1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 #ifdef INVARIANTS 136 static void vm_map_zdtor(void *mem, int size, void *arg); 137 static void vmspace_zdtor(void *mem, int size, void *arg); 138 #endif 139 140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 143 144 /* 145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 146 * stable. 147 */ 148 #define PROC_VMSPACE_LOCK(p) do { } while (0) 149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 150 151 /* 152 * VM_MAP_RANGE_CHECK: [ internal use only ] 153 * 154 * Asserts that the starting and ending region 155 * addresses fall within the valid range of the map. 156 */ 157 #define VM_MAP_RANGE_CHECK(map, start, end) \ 158 { \ 159 if (start < vm_map_min(map)) \ 160 start = vm_map_min(map); \ 161 if (end > vm_map_max(map)) \ 162 end = vm_map_max(map); \ 163 if (start > end) \ 164 start = end; \ 165 } 166 167 /* 168 * vm_map_startup: 169 * 170 * Initialize the vm_map module. Must be called before 171 * any other vm_map routines. 172 * 173 * Map and entry structures are allocated from the general 174 * purpose memory pool with some exceptions: 175 * 176 * - The kernel map and kmem submap are allocated statically. 177 * - Kernel map entries are allocated out of a static pool. 178 * 179 * These restrictions are necessary since malloc() uses the 180 * maps and requires map entries. 181 */ 182 183 void 184 vm_map_startup(void) 185 { 186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 188 #ifdef INVARIANTS 189 vm_map_zdtor, 190 #else 191 NULL, 192 #endif 193 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uma_prealloc(mapzone, MAX_KMAP); 195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 198 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 200 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 201 #ifdef INVARIANTS 202 vmspace_zdtor, 203 #else 204 NULL, 205 #endif 206 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 } 208 209 static int 210 vmspace_zinit(void *mem, int size, int flags) 211 { 212 struct vmspace *vm; 213 214 vm = (struct vmspace *)mem; 215 216 vm->vm_map.pmap = NULL; 217 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 218 PMAP_LOCK_INIT(vmspace_pmap(vm)); 219 return (0); 220 } 221 222 static int 223 vm_map_zinit(void *mem, int size, int flags) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 memset(map, 0, sizeof(*map)); 229 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 230 sx_init(&map->lock, "vm map (user)"); 231 return (0); 232 } 233 234 #ifdef INVARIANTS 235 static void 236 vmspace_zdtor(void *mem, int size, void *arg) 237 { 238 struct vmspace *vm; 239 240 vm = (struct vmspace *)mem; 241 242 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 243 } 244 static void 245 vm_map_zdtor(void *mem, int size, void *arg) 246 { 247 vm_map_t map; 248 249 map = (vm_map_t)mem; 250 KASSERT(map->nentries == 0, 251 ("map %p nentries == %d on free.", 252 map, map->nentries)); 253 KASSERT(map->size == 0, 254 ("map %p size == %lu on free.", 255 map, (unsigned long)map->size)); 256 } 257 #endif /* INVARIANTS */ 258 259 /* 260 * Allocate a vmspace structure, including a vm_map and pmap, 261 * and initialize those structures. The refcnt is set to 1. 262 * 263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 264 */ 265 struct vmspace * 266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 267 { 268 struct vmspace *vm; 269 270 vm = uma_zalloc(vmspace_zone, M_WAITOK); 271 272 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 273 274 if (pinit == NULL) 275 pinit = &pmap_pinit; 276 277 if (!pinit(vmspace_pmap(vm))) { 278 uma_zfree(vmspace_zone, vm); 279 return (NULL); 280 } 281 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 282 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 283 vm->vm_refcnt = 1; 284 vm->vm_shm = NULL; 285 vm->vm_swrss = 0; 286 vm->vm_tsize = 0; 287 vm->vm_dsize = 0; 288 vm->vm_ssize = 0; 289 vm->vm_taddr = 0; 290 vm->vm_daddr = 0; 291 vm->vm_maxsaddr = 0; 292 return (vm); 293 } 294 295 static void 296 vmspace_container_reset(struct proc *p) 297 { 298 299 #ifdef RACCT 300 PROC_LOCK(p); 301 racct_set(p, RACCT_DATA, 0); 302 racct_set(p, RACCT_STACK, 0); 303 racct_set(p, RACCT_RSS, 0); 304 racct_set(p, RACCT_MEMLOCK, 0); 305 racct_set(p, RACCT_VMEM, 0); 306 PROC_UNLOCK(p); 307 #endif 308 } 309 310 static inline void 311 vmspace_dofree(struct vmspace *vm) 312 { 313 314 CTR1(KTR_VM, "vmspace_free: %p", vm); 315 316 /* 317 * Make sure any SysV shm is freed, it might not have been in 318 * exit1(). 