 * Make sure any SysV shm is freed, it might not have been in
318 	 * exit1().
319 	 */
320 	shmexit(vm);
321 
322 	/*
323 	 * Lock the map, to wait out all other references to it.
324 	 * Delete all of the mappings and pages they hold, then call
325 	 * the pmap module to reclaim anything left.
326 	 */
327 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 	    vm->vm_map.max_offset);
329 
330 	pmap_release(vmspace_pmap(vm));
331 	vm->vm_map.pmap = NULL;
332 	uma_zfree(vmspace_zone, vm);
333 }
334 
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338 
339 	if (vm->vm_refcnt == 0)
340 		panic("vmspace_free: attempt to free already freed vmspace");
341 
342 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 		vmspace_dofree(vm);
344 }
345 
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 	struct vmspace *vm;
350 
351 	PROC_VMSPACE_LOCK(p);
352 	vm = p->p_vmspace;
353 	p->p_vmspace = NULL;
354 	PROC_VMSPACE_UNLOCK(p);
355 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 	vmspace_free(vm);
357 }
358 
359 void
360 vmspace_exit(struct thread *td)
361 {
362 	int refcnt;
363 	struct vmspace *vm;
364 	struct proc *p;
365 
366 	/*
367 	 * Release user portion of address space.
368 	 * This releases references to vnodes,
369 	 * which could cause I/O if the file has been unlinked.
370 	 * Need to do this early enough that we can still sleep.
371 	 *
372 	 * The last exiting process to reach this point releases as
373 	 * much of the environment as it can. vmspace_dofree() is the
374 	 * slower fallback in case another process had a temporary
375 	 * reference to the vmspace.
376 	 */
377 
378 	p = td->td_proc;
379 	vm = p->p_vmspace;
380 	atomic_add_int(&vmspace0.vm_refcnt, 1);
381 	do {
382 		refcnt = vm->vm_refcnt;
383 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 			/* Switch now since other proc might free vmspace */
385 			PROC_VMSPACE_LOCK(p);
386 			p->p_vmspace = &vmspace0;
387 			PROC_VMSPACE_UNLOCK(p);
388 			pmap_activate(td);
389 		}
390 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 	if (refcnt == 1) {
392 		if (p->p_vmspace != vm) {
393 			/* vmspace not yet freed, switch back */
394 			PROC_VMSPACE_LOCK(p);
395 			p->p_vmspace = vm;
396 			PROC_VMSPACE_UNLOCK(p);
397 			pmap_activate(td);
398 		}
399 		pmap_remove_pages(vmspace_pmap(vm));
400 		/* Switch now since this proc will free vmspace */
401 		PROC_VMSPACE_LOCK(p);
402 		p->p_vmspace = &vmspace0;
403 		PROC_VMSPACE_UNLOCK(p);
404 		pmap_activate(td);
405 		vmspace_dofree(vm);
406 	}
407 	vmspace_container_reset(p);
408 }
409 
410 /* Acquire reference to vmspace owned by another process. */
411 
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 	struct vmspace *vm;
416 	int refcnt;
417 
418 	PROC_VMSPACE_LOCK(p);
419 	vm = p->p_vmspace;
420 	if (vm == NULL) {
421 		PROC_VMSPACE_UNLOCK(p);
422 		return (NULL);
423 	}
424 	do {
425 		refcnt = vm->vm_refcnt;
426 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427 			PROC_VMSPACE_UNLOCK(p);
428 			return (NULL);
429 		}
430 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 	if (vm != p->p_vmspace) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		vmspace_free(vm);
434 		return (NULL);
435 	}
436 	PROC_VMSPACE_UNLOCK(p);
437 	return (vm);
438 }
439 
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443 
444 	if (map->system_map)
445 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 	else
447 		sx_xlock_(&map->lock, file, line);
448 	map->timestamp++;
449 }
450 
451 static void
452 vm_map_process_deferred(void)
453 {
454 	struct thread *td;
455 	vm_map_entry_t entry, next;
456 	vm_object_t object;
457 
458 	td = curthread;
459 	entry = td->td_map_def_user;
460 	td->td_map_def_user = NULL;
461 	while (entry != NULL) {
462 		next = entry->next;
463 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 			/*
465 			 * Decrement the object's writemappings and
466 			 * possibly the vnode's v_writecount.
467 			 */
468 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 			    ("Submap with writecount"));
470 			object = entry->object.vm_object;
471 			KASSERT(object != NULL, ("No object for writecount"));
472 			vnode_pager_release_writecount(object, entry->start,
473 			    entry->end);
474 		}
475 		vm_map_entry_deallocate(entry, FALSE);
476 		entry = next;
477 	}
478 }
479 
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483 
484 	if (map->system_map)
485 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 	else {
487 		sx_xunlock_(&map->lock, file, line);
488 		vm_map_process_deferred();
489 	}
490 }
491 
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495 
496 	if (map->system_map)
497 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 	else
499 		sx_slock_(&map->lock, file, line);
500 }
501 
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_sunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 	int error;
518 
519 	error = map->system_map ?
520 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 	    !sx_try_xlock_(&map->lock, file, line);
522 	if (error == 0)
523 		map->timestamp++;
524 	return (error == 0);
525 }
526 
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 	int error;
531 
532 	error = map->system_map ?
533 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 	    !sx_try_slock_(&map->lock, file, line);
535 	return (error == 0);
536 }
537 
538 /*
539  *	_vm_map_lock_upgrade:	[ internal use only ]
540  *
541  *	Tries to upgrade a read (shared) lock on the specified map to a write
542  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544  *	returned without a read or write lock held.
545  *
546  *	Requires that the map be read locked.
547  */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 	unsigned int last_timestamp;
552 
553 	if (map->system_map) {
554 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 	} else {
556 		if (!sx_try_upgrade_(&map->lock, file, line)) {
557 			last_timestamp = map->timestamp;
558 			sx_sunlock_(&map->lock, file, line);
559 			vm_map_process_deferred();
560 			/*
561 			 * If the map's timestamp does not change while the
562 			 * map is unlocked, then the upgrade succeeds.
563 			 */
564 			sx_xlock_(&map->lock, file, line);
565 			if (last_timestamp != map->timestamp) {
566 				sx_xunlock_(&map->lock, file, line);
567 				return (1);
568 			}
569 		}
570 	}
571 	map->timestamp++;
572 	return (0);
573 }
574 
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578 
579 	if (map->system_map) {
580 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 	} else
582 		sx_downgrade_(&map->lock, file, line);
583 }
584 
585 /*
586  *	vm_map_locked:
587  *
588  *	Returns a non-zero value if the caller holds a write (exclusive) lock
589  *	on the specified map and the value "0" otherwise.
590  */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594 
595 	if (map->system_map)
596 		return (mtx_owned(&map->system_mtx));
597 	else
598 		return (sx_xlocked(&map->lock));
599 }
600 
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605 
606 	if (map->system_map)
607 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 	else
609 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611 
612 #define	VM_MAP_ASSERT_LOCKED(map) \
613     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define	VM_MAP_ASSERT_LOCKED(map)
616 #endif
617 
618 /*
619  *	_vm_map_unlock_and_wait:
620  *
621  *	Atomically releases the lock on the specified map and puts the calling
622  *	thread to sleep.  The calling thread will remain asleep until either
623  *	vm_map_wakeup() is performed on the map or the specified timeout is
624  *	exceeded.
625  *
626  *	WARNING!  This function does not perform deferred deallocations of
627  *	objects and map	entries.  Therefore, the calling thread is expected to
628  *	reacquire the map lock after reawakening and later perform an ordinary
629  *	unlock operation, such as vm_map_unlock(), before completing its
630  *	operation on the map.
631  */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635 
636 	mtx_lock(&map_sleep_mtx);
637 	if (map->system_map)
638 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 	else
640 		sx_xunlock_(&map->lock, file, line);
641 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 	    timo));
643 }
644 
645 /*
646  *	vm_map_wakeup:
647  *
648  *	Awaken any threads that have slept on the map using
649  *	vm_map_unlock_and_wait().
650  */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654 
655 	/*
656 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 	 * from being performed (and lost) between the map unlock
658 	 * and the msleep() in _vm_map_unlock_and_wait().
659 	 */
660 	mtx_lock(&map_sleep_mtx);
661 	mtx_unlock(&map_sleep_mtx);
662 	wakeup(&map->root);
663 }
664 
665 void
666 vm_map_busy(vm_map_t map)
667 {
668 
669 	VM_MAP_ASSERT_LOCKED(map);
670 	map->busy++;
671 }
672 
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 		wakeup(&map->busy);
682 	}
683 }
684 
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	while (map->busy) {
691 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 		if (map->system_map)
693 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 		else
695 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 	}
697 	map->timestamp++;
698 }
699 
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 	return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705 
706 /*
707  *	vm_map_create:
708  *
709  *	Creates and returns a new empty VM map with
710  *	the given physical map structure, and having
711  *	the given lower and upper address bounds.
712  */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 	vm_map_t result;
717 
718 	result = uma_zalloc(mapzone, M_WAITOK);
719 	CTR1(KTR_VM, "vm_map_create: %p", result);
720 	_vm_map_init(result, pmap, min, max);
721 	return (result);
722 }
723 
724 /*
725  * Initialize an existing vm_map structure
726  * such as that in the vmspace structure.
727  */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731 
732 	map->header.next = map->header.prev = &map->header;
733 	map->needs_wakeup = FALSE;
734 	map->system_map = 0;
735 	map->pmap = pmap;
736 	map->min_offset = min;
737 	map->max_offset = max;
738 	map->flags = 0;
739 	map->root = NULL;
740 	map->timestamp = 0;
741 	map->busy = 0;
742 }
743 
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747 
748 	_vm_map_init(map, pmap, min, max);
749 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 	sx_init(&map->lock, "user map");
751 }
752 
753 /*
754  *	vm_map_entry_dispose:	[ internal use only ]
755  *
756  *	Inverse of vm_map_entry_create.
757  */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763 
764 /*
765  *	vm_map_entry_create:	[ internal use only ]
766  *
767  *	Allocates a VM map entry for insertion.
768  *	No entry fields are filled in.
769  */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 	vm_map_entry_t new_entry;
774 
775 	if (map->system_map)
776 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 	else
778 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 	if (new_entry == NULL)
780 		panic("vm_map_entry_create: kernel resources exhausted");
781 	return (new_entry);
782 }
783 
784 /*
785  *	vm_map_entry_set_behavior:
786  *
787  *	Set the expected access behavior, either normal, random, or
788  *	sequential.
789  */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 	    (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796 
797 /*
798  *	vm_map_entry_set_max_free:
799  *
800  *	Set the max_free field in a vm_map_entry.
801  */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805 
806 	entry->max_free = entry->adj_free;
807 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 		entry->max_free = entry->left->max_free;
809 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 		entry->max_free = entry->right->max_free;
811 }
812 
813 /*
814  *	vm_map_entry_splay:
815  *
816  *	The Sleator and Tarjan top-down splay algorithm with the
817  *	following variation.  Max_free must be computed bottom-up, so
818  *	on the downward pass, maintain the left and right spines in
819  *	reverse order.  Then, make a second pass up each side to fix
820  *	the pointers and compute max_free.  The time bound is O(log n)
821  *	amortized.
822  *
823  *	The new root is the vm_map_entry containing "addr", or else an
824  *	adjacent entry (lower or higher) if addr is not in the tree.
825  *
826  *	The map must be locked, and leaves it so.
827  *
828  *	Returns: the new root.
829  */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 	vm_map_entry_t llist, rlist;
834 	vm_map_entry_t ltree, rtree;
835 	vm_map_entry_t y;
836 
837 	/* Special case of empty tree. */
838 	if (root == NULL)
839 		return (root);
840 
841 	/*
842 	 * Pass One: Splay down the tree until we find addr or a NULL
843 	 * pointer where addr would go.  llist and rlist are the two
844 	 * sides in reverse order (bottom-up), with llist linked by
845 	 * the right pointer and rlist linked by the left pointer in
846 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847 	 * the two spines.
848 	 */
849 	llist = NULL;
850 	rlist = NULL;
851 	for (;;) {
852 		/* root is never NULL in here. */
853 		if (addr < root->start) {
854 			y = root->left;
855 			if (y == NULL)
856 				break;
857 			if (addr < y->start && y->left != NULL) {
858 				/* Rotate right and put y on rlist. */
859 				root->left = y->right;
860 				y->right = root;
861 				vm_map_entry_set_max_free(root);
862 				root = y->left;
863 				y->left = rlist;
864 				rlist = y;
865 			} else {
866 				/* Put root on rlist. */
867 				root->left = rlist;
868 				rlist = root;
869 				root = y;
870 			}
871 		} else if (addr >= root->end) {
872 			y = root->right;
873 			if (y == NULL)
874 				break;
875 			if (addr >= y->end && y->right != NULL) {
876 				/* Rotate left and put y on llist. */
877 				root->right = y->left;
878 				y->left = root;
879 				vm_map_entry_set_max_free(root);
880 				root = y->right;
881 				y->right = llist;
882 				llist = y;
883 			} else {
884 				/* Put root on llist. */
885 				root->right = llist;
886 				llist = root;
887 				root = y;
888 			}
889 		} else
890 			break;
891 	}
892 
893 	/*
894 	 * Pass Two: Walk back up the two spines, flip the pointers
895 	 * and set max_free.  The subtrees of the root go at the
896 	 * bottom of llist and rlist.
897 	 */
898 	ltree = root->left;
899 	while (llist != NULL) {
900 		y = llist->right;
901 		llist->right = ltree;
902 		vm_map_entry_set_max_free(llist);
903 		ltree = llist;
904 		llist = y;
905 	}
906 	rtree = root->right;
907 	while (rlist != NULL) {
908 		y = rlist->left;
909 		rlist->left = rtree;
910 		vm_map_entry_set_max_free(rlist);
911 		rtree = rlist;
912 		rlist = y;
913 	}
914 
915 	/*
916 	 * Final assembly: add ltree and rtree as subtrees of root.
917 	 */
918 	root->left = ltree;
919 	root->right = rtree;
920 	vm_map_entry_set_max_free(root);
921 
922 	return (root);
923 }
924 
925 /*
926  *	vm_map_entry_{un,}link:
927  *
928  *	Insert/remove entries from maps.
929  */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 		  vm_map_entry_t after_where,
933 		  vm_map_entry_t entry)
934 {
935 
936 	CTR4(KTR_VM,
937 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 	    map->nentries, entry, after_where);
939 	VM_MAP_ASSERT_LOCKED(map);
940 	map->nentries++;
941 	entry->prev = after_where;
942 	entry->next = after_where->next;
943 	entry->next->prev = entry;
944 	after_where->next = entry;
945 
946 	if (after_where != &map->header) {
947 		if (after_where != map->root)
948 			vm_map_entry_splay(after_where->start, map->root);
949 		entry->right = after_where->right;
950 		entry->left = after_where;
951 		after_where->right = NULL;
952 		after_where->adj_free = entry->start - after_where->end;
953 		vm_map_entry_set_max_free(after_where);
954 	} else {
955 		entry->right = map->root;
956 		entry->left = NULL;
957 	}
958 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 	    entry->next->start) - entry->end;
960 	vm_map_entry_set_max_free(entry);
961 	map->root = entry;
962 }
963 
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 		    vm_map_entry_t entry)
967 {
968 	vm_map_entry_t next, prev, root;
969 
970 	VM_MAP_ASSERT_LOCKED(map);
971 	if (entry != map->root)
972 		vm_map_entry_splay(entry->start, map->root);
973 	if (entry->left == NULL)
974 		root = entry->right;
975 	else {
976 		root = vm_map_entry_splay(entry->start, entry->left);
977 		root->right = entry->right;
978 		root->adj_free = (entry->next == &map->header ? map->max_offset :
979 		    entry->next->start) - root->end;
980 		vm_map_entry_set_max_free(root);
981 	}
982 	map->root = root;
983 
984 	prev = entry->prev;
985 	next = entry->next;
986 	next->prev = prev;
987 	prev->next = next;
988 	map->nentries--;
989 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 	    map->nentries, entry);
991 }
992 
993 /*
994  *	vm_map_entry_resize_free:
995  *
996  *	Recompute the amount of free space following a vm_map_entry
997  *	and propagate that value up the tree.  Call this function after
998  *	resizing a map entry in-place, that is, without a call to
999  *	vm_map_entry_link() or _unlink().