319 */ 320 shmexit(vm); 321 322 /* 323 * Lock the map, to wait out all other references to it. 324 * Delete all of the mappings and pages they hold, then call 325 * the pmap module to reclaim anything left. 326 */ 327 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 328 vm->vm_map.max_offset); 329 330 pmap_release(vmspace_pmap(vm)); 331 vm->vm_map.pmap = NULL; 332 uma_zfree(vmspace_zone, vm); 333 } 334 335 void 336 vmspace_free(struct vmspace *vm) 337 { 338 339 if (vm->vm_refcnt == 0) 340 panic("vmspace_free: attempt to free already freed vmspace"); 341 342 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 343 vmspace_dofree(vm); 344 } 345 346 void 347 vmspace_exitfree(struct proc *p) 348 { 349 struct vmspace *vm; 350 351 PROC_VMSPACE_LOCK(p); 352 vm = p->p_vmspace; 353 p->p_vmspace = NULL; 354 PROC_VMSPACE_UNLOCK(p); 355 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 356 vmspace_free(vm); 357 } 358 359 void 360 vmspace_exit(struct thread *td) 361 { 362 int refcnt; 363 struct vmspace *vm; 364 struct proc *p; 365 366 /* 367 * Release user portion of address space. 368 * This releases references to vnodes, 369 * which could cause I/O if the file has been unlinked. 370 * Need to do this early enough that we can still sleep. 371 * 372 * The last exiting process to reach this point releases as 373 * much of the environment as it can. vmspace_dofree() is the 374 * slower fallback in case another process had a temporary 375 * reference to the vmspace. 376 */ 377 378 p = td->td_proc; 379 vm = p->p_vmspace; 380 atomic_add_int(&vmspace0.vm_refcnt, 1); 381 do { 382 refcnt = vm->vm_refcnt; 383 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 384 /* Switch now since other proc might free vmspace */ 385 PROC_VMSPACE_LOCK(p); 386 p->p_vmspace = &vmspace0; 387 PROC_VMSPACE_UNLOCK(p); 388 pmap_activate(td); 389 } 390 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 391 if (refcnt == 1) { 392 if (p->p_vmspace != vm) { 393 /* vmspace not yet freed, switch back */ 394 PROC_VMSPACE_LOCK(p); 395 p->p_vmspace = vm; 396 PROC_VMSPACE_UNLOCK(p); 397 pmap_activate(td); 398 } 399 pmap_remove_pages(vmspace_pmap(vm)); 400 /* Switch now since this proc will free vmspace */ 401 PROC_VMSPACE_LOCK(p); 402 p->p_vmspace = &vmspace0; 403 PROC_VMSPACE_UNLOCK(p); 404 pmap_activate(td); 405 vmspace_dofree(vm); 406 } 407 vmspace_container_reset(p); 408 } 409 410 /* Acquire reference to vmspace owned by another process. */ 411 412 struct vmspace * 413 vmspace_acquire_ref(struct proc *p) 414 { 415 struct vmspace *vm; 416 int refcnt; 417 418 PROC_VMSPACE_LOCK(p); 419 vm = p->p_vmspace; 420 if (vm == NULL) { 421 PROC_VMSPACE_UNLOCK(p); 422 return (NULL); 423 } 424 do { 425 refcnt = vm->vm_refcnt; 426 if (refcnt <= 0) { /* Avoid 0->1 transition */ 427 PROC_VMSPACE_UNLOCK(p); 428 return (NULL); 429 } 430 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 431 if (vm != p->p_vmspace) { 432 PROC_VMSPACE_UNLOCK(p); 433 vmspace_free(vm); 434 return (NULL); 435 } 436 PROC_VMSPACE_UNLOCK(p); 437 return (vm); 438 } 439 440 void 441 _vm_map_lock(vm_map_t map, const char *file, int line) 442 { 443 444 if (map->system_map) 445 mtx_lock_flags_(&map->system_mtx, 0, file, line); 446 else 447 sx_xlock_(&map->lock, file, line); 448 map->timestamp++; 449 } 450 451 static void 452 vm_map_process_deferred(void) 453 { 454 struct thread *td; 455 vm_map_entry_t entry, next; 456 vm_object_t object; 457 458 td = curthread; 459 entry = td->td_map_def_user; 460 td->td_map_def_user = NULL; 461 while (entry != NULL) { 462 next = entry->next; 463 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 464 /* 465 * Decrement the object's writemappings and 466 * possibly the vnode's v_writecount. 467 */ 468 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 469 ("Submap with writecount")); 470 object = entry->object.vm_object; 471 KASSERT(object != NULL, ("No object for writecount")); 472 vnode_pager_release_writecount(object, entry->start, 473 entry->end); 474 } 475 vm_map_entry_deallocate(entry, FALSE); 476 entry = next; 477 } 478 } 479 480 void 481 _vm_map_unlock(vm_map_t map, const char *file, int line) 482 { 483 484 if (map->system_map) 485 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 486 else { 487 sx_xunlock_(&map->lock, file, line); 488 vm_map_process_deferred(); 489 } 490 } 491 492 void 493 _vm_map_lock_read(vm_map_t map, const char *file, int line) 494 { 495 496 if (map->system_map) 497 mtx_lock_flags_(&map->system_mtx, 0, file, line); 498 else 499 sx_slock_(&map->lock, file, line); 500 } 501 502 void 503 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 504 { 505 506 if (map->system_map) 507 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 508 else { 509 sx_sunlock_(&map->lock, file, line); 510 vm_map_process_deferred(); 511 } 512 } 513 514 int 515 _vm_map_trylock(vm_map_t map, const char *file, int line) 516 { 517 int error; 518 519 error = map->system_map ? 