1000  *
1001  *	The map must be locked, and leaves it so.
1002  */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006 
1007 	/*
1008 	 * Using splay trees without parent pointers, propagating
1009 	 * max_free up the tree is done by moving the entry to the
1010 	 * root and making the change there.
1011 	 */
1012 	if (entry != map->root)
1013 		map->root = vm_map_entry_splay(entry->start, map->root);
1014 
1015 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 	    entry->next->start) - entry->end;
1017 	vm_map_entry_set_max_free(entry);
1018 }
1019 
1020 /*
1021  *	vm_map_lookup_entry:	[ internal use only ]
1022  *
1023  *	Finds the map entry containing (or
1024  *	immediately preceding) the specified address
1025  *	in the given map; the entry is returned
1026  *	in the "entry" parameter.  The boolean
1027  *	result indicates whether the address is
1028  *	actually contained in the map.
1029  */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 	vm_map_t map,
1033 	vm_offset_t address,
1034 	vm_map_entry_t *entry)	/* OUT */
1035 {
1036 	vm_map_entry_t cur;
1037 	boolean_t locked;
1038 
1039 	/*
1040 	 * If the map is empty, then the map entry immediately preceding
1041 	 * "address" is the map's header.
1042 	 */
1043 	cur = map->root;
1044 	if (cur == NULL)
1045 		*entry = &map->header;
1046 	else if (address >= cur->start && cur->end > address) {
1047 		*entry = cur;
1048 		return (TRUE);
1049 	} else if ((locked = vm_map_locked(map)) ||
1050 	    sx_try_upgrade(&map->lock)) {
1051 		/*
1052 		 * Splay requires a write lock on the map.  However, it only
1053 		 * restructures the binary search tree; it does not otherwise
1054 		 * change the map.  Thus, the map's timestamp need not change
1055 		 * on a temporary upgrade.
1056 		 */
1057 		map->root = cur = vm_map_entry_splay(address, cur);
1058 		if (!locked)
1059 			sx_downgrade(&map->lock);
1060 
1061 		/*
1062 		 * If "address" is contained within a map entry, the new root
1063 		 * is that map entry.  Otherwise, the new root is a map entry
1064 		 * immediately before or after "address".
1065 		 */
1066 		if (address >= cur->start) {
1067 			*entry = cur;
1068 			if (cur->end > address)
1069 				return (TRUE);
1070 		} else
1071 			*entry = cur->prev;
1072 	} else
1073 		/*
1074 		 * Since the map is only locked for read access, perform a
1075 		 * standard binary search tree lookup for "address".
1076 		 */
1077 		for (;;) {
1078 			if (address < cur->start) {
1079 				if (cur->left == NULL) {
1080 					*entry = cur->prev;
1081 					break;
1082 				}
1083 				cur = cur->left;
1084 			} else if (cur->end > address) {
1085 				*entry = cur;
1086 				return (TRUE);
1087 			} else {
1088 				if (cur->right == NULL) {
1089 					*entry = cur;
1090 					break;
1091 				}
1092 				cur = cur->right;
1093 			}
1094 		}
1095 	return (FALSE);
1096 }
1097 
1098 /*
1099  *	vm_map_insert:
1100  *
1101  *	Inserts the given whole VM object into the target
1102  *	map at the specified address range.  The object's
1103  *	size should match that of the address range.
1104  *
1105  *	Requires that the map be locked, and leaves it so.
1106  *
1107  *	If object is non-NULL, ref count must be bumped by caller
1108  *	prior to making call to account for the new entry.
1109  */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 	      int cow)
1114 {
1115 	vm_map_entry_t new_entry;
1116 	vm_map_entry_t prev_entry;
1117 	vm_map_entry_t temp_entry;
1118 	vm_eflags_t protoeflags;
1119 	struct ucred *cred;
1120 	vm_inherit_t inheritance;
1121 	boolean_t charge_prev_obj;
1122 
1123 	VM_MAP_ASSERT_LOCKED(map);
1124 
1125 	/*
1126 	 * Check that the start and end points are not bogus.
1127 	 */
1128 	if ((start < map->min_offset) || (end > map->max_offset) ||
1129 	    (start >= end))
1130 		return (KERN_INVALID_ADDRESS);
1131 
1132 	/*
1133 	 * Find the entry prior to the proposed starting address; if it's part
1134 	 * of an existing entry, this range is bogus.
1135 	 */
1136 	if (vm_map_lookup_entry(map, start, &temp_entry))
1137 		return (KERN_NO_SPACE);
1138 
1139 	prev_entry = temp_entry;
1140 
1141 	/*
1142 	 * Assert that the next entry doesn't overlap the end point.
1143 	 */
1144 	if ((prev_entry->next != &map->header) &&
1145 	    (prev_entry->next->start < end))
1146 		return (KERN_NO_SPACE);
1147 
1148 	protoeflags = 0;
1149 	charge_prev_obj = FALSE;
1150 
1151 	if (cow & MAP_COPY_ON_WRITE)
1152 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153 
1154 	if (cow & MAP_NOFAULT) {
1155 		protoeflags |= MAP_ENTRY_NOFAULT;
1156 
1157 		KASSERT(object == NULL,
1158 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 	}
1160 	if (cow & MAP_DISABLE_SYNCER)
1161 		protoeflags |= MAP_ENTRY_NOSYNC;
1162 	if (cow & MAP_DISABLE_COREDUMP)
1163 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 	if (cow & MAP_VN_WRITECOUNT)
1165 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 	if (cow & MAP_INHERIT_SHARE)
1167 		inheritance = VM_INHERIT_SHARE;
1168 	else
1169 		inheritance = VM_INHERIT_DEFAULT;
1170 
1171 	cred = NULL;
1172 	KASSERT((object != kmem_object && object != kernel_object) ||
1173 	    ((object == kmem_object || object == kernel_object) &&
1174 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 	    ("kmem or kernel object and cow"));
1176 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 		goto charged;
1178 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 			return (KERN_RESOURCE_SHORTAGE);
1182 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 		    object->cred == NULL,
1184 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185 		cred = curthread->td_ucred;
1186 		crhold(cred);
1187 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 			charge_prev_obj = TRUE;
1189 	}
1190 
1191 charged:
1192 	/* Expand the kernel pmap, if necessary. */
1193 	if (map == kernel_map && end > kernel_vm_end)
1194 		pmap_growkernel(end);
1195 	if (object != NULL) {
1196 		/*
1197 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 		 * is trivially proven to be the only mapping for any
1199 		 * of the object's pages.  (Object granularity
1200 		 * reference counting is insufficient to recognize
1201 		 * aliases with precision.)
1202 		 */
1203 		VM_OBJECT_WLOCK(object);
1204 		if (object->ref_count > 1 || object->shadow_count != 0)
1205 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 		VM_OBJECT_WUNLOCK(object);
1207 	}
1208 	else if ((prev_entry != &map->header) &&
1209 		 (prev_entry->eflags == protoeflags) &&
1210 		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211 		 (prev_entry->end == start) &&
1212 		 (prev_entry->wired_count == 0) &&
1213 		 (prev_entry->cred == cred ||
1214 		  (prev_entry->object.vm_object != NULL &&
1215 		   (prev_entry->object.vm_object->cred == cred))) &&
1216 		   vm_object_coalesce(prev_entry->object.vm_object,
1217 		       prev_entry->offset,
1218 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220 		/*
1221 		 * We were able to extend the object.  Determine if we
1222 		 * can extend the previous map entry to include the
1223 		 * new range as well.
1224 		 */
1225 		if ((prev_entry->inheritance == inheritance) &&
1226 		    (prev_entry->protection == prot) &&
1227 		    (prev_entry->max_protection == max)) {
1228 			map->size += (end - prev_entry->end);
1229 			prev_entry->end = end;
1230 			vm_map_entry_resize_free(map, prev_entry);
1231 			vm_map_simplify_entry(map, prev_entry);
1232 			if (cred != NULL)
1233 				crfree(cred);
1234 			return (KERN_SUCCESS);
1235 		}
1236 
1237 		/*
1238 		 * If we can extend the object but cannot extend the
1239 		 * map entry, we have to create a new map entry.  We
1240 		 * must bump the ref count on the extended object to
1241 		 * account for it.  object may be NULL.
1242 		 */
1243 		object = prev_entry->object.vm_object;
1244 		offset = prev_entry->offset +
1245 			(prev_entry->end - prev_entry->start);
1246 		vm_object_reference(object);
1247 		if (cred != NULL && object != NULL && object->cred != NULL &&
1248 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249 			/* Object already accounts for this uid. */
1250 			crfree(cred);
1251 			cred = NULL;
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257 	 * in things like the buffer map where we manage kva but do not manage
1258 	 * backing objects.
1259 	 */
1260 
1261 	/*
1262 	 * Create a new entry
1263 	 */
1264 	new_entry = vm_map_entry_create(map);
1265 	new_entry->start = start;
1266 	new_entry->end = end;
1267 	new_entry->cred = NULL;
1268 
1269 	new_entry->eflags = protoeflags;
1270 	new_entry->object.vm_object = object;
1271 	new_entry->offset = offset;
1272 	new_entry->avail_ssize = 0;
1273 
1274 	new_entry->inheritance = inheritance;
1275 	new_entry->protection = prot;
1276 	new_entry->max_protection = max;
1277 	new_entry->wired_count = 0;
1278 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1279 	new_entry->next_read = OFF_TO_IDX(offset);
1280 
1281 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1282 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1283 	new_entry->cred = cred;
1284 
1285 	/*
1286 	 * Insert the new entry into the list
1287 	 */
1288 	vm_map_entry_link(map, prev_entry, new_entry);
1289 	map->size += new_entry->end - new_entry->start;
1290 
1291 	/*
1292 	 * It may be possible to merge the new entry with the next and/or
1293 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1294 	 * panic can result from merging such entries.
1295 	 */
1296 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1297 		vm_map_simplify_entry(map, new_entry);
1298 
1299 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1300 		vm_map_pmap_enter(map, start, prot,
1301 				    object, OFF_TO_IDX(offset), end - start,
1302 				    cow & MAP_PREFAULT_PARTIAL);
1303 	}
1304 
1305 	return (KERN_SUCCESS);
1306 }
1307 
1308 /*
1309  *	vm_map_findspace:
1310  *
1311  *	Find the first fit (lowest VM address) for "length" free bytes
1312  *	beginning at address >= start in the given map.
1313  *
1314  *	In a vm_map_entry, "adj_free" is the amount of free space
1315  *	adjacent (higher address) to this entry, and "max_free" is the
1316  *	maximum amount of contiguous free space in its subtree.  This
1317  *	allows finding a free region in one path down the tree, so
1318  *	O(log n) amortized with splay trees.
1319  *
1320  *	The map must be locked, and leaves it so.
1321  *
1322  *	Returns: 0 on success, and starting address in *addr,
1323  *		 1 if insufficient space.
1324  */
1325 int
1326 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1327     vm_offset_t *addr)	/* OUT */
1328 {
1329 	vm_map_entry_t entry;
1330 	vm_offset_t st;
1331 
1332 	/*
1333 	 * Request must fit within min/max VM address and must avoid
1334 	 * address wrap.
1335 	 */
1336 	if (start < map->min_offset)
1337 		start = map->min_offset;
1338 	if (start + length > map->max_offset || start + length < start)
1339 		return (1);
1340 
1341 	/* Empty tree means wide open address space. */
1342 	if (map->root == NULL) {
1343 		*addr = start;
1344 		return (0);
1345 	}
1346 
1347 	/*
1348 	 * After splay, if start comes before root node, then there
1349 	 * must be a gap from start to the root.
1350 	 */
1351 	map->root = vm_map_entry_splay(start, map->root);
1352 	if (start + length <= map->root->start) {
1353 		*addr = start;
1354 		return (0);
1355 	}
1356 
1357 	/*
1358 	 * Root is the last node that might begin its gap before
1359 	 * start, and this is the last comparison where address
1360 	 * wrap might be a problem.
1361 	 */
1362 	st = (start > map->root->end) ? start : map->root->end;
1363 	if (length <= map->root->end + map->root->adj_free - st) {
1364 		*addr = st;
1365 		return (0);
1366 	}
1367 
1368 	/* With max_free, can immediately tell if no solution. */
1369 	entry = map->root->right;
1370 	if (entry == NULL || length > entry->max_free)
1371 		return (1);
1372 
1373 	/*
1374 	 * Search the right subtree in the order: left subtree, root,
1375 	 * right subtree (first fit).  The previous splay implies that
1376 	 * all regions in the right subtree have addresses > start.
1377 	 */
1378 	while (entry != NULL) {
1379 		if (entry->left != NULL && entry->left->max_free >= length)
1380 			entry = entry->left;
1381 		else if (entry->adj_free >= length) {
1382 			*addr = entry->end;
1383 			return (0);
1384 		} else
1385 			entry = entry->right;
1386 	}
1387 
1388 	/* Can't get here, so panic if we do. */
1389 	panic("vm_map_findspace: max_free corrupt");
1390 }
1391 
1392 int
1393 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1394     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1395     vm_prot_t max, int cow)
1396 {
1397 	vm_offset_t end;
1398 	int result;
1399 
1400 	end = start + length;
1401 	vm_map_lock(map);
1402 	VM_MAP_RANGE_CHECK(map, start, end);
1403 	(void) vm_map_delete(map, start, end);
1404 	result = vm_map_insert(map, object, offset, start, end, prot,
1405 	    max, cow);
1406 	vm_map_unlock(map);
1407 	return (result);
1408 }
1409 
1410 /*
1411  *	vm_map_find finds an unallocated region in the target address
1412  *	map with the given length.  The search is defined to be
1413  *	first-fit from the specified address; the region found is
1414  *	returned in the same parameter.
1415  *
1416  *	If object is non-NULL, ref count must be bumped by caller
1417  *	prior to making call to account for the new entry.