520 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 521 !sx_try_xlock_(&map->lock, file, line); 522 if (error == 0) 523 map->timestamp++; 524 return (error == 0); 525 } 526 527 int 528 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 529 { 530 int error; 531 532 error = map->system_map ? 533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 534 !sx_try_slock_(&map->lock, file, line); 535 return (error == 0); 536 } 537 538 /* 539 * _vm_map_lock_upgrade: [ internal use only ] 540 * 541 * Tries to upgrade a read (shared) lock on the specified map to a write 542 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 543 * non-zero value if the upgrade fails. If the upgrade fails, the map is 544 * returned without a read or write lock held. 545 * 546 * Requires that the map be read locked. 547 */ 548 int 549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 550 { 551 unsigned int last_timestamp; 552 553 if (map->system_map) { 554 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 555 } else { 556 if (!sx_try_upgrade_(&map->lock, file, line)) { 557 last_timestamp = map->timestamp; 558 sx_sunlock_(&map->lock, file, line); 559 vm_map_process_deferred(); 560 /* 561 * If the map's timestamp does not change while the 562 * map is unlocked, then the upgrade succeeds. 563 */ 564 sx_xlock_(&map->lock, file, line); 565 if (last_timestamp != map->timestamp) { 566 sx_xunlock_(&map->lock, file, line); 567 return (1); 568 } 569 } 570 } 571 map->timestamp++; 572 return (0); 573 } 574 575 void 576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 577 { 578 579 if (map->system_map) { 580 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 581 } else 582 sx_downgrade_(&map->lock, file, line); 583 } 584 585 /* 586 * vm_map_locked: 587 * 588 * Returns a non-zero value if the caller holds a write (exclusive) lock 589 * on the specified map and the value "0" otherwise. 590 */ 591 int 592 vm_map_locked(vm_map_t map) 593 { 594 595 if (map->system_map) 596 return (mtx_owned(&map->system_mtx)); 597 else 598 return (sx_xlocked(&map->lock)); 599 } 600 601 #ifdef INVARIANTS 602 static void 603 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 604 { 605 606 if (map->system_map) 607 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 608 else 609 sx_assert_(&map->lock, SA_XLOCKED, file, line); 610 } 611 612 #define VM_MAP_ASSERT_LOCKED(map) \ 613 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 614 #else 615 #define VM_MAP_ASSERT_LOCKED(map) 616 #endif 617 618 /* 619 * _vm_map_unlock_and_wait: 620 * 621 * Atomically releases the lock on the specified map and puts the calling 622 * thread to sleep. The calling thread will remain asleep until either 623 * vm_map_wakeup() is performed on the map or the specified timeout is 624 * exceeded. 625 * 626 * WARNING! This function does not perform deferred deallocations of 627 * objects and map entries. Therefore, the calling thread is expected to 628 * reacquire the map lock after reawakening and later perform an ordinary 629 * unlock operation, such as vm_map_unlock(), before completing its 630 * operation on the map. 631 */ 632 int 633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 634 { 635 636 mtx_lock(&map_sleep_mtx); 637 if (map->system_map) 638 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 639 else 640 sx_xunlock_(&map->lock, file, line); 641 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 642 timo)); 643 } 644 645 /* 646 * vm_map_wakeup: 647 * 648 * Awaken any threads that have slept on the map using 649 * vm_map_unlock_and_wait(). 650 */ 651 void 652 vm_map_wakeup(vm_map_t map) 653 { 654 655 /* 656 * Acquire and release map_sleep_mtx to prevent a wakeup() 657 * from being performed (and lost) between the map unlock 658 * and the msleep() in _vm_map_unlock_and_wait(). 659 */ 660 mtx_lock(&map_sleep_mtx); 661 mtx_unlock(&map_sleep_mtx); 662 wakeup(&map->root); 663 } 664 665 void 666 vm_map_busy(vm_map_t map) 667 { 668 669 VM_MAP_ASSERT_LOCKED(map); 670 map->busy++; 671 } 672 673 void 674 vm_map_unbusy(vm_map_t map) 675 { 676 677 VM_MAP_ASSERT_LOCKED(map); 678 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 679 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 680 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 681 wakeup(&map->busy); 682 } 683 } 684 685 void 686 vm_map_wait_busy(vm_map_t map) 687 { 688 689 VM_MAP_ASSERT_LOCKED(map); 690 while (map->busy) { 691 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 692 if (map->system_map) 693 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 694 else 695 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 696 } 697 map->timestamp++; 698 } 699 700 long 701 vmspace_resident_count(struct vmspace *vmspace) 702 { 703 return pmap_resident_count(vmspace_pmap(vmspace)); 704 } 705 706 /* 707 * vm_map_create: 708 * 709 * Creates and returns a new empty VM map with 710 * the given physical map structure, and having 711 * the given lower and upper address bounds. 712 */ 713 vm_map_t 714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 715 { 716 vm_map_t result; 717 718 result = uma_zalloc(mapzone, M_WAITOK); 719 CTR1(KTR_VM, "vm_map_create: %p", result); 720 _vm_map_init(result, pmap, min, max); 721 return (result); 722 } 723 724 /* 725 * Initialize an existing vm_map structure 726 * such as that in the vmspace structure. 727 */ 728 static void 729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 730 { 731 732 map->header.next = map->header.prev = &map->header; 733 map->needs_wakeup = FALSE; 734 map->system_map = 0; 735 map->pmap = pmap; 736 map->min_offset = min; 737 map->max_offset = max; 738 map->flags = 0; 739 map->root = NULL; 740 map->timestamp = 0; 741 map->busy = 0; 742 } 743 744 void 745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 746 { 747 748 _vm_map_init(map, pmap, min, max); 749 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 750 sx_init(&map->lock, "user map"); 751 } 752 753 /* 754 * vm_map_entry_dispose: [ internal use only ] 755 * 756 * Inverse of vm_map_entry_create. 757 */ 758 static void 759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 760 { 761 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 762 } 763 764 /* 765 * vm_map_entry_create: [ internal use only ] 766 * 767 * Allocates a VM map entry for insertion. 768 * No entry fields are filled in. 769 */ 770 static vm_map_entry_t 771 vm_map_entry_create(vm_map_t map) 772 { 773 vm_map_entry_t new_entry; 774 775 if (map->system_map) 776 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 777 else 778 new_entry = uma_zalloc(mapentzone, M_WAITOK); 779 if (new_entry == NULL) 780 panic("vm_map_entry_create: kernel resources exhausted"); 781 return (new_entry); 782 } 783 784 /* 785 * vm_map_entry_set_behavior: 786 * 787 * Set the expected access behavior, either normal, random, or 788 * sequential. 789 */ 790 static inline void 791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 792 { 793 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 794 (behavior & MAP_ENTRY_BEHAV_MASK); 795 } 796 797 /* 798 * vm_map_entry_set_max_free: 799 * 800 * Set the max_free field in a vm_map_entry. 801 */ 802 static inline void 803 vm_map_entry_set_max_free(vm_map_entry_t entry) 804 { 805 806 entry->max_free = entry->adj_free; 807 if (entry->left != NULL && entry->left->max_free > entry->max_free) 808 entry->max_free = entry->left->max_free; 809 if (entry->right != NULL && entry->right->max_free > entry->max_free) 810 entry->max_free = entry->right->max_free; 811 } 812 813 /* 814 * vm_map_entry_splay: 815 * 816 * The Sleator and Tarjan top-down splay algorithm with the 817 * following variation. Max_free must be computed bottom-up, so 818 * on the downward pass, maintain the left and right spines in 819 * reverse order. Then, make a second pass up each side to fix 820 * the pointers and compute max_free. The time bound is O(log n) 821 * amortized. 822 * 823 * The new root is the vm_map_entry containing "addr", or else an 824 * adjacent entry (lower or higher) if addr is not in the tree. 825 * 826 * The map must be locked, and leaves it so. 827 * 828 * Returns: the new root. 829 */ 830 static vm_map_entry_t 831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 832 { 833 vm_map_entry_t llist, rlist; 834 vm_map_entry_t ltree, rtree; 835 vm_map_entry_t y; 836 837 /* Special case of empty tree. */ 838 if (root == NULL) 839 return (root); 840 841 /* 842 * Pass One: Splay down the tree until we find addr or a NULL 843 * pointer where addr would go. llist and rlist are the two 844 * sides in reverse order (bottom-up), with llist linked by 845 * the right pointer and rlist linked by the left pointer in 846 * the vm_map_entry. Wait until Pass Two to set max_free on 847 * the two spines. 