1418  */
1419 int
1420 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1421 	    vm_offset_t *addr,	/* IN/OUT */
1422 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1423 	    vm_prot_t prot, vm_prot_t max, int cow)
1424 {
1425 	vm_offset_t alignment, initial_addr, start;
1426 	int result;
1427 
1428 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1429 	    (object->flags & OBJ_COLORED) == 0))
1430 		find_space = VMFS_ANY_SPACE;
1431 	if (find_space >> 8 != 0) {
1432 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1433 		alignment = (vm_offset_t)1 << (find_space >> 8);
1434 	} else
1435 		alignment = 0;
1436 	initial_addr = *addr;
1437 again:
1438 	start = initial_addr;
1439 	vm_map_lock(map);
1440 	do {
1441 		if (find_space != VMFS_NO_SPACE) {
1442 			if (vm_map_findspace(map, start, length, addr) ||
1443 			    (max_addr != 0 && *addr + length > max_addr)) {
1444 				vm_map_unlock(map);
1445 				if (find_space == VMFS_OPTIMAL_SPACE) {
1446 					find_space = VMFS_ANY_SPACE;
1447 					goto again;
1448 				}
1449 				return (KERN_NO_SPACE);
1450 			}
1451 			switch (find_space) {
1452 			case VMFS_SUPER_SPACE:
1453 			case VMFS_OPTIMAL_SPACE:
1454 				pmap_align_superpage(object, offset, addr,
1455 				    length);
1456 				break;
1457 			case VMFS_ANY_SPACE:
1458 				break;
1459 			default:
1460 				if ((*addr & (alignment - 1)) != 0) {
1461 					*addr &= ~(alignment - 1);
1462 					*addr += alignment;
1463 				}
1464 				break;
1465 			}
1466 
1467 			start = *addr;
1468 		}
1469 		result = vm_map_insert(map, object, offset, start, start +
1470 		    length, prot, max, cow);
1471 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1472 	    find_space != VMFS_ANY_SPACE);
1473 	vm_map_unlock(map);
1474 	return (result);
1475 }
1476 
1477 /*
1478  *	vm_map_simplify_entry:
1479  *
1480  *	Simplify the given map entry by merging with either neighbor.  This
1481  *	routine also has the ability to merge with both neighbors.
1482  *
1483  *	The map must be locked.
1484  *
1485  *	This routine guarentees that the passed entry remains valid (though
1486  *	possibly extended).  When merging, this routine may delete one or
1487  *	both neighbors.
1488  */
1489 void
1490 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1491 {
1492 	vm_map_entry_t next, prev;
1493 	vm_size_t prevsize, esize;
1494 
1495 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1496 		return;
1497 
1498 	prev = entry->prev;
1499 	if (prev != &map->header) {
1500 		prevsize = prev->end - prev->start;
1501 		if ( (prev->end == entry->start) &&
1502 		     (prev->object.vm_object == entry->object.vm_object) &&
1503 		     (!prev->object.vm_object ||
1504 			(prev->offset + prevsize == entry->offset)) &&
1505 		     (prev->eflags == entry->eflags) &&
1506 		     (prev->protection == entry->protection) &&
1507 		     (prev->max_protection == entry->max_protection) &&
1508 		     (prev->inheritance == entry->inheritance) &&
1509 		     (prev->wired_count == entry->wired_count) &&
1510 		     (prev->cred == entry->cred)) {
1511 			vm_map_entry_unlink(map, prev);
1512 			entry->start = prev->start;
1513 			entry->offset = prev->offset;
1514 			if (entry->prev != &map->header)
1515 				vm_map_entry_resize_free(map, entry->prev);
1516 
1517 			/*
1518 			 * If the backing object is a vnode object,
1519 			 * vm_object_deallocate() calls vrele().
1520 			 * However, vrele() does not lock the vnode
1521 			 * because the vnode has additional
1522 			 * references.  Thus, the map lock can be kept
1523 			 * without causing a lock-order reversal with
1524 			 * the vnode lock.
1525 			 *
1526 			 * Since we count the number of virtual page
1527 			 * mappings in object->un_pager.vnp.writemappings,
1528 			 * the writemappings value should not be adjusted
1529 			 * when the entry is disposed of.
1530 			 */
1531 			if (prev->object.vm_object)
1532 				vm_object_deallocate(prev->object.vm_object);
1533 			if (prev->cred != NULL)
1534 				crfree(prev->cred);
1535 			vm_map_entry_dispose(map, prev);
1536 		}
1537 	}
1538 
1539 	next = entry->next;
1540 	if (next != &map->header) {
1541 		esize = entry->end - entry->start;
1542 		if ((entry->end == next->start) &&
1543 		    (next->object.vm_object == entry->object.vm_object) &&
1544 		     (!entry->object.vm_object ||
1545 			(entry->offset + esize == next->offset)) &&
1546 		    (next->eflags == entry->eflags) &&
1547 		    (next->protection == entry->protection) &&
1548 		    (next->max_protection == entry->max_protection) &&
1549 		    (next->inheritance == entry->inheritance) &&
1550 		    (next->wired_count == entry->wired_count) &&
1551 		    (next->cred == entry->cred)) {
1552 			vm_map_entry_unlink(map, next);
1553 			entry->end = next->end;
1554 			vm_map_entry_resize_free(map, entry);
1555 
1556 			/*
1557 			 * See comment above.
1558 			 */
1559 			if (next->object.vm_object)
1560 				vm_object_deallocate(next->object.vm_object);
1561 			if (next->cred != NULL)
1562 				crfree(next->cred);
1563 			vm_map_entry_dispose(map, next);
1564 		}
1565 	}
1566 }
1567 /*
1568  *	vm_map_clip_start:	[ internal use only ]
1569  *
1570  *	Asserts that the given entry begins at or after
1571  *	the specified address; if necessary,
1572  *	it splits the entry into two.
1573  */
1574 #define vm_map_clip_start(map, entry, startaddr) \
1575 { \
1576 	if (startaddr > entry->start) \
1577 		_vm_map_clip_start(map, entry, startaddr); \
1578 }
1579 
1580 /*
1581  *	This routine is called only when it is known that
1582  *	the entry must be split.
1583  */
1584 static void
1585 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1586 {
1587 	vm_map_entry_t new_entry;
1588 
1589 	VM_MAP_ASSERT_LOCKED(map);
1590 
1591 	/*
1592 	 * Split off the front portion -- note that we must insert the new
1593 	 * entry BEFORE this one, so that this entry has the specified
1594 	 * starting address.
1595 	 */
1596 	vm_map_simplify_entry(map, entry);
1597 
1598 	/*
1599 	 * If there is no object backing this entry, we might as well create
1600 	 * one now.  If we defer it, an object can get created after the map
1601 	 * is clipped, and individual objects will be created for the split-up
1602 	 * map.  This is a bit of a hack, but is also about the best place to
1603 	 * put this improvement.
1604 	 */
1605 	if (entry->object.vm_object == NULL && !map->system_map) {
1606 		vm_object_t object;
1607 		object = vm_object_allocate(OBJT_DEFAULT,
1608 				atop(entry->end - entry->start));
1609 		entry->object.vm_object = object;
1610 		entry->offset = 0;
1611 		if (entry->cred != NULL) {
1612 			object->cred = entry->cred;
1613 			object->charge = entry->end - entry->start;
1614 			entry->cred = NULL;
1615 		}
1616 	} else if (entry->object.vm_object != NULL &&
1617 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1618 		   entry->cred != NULL) {
1619 		VM_OBJECT_WLOCK(entry->object.vm_object);
1620 		KASSERT(entry->object.vm_object->cred == NULL,
1621 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1622 		entry->object.vm_object->cred = entry->cred;
1623 		entry->object.vm_object->charge = entry->end - entry->start;
1624 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1625 		entry->cred = NULL;
1626 	}
1627 
1628 	new_entry = vm_map_entry_create(map);
1629 	*new_entry = *entry;
1630 
1631 	new_entry->end = start;
1632 	entry->offset += (start - entry->start);
1633 	entry->start = start;
1634 	if (new_entry->cred != NULL)
1635 		crhold(entry->cred);
1636 
1637 	vm_map_entry_link(map, entry->prev, new_entry);
1638 
1639 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1640 		vm_object_reference(new_entry->object.vm_object);
1641 		/*
1642 		 * The object->un_pager.vnp.writemappings for the
1643 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1644 		 * kept as is here.  The virtual pages are
1645 		 * re-distributed among the clipped entries, so the sum is
1646 		 * left the same.
1647 		 */
1648 	}
1649 }
1650 
1651 /*
1652  *	vm_map_clip_end:	[ internal use only ]
1653  *
1654  *	Asserts that the given entry ends at or before
1655  *	the specified address; if necessary,
1656  *	it splits the entry into two.
1657  */
1658 #define vm_map_clip_end(map, entry, endaddr) \
1659 { \
1660 	if ((endaddr) < (entry->end)) \
1661 		_vm_map_clip_end((map), (entry), (endaddr)); \
1662 }
1663 
1664 /*
1665  *	This routine is called only when it is known that
1666  *	the entry must be split.
1667  */
1668 static void
1669 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1670 {
1671 	vm_map_entry_t new_entry;
1672 
1673 	VM_MAP_ASSERT_LOCKED(map);
1674 
1675 	/*
1676 	 * If there is no object backing this entry, we might as well create
1677 	 * one now.  If we defer it, an object can get created after the map
1678 	 * is clipped, and individual objects will be created for the split-up
1679 	 * map.  This is a bit of a hack, but is also about the best place to
1680 	 * put this improvement.
1681 	 */
1682 	if (entry->object.vm_object == NULL && !map->system_map) {
1683 		vm_object_t object;
1684 		object = vm_object_allocate(OBJT_DEFAULT,
1685 				atop(entry->end - entry->start));
1686 		entry->object.vm_object = object;
1687 		entry->offset = 0;
1688 		if (entry->cred != NULL) {
1689 			object->cred = entry->cred;
1690 			object->charge = entry->end - entry->start;
1691 			entry->cred = NULL;
1692 		}
1693 	} else if (entry->object.vm_object != NULL &&
1694 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1695 		   entry->cred != NULL) {
1696 		VM_OBJECT_WLOCK(entry->object.vm_object);
1697 		KASSERT(entry->object.vm_object->cred == NULL,
1698 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1699 		entry->object.vm_object->cred = entry->cred;
1700 		entry->object.vm_object->charge = entry->end - entry->start;
1701 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1702 		entry->cred = NULL;
1703 	}
1704 
1705 	/*
1706 	 * Create a new entry and insert it AFTER the specified entry
1707 	 */
1708 	new_entry = vm_map_entry_create(map);
1709 	*new_entry = *entry;
1710 
1711 	new_entry->start = entry->end = end;
1712 	new_entry->offset += (end - entry->start);
1713 	if (new_entry->cred != NULL)
1714 		crhold(entry->cred);
1715 
1716 	vm_map_entry_link(map, entry, new_entry);
1717 
1718 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1719 		vm_object_reference(new_entry->object.vm_object);
1720 	}
1721 }
1722 
1723 /*
1724  *	vm_map_submap:		[ kernel use only ]
1725  *
1726  *	Mark the given range as handled by a subordinate map.
1727  *
1728  *	This range must have been created with vm_map_find,
1729  *	and no other operations may have been performed on this
1730  *	range prior to calling vm_map_submap.
1731  *
1732  *	Only a limited number of operations can be performed
1733  *	within this rage after calling vm_map_submap:
1734  *		vm_fault
1735  *	[Don't try vm_map_copy!]
1736  *
1737  *	To remove a submapping, one must first remove the
1738  *	range from the superior map, and then destroy the
1739  *	submap (if desired).  [Better yet, don't try it.]
1740  */
1741 int
1742 vm_map_submap(
1743 	vm_map_t map,
1744 	vm_offset_t start,
1745 	vm_offset_t end,
1746 	vm_map_t submap)
1747 {
1748 	vm_map_entry_t entry;
1749 	int result = KERN_INVALID_ARGUMENT;
1750 
1751 	vm_map_lock(map);
1752 
1753 	VM_MAP_RANGE_CHECK(map, start, end);
1754 
1755 	if (vm_map_lookup_entry(map, start, &entry)) {
1756 		vm_map_clip_start(map, entry, start);
1757 	} else
1758 		entry = entry->next;
1759 
1760 	vm_map_clip_end(map, entry, end);
1761 
1762 	if ((entry->start == start) && (entry->end == end) &&
1763 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1764 	    (entry->object.vm_object == NULL)) {
1765 		entry->object.sub_map = submap;
1766 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1767 		result = KERN_SUCCESS;
1768 	}
1769 	vm_map_unlock(map);
1770 
1771 	return (result);
1772 }
1773 
1774 /*
1775  * The maximum number of pages to map
1776  */
1777 #define	MAX_INIT_PT	96
1778 
1779 /*
1780  *	vm_map_pmap_enter:
1781  *
1782  *	Preload read-only mappings for the specified object's resident pages
1783  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1784  *	the resident pages within the address range [addr, addr + ulmin(size,
1785  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1786  *	the specified address range are mapped.  This eliminates many soft
1787  *	faults on process startup and immediately after an mmap(2).  Because
1788  *	these are speculative mappings, cached pages are not reactivated and
1789  *	mapped.
1790  */
1791 void
1792 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1793     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1794 {
1795 	vm_offset_t start;
1796 	vm_page_t p, p_start;
1797 	vm_pindex_t psize, tmpidx;
1798 
1799 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1800 		return;
1801 	VM_OBJECT_RLOCK(object);
1802 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1803 		VM_OBJECT_RUNLOCK(object);
1804 		VM_OBJECT_WLOCK(object);
1805 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1806 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1807 			    size);
1808 			VM_OBJECT_WUNLOCK(object);
1809 			return;
1810 		}
1811 		VM_OBJECT_LOCK_DOWNGRADE(object);
1812 	}
1813 
1814 	psize = atop(size);
1815 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816 		psize = MAX_INIT_PT;
1817 	if (psize + pindex > object->size) {
1818 		if (object->size < pindex) {
1819 			VM_OBJECT_RUNLOCK(object);
1820 			return;
1821 		}
1822 		psize = object->size - pindex;
1823 	}
1824 
1825 	start = 0;
1826 	p_start = NULL;
1827 
1828 	p = vm_page_find_least(object, pindex);
1829 	/*
1830 	 * Assert: the variable p is either (1) the page with the
1831 	 * least pindex greater than or equal to the parameter pindex
1832 	 * or (2) NULL.
1833 	 */
1834 	for (;
1835 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1836 	     p = TAILQ_NEXT(p, listq)) {
1837 		/*
1838 		 * don't allow an madvise to blow away our really
1839 		 * free pages allocating pv entries.
1840 		 */
1841 		if ((flags & MAP_PREFAULT_MADVISE) &&
1842 		    cnt.v_free_count < cnt.v_free_reserved) {
1843 			psize = tmpidx;
1844 			break;
1845 		}
1846 		if (p->valid == VM_PAGE_BITS_ALL) {
1847 			if (p_start == NULL) {
1848 				start = addr + ptoa(tmpidx);
1849 				p_start = p;
1850 			}
1851 		} else if (p_start != NULL) {
1852 			pmap_enter_object(map->pmap, start, addr +
1853 			    ptoa(tmpidx), p_start, prot);
1854 			p_start = NULL;
1855 		}
1856 	}
1857 	if (p_start != NULL)
1858 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1859 		    p_start, prot);
1860 	VM_OBJECT_RUNLOCK(object);
1861 }
1862 
1863 /*
1864  *	vm_map_protect:
1865  *
1866  *	Sets the protection of the specified address
1867  *	region in the target map.  If "set_max" is
1868  *	specified, the maximum protection is to be set;
1869  *	otherwise, only the current protection is affected.
1870  */
1871 int
1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 	       vm_prot_t new_prot, boolean_t set_max)
1874 {
1875 	vm_map_entry_t current, entry;
1876 	vm_object_t obj;
1877 	struct ucred *cred;
1878 	vm_prot_t old_prot;
1879 
1880 	if (start == end)
1881 		return (KERN_SUCCESS);
1882 
1883 	vm_map_lock(map);
1884 
1885 	VM_MAP_RANGE_CHECK(map, start, end);
1886 
1887 	if (vm_map_lookup_entry(map, start, &entry)) {
1888 		vm_map_clip_start(map, entry, start);
1889 	} else {
1890 		entry = entry->next;
1891 	}
1892 
1893 	/*
1894 	 * Make a first pass to check for protection violations.
1895 	 */
1896 	current = entry;
1897 	while ((current != &map->header) && (current->start < end)) {
1898 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1899 			vm_map_unlock(map);
1900 			return (KERN_INVALID_ARGUMENT);
1901 		}
1902 		if ((new_prot & current->max_protection) != new_prot) {
1903 			vm_map_unlock(map);
1904 			return (KERN_PROTECTION_FAILURE);
1905 		}
1906 		current = current->next;
1907 	}
1908 
1909 
1910 	/*
1911 	 * Do an accounting pass for private read-only mappings that
1912 	 * now will do cow due to allowed write (e.g. debugger sets
1913 	 * breakpoint on text segment)
1914 	 */
1915 	for (current = entry; (current != &map->header) &&
1916 	     (current->start < end); current = current->next) {
1917 
1918 		vm_map_clip_end(map, current, end);
1919 
1920 		if (set_max ||
1921 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1922 		    ENTRY_CHARGED(current)) {
1923 			continue;
1924 		}
1925 
1926 		cred = curthread->td_ucred;
1927 		obj = current->object.vm_object;
1928 
1929 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1930 			if (!swap_reserve(current->end - current->start)) {
1931 				vm_map_unlock(map);
1932 				return (KERN_RESOURCE_SHORTAGE);
1933 			}
1934 			crhold(cred);
1935 			current->cred = cred;
1936 			continue;
1937 		}
1938 
1939 		VM_OBJECT_WLOCK(obj);
1940 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1941 			VM_OBJECT_WUNLOCK(obj);
1942 			continue;
1943 		}
1944 
1945 		/*
1946 		 * Charge for the whole object allocation now, since
1947 		 * we cannot distinguish between non-charged and
1948 		 * charged clipped mapping of the same object later.
1949 		 */
1950 		KASSERT(obj->charge == 0,
1951 		    ("vm_map_protect: object %p overcharged\n", obj));
1952 		if (!swap_reserve(ptoa(obj->size))) {
1953 			VM_OBJECT_WUNLOCK(obj);
1954 			vm_map_unlock(map);
1955 			return (KERN_RESOURCE_SHORTAGE);
1956 		}
1957 
1958 		crhold(cred);
1959 		obj->cred = cred;
1960 		obj->charge = ptoa(obj->size);
1961 		VM_OBJECT_WUNLOCK(obj);
1962 	}
1963 
1964 	/*
1965 	 * Go back and fix up protections. [Note that clipping is not
1966 	 * necessary the second time.]
1967 	 */
1968 	current = entry;
1969 	while ((current != &map->header) && (current->start < end)) {
1970 		old_prot = current->protection;
1971 
1972 		if (set_max)
1973 			current->protection =
1974 			    (current->max_protection = new_prot) &
1975 			    old_prot;
1976 		else
1977 			current->protection = new_prot;
1978 
1979 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1980 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1981 		    (current->protection & VM_PROT_WRITE) != 0 &&
1982 		    (old_prot & VM_PROT_WRITE) == 0) {
1983 			vm_fault_copy_entry(map, map, current, current, NULL);
1984 		}
1985 
1986 		/*
1987 		 * When restricting access, update the physical map.  Worry
1988 		 * about copy-on-write here.
1989 		 */
1990 		if ((old_prot & ~current->protection) != 0) {
1991 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1992 							VM_PROT_ALL)
1993 			pmap_protect(map->pmap, current->start,
1994 			    current->end,
1995 			    current->protection & MASK(current));
1996 #undef	MASK
1997 		}
1998 		vm_map_simplify_entry(map, current);
1999 		current = current->next;
2000 	}
2001 	vm_map_unlock(map);
2002 	return (KERN_SUCCESS);
2003 }
2004 
2005 /*
2006  *	vm_map_madvise:
2007  *
2008  *	This routine traverses a processes map handling the madvise
2009  *	system call.  Advisories are classified as either those effecting
2010  *	the vm_map_entry structure, or those effecting the underlying
2011  *	objects.
2012  */
2013 int
2014 vm_map_madvise(
2015 	vm_map_t map,
2016 	vm_offset_t start,
2017 	vm_offset_t end,
2018 	int behav)
2019 {
2020 	vm_map_entry_t current, entry;
2021 	int modify_map = 0;
2022 
2023 	/*
2024 	 * Some madvise calls directly modify the vm_map_entry, in which case
2025 	 * we need to use an exclusive lock on the map and we need to perform
2026 	 * various clipping operations.  Otherwise we only need a read-lock
2027 	 * on the map.
2028 	 */
2029 	switch(behav) {
2030 	case MADV_NORMAL:
2031 	case MADV_SEQUENTIAL:
2032 	case MADV_RANDOM:
2033 	case MADV_NOSYNC:
2034 	case MADV_AUTOSYNC:
2035 	case MADV_NOCORE:
2036 	case MADV_CORE:
2037 		if (start == end)
2038 			return (KERN_SUCCESS);
2039 		modify_map = 1;
2040 		vm_map_lock(map);
2041 		break;
2042 	case MADV_WILLNEED:
2043 	case MADV_DONTNEED:
2044 	case MADV_FREE:
2045 		if (start == end)
2046 			return (KERN_SUCCESS);
2047 		vm_map_lock_read(map);
2048 		break;
2049 	default:
2050 		return (KERN_INVALID_ARGUMENT);
2051 	}
2052 
2053 	/*
2054 	 * Locate starting entry and clip if necessary.
2055 	 */
2056 	VM_MAP_RANGE_CHECK(map, start, end);
2057 
2058 	if (vm_map_lookup_entry(map, start, &entry)) {
2059 		if (modify_map)
2060 			vm_map_clip_start(map, entry, start);
2061 	} else {
2062 		entry = entry->next;
2063 	}
2064 
2065 	if (modify_map) {
2066 		/*
2067 		 * madvise behaviors that are implemented in the vm_map_entry.
2068 		 *
2069 		 * We clip the vm_map_entry so that behavioral changes are
2070 		 * limited to the specified address range.
2071 		 */
2072 		for (current = entry;
2073 		     (current != &map->header) && (current->start < end);
2074 		     current = current->next
2075 		) {
2076 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2077 				continue;
2078 
2079 			vm_map_clip_end(map, current, end);
2080 
2081 			switch (behav) {
2082 			case MADV_NORMAL:
2083 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2084 				break;
2085 			case MADV_SEQUENTIAL:
2086 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2087 				break;
2088 			case MADV_RANDOM:
2089 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2090 				break;
2091 			case MADV_NOSYNC:
2092 				current->eflags |= MAP_ENTRY_NOSYNC;
2093 				break;
2094 			case MADV_AUTOSYNC:
2095 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2096 				break;
2097 			case MADV_NOCORE:
2098 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2099 				break;
2100 			case MADV_CORE:
2101 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2102 				break;
2103 			default:
2104 				break;
2105 			}
2106 			vm_map_simplify_entry(map, current);
2107 		}
2108 		vm_map_unlock(map);
2109 	} else {
2110 		vm_pindex_t pstart, pend;
2111 
2112 		/*
2113 		 * madvise behaviors that are implemented in the underlying
2114 		 * vm_object.
2115 		 *
2116 		 * Since we don't clip the vm_map_entry, we have to clip
2117 		 * the vm_object pindex and count.
2118 		 */
2119 		for (current = entry;
2120 		     (current != &map->header) && (current->start < end);
2121 		     current = current->next
2122 		) {
2123 			vm_offset_t useEnd, useStart;
2124 
2125 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2126 				continue;
2127 
2128 			pstart = OFF_TO_IDX(current->offset);
2129 			pend = pstart + atop(current->end - current->start);
2130 			useStart = current->start;
2131 			useEnd = current->end;
2132 
2133 			if (current->start < start) {
2134 				pstart += atop(start - current->start);
2135 				useStart = start;
2136 			}
2137 			if (current->end > end) {
2138 				pend -= atop(current->end - end);
2139 				useEnd = end;
2140 			}
2141 
2142 			if (pstart >= pend)
2143 				continue;
2144 
2145 			/*
2146 			 * Perform the pmap_advise() before clearing
2147 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2148 			 * concurrent pmap operation, such as pmap_remove(),
2149 			 * could clear a reference in the pmap and set
2150 			 * PGA_REFERENCED on the page before the pmap_advise()
2151 			 * had completed.  Consequently, the page would appear
2152 			 * referenced based upon an old reference that
2153 			 * occurred before this pmap_advise() ran.
2154 			 */
2155 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2156 				pmap_advise(map->pmap, useStart, useEnd,
2157 				    behav);
2158 
2159 			vm_object_madvise(current->object.vm_object, pstart,
2160 			    pend, behav);
2161 			if (behav == MADV_WILLNEED) {
2162 				vm_map_pmap_enter(map,
2163 				    useStart,
2164 				    current->protection,
2165 				    current->object.vm_object,
2166 				    pstart,
2167 				    ptoa(pend - pstart),
2168 				    MAP_PREFAULT_MADVISE
2169 				);
2170 			}
2171 		}
2172 		vm_map_unlock_read(map);
2173 	}
2174 	return (0);
2175 }
2176 
2177 
2178 /*
2179  *	vm_map_inherit:
2180  *
2181  *	Sets the inheritance of the specified address
2182  *	range in the target map.  Inheritance
2183  *	affects how the map will be shared with
2184  *	child maps at the time of vmspace_fork.
2185  */
2186 int
2187 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2188 	       vm_inherit_t new_inheritance)
2189 {
2190 	vm_map_entry_t entry;
2191 	vm_map_entry_t temp_entry;
2192 
2193 	switch (new_inheritance) {
2194 	case VM_INHERIT_NONE:
2195 	case VM_INHERIT_COPY:
2196 	case VM_INHERIT_SHARE:
2197 		break;
2198 	default:
2199 		return (KERN_INVALID_ARGUMENT);
2200 	}
2201 	if (start == end)
2202 		return (KERN_SUCCESS);
2203 	vm_map_lock(map);
2204 	VM_MAP_RANGE_CHECK(map, start, end);
2205 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2206 		entry = temp_entry;
2207 		vm_map_clip_start(map, entry, start);
2208 	} else
2209 		entry = temp_entry->next;
2210 	while ((entry != &map->header) && (entry->start < end)) {
2211 		vm_map_clip_end(map, entry, end);
2212 		entry->inheritance = new_inheritance;
2213 		vm_map_simplify_entry(map, entry);
2214 		entry = entry->next;
2215 	}
2216 	vm_map_unlock(map);
2217 	return (KERN_SUCCESS);
2218 }
2219 
2220 /*
2221  *	vm_map_unwire:
2222  *
2223  *	Implements both kernel and user unwiring.
2224  */
2225 int
2226 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2227     int flags)
2228 {
2229 	vm_map_entry_t entry, first_entry, tmp_entry;
2230 	vm_offset_t saved_start;
2231 	unsigned int last_timestamp;
2232 	int rv;
2233 	boolean_t need_wakeup, result, user_unwire;
2234 
2235 	if (start == end)
2236 		return (KERN_SUCCESS);
2237 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2238 	vm_map_lock(map);
2239 	VM_MAP_RANGE_CHECK(map, start, end);
2240 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2241 		if (flags & VM_MAP_WIRE_HOLESOK)
2242 			first_entry = first_entry->next;
2243 		else {
2244 			vm_map_unlock(map);
2245 			return (KERN_INVALID_ADDRESS);
2246 		}
2247 	}
2248 	last_timestamp = map->timestamp;
2249 	entry = first_entry;
2250 	while (entry != &map->header && entry->start < end) {
2251 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2252 			/*
2253 			 * We have not yet clipped the entry.
2254 			 */
2255 			saved_start = (start >= entry->start) ? start :
2256 			    entry->start;
2257 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2258 			if (vm_map_unlock_and_wait(map, 0)) {
2259 				/*
2260 				 * Allow interruption of user unwiring?
2261 				 */
2262 			}
2263 			vm_map_lock(map);
2264 			if (last_timestamp+1 != map->timestamp) {
2265 				/*
2266 				 * Look again for the entry because the map was
2267 				 * modified while it was unlocked.
2268 				 * Specifically, the entry may have been
2269 				 * clipped, merged, or deleted.
2270 				 */
2271 				if (!vm_map_lookup_entry(map, saved_start,
2272 				    &tmp_entry)) {
2273 					if (flags & VM_MAP_WIRE_HOLESOK)
2274 						tmp_entry = tmp_entry->next;
2275 					else {
2276 						if (saved_start == start) {
2277 							/*
2278 							 * First_entry has been deleted.
2279 							 */
2280 							vm_map_unlock(map);
2281 							return (KERN_INVALID_ADDRESS);
2282 						}
2283 						end = saved_start;
2284 						rv = KERN_INVALID_ADDRESS;
2285 						goto done;
2286 					}
2287 				}
2288 				if (entry == first_entry)
2289 					first_entry = tmp_entry;
2290 				else
2291 					first_entry = NULL;
2292 				entry = tmp_entry;
2293 			}
2294 			last_timestamp = map->timestamp;
2295 			continue;
2296 		}
2297 		vm_map_clip_start(map, entry, start);
2298 		vm_map_clip_end(map, entry, end);
2299 		/*
2300 		 * Mark the entry in case the map lock is released.  (See
2301 		 * above.)
2302 		 */
2303 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2304 		    entry->wiring_thread == NULL,
2305 		    ("owned map entry %p", entry));
2306 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2307 		entry->wiring_thread = curthread;
2308 		/*
2309 		 * Check the map for holes in the specified region.
2310 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2311 		 */
2312 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2313 		    (entry->end < end && (entry->next == &map->header ||
2314 		    entry->next->start > entry->end))) {
2315 			end = entry->end;
2316 			rv = KERN_INVALID_ADDRESS;
2317 			goto done;
2318 		}
2319 		/*
2320 		 * If system unwiring, require that the entry is system wired.
2321 		 */
2322 		if (!user_unwire &&
2323 		    vm_map_entry_system_wired_count(entry) == 0) {
2324 			end = entry->end;
2325 			rv = KERN_INVALID_ARGUMENT;
2326 			goto done;
2327 		}
2328 		entry = entry->next;
2329 	}
2330 	rv = KERN_SUCCESS;
2331 done:
2332 	need_wakeup = FALSE;
2333 	if (first_entry == NULL) {
2334 		result = vm_map_lookup_entry(map, start, &first_entry);
2335 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2336 			first_entry = first_entry->next;
2337 		else
2338 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2339 	}
2340 	for (entry = first_entry; entry != &map->header && entry->start < end;
2341 	    entry = entry->next) {
2342 		/*
2343 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2344 		 * space in the unwired region could have been mapped
2345 		 * while the map lock was dropped for draining
2346 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2347 		 * could be simultaneously wiring this new mapping
2348 		 * entry.  Detect these cases and skip any entries
2349 		 * marked as in transition by us.