848 */ 849 llist = NULL; 850 rlist = NULL; 851 for (;;) { 852 /* root is never NULL in here. */ 853 if (addr < root->start) { 854 y = root->left; 855 if (y == NULL) 856 break; 857 if (addr < y->start && y->left != NULL) { 858 /* Rotate right and put y on rlist. */ 859 root->left = y->right; 860 y->right = root; 861 vm_map_entry_set_max_free(root); 862 root = y->left; 863 y->left = rlist; 864 rlist = y; 865 } else { 866 /* Put root on rlist. */ 867 root->left = rlist; 868 rlist = root; 869 root = y; 870 } 871 } else if (addr >= root->end) { 872 y = root->right; 873 if (y == NULL) 874 break; 875 if (addr >= y->end && y->right != NULL) { 876 /* Rotate left and put y on llist. */ 877 root->right = y->left; 878 y->left = root; 879 vm_map_entry_set_max_free(root); 880 root = y->right; 881 y->right = llist; 882 llist = y; 883 } else { 884 /* Put root on llist. */ 885 root->right = llist; 886 llist = root; 887 root = y; 888 } 889 } else 890 break; 891 } 892 893 /* 894 * Pass Two: Walk back up the two spines, flip the pointers 895 * and set max_free. The subtrees of the root go at the 896 * bottom of llist and rlist. 897 */ 898 ltree = root->left; 899 while (llist != NULL) { 900 y = llist->right; 901 llist->right = ltree; 902 vm_map_entry_set_max_free(llist); 903 ltree = llist; 904 llist = y; 905 } 906 rtree = root->right; 907 while (rlist != NULL) { 908 y = rlist->left; 909 rlist->left = rtree; 910 vm_map_entry_set_max_free(rlist); 911 rtree = rlist; 912 rlist = y; 913 } 914 915 /* 916 * Final assembly: add ltree and rtree as subtrees of root. 917 */ 918 root->left = ltree; 919 root->right = rtree; 920 vm_map_entry_set_max_free(root); 921 922 return (root); 923 } 924 925 /* 926 * vm_map_entry_{un,}link: 927 * 928 * Insert/remove entries from maps. 929 */ 930 static void 931 vm_map_entry_link(vm_map_t map, 932 vm_map_entry_t after_where, 933 vm_map_entry_t entry) 934 { 935 936 CTR4(KTR_VM, 937 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 938 map->nentries, entry, after_where); 939 VM_MAP_ASSERT_LOCKED(map); 940 map->nentries++; 941 entry->prev = after_where; 942 entry->next = after_where->next; 943 entry->next->prev = entry; 944 after_where->next = entry; 945 946 if (after_where != &map->header) { 947 if (after_where != map->root) 948 vm_map_entry_splay(after_where->start, map->root); 949 entry->right = after_where->right; 950 entry->left = after_where; 951 after_where->right = NULL; 952 after_where->adj_free = entry->start - after_where->end; 953 vm_map_entry_set_max_free(after_where); 954 } else { 955 entry->right = map->root; 956 entry->left = NULL; 957 } 958 entry->adj_free = (entry->next == &map->header ? map->max_offset : 959 entry->next->start) - entry->end; 960 vm_map_entry_set_max_free(entry); 961 map->root = entry; 962 } 963 964 static void 965 vm_map_entry_unlink(vm_map_t map, 966 vm_map_entry_t entry) 967 { 968 vm_map_entry_t next, prev, root; 969 970 VM_MAP_ASSERT_LOCKED(map); 971 if (entry != map->root) 972 vm_map_entry_splay(entry->start, map->root); 973 if (entry->left == NULL) 974 root = entry->right; 975 else { 976 root = vm_map_entry_splay(entry->start, entry->left); 977 root->right = entry->right; 978 root->adj_free = (entry->next == &map->header ? map->max_offset : 979 entry->next->start) - root->end; 980 vm_map_entry_set_max_free(root); 981 } 982 map->root = root; 983 984 prev = entry->prev; 985 next = entry->next; 986 next->prev = prev; 987 prev->next = next; 988 map->nentries--; 989 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 990 map->nentries, entry); 991 } 992 993 /* 994 * vm_map_entry_resize_free: 995 * 996 * Recompute the amount of free space following a vm_map_entry 997 * and propagate that value up the tree. Call this function after 998 * resizing a map entry in-place, that is, without a call to 999 * vm_map_entry_link() or _unlink(). 1000 * 1001 * The map must be locked, and leaves it so. 1002 */ 1003 static void 1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1005 { 1006 1007 /* 1008 * Using splay trees without parent pointers, propagating 1009 * max_free up the tree is done by moving the entry to the 1010 * root and making the change there. 1011 */ 1012 if (entry != map->root) 1013 map->root = vm_map_entry_splay(entry->start, map->root); 1014 1015 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1016 entry->next->start) - entry->end; 1017 vm_map_entry_set_max_free(entry); 1018 } 1019 1020 /* 1021 * vm_map_lookup_entry: [ internal use only ] 1022 * 1023 * Finds the map entry containing (or 1024 * immediately preceding) the specified address 1025 * in the given map; the entry is returned 1026 * in the "entry" parameter. The boolean 1027 * result indicates whether the address is 1028 * actually contained in the map. 1029 */ 1030 boolean_t 1031 vm_map_lookup_entry( 1032 vm_map_t map, 1033 vm_offset_t address, 1034 vm_map_entry_t *entry) /* OUT */ 1035 { 1036 vm_map_entry_t cur; 1037 boolean_t locked; 1038 1039 /* 1040 * If the map is empty, then the map entry immediately preceding 1041 * "address" is the map's header. 1042 */ 1043 cur = map->root; 1044 if (cur == NULL) 1045 *entry = &map->header; 1046 else if (address >= cur->start && cur->end > address) { 1047 *entry = cur; 1048 return (TRUE); 1049 } else if ((locked = vm_map_locked(map)) || 1050 sx_try_upgrade(&map->lock)) { 1051 /* 1052 * Splay requires a write lock on the map. However, it only 1053 * restructures the binary search tree; it does not otherwise 1054 * change the map. Thus, the map's timestamp need not change 1055 * on a temporary upgrade. 1056 */ 1057 map->root = cur = vm_map_entry_splay(address, cur); 1058 if (!locked) 1059 sx_downgrade(&map->lock); 1060 1061 /* 1062 * If "address" is contained within a map entry, the new root 1063 * is that map entry. Otherwise, the new root is a map entry 1064 * immediately before or after "address". 1065 */ 1066 if (address >= cur->start) { 1067 *entry = cur; 1068 if (cur->end > address) 1069 return (TRUE); 1070 } else 1071 *entry = cur->prev; 1072 } else 1073 /* 1074 * Since the map is only locked for read access, perform a 1075 * standard binary search tree lookup for "address". 1076 */ 1077 for (;;) { 1078 if (address < cur->start) { 1079 if (cur->left == NULL) { 1080 *entry = cur->prev; 1081 break; 1082 } 1083 cur = cur->left; 1084 } else if (cur->end > address) { 1085 *entry = cur; 1086 return (TRUE); 1087 } else { 1088 if (cur->right == NULL) { 1089 *entry = cur; 1090 break; 1091 } 1092 cur = cur->right; 1093 } 1094 } 1095 return (FALSE); 1096 } 1097 1098 /* 1099 * vm_map_insert: 1100 * 1101 * Inserts the given whole VM object into the target 1102 * map at the specified address range. The object's 1103 * size should match that of the address range. 1104 * 1105 * Requires that the map be locked, and leaves it so. 1106 * 1107 * If object is non-NULL, ref count must be bumped by caller 1108 * prior to making call to account for the new entry. 1109 */ 1110 int 1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1112 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1113 int cow) 1114 { 1115 vm_map_entry_t new_entry; 1116 vm_map_entry_t prev_entry; 1117 vm_map_entry_t temp_entry; 1118 vm_eflags_t protoeflags; 1119 struct ucred *cred; 1120 vm_inherit_t inheritance; 1121 boolean_t charge_prev_obj; 1122 1123 VM_MAP_ASSERT_LOCKED(map); 1124 1125 /* 1126 * Check that the start and end points are not bogus. 1127 */ 1128 if ((start < map->min_offset) || (end > map->max_offset) || 1129 (start >= end)) 1130 return (KERN_INVALID_ADDRESS); 1131 1132 /* 1133 * Find the entry prior to the proposed starting address; if it's part 1134 * of an existing entry, this range is bogus. 1135 */ 1136 if (vm_map_lookup_entry(map, start, &temp_entry)) 1137 return (KERN_NO_SPACE); 1138 1139 prev_entry = temp_entry; 1140 1141 /* 1142 * Assert that the next entry doesn't overlap the end point. 1143 */ 1144 if ((prev_entry->next != &map->header) && 1145 (prev_entry->next->start < end)) 1146 return (KERN_NO_SPACE); 1147 1148 protoeflags = 0; 1149 charge_prev_obj = FALSE; 1150 1151 if (cow & MAP_COPY_ON_WRITE) 1152 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1153 1154 if (cow & MAP_NOFAULT) { 1155 protoeflags |= MAP_ENTRY_NOFAULT; 1156 1157 KASSERT(object == NULL, 1158 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1159 } 1160 if (cow & MAP_DISABLE_SYNCER) 1161 protoeflags |= MAP_ENTRY_NOSYNC; 1162 if (cow & MAP_DISABLE_COREDUMP) 1163 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1164 if (cow & MAP_VN_WRITECOUNT) 1165 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1166 if (cow & MAP_INHERIT_SHARE) 1167 inheritance = VM_INHERIT_SHARE; 1168 else 1169 inheritance = VM_INHERIT_DEFAULT; 1170 1171 cred = NULL; 1172 KASSERT((object != kmem_object && object != kernel_object) || 1173 ((object == kmem_object || object == kernel_object) && 1174 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1175 ("kmem or kernel object and cow")); 1176 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1177 goto charged; 1178 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1179 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1180 