2350 		 */
2351 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2352 		    entry->wiring_thread != curthread) {
2353 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2354 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2355 			continue;
2356 		}
2357 
2358 		if (rv == KERN_SUCCESS && (!user_unwire ||
2359 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2360 			if (user_unwire)
2361 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2362 			entry->wired_count--;
2363 			if (entry->wired_count == 0) {
2364 				/*
2365 				 * Retain the map lock.
2366 				 */
2367 				vm_fault_unwire(map, entry->start, entry->end,
2368 				    entry->object.vm_object != NULL &&
2369 				    (entry->object.vm_object->flags &
2370 				    OBJ_FICTITIOUS) != 0);
2371 			}
2372 		}
2373 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2374 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2375 		KASSERT(entry->wiring_thread == curthread,
2376 		    ("vm_map_unwire: alien wire %p", entry));
2377 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2378 		entry->wiring_thread = NULL;
2379 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2380 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2381 			need_wakeup = TRUE;
2382 		}
2383 		vm_map_simplify_entry(map, entry);
2384 	}
2385 	vm_map_unlock(map);
2386 	if (need_wakeup)
2387 		vm_map_wakeup(map);
2388 	return (rv);
2389 }
2390 
2391 /*
2392  *	vm_map_wire:
2393  *
2394  *	Implements both kernel and user wiring.
2395  */
2396 int
2397 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2398     int flags)
2399 {
2400 	vm_map_entry_t entry, first_entry, tmp_entry;
2401 	vm_offset_t saved_end, saved_start;
2402 	unsigned int last_timestamp;
2403 	int rv;
2404 	boolean_t fictitious, need_wakeup, result, user_wire;
2405 	vm_prot_t prot;
2406 
2407 	if (start == end)
2408 		return (KERN_SUCCESS);
2409 	prot = 0;
2410 	if (flags & VM_MAP_WIRE_WRITE)
2411 		prot |= VM_PROT_WRITE;
2412 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2413 	vm_map_lock(map);
2414 	VM_MAP_RANGE_CHECK(map, start, end);
2415 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2416 		if (flags & VM_MAP_WIRE_HOLESOK)
2417 			first_entry = first_entry->next;
2418 		else {
2419 			vm_map_unlock(map);
2420 			return (KERN_INVALID_ADDRESS);
2421 		}
2422 	}
2423 	last_timestamp = map->timestamp;
2424 	entry = first_entry;
2425 	while (entry != &map->header && entry->start < end) {
2426 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2427 			/*
2428 			 * We have not yet clipped the entry.
2429 			 */
2430 			saved_start = (start >= entry->start) ? start :
2431 			    entry->start;
2432 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2433 			if (vm_map_unlock_and_wait(map, 0)) {
2434 				/*
2435 				 * Allow interruption of user wiring?
2436 				 */
2437 			}
2438 			vm_map_lock(map);
2439 			if (last_timestamp + 1 != map->timestamp) {
2440 				/*
2441 				 * Look again for the entry because the map was
2442 				 * modified while it was unlocked.
2443 				 * Specifically, the entry may have been
2444 				 * clipped, merged, or deleted.
2445 				 */
2446 				if (!vm_map_lookup_entry(map, saved_start,
2447 				    &tmp_entry)) {
2448 					if (flags & VM_MAP_WIRE_HOLESOK)
2449 						tmp_entry = tmp_entry->next;
2450 					else {
2451 						if (saved_start == start) {
2452 							/*
2453 							 * first_entry has been deleted.
2454 							 */
2455 							vm_map_unlock(map);
2456 							return (KERN_INVALID_ADDRESS);
2457 						}
2458 						end = saved_start;
2459 						rv = KERN_INVALID_ADDRESS;
2460 						goto done;
2461 					}
2462 				}
2463 				if (entry == first_entry)
2464 					first_entry = tmp_entry;
2465 				else
2466 					first_entry = NULL;
2467 				entry = tmp_entry;
2468 			}
2469 			last_timestamp = map->timestamp;
2470 			continue;
2471 		}
2472 		vm_map_clip_start(map, entry, start);
2473 		vm_map_clip_end(map, entry, end);
2474 		/*
2475 		 * Mark the entry in case the map lock is released.  (See
2476 		 * above.)
2477 		 */
2478 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2479 		    entry->wiring_thread == NULL,
2480 		    ("owned map entry %p", entry));
2481 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2482 		entry->wiring_thread = curthread;
2483 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2484 		    || (entry->protection & prot) != prot) {
2485 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2486 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2487 				end = entry->end;
2488 				rv = KERN_INVALID_ADDRESS;
2489 				goto done;
2490 			}
2491 			goto next_entry;
2492 		}
2493 		if (entry->wired_count == 0) {
2494 			entry->wired_count++;
2495 			saved_start = entry->start;
2496 			saved_end = entry->end;
2497 			fictitious = entry->object.vm_object != NULL &&
2498 			    (entry->object.vm_object->flags &
2499 			    OBJ_FICTITIOUS) != 0;
2500 			/*
2501 			 * Release the map lock, relying on the in-transition
2502 			 * mark.  Mark the map busy for fork.
2503 			 */
2504 			vm_map_busy(map);
2505 			vm_map_unlock(map);
2506 			rv = vm_fault_wire(map, saved_start, saved_end,
2507 			    fictitious);
2508 			vm_map_lock(map);
2509 			vm_map_unbusy(map);
2510 			if (last_timestamp + 1 != map->timestamp) {
2511 				/*
2512 				 * Look again for the entry because the map was
2513 				 * modified while it was unlocked.  The entry
2514 				 * may have been clipped, but NOT merged or
2515 				 * deleted.
2516 				 */
2517 				result = vm_map_lookup_entry(map, saved_start,
2518 				    &tmp_entry);
2519 				KASSERT(result, ("vm_map_wire: lookup failed"));
2520 				if (entry == first_entry)
2521 					first_entry = tmp_entry;
2522 				else
2523 					first_entry = NULL;
2524 				entry = tmp_entry;
2525 				while (entry->end < saved_end) {
2526 					if (rv != KERN_SUCCESS) {
2527 						KASSERT(entry->wired_count == 1,
2528 						    ("vm_map_wire: bad count"));
2529 						entry->wired_count = -1;
2530 					}
2531 					entry = entry->next;
2532 				}
2533 			}
2534 			last_timestamp = map->timestamp;
2535 			if (rv != KERN_SUCCESS) {
2536 				KASSERT(entry->wired_count == 1,
2537 				    ("vm_map_wire: bad count"));
2538 				/*
2539 				 * Assign an out-of-range value to represent
2540 				 * the failure to wire this entry.
2541 				 */
2542 				entry->wired_count = -1;
2543 				end = entry->end;
2544 				goto done;
2545 			}
2546 		} else if (!user_wire ||
2547 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2548 			entry->wired_count++;
2549 		}
2550 		/*
2551 		 * Check the map for holes in the specified region.
2552 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2553 		 */
2554 	next_entry:
2555 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2556 		    (entry->end < end && (entry->next == &map->header ||
2557 		    entry->next->start > entry->end))) {
2558 			end = entry->end;
2559 			rv = KERN_INVALID_ADDRESS;
2560 			goto done;
2561 		}
2562 		entry = entry->next;
2563 	}
2564 	rv = KERN_SUCCESS;
2565 done:
2566 	need_wakeup = FALSE;
2567 	if (first_entry == NULL) {
2568 		result = vm_map_lookup_entry(map, start, &first_entry);
2569 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2570 			first_entry = first_entry->next;
2571 		else
2572 			KASSERT(result, ("vm_map_wire: lookup failed"));
2573 	}
2574 	for (entry = first_entry; entry != &map->header && entry->start < end;
2575 	    entry = entry->next) {
2576 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2577 			goto next_entry_done;
2578 
2579 		/*
2580 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2581 		 * space in the unwired region could have been mapped
2582 		 * while the map lock was dropped for faulting in the
2583 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2584 		 * Moreover, another thread could be simultaneously
2585 		 * wiring this new mapping entry.  Detect these cases
2586 		 * and skip any entries marked as in transition by us.
2587 		 */
2588 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2589 		    entry->wiring_thread != curthread) {
2590 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2591 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2592 			continue;
2593 		}
2594 
2595 		if (rv == KERN_SUCCESS) {
2596 			if (user_wire)
2597 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2598 		} else if (entry->wired_count == -1) {
2599 			/*
2600 			 * Wiring failed on this entry.  Thus, unwiring is
2601 			 * unnecessary.
2602 			 */
2603 			entry->wired_count = 0;
2604 		} else {
2605 			if (!user_wire ||
2606 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2607 				entry->wired_count--;
2608 			if (entry->wired_count == 0) {
2609 				/*
2610 				 * Retain the map lock.
2611 				 */
2612 				vm_fault_unwire(map, entry->start, entry->end,
2613 				    entry->object.vm_object != NULL &&
2614 				    (entry->object.vm_object->flags &
2615 				    OBJ_FICTITIOUS) != 0);
2616 			}
2617 		}
2618 	next_entry_done:
2619 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2620 		    ("vm_map_wire: in-transition flag missing %p", entry));
2621 		KASSERT(entry->wiring_thread == curthread,
2622 		    ("vm_map_wire: alien wire %p", entry));
2623 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2624 		    MAP_ENTRY_WIRE_SKIPPED);
2625 		entry->wiring_thread = NULL;
2626 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2627 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2628 			need_wakeup = TRUE;
2629 		}
2630 		vm_map_simplify_entry(map, entry);
2631 	}
2632 	vm_map_unlock(map);
2633 	if (need_wakeup)
2634 		vm_map_wakeup(map);
2635 	return (rv);
2636 }
2637 
2638 /*
2639  * vm_map_sync
2640  *
2641  * Push any dirty cached pages in the address range to their pager.
2642  * If syncio is TRUE, dirty pages are written synchronously.
2643  * If invalidate is TRUE, any cached pages are freed as well.
2644  *
2645  * If the size of the region from start to end is zero, we are
2646  * supposed to flush all modified pages within the region containing
2647  * start.  Unfortunately, a region can be split or coalesced with
2648  * neighboring regions, making it difficult to determine what the
2649  * original region was.  Therefore, we approximate this requirement by
2650  * flushing the current region containing start.
2651  *
2652  * Returns an error if any part of the specified range is not mapped.
2653  */
2654 int
2655 vm_map_sync(
2656 	vm_map_t map,
2657 	vm_offset_t start,
2658 	vm_offset_t end,
2659 	boolean_t syncio,
2660 	boolean_t invalidate)
2661 {
2662 	vm_map_entry_t current;
2663 	vm_map_entry_t entry;
2664 	vm_size_t size;
2665 	vm_object_t object;
2666 	vm_ooffset_t offset;
2667 	unsigned int last_timestamp;
2668 	boolean_t failed;
2669 
2670 	vm_map_lock_read(map);
2671 	VM_MAP_RANGE_CHECK(map, start, end);
2672 	if (!vm_map_lookup_entry(map, start, &entry)) {
2673 		vm_map_unlock_read(map);
2674 		return (KERN_INVALID_ADDRESS);
2675 	} else if (start == end) {
2676 		start = entry->start;
2677 		end = entry->end;
2678 	}
2679 	/*
2680 	 * Make a first pass to check for user-wired memory and holes.
2681 	 */
2682 	for (current = entry; current != &map->header && current->start < end;
2683 	    current = current->next) {
2684 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2685 			vm_map_unlock_read(map);
2686 			return (KERN_INVALID_ARGUMENT);
2687 		}
2688 		if (end > current->end &&
2689 		    (current->next == &map->header ||
2690 			current->end != current->next->start)) {
2691 			vm_map_unlock_read(map);
2692 			return (KERN_INVALID_ADDRESS);
2693 		}
2694 	}
2695 
2696 	if (invalidate)
2697 		pmap_remove(map->pmap, start, end);
2698 	failed = FALSE;
2699 
2700 	/*
2701 	 * Make a second pass, cleaning/uncaching pages from the indicated
2702 	 * objects as we go.
2703 	 */
2704 	for (current = entry; current != &map->header && current->start < end;) {
2705 		offset = current->offset + (start - current->start);
2706 		size = (end <= current->end ? end : current->end) - start;
2707 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2708 			vm_map_t smap;
2709 			vm_map_entry_t tentry;
2710 			vm_size_t tsize;
2711 
2712 			smap = current->object.sub_map;
2713 			vm_map_lock_read(smap);
2714 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2715 			tsize = tentry->end - offset;
2716 			if (tsize < size)
2717 				size = tsize;
2718 			object = tentry->object.vm_object;
2719 			offset = tentry->offset + (offset - tentry->start);
2720 			vm_map_unlock_read(smap);
2721 		} else {
2722 			object = current->object.vm_object;
2723 		}
2724 		vm_object_reference(object);
2725 		last_timestamp = map->timestamp;
2726 		vm_map_unlock_read(map);
2727 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2728 			failed = TRUE;
2729 		start += size;
2730 		vm_object_deallocate(object);
2731 		vm_map_lock_read(map);
2732 		if (last_timestamp == map->timestamp ||
2733 		    !vm_map_lookup_entry(map, start, &current))
2734 			current = current->next;
2735 	}
2736 
2737 	vm_map_unlock_read(map);
2738 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2739 }
2740 
2741 /*
2742  *	vm_map_entry_unwire:	[ internal use only ]
2743  *
2744  *	Make the region specified by this entry pageable.
2745  *
2746  *	The map in question should be locked.
2747  *	[This is the reason for this routine's existence.]
2748  */
2749 static void
2750 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2751 {
2752 	vm_fault_unwire(map, entry->start, entry->end,
2753 	    entry->object.vm_object != NULL &&
2754 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2755 	entry->wired_count = 0;
2756 }
2757 
2758 static void
2759 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2760 {
2761 
2762 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2763 		vm_object_deallocate(entry->object.vm_object);
2764 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2765 }
2766 
2767 /*
2768  *	vm_map_entry_delete:	[ internal use only ]
2769  *
2770  *	Deallocate the given entry from the target map.
2771  */
2772 static void
2773 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2774 {
2775 	vm_object_t object;
2776 	vm_pindex_t offidxstart, offidxend, count, size1;
2777 	vm_ooffset_t size;
2778 
2779 	vm_map_entry_unlink(map, entry);
2780 	object = entry->object.vm_object;
2781 	size = entry->end - entry->start;
2782 	map->size -= size;
2783 
2784 	if (entry->cred != NULL) {
2785 		swap_release_by_cred(size, entry->cred);
2786 		crfree(entry->cred);
2787 	}
2788 
2789 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2790 	    (object != NULL)) {
2791 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2792 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2793 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2794 		count = OFF_TO_IDX(size);
2795 		offidxstart = OFF_TO_IDX(entry->offset);
2796 		offidxend = offidxstart + count;
2797 		VM_OBJECT_WLOCK(object);
2798 		if (object->ref_count != 1 &&
2799 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2800 		    object == kernel_object || object == kmem_object)) {
2801 			vm_object_collapse(object);
2802 
2803 			/*
2804 			 * The option OBJPR_NOTMAPPED can be passed here
2805 			 * because vm_map_delete() already performed
2806 			 * pmap_remove() on the only mapping to this range
2807 			 * of pages.