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1181 return (KERN_RESOURCE_SHORTAGE); 1182 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1183 object->cred == NULL, 1184 ("OVERCOMMIT: vm_map_insert o %p", object)); 1185 cred = curthread->td_ucred; 1186 crhold(cred); 1187 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1188 charge_prev_obj = TRUE; 1189 } 1190 1191 charged: 1192 /* Expand the kernel pmap, if necessary. */ 1193 if (map == kernel_map && end > kernel_vm_end) 1194 pmap_growkernel(end); 1195 if (object != NULL) { 1196 /* 1197 * OBJ_ONEMAPPING must be cleared unless this mapping 1198 * is trivially proven to be the only mapping for any 1199 * of the object's pages. (Object granularity 1200 * reference counting is insufficient to recognize 1201 * aliases with precision.) 1202 */ 1203 VM_OBJECT_WLOCK(object); 1204 if (object->ref_count > 1 || object->shadow_count != 0) 1205 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1206 VM_OBJECT_WUNLOCK(object); 1207 } 1208 else if ((prev_entry != &map->header) && 1209 (prev_entry->eflags == protoeflags) && 1210 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 && 1211 (prev_entry->end == start) && 1212 (prev_entry->wired_count == 0) && 1213 (prev_entry->cred == cred || 1214 (prev_entry->object.vm_object != NULL && 1215 (prev_entry->object.vm_object->cred == cred))) && 1216 vm_object_coalesce(prev_entry->object.vm_object, 1217 prev_entry->offset, 1218 (vm_size_t)(prev_entry->end - prev_entry->start), 1219 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1220 /* 1221 * We were able to extend the object. Determine if we 1222 * can extend the previous map entry to include the 1223 * new range as well. 1224 */ 1225 if ((prev_entry->inheritance == inheritance) && 1226 (prev_entry->protection == prot) && 1227 (prev_entry->max_protection == max)) { 1228 map->size += (end - prev_entry->end); 1229 prev_entry->end = end; 1230 vm_map_entry_resize_free(map, prev_entry); 1231 vm_map_simplify_entry(map, prev_entry); 1232 if (cred != NULL) 1233 crfree(cred); 1234 return (KERN_SUCCESS); 1235 } 1236 1237 /* 1238 * If we can extend the object but cannot extend the 1239 * map entry, we have to create a new map entry. We 1240 * must bump the ref count on the extended object to 1241 * account for it. object may be NULL. 1242 */ 1243 object = prev_entry->object.vm_object; 1244 offset = prev_entry->offset + 1245 (prev_entry->end - prev_entry->start); 1246 vm_object_reference(object); 1247 if (cred != NULL && object != NULL && object->cred != NULL && 1248 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1249 /* Object already accounts for this uid. */ 1250 crfree(cred); 1251 cred = NULL; 1252 } 1253 } 1254 1255 /* 1256 * NOTE: if conditionals fail, object can be NULL here. This occurs 1257 * in things like the buffer map where we manage kva but do not manage 1258 * backing objects. 1259 */ 1260 1261 /* 1262 * Create a new entry 1263 */ 1264 new_entry = vm_map_entry_create(map); 1265 new_entry->start = start; 1266 new_entry->end = end; 1267 new_entry->cred = NULL; 1268 1269 new_entry->eflags = protoeflags; 1270 new_entry->object.vm_object = object; 1271 new_entry->offset = offset; 1272 new_entry->avail_ssize = 0; 1273 1274 new_entry->inheritance = inheritance; 1275 new_entry->protection = prot; 1276 new_entry->max_protection = max; 1277 new_entry->wired_count = 0; 1278 new_entry->wiring_thread = NULL; 1279 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1280 new_entry->next_read = OFF_TO_IDX(offset); 1281 1282 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1283 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1284 new_entry->cred = cred; 1285 1286 /* 1287 * Insert the new entry into the list 1288 */ 1289 vm_map_entry_link(map, prev_entry, new_entry); 1290 map->size += new_entry->end - new_entry->start; 1291 1292 /* 1293 * It may be possible to merge the new entry with the next and/or 1294 * previous entries. However, due to MAP_STACK_* being a hack, a 1295 * panic can result from merging such entries. 1296 */ 1297 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1298 vm_map_simplify_entry(map, new_entry); 1299 1300 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1301 vm_map_pmap_enter(map, start, prot, 1302 object, OFF_TO_IDX(offset), end - start, 1303 cow & MAP_PREFAULT_PARTIAL); 1304 } 1305 1306 return (KERN_SUCCESS); 1307 } 1308 1309 /* 1310 * vm_map_findspace: 1311 * 1312 * Find the first fit (lowest VM address) for "length" free bytes 1313 * beginning at address >= start in the given map. 1314 * 1315 * In a vm_map_entry, "adj_free" is the amount of free space 1316 * adjacent (higher address) to this entry, and "max_free" is the 1317 * maximum amount of contiguous free space in its subtree. This 1318 * allows finding a free region in one path down the tree, so 1319 * O(log n) amortized with splay trees. 