2808 			 */
2809 			vm_object_page_remove(object, offidxstart, offidxend,
2810 			    OBJPR_NOTMAPPED);
2811 			if (object->type == OBJT_SWAP)
2812 				swap_pager_freespace(object, offidxstart, count);
2813 			if (offidxend >= object->size &&
2814 			    offidxstart < object->size) {
2815 				size1 = object->size;
2816 				object->size = offidxstart;
2817 				if (object->cred != NULL) {
2818 					size1 -= object->size;
2819 					KASSERT(object->charge >= ptoa(size1),
2820 					    ("vm_map_entry_delete: object->charge < 0"));
2821 					swap_release_by_cred(ptoa(size1), object->cred);
2822 					object->charge -= ptoa(size1);
2823 				}
2824 			}
2825 		}
2826 		VM_OBJECT_WUNLOCK(object);
2827 	} else
2828 		entry->object.vm_object = NULL;
2829 	if (map->system_map)
2830 		vm_map_entry_deallocate(entry, TRUE);
2831 	else {
2832 		entry->next = curthread->td_map_def_user;
2833 		curthread->td_map_def_user = entry;
2834 	}
2835 }
2836 
2837 /*
2838  *	vm_map_delete:	[ internal use only ]
2839  *
2840  *	Deallocates the given address range from the target
2841  *	map.
2842  */
2843 int
2844 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2845 {
2846 	vm_map_entry_t entry;
2847 	vm_map_entry_t first_entry;
2848 
2849 	VM_MAP_ASSERT_LOCKED(map);
2850 	if (start == end)
2851 		return (KERN_SUCCESS);
2852 
2853 	/*
2854 	 * Find the start of the region, and clip it
2855 	 */
2856 	if (!vm_map_lookup_entry(map, start, &first_entry))
2857 		entry = first_entry->next;
2858 	else {
2859 		entry = first_entry;
2860 		vm_map_clip_start(map, entry, start);
2861 	}
2862 
2863 	/*
2864 	 * Step through all entries in this region
2865 	 */
2866 	while ((entry != &map->header) && (entry->start < end)) {
2867 		vm_map_entry_t next;
2868 
2869 		/*
2870 		 * Wait for wiring or unwiring of an entry to complete.
2871 		 * Also wait for any system wirings to disappear on
2872 		 * user maps.
2873 		 */
2874 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2875 		    (vm_map_pmap(map) != kernel_pmap &&
2876 		    vm_map_entry_system_wired_count(entry) != 0)) {
2877 			unsigned int last_timestamp;
2878 			vm_offset_t saved_start;
2879 			vm_map_entry_t tmp_entry;
2880 
2881 			saved_start = entry->start;
2882 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2883 			last_timestamp = map->timestamp;
2884 			(void) vm_map_unlock_and_wait(map, 0);
2885 			vm_map_lock(map);
2886 			if (last_timestamp + 1 != map->timestamp) {
2887 				/*
2888 				 * Look again for the entry because the map was
2889 				 * modified while it was unlocked.
2890 				 * Specifically, the entry may have been
2891 				 * clipped, merged, or deleted.
2892 				 */
2893 				if (!vm_map_lookup_entry(map, saved_start,
2894 							 &tmp_entry))
2895 					entry = tmp_entry->next;
2896 				else {
2897 					entry = tmp_entry;
2898 					vm_map_clip_start(map, entry,
2899 							  saved_start);
2900 				}
2901 			}
2902 			continue;
2903 		}
2904 		vm_map_clip_end(map, entry, end);
2905 
2906 		next = entry->next;
2907 
2908 		/*
2909 		 * Unwire before removing addresses from the pmap; otherwise,
2910 		 * unwiring will put the entries back in the pmap.
2911 		 */
2912 		if (entry->wired_count != 0) {
2913 			vm_map_entry_unwire(map, entry);
2914 		}
2915 
2916 		pmap_remove(map->pmap, entry->start, entry->end);
2917 
2918 		/*
2919 		 * Delete the entry only after removing all pmap
2920 		 * entries pointing to its pages.  (Otherwise, its
2921 		 * page frames may be reallocated, and any modify bits
2922 		 * will be set in the wrong object!)
2923 		 */
2924 		vm_map_entry_delete(map, entry);
2925 		entry = next;
2926 	}
2927 	return (KERN_SUCCESS);
2928 }
2929 
2930 /*
2931  *	vm_map_remove:
2932  *
2933  *	Remove the given address range from the target map.
2934  *	This is the exported form of vm_map_delete.
2935  */
2936 int
2937 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2938 {
2939 	int result;
2940 
2941 	vm_map_lock(map);
2942 	VM_MAP_RANGE_CHECK(map, start, end);
2943 	result = vm_map_delete(map, start, end);
2944 	vm_map_unlock(map);
2945 	return (result);
2946 }
2947 
2948 /*
2949  *	vm_map_check_protection:
2950  *
2951  *	Assert that the target map allows the specified privilege on the
2952  *	entire address region given.  The entire region must be allocated.
2953  *
2954  *	WARNING!  This code does not and should not check whether the
2955  *	contents of the region is accessible.  For example a smaller file
2956  *	might be mapped into a larger address space.
2957  *
2958  *	NOTE!  This code is also called by munmap().
2959  *
2960  *	The map must be locked.  A read lock is sufficient.
2961  */
2962 boolean_t
2963 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2964 			vm_prot_t protection)
2965 {
2966 	vm_map_entry_t entry;
2967 	vm_map_entry_t tmp_entry;
2968 
2969 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2970 		return (FALSE);
2971 	entry = tmp_entry;
2972 
2973 	while (start < end) {
2974 		if (entry == &map->header)
2975 			return (FALSE);
2976 		/*
2977 		 * No holes allowed!
2978 		 */
2979 		if (start < entry->start)
2980 			return (FALSE);
2981 		/*
2982 		 * Check protection associated with entry.
2983 		 */
2984 		if ((entry->protection & protection) != protection)
2985 			return (FALSE);
2986 		/* go to next entry */
2987 		start = entry->end;
2988 		entry = entry->next;
2989 	}
2990 	return (TRUE);
2991 }
2992 
2993 /*
2994  *	vm_map_copy_entry:
2995  *
2996  *	Copies the contents of the source entry to the destination
2997  *	entry.  The entries *must* be aligned properly.
2998  */
2999 static void
3000 vm_map_copy_entry(
3001 	vm_map_t src_map,
3002 	vm_map_t dst_map,
3003 	vm_map_entry_t src_entry,
3004 	vm_map_entry_t dst_entry,
3005 	vm_ooffset_t *fork_charge)
3006 {
3007 	vm_object_t src_object;
3008 	vm_map_entry_t fake_entry;
3009 	vm_offset_t size;
3010 	struct ucred *cred;
3011 	int charged;
3012 
3013 	VM_MAP_ASSERT_LOCKED(dst_map);
3014 
3015 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3016 		return;
3017 
3018 	if (src_entry->wired_count == 0) {
3019 
3020 		/*
3021 		 * If the source entry is marked needs_copy, it is already
3022 		 * write-protected.
3023 		 */
3024 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3025 			pmap_protect(src_map->pmap,
3026 			    src_entry->start,
3027 			    src_entry->end,
3028 			    src_entry->protection & ~VM_PROT_WRITE);
3029 		}
3030 
3031 		/*
3032 		 * Make a copy of the object.
3033 		 */
3034 		size = src_entry->end - src_entry->start;
3035 		if ((src_object = src_entry->object.vm_object) != NULL) {
3036 			VM_OBJECT_WLOCK(src_object);
3037 			charged = ENTRY_CHARGED(src_entry);
3038 			if ((src_object->handle == NULL) &&
3039 				(src_object->type == OBJT_DEFAULT ||
3040 				 src_object->type == OBJT_SWAP)) {
3041 				vm_object_collapse(src_object);
3042 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3043 					vm_object_split(src_entry);
3044 					src_object = src_entry->object.vm_object;
3045 				}
3046 			}
3047 			vm_object_reference_locked(src_object);
3048 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3049 			if (src_entry->cred != NULL &&
3050 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3051 				KASSERT(src_object->cred == NULL,
3052 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3053 				     src_object));
3054 				src_object->cred = src_entry->cred;
3055 				src_object->charge = size;
3056 			}
3057 			VM_OBJECT_WUNLOCK(src_object);
3058 			dst_entry->object.vm_object = src_object;
3059 			if (charged) {
3060 				cred = curthread->td_ucred;
3061 				crhold(cred);
3062 				dst_entry->cred = cred;
3063 				*fork_charge += size;
3064 				if (!(src_entry->eflags &
3065 				      MAP_ENTRY_NEEDS_COPY)) {
3066 					crhold(cred);
3067 					src_entry->cred = cred;
3068 					*fork_charge += size;
3069 				}
3070 			}
3071 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3072 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3073 			dst_entry->offset = src_entry->offset;
3074 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3075 				/*
3076 				 * MAP_ENTRY_VN_WRITECNT cannot
3077 				 * indicate write reference from
3078 				 * src_entry, since the entry is
3079 				 * marked as needs copy.  Allocate a
3080 				 * fake entry that is used to
3081 				 * decrement object->un_pager.vnp.writecount
3082 				 * at the appropriate time.  Attach
3083 				 * fake_entry to the deferred list.
3084 				 */
3085 				fake_entry = vm_map_entry_create(dst_map);
3086 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3087 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3088 				vm_object_reference(src_object);
3089 				fake_entry->object.vm_object = src_object;
3090 				fake_entry->start = src_entry->start;
3091 				fake_entry->end = src_entry->end;
3092 				fake_entry->next = curthread->td_map_def_user;
3093 				curthread->td_map_def_user = fake_entry;
3094 			}
3095 		} else {
3096 			dst_entry->object.vm_object = NULL;
3097 			dst_entry->offset = 0;
3098 			if (src_entry->cred != NULL) {
3099 				dst_entry->cred = curthread->td_ucred;
3100 				crhold(dst_entry->cred);
3101 				*fork_charge += size;
3102 			}
3103 		}
3104 
3105 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3106 		    dst_entry->end - dst_entry->start, src_entry->start);
3107 	} else {
3108 		/*
3109 		 * Of course, wired down pages can't be set copy-on-write.
3110 		 * Cause wired pages to be copied into the new map by
3111 		 * simulating faults (the new pages are pageable)
3112 		 */
3113 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3114 		    fork_charge);
3115 	}
3116 }
3117 
3118 /*
3119  * vmspace_map_entry_forked:
3120  * Update the newly-forked vmspace each time a map entry is inherited
3121  * or copied.  The values for vm_dsize and vm_tsize are approximate
3122  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3123  */
3124 static void
3125 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3126     vm_map_entry_t entry)
3127 {
3128 	vm_size_t entrysize;
3129 	vm_offset_t newend;
3130 
3131 	entrysize = entry->end - entry->start;
3132 	vm2->vm_map.size += entrysize;
3133 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3134 		vm2->vm_ssize += btoc(entrysize);
3135 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3136 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3137 		newend = MIN(entry->end,
3138 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3139 		vm2->vm_dsize += btoc(newend - entry->start);
3140 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3141 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3142 		newend = MIN(entry->end,
3143 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3144 		vm2->vm_tsize += btoc(newend - entry->start);
3145 	}
3146 }
3147 
3148 /*
3149  * vmspace_fork:
3150  * Create a new process vmspace structure and vm_map
3151  * based on those of an existing process.  The new map
3152  * is based on the old map, according to the inheritance
3153  * values on the regions in that map.
3154  *
3155  * XXX It might be worth coalescing the entries added to the new vmspace.
3156  *
3157  * The source map must not be locked.
3158  */
3159 struct vmspace *
3160 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3161 {
3162 	struct vmspace *vm2;
3163 	vm_map_t new_map, old_map;
3164 	vm_map_entry_t new_entry, old_entry;
3165 	vm_object_t object;
3166 	int locked;
3167 
3168 	old_map = &vm1->vm_map;
3169 	/* Copy immutable fields of vm1 to vm2. */
3170 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3171 	if (vm2 == NULL)
3172 		return (NULL);
3173 	vm2->vm_taddr = vm1->vm_taddr;
3174 	vm2->vm_daddr = vm1->vm_daddr;
3175 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3176 	vm_map_lock(old_map);
3177 	if (old_map->busy)
3178 		vm_map_wait_busy(old_map);
3179 	new_map = &vm2->vm_map;
3180 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3181 	KASSERT(locked, ("vmspace_fork: lock failed"));
3182 
3183 	old_entry = old_map->header.next;
3184 
3185 	while (old_entry != &old_map->header) {
3186 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3187 			panic("vm_map_fork: encountered a submap");
3188 
3189 		switch (old_entry->inheritance) {
3190 		case VM_INHERIT_NONE:
3191 			break;
3192 
3193 		case VM_INHERIT_SHARE:
3194 			/*
3195 			 * Clone the entry, creating the shared object if necessary.
3196 			 */
3197 			object = old_entry->object.vm_object;
3198 			if (object == NULL) {
3199 				object = vm_object_allocate(OBJT_DEFAULT,
3200 					atop(old_entry->end - old_entry->start));
3201 				old_entry->object.vm_object = object;
3202 				old_entry->offset = 0;
3203 				if (old_entry->cred != NULL) {
3204 					object->cred = old_entry->cred;
3205 					object->charge = old_entry->end -
3206 					    old_entry->start;
3207 					old_entry->cred = NULL;
3208 				}
3209 			}
3210 
3211 			/*
3212 			 * Add the reference before calling vm_object_shadow
3213 			 * to insure that a shadow object is created.
3214 			 */
3215 			vm_object_reference(object);
3216 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3217 				vm_object_shadow(&old_entry->object.vm_object,
3218 				    &old_entry->offset,
3219 				    old_entry->end - old_entry->start);
3220 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3221 				/* Transfer the second reference too. */
3222 				vm_object_reference(
3223 				    old_entry->object.vm_object);
3224 
3225 				/*
3226 				 * As in vm_map_simplify_entry(), the
3227 				 * vnode lock will not be acquired in
3228 				 * this call to vm_object_deallocate().
3229 				 */
3230 				vm_object_deallocate(object);
3231 				object = old_entry->object.vm_object;
3232 			}
3233 			VM_OBJECT_WLOCK(object);
3234 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3235 			if (old_entry->cred != NULL) {
3236 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3237 				object->cred = old_entry->cred;
3238 				object->charge = old_entry->end - old_entry->start;
3239 				old_entry->cred = NULL;
3240 			}
3241 
3242 			/*
3243 			 * Assert the correct state of the vnode
3244 			 * v_writecount while the object is locked, to
3245 			 * not relock it later for the assertion
3246 			 * correctness.
3247 			 */
3248 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3249 			    object->type == OBJT_VNODE) {
3250 				KASSERT(((struct vnode *)object->handle)->
3251 				    v_writecount > 0,
3252 				    ("vmspace_fork: v_writecount %p", object));
3253 				KASSERT(object->un_pager.vnp.writemappings > 0,
3254 				    ("vmspace_fork: vnp.writecount %p",
3255 				    object));
3256 			}
3257 			VM_OBJECT_WUNLOCK(object);
3258 
3259 			/*
3260 			 * Clone the entry, referencing the shared object.
3261 			 */
3262 			new_entry = vm_map_entry_create(new_map);
3263 			*new_entry = *old_entry;
3264 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3265 			    MAP_ENTRY_IN_TRANSITION);
3266 			new_entry->wiring_thread = NULL;
3267 			new_entry->wired_count = 0;
3268 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3269 				vnode_pager_update_writecount(object,
3270 				    new_entry->start, new_entry->end);
3271 			}
3272 
3273 			/*
3274 			 * Insert the entry into the new map -- we know we're
3275 			 * inserting at the end of the new map.
3276 			 */
3277 			vm_map_entry_link(new_map, new_map->header.prev,
3278 			    new_entry);
3279 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3280 
3281 			/*
3282 			 * Update the physical map
3283 			 */
3284 			pmap_copy(new_map->pmap, old_map->pmap,
3285 			    new_entry->start,
3286 			    (old_entry->end - old_entry->start),
3287 			    old_entry->start);
3288 			break;
3289 
3290 		case VM_INHERIT_COPY:
3291 			/*
3292 			 * Clone the entry and link into the map.
3293 			 */
3294 			new_entry = vm_map_entry_create(new_map);
3295 			*new_entry = *old_entry;
3296 			/*
3297 			 * Copied entry is COW over the old object.
3298 			 */
3299 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3300 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3301 			new_entry->wiring_thread = NULL;
3302 			new_entry->wired_count = 0;
3303 			new_entry->object.vm_object = NULL;
3304 			new_entry->cred = NULL;
3305 			vm_map_entry_link(new_map, new_map->header.prev,
3306 			    new_entry);
3307 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3308 			vm_map_copy_entry(old_map, new_map, old_entry,
3309 			    new_entry, fork_charge);
3310 			break;
3311 		}
3312 		old_entry = old_entry->next;
3313 	}
3314 	/*
3315 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3316 	 * map entries, which cannot be done until both old_map and
3317 	 * new_map locks are released.
3318 	 */
3319 	sx_xunlock(&old_map->lock);
3320 	sx_xunlock(&new_map->lock);
3321 	vm_map_process_deferred();
3322 
3323 	return (vm2);
3324 }
3325 
3326 int
3327 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3328     vm_prot_t prot, vm_prot_t max, int cow)
3329 {
3330 	vm_map_entry_t new_entry, prev_entry;
3331 	vm_offset_t bot, top;
3332 	vm_size_t growsize, init_ssize;
3333 	int orient, rv;
3334 	rlim_t lmemlim, vmemlim;
3335 
3336 	/*
3337 	 * The stack orientation is piggybacked with the cow argument.
3338 	 * Extract it into orient and mask the cow argument so that we
3339 	 * don't pass it around further.
3340 	 * NOTE: We explicitly allow bi-directional stacks.
3341 	 */
3342 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3343 	KASSERT(orient != 0, ("No stack grow direction"));
3344 
3345 	if (addrbos < vm_map_min(map) ||
3346 	    addrbos > vm_map_max(map) ||
3347 	    addrbos + max_ssize < addrbos)
3348 		return (KERN_NO_SPACE);
3349 
3350 	growsize = sgrowsiz;
3351 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3352 
3353 	PROC_LOCK(curproc);
3354 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3355 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3356 	PROC_UNLOCK(curproc);
3357 
3358 	vm_map_lock(map);
3359 
3360 	/* If addr is already mapped, no go */
3361 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3362 		vm_map_unlock(map);
3363 		return (KERN_NO_SPACE);
3364 	}
3365 
3366 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3367 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3368 			vm_map_unlock(map);
3369 			return (KERN_NO_SPACE);
3370 		}
3371 	}
3372 
3373 	/* If we would blow our VMEM resource limit, no go */
3374 	if (map->size + init_ssize > vmemlim) {
3375 		vm_map_unlock(map);
3376 		return (KERN_NO_SPACE);
3377 	}
3378 
3379 	/*
3380 	 * If we can't accomodate max_ssize in the current mapping, no go.
3381 	 * However, we need to be aware that subsequent user mappings might
3382 	 * map into the space we have reserved for stack, and currently this
3383 	 * space is not protected.
3384 	 *
3385 	 * Hopefully we will at least detect this condition when we try to
3386 	 * grow the stack.
3387 	 */
3388 	if ((prev_entry->next != &map->header) &&
3389 	    (prev_entry->next->start < addrbos + max_ssize)) {
3390 		vm_map_unlock(map);
3391 		return (KERN_NO_SPACE);
3392 	}
3393 
3394 	/*
3395 	 * We initially map a stack of only init_ssize.  We will grow as
3396 	 * needed later.  Depending on the orientation of the stack (i.e.
3397 	 * the grow direction) we either map at the top of the range, the
3398 	 * bottom of the range or in the middle.
3399 	 *
3400 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3401 	 * and cow to be 0.  Possibly we should eliminate these as input
3402 	 * parameters, and just pass these values here in the insert call.
3403 	 */
3404 	if (orient == MAP_STACK_GROWS_DOWN)
3405 		bot = addrbos + max_ssize - init_ssize;
3406 	else if (orient == MAP_STACK_GROWS_UP)
3407 		bot = addrbos;
3408 	else
3409 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3410 	top = bot + init_ssize;
3411 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3412 
3413 	/* Now set the avail_ssize amount. */
3414 	if (rv == KERN_SUCCESS) {
3415 		if (prev_entry != &map->header)
3416 			vm_map_clip_end(map, prev_entry, bot);
3417 		new_entry = prev_entry->next;
3418 		if (new_entry->end != top || new_entry->start != bot)
3419 			panic("Bad entry start/end for new stack entry");
3420 
3421 		new_entry->avail_ssize = max_ssize - init_ssize;
3422 		if (orient & MAP_STACK_GROWS_DOWN)
3423 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3424 		if (orient & MAP_STACK_GROWS_UP)
3425 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3426 	}
3427 
3428 	vm_map_unlock(map);
3429 	return (rv);
3430 }
3431 
3432 static int stack_guard_page = 0;
3433 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3434 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3435     &stack_guard_page, 0,
3436     "Insert stack guard page ahead of the growable segments.");
3437 
3438 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3439  * desired address is already mapped, or if we successfully grow
3440  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3441  * stack range (this is strange, but preserves compatibility with
3442  * the grow function in vm_machdep.c).
3443  */
3444 int
3445 vm_map_growstack(struct proc *p, vm_offset_t addr)
3446 {
3447 	vm_map_entry_t next_entry, prev_entry;
3448 	vm_map_entry_t new_entry, stack_entry;
3449 	struct vmspace *vm = p->p_vmspace;
3450 	vm_map_t map = &vm->vm_map;
3451 	vm_offset_t end;
3452 	vm_size_t growsize;
3453 	size_t grow_amount, max_grow;
3454 	rlim_t lmemlim, stacklim, vmemlim;
3455 	int is_procstack, rv;
3456 	struct ucred *cred;
3457 #ifdef notyet
3458 	uint64_t limit;
3459 #endif
3460 #ifdef RACCT
3461 	int error;
3462 #endif
3463 
3464 Retry:
3465 	PROC_LOCK(p);
3466 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3467 	stacklim = lim_cur(p, RLIMIT_STACK);
3468 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3469 	PROC_UNLOCK(p);
3470 
3471 	vm_map_lock_read(map);
3472 
3473 	/* If addr is already in the entry range, no need to grow.*/
3474 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3475 		vm_map_unlock_read(map);
3476 		return (KERN_SUCCESS);
3477 	}
3478 
3479 	next_entry = prev_entry->next;
3480 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3481 		/*
3482 		 * This entry does not grow upwards. Since the address lies
3483 		 * beyond this entry, the next entry (if one exists) has to
3484 		 * be a downward growable entry. The entry list header is
3485 		 * never a growable entry, so it suffices to check the flags.
3486 		 */
3487 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3488 			vm_map_unlock_read(map);
3489 			return (KERN_SUCCESS);
3490 		}
3491 		stack_entry = next_entry;
3492 	} else {
3493 		/*
3494 		 * This entry grows upward. If the next entry does not at
3495 		 * least grow downwards, this is the entry we need to grow.
3496 		 * otherwise we have two possible choices and we have to
3497 		 * select one.
3498 		 */
3499 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3500 			/*
3501 			 * We have two choices; grow the entry closest to
3502 			 * the address to minimize the amount of growth.
3503 			 */
3504 			if (addr - prev_entry->end <= next_entry->start - addr)
3505 				stack_entry = prev_entry;
3506 			else
3507 				stack_entry = next_entry;
3508 		} else
3509 			stack_entry = prev_entry;
3510 	}
3511 
3512 	if (stack_entry == next_entry) {
3513 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3514 		KASSERT(addr < stack_entry->start, ("foo"));
3515 		end = (prev_entry != &map->header) ? prev_entry->end :
3516 		    stack_entry->start - stack_entry->avail_ssize;
3517 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3518 		max_grow = stack_entry->start - end;
3519 	} else {
3520 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3521 		KASSERT(addr >= stack_entry->end, ("foo"));
3522 		end = (next_entry != &map->header) ? next_entry->start :
3523 		    stack_entry->end + stack_entry->avail_ssize;
3524 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3525 		max_grow = end - stack_entry->end;
3526 	}
3527 
3528 	if (grow_amount > stack_entry->avail_ssize) {
3529 		vm_map_unlock_read(map);
3530 		return (KERN_NO_SPACE);
3531 	}
3532 
3533 	/*
3534 	 * If there is no longer enough space between the entries nogo, and
3535 	 * adjust the available space.  Note: this  should only happen if the
3536 	 * user has mapped into the stack area after the stack was created,
3537 	 * and is probably an error.
3538 	 *
3539 	 * This also effectively destroys any guard page the user might have
3540 	 * intended by limiting the stack size.
3541 	 */
3542 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3543 		if (vm_map_lock_upgrade(map))
3544 			goto Retry;
3545 
3546 		stack_entry->avail_ssize = max_grow;
3547 
3548 		vm_map_unlock(map);
3549 		return (KERN_NO_SPACE);
3550 	}
3551 
3552 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3553 
3554 	/*
3555 	 * If this is the main process stack, see if we're over the stack
3556 	 * limit.
3557 	 */
3558 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3559 		vm_map_unlock_read(map);
3560 		return (KERN_NO_SPACE);
3561 	}
3562 #ifdef RACCT
3563 	PROC_LOCK(p);
3564 	if (is_procstack &&
3565 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3566 		PROC_UNLOCK(p);
3567 		vm_map_unlock_read(map);
3568 		return (KERN_NO_SPACE);
3569 	}
3570 	PROC_UNLOCK(p);
3571 #endif
3572 
3573 	/* Round up the grow amount modulo sgrowsiz */
3574 	growsize = sgrowsiz;
3575 	grow_amount = roundup(grow_amount, growsize);
3576 	if (grow_amount > stack_entry->avail_ssize)
3577 		grow_amount = stack_entry->avail_ssize;
3578 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3579 		grow_amount = trunc_page((vm_size_t)stacklim) -
3580 		    ctob(vm->vm_ssize);
3581 	}
3582 #ifdef notyet
3583 	PROC_LOCK(p);
3584 	limit = racct_get_available(p, RACCT_STACK);
3585 	PROC_UNLOCK(p);
3586 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3587 		grow_amount = limit - ctob(vm->vm_ssize);
3588 #endif
3589 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3590 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3591 			vm_map_unlock_read(map);
3592 			rv = KERN_NO_SPACE;
3593 			goto out;
3594 		}
3595 #ifdef RACCT
3596 		PROC_LOCK(p);
3597 		if (racct_set(p, RACCT_MEMLOCK,
3598 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3599 			PROC_UNLOCK(p);
3600 			vm_map_unlock_read(map);
3601 			rv = KERN_NO_SPACE;
3602 			goto out;
3603 		}
3604 		PROC_UNLOCK(p);
3605 #endif
3606 	}
3607 	/* If we would blow our VMEM resource limit, no go */
3608 	if (map->size + grow_amount > vmemlim) {
3609 		vm_map_unlock_read(map);
3610 		rv = KERN_NO_SPACE;
3611 		goto out;
3612 	}
3613 #ifdef RACCT
3614 	PROC_LOCK(p);
3615 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3616 		PROC_UNLOCK(p);
3617 		vm_map_unlock_read(map);
3618 		rv = KERN_NO_SPACE;
3619 		goto out;
3620 	}
3621 	PROC_UNLOCK(p);
3622 #endif
3623 
3624 	if (vm_map_lock_upgrade(map))
3625 		goto Retry;
3626 
3627 	if (stack_entry == next_entry) {
3628 		/*
3629 		 * Growing downward.
3630 		 */
3631 		/* Get the preliminary new entry start value */
3632 		addr = stack_entry->start - grow_amount;
3633 
3634 		/*
3635 		 * If this puts us into the previous entry, cut back our
3636 		 * growth to the available space. Also, see the note above.
3637 		 */
3638 		if (addr < end) {
3639 			stack_entry->avail_ssize = max_grow;
3640 			addr = end;
3641 			if (stack_guard_page)
3642 				addr += PAGE_SIZE;
3643 		}
3644 
3645 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3646 		    next_entry->protection, next_entry->max_protection, 0);
3647 
3648 		/* Adjust the available stack space by the amount we grew. */
3649 		if (rv == KERN_SUCCESS) {
3650 			if (prev_entry != &map->header)
3651 				vm_map_clip_end(map, prev_entry, addr);
3652 			new_entry = prev_entry->next;
3653 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3654 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3655 			KASSERT(new_entry->start == addr, ("foo"));
3656 			grow_amount = new_entry->end - new_entry->start;
3657 			new_entry->avail_ssize = stack_entry->avail_ssize -
3658 			    grow_amount;
3659 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3660 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3661 		}
3662 	} else {
3663 		/*
3664 		 * Growing upward.
3665 		 */
3666 		addr = stack_entry->end + grow_amount;
3667 
3668 		/*
3669 		 * If this puts us into the next entry, cut back our growth
3670 		 * to the available space. Also, see the note above.
3671 		 */
3672 		if (addr > end) {
3673 			stack_entry->avail_ssize = end - stack_entry->end;
3674 			addr = end;
3675 			if (stack_guard_page)
3676 				addr -= PAGE_SIZE;
3677 		}
3678 
3679 		grow_amount = addr - stack_entry->end;
3680 		cred = stack_entry->cred;
3681 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3682 			cred = stack_entry->object.vm_object->cred;
3683 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3684 			rv = KERN_NO_SPACE;
3685 		/* Grow the underlying object if applicable. */
3686 		else if (stack_entry->object.vm_object == NULL ||
3687 			 vm_object_coalesce(stack_entry->object.vm_object,
3688 			 stack_entry->offset,
3689 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3690 			 (vm_size_t)grow_amount, cred != NULL)) {
3691 			map->size += (addr - stack_entry->end);
3692 			/* Update the current entry. */
3693 			stack_entry->end = addr;
3694 			stack_entry->avail_ssize -= grow_amount;
3695 			vm_map_entry_resize_free(map, stack_entry);
3696 			rv = KERN_SUCCESS;
3697 
3698 			if (next_entry != &map->header)
3699 				vm_map_clip_start(map, next_entry, addr);
3700 		} else
3701 			rv = KERN_FAILURE;
3702 	}
3703 
3704 	if (rv == KERN_SUCCESS && is_procstack)
3705 		vm->vm_ssize += btoc(grow_amount);
3706 
3707 	vm_map_unlock(map);
3708 
3709 	/*
3710 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3711 	 */
3712 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3713 		vm_map_wire(map,
3714 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3715 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3716 		    (p->p_flag & P_SYSTEM)
3717 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3718 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3719 	}
3720 
3721 out:
3722 #ifdef RACCT
3723 	if (rv != KERN_SUCCESS) {
3724 		PROC_LOCK(p);
3725 		error = racct_set(p, RACCT_VMEM, map->size);
3726 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3727 		if (!old_mlock) {
3728 			error = racct_set(p, RACCT_MEMLOCK,
3729 			    ptoa(pmap_wired_count(map->pmap)));
3730 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3731 		}
3732 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3733 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3734 		PROC_UNLOCK(p);
3735 	}
3736 #endif
3737 
3738 	return (rv);
3739 }
3740 
3741 /*
3742  * Unshare the specified VM space for exec.  If other processes are
3743  * mapped to it, then create a new one.  The new vmspace is null.
3744  */
3745 int
3746 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3747 {
3748 	struct vmspace *oldvmspace = p->p_vmspace;
3749 	struct vmspace *newvmspace;
3750 
3751 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3752 	if (newvmspace == NULL)
3753 		return (ENOMEM);
3754 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3755 	/*
3756 	 * This code is written like this for prototype purposes.  The
3757 	 * goal is to avoid running down the vmspace here, but let the
3758 	 * other process's that are still using the vmspace to finally
3759 	 * run it down.  Even though there is little or no chance of blocking
3760 	 * here, it is a good idea to keep this form for future mods.
3761 	 */
3762 	PROC_VMSPACE_LOCK(p);
3763 	p->p_vmspace = newvmspace;
3764 	PROC_VMSPACE_UNLOCK(p);
3765 	if (p == curthread->td_proc)
3766 		pmap_activate(curthread);
3767 	vmspace_free(oldvmspace);
3768 	return (0);
3769 }
3770 
3771 /*
3772  * Unshare the specified VM space for forcing COW.  This
3773  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3774  */
3775 int
3776 vmspace_unshare(struct proc *p)
3777 {
3778 	struct vmspace *oldvmspace = p->p_vmspace;
3779 	struct vmspace *newvmspace;
3780 	vm_ooffset_t fork_charge;
3781 
3782 	if (oldvmspace->vm_refcnt == 1)
3783 		return (0);
3784 	fork_charge = 0;
3785 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3786 	if (newvmspace == NULL)
3787 		return (ENOMEM);
3788 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3789 		vmspace_free(newvmspace);
3790 		return (ENOMEM);
3791 	}
3792 	PROC_VMSPACE_LOCK(p);
3793 	p->p_vmspace = newvmspace;
3794 	PROC_VMSPACE_UNLOCK(p);
3795 	if (p == curthread->td_proc)
3796 		pmap_activate(curthread);
3797 	vmspace_free(oldvmspace);
3798 	return (0);
3799 }
3800 
3801 /*
3802  *	vm_map_lookup:
3803  *
3804  *	Finds the VM object, offset, and
3805  *	protection for a given virtual address in the
3806  *	specified map, assuming a page fault of the
3807  *	type specified.
3808  *
3809  *	Leaves the map in question locked for read; return
3810  *	values are guaranteed until a vm_map_lookup_done
3811  *	call is performed.  Note that the map argument
3812  *	is in/out; the returned map must be used in
3813  *	the call to vm_map_lookup_done.
3814  *
3815  *	A handle (out_entry) is returned for use in
3816  *	vm_map_lookup_done, to make that fast.
3817  *
3818  *	If a lookup is requested with "write protection"
3819  *	specified, the map may be changed to perform virtual
3820  *	copying operations, although the data referenced will
3821  *	remain the same.
3822  */
3823 int
3824 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3825 	      vm_offset_t vaddr,
3826 	      vm_prot_t fault_typea,
3827 	      vm_map_entry_t *out_entry,	/* OUT */
3828 	      vm_object_t *object,		/* OUT */
3829 	      vm_pindex_t *pindex,		/* OUT */
3830 	      vm_prot_t *out_prot,		/* OUT */
3831 	      boolean_t *wired)			/* OUT */
3832 {
3833 	vm_map_entry_t entry;
3834 	vm_map_t map = *var_map;
3835 	vm_prot_t prot;
3836 	vm_prot_t fault_type = fault_typea;
3837 	vm_object_t eobject;
3838 	vm_size_t size;
3839 	struct ucred *cred;
3840 
3841 RetryLookup:;
3842 
3843 	vm_map_lock_read(map);
3844 
3845 	/*
3846 	 * Lookup the faulting address.
3847 	 */
3848 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3849 		vm_map_unlock_read(map);
3850 		return (KERN_INVALID_ADDRESS);
3851 	}
3852 
3853 	entry = *out_entry;
3854 
3855 	/*
3856 	 * Handle submaps.
3857 	 */
3858 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3859 		vm_map_t old_map = map;
3860 
3861 		*var_map = map = entry->object.sub_map;
3862 		vm_map_unlock_read(old_map);
3863 		goto RetryLookup;
3864 	}
3865 
3866 	/*
3867 	 * Check whether this task is allowed to have this page.
3868 	 */
3869 	prot = entry->protection;
3870 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3871 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3872 		vm_map_unlock_read(map);
3873 		return (KERN_PROTECTION_FAILURE);
3874 	}
3875 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3876 	    (entry->eflags & MAP_ENTRY_COW) &&
3877 	    (fault_type & VM_PROT_WRITE)) {
3878 		vm_map_unlock_read(map);
3879 		return (KERN_PROTECTION_FAILURE);
3880 	}
3881 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3882 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3883 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3884 		vm_map_unlock_read(map);
3885 		return (KERN_PROTECTION_FAILURE);
3886 	}
3887 
3888 	/*
3889 	 * If this page is not pageable, we have to get it for all possible
3890 	 * accesses.
3891 	 */
3892 	*wired = (entry->wired_count != 0);
3893 	if (*wired)
3894 		fault_type = entry->protection;
3895 	size = entry->end - entry->start;
3896 	/*
3897 	 * If the entry was copy-on-write, we either ...
3898 	 */
3899 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3900 		/*
3901 		 * If we want to write the page, we may as well handle that
3902 		 * now since we've got the map locked.
3903 		 *
3904 		 * If we don't need to write the page, we just demote the
3905 		 * permissions allowed.
3906 		 */
3907 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3908 		    (fault_typea & VM_PROT_COPY) != 0) {
3909 			/*
3910 			 * Make a new object, and place it in the object
3911 			 * chain.  Note that no new references have appeared
3912 			 * -- one just moved from the map to the new
3913 			 * object.
3914 			 */
3915 			if (vm_map_lock_upgrade(map))
3916 				goto RetryLookup;
3917 
3918 			if (entry->cred == NULL) {
3919 				/*
3920 				 * The debugger owner is charged for
3921 				 * the memory.
3922 				 */
3923 				cred = curthread->td_ucred;
3924 				crhold(cred);
3925 				if (!swap_reserve_by_cred(size, cred)) {
3926 					crfree(cred);
3927 					vm_map_unlock(map);
3928 					return (KERN_RESOURCE_SHORTAGE);
3929 				}
3930 				entry->cred = cred;
3931 			}
3932 			vm_object_shadow(&entry->object.vm_object,
3933 			    &entry->offset, size);
3934 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3935 			eobject = entry->object.vm_object;
3936 			if (eobject->cred != NULL) {
3937 				/*
3938 				 * The object was not shadowed.
3939 				 */
3940 				swap_release_by_cred(size, entry->cred);
3941 				crfree(entry->cred);
3942 				entry->cred = NULL;
3943 			} else if (entry->cred != NULL) {
3944 				VM_OBJECT_WLOCK(eobject);
3945 				eobject->cred = entry->cred;
3946 				eobject->charge = size;
3947 				VM_OBJECT_WUNLOCK(eobject);
3948 				entry->cred = NULL;
3949 			}
3950 
3951 			vm_map_lock_downgrade(map);
3952 		} else {
3953 			/*
3954 			 * We're attempting to read a copy-on-write page --
3955 			 * don't allow writes.
3956 			 */
3957 			prot &= ~VM_PROT_WRITE;
3958 		}
3959 	}
3960 
3961 	/*
3962 	 * Create an object if necessary.
3963 	 */
3964 	if (entry->object.vm_object == NULL &&
3965 	    !map->system_map) {
3966 		if (vm_map_lock_upgrade(map))
3967 			goto RetryLookup;
3968 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3969 		    atop(size));
3970 		entry->offset = 0;
3971 		if (entry->cred != NULL) {
3972 			VM_OBJECT_WLOCK(entry->object.vm_object);
3973 			entry->object.vm_object->cred = entry->cred;
3974 			entry->object.vm_object->charge = size;
3975 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3976 			entry->cred = NULL;
3977 		}
3978 		vm_map_lock_downgrade(map);
3979 	}
3980 
3981 	/*
3982 	 * Return the object/offset from this entry.  If the entry was
3983 	 * copy-on-write or empty, it has been fixed up.
3984 	 */
3985 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3986 	*object = entry->object.vm_object;
3987 
3988 	*out_prot = prot;
3989 	return (KERN_SUCCESS);
3990 }
3991 
3992 /*
3993  *	vm_map_lookup_locked:
3994  *
3995  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3996  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3997  */
3998 int
3999 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4000 		     vm_offset_t vaddr,
4001 		     vm_prot_t fault_typea,
4002 		     vm_map_entry_t *out_entry,	/* OUT */
4003 		     vm_object_t *object,	/* OUT */
4004 		     vm_pindex_t *pindex,	/* OUT */
4005 		     vm_prot_t *out_prot,	/* OUT */
4006 		     boolean_t *wired)		/* OUT */
4007 {
4008 	vm_map_entry_t entry;
4009 	vm_map_t map = *var_map;
4010 	vm_prot_t prot;
4011 	vm_prot_t fault_type = fault_typea;
4012 
4013 	/*
4014 	 * Lookup the faulting address.
4015 	 */
4016 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4017 		return (KERN_INVALID_ADDRESS);
4018 
4019 	entry = *out_entry;
4020 
4021 	/*
4022 	 * Fail if the entry refers to a submap.
4023 	 */
4024 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4025 		return (KERN_FAILURE);
4026 
4027 	/*
4028 	 * Check whether this task is allowed to have this page.
4029 	 */
4030 	prot = entry->protection;
4031 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4032 	if ((fault_type & prot) != fault_type)
4033 		return (KERN_PROTECTION_FAILURE);
4034 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4035 	    (entry->eflags & MAP_ENTRY_COW) &&
4036 	    (fault_type & VM_PROT_WRITE))
4037 		return (KERN_PROTECTION_FAILURE);
4038 
4039 	/*
4040 	 * If this page is not pageable, we have to get it for all possible
4041 	 * accesses.
4042 	 */
4043 	*wired = (entry->wired_count != 0);
4044 	if (*wired)
4045 		fault_type = entry->protection;
4046 
4047 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4048 		/*
4049 		 * Fail if the entry was copy-on-write for a write fault.
4050 		 */
4051 		if (fault_type & VM_PROT_WRITE)
4052 			return (KERN_FAILURE);
4053 		/*
4054 		 * We're attempting to read a copy-on-write page --
4055 		 * don't allow writes.
4056 		 */
4057 		prot &= ~VM_PROT_WRITE;
4058 	}
4059 
4060 	/*
4061 	 * Fail if an object should be created.
4062 	 */
4063 	if (entry->object.vm_object == NULL && !map->system_map)
4064 		return (KERN_FAILURE);
4065 
4066 	/*
4067 	 * Return the object/offset from this entry.  If the entry was
4068 	 * copy-on-write or empty, it has been fixed up.
4069 	 */
4070 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4071 	*object = entry->object.vm_object;
4072 
4073 	*out_prot = prot;
4074 	return (KERN_SUCCESS);
4075 }
4076 
4077 /*
4078  *	vm_map_lookup_done:
4079  *
4080  *	Releases locks acquired by a vm_map_lookup
4081  *	(according to the handle returned by that lookup).
4082  */
4083 void
4084 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4085 {
4086 	/*
4087 	 * Unlock the main-level map
4088 	 */
4089 	vm_map_unlock_read(map);
4090 }
4091 
4092 #include "opt_ddb.h"
4093 #ifdef DDB
4094 #include <sys/kernel.h>
4095 
4096 #include <ddb/ddb.h>
4097 
4098 static void
4099 vm_map_print(vm_map_t map)
4100 {
4101 	vm_map_entry_t entry;
4102 
4103 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4104 	    (void *)map,
4105 	    (void *)map->pmap, map->nentries, map->timestamp);
4106 
4107 	db_indent += 2;
4108 	for (entry = map->header.next; entry != &map->header;
4109 	    entry = entry->next) {
4110 		db_iprintf("map entry %p: start=%p, end=%p\n",
4111 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4112 		{
4113 			static char *inheritance_name[4] =
4114 			{"share", "copy", "none", "donate_copy"};
4115 
4116 			db_iprintf(" prot=%x/%x/%s",
4117 			    entry->protection,
4118 			    entry->max_protection,
4119 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4120 			if (entry->wired_count != 0)
4121 				db_printf(", wired");
4122 		}
4123 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4124 			db_printf(", share=%p, offset=0x%jx\n",
4125 			    (void *)entry->object.sub_map,
4126 			    (uintmax_t)entry->offset);
4127 			if ((entry->prev == &map->header) ||
4128 			    (entry->prev->object.sub_map !=
4129 				entry->object.sub_map)) {
4130 				db_indent += 2;
4131 				vm_map_print((vm_map_t)entry->object.sub_map);
4132 				db_indent -= 2;
4133 			}
4134 		} else {
4135 			if (entry->cred != NULL)
4136 				db_printf(", ruid %d", entry->cred->cr_ruid);
4137 			db_printf(", object=%p, offset=0x%jx",
4138 			    (void *)entry->object.vm_object,
4139 			    (uintmax_t)entry->offset);
4140 			if (entry->object.vm_object && entry->object.vm_object->cred)
4141 				db_printf(", obj ruid %d charge %jx",
4142 				    entry->object.vm_object->cred->cr_ruid,
4143 				    (uintmax_t)entry->object.vm_object->charge);
4144 			if (entry->eflags & MAP_ENTRY_COW)
4145 				db_printf(", copy (%s)",
4146 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4147 			db_printf("\n");
4148 
4149 			if ((entry->prev == &map->header) ||
4150 			    (entry->prev->object.vm_object !=
4151 				entry->object.vm_object)) {
4152 				db_indent += 2;
4153 				vm_object_print((db_expr_t)(intptr_t)
4154 						entry->object.vm_object,
4155 						1, 0, (char *)0);
4156 				db_indent -= 2;
4157 			}
4158 		}
4159 	}
4160 	db_indent -= 2;
4161 }
4162 
4163 DB_SHOW_COMMAND(map, map)
4164 {
4165 
4166 	if (!have_addr) {
4167 		db_printf("usage: show map <addr>\n");
4168 		return;
4169 	}
4170 	vm_map_print((vm_map_t)addr);
4171 }
4172 
4173 DB_SHOW_COMMAND(procvm, procvm)
4174 {
4175 	struct proc *p;
4176 
4177 	if (have_addr) {
4178 		p = (struct proc *) addr;
4179 	} else {
4180 		p = curproc;
4181 	}
4182 
4183 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4184 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4185 	    (void *)vmspace_pmap(p->p_vmspace));
4186 
4187 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4188 }
4189 
4190 #endif /* DDB */
4191