1320 * 1321 * The map must be locked, and leaves it so. 1322 * 1323 * Returns: 0 on success, and starting address in *addr, 1324 * 1 if insufficient space. 1325 */ 1326 int 1327 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1328 vm_offset_t *addr) /* OUT */ 1329 { 1330 vm_map_entry_t entry; 1331 vm_offset_t st; 1332 1333 /* 1334 * Request must fit within min/max VM address and must avoid 1335 * address wrap. 1336 */ 1337 if (start < map->min_offset) 1338 start = map->min_offset; 1339 if (start + length > map->max_offset || start + length < start) 1340 return (1); 1341 1342 /* Empty tree means wide open address space. */ 1343 if (map->root == NULL) { 1344 *addr = start; 1345 return (0); 1346 } 1347 1348 /* 1349 * After splay, if start comes before root node, then there 1350 * must be a gap from start to the root. 1351 */ 1352 map->root = vm_map_entry_splay(start, map->root); 1353 if (start + length <= map->root->start) { 1354 *addr = start; 1355 return (0); 1356 } 1357 1358 /* 1359 * Root is the last node that might begin its gap before 1360 * start, and this is the last comparison where address 1361 * wrap might be a problem. 1362 */ 1363 st = (start > map->root->end) ? start : map->root->end; 1364 if (length <= map->root->end + map->root->adj_free - st) { 1365 *addr = st; 1366 return (0); 1367 } 1368 1369 /* With max_free, can immediately tell if no solution. */ 1370 entry = map->root->right; 1371 if (entry == NULL || length > entry->max_free) 1372 return (1); 1373 1374 /* 1375 * Search the right subtree in the order: left subtree, root, 1376 * right subtree (first fit). The previous splay implies that 1377 * all regions in the right subtree have addresses > start. 1378 */ 1379 while (entry != NULL) { 1380 if (entry->left != NULL && entry->left->max_free >= length) 1381 entry = entry->left; 1382 else if (entry->adj_free >= length) { 1383 *addr = entry->end; 1384 return (0); 1385 } else 1386 entry = entry->right; 1387 } 1388 1389 /* Can't get here, so panic if we do. */ 1390 panic("vm_map_findspace: max_free corrupt"); 1391 } 1392 1393 int 1394 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1395 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1396 vm_prot_t max, int cow) 1397 { 1398 vm_offset_t end; 1399 int result; 1400 1401 end = start + length; 1402 vm_map_lock(map); 1403 VM_MAP_RANGE_CHECK(map, start, end); 1404 (void) vm_map_delete(map, start, end); 1405 result = vm_map_insert(map, object, offset, start, end, prot, 1406 max, cow); 1407 vm_map_unlock(map); 1408 return (result); 1409 } 1410 1411 /* 1412 * vm_map_find finds an unallocated region in the target address 1413 * map with the given length. The search is defined to be 1414 * first-fit from the specified address; the region found is 1415 * returned in the same parameter. 1416 * 1417 * If object is non-NULL, ref count must be bumped by caller 1418 * prior to making call to account for the new entry. 1419 */ 1420 int 1421 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1422 vm_offset_t *addr, /* IN/OUT */ 1423 vm_size_t length, vm_offset_t max_addr, int find_space, 1424 vm_prot_t prot, vm_prot_t max, int cow) 1425 { 1426 vm_offset_t alignment, initial_addr, start; 1427 int result; 1428 1429 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1430 (object->flags & OBJ_COLORED) == 0)) 1431 find_space = VMFS_ANY_SPACE; 1432 if (find_space >> 8 != 0) { 1433 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1434 alignment = (vm_offset_t)1 << (find_space >> 8); 1435 } else 1436 alignment = 0; 1437 initial_addr = *addr; 1438 again: 1439 start = initial_addr; 1440 vm_map_lock(map); 1441 do { 1442 if (find_space != VMFS_NO_SPACE) { 1443 if (vm_map_findspace(map, start, length, addr) || 1444 (max_addr != 0 && *addr + length > max_addr)) { 1445 vm_map_unlock(map); 1446 if (find_space == VMFS_OPTIMAL_SPACE) { 1447 find_space = VMFS_ANY_SPACE; 1448 goto again; 1449 } 1450 return (KERN_NO_SPACE); 1451 } 1452 switch (find_space) { 1453 case VMFS_SUPER_SPACE: 1454 case VMFS_OPTIMAL_SPACE: 1455 pmap_align_superpage(object, offset, addr, 1456 length); 1457 break; 1458 case VMFS_ANY_SPACE: 1459 break; 1460 default: 1461 if ((*addr & (alignment - 1)) != 0) { 1462 *addr &= ~(alignment - 1); 1463 *addr += alignment; 1464 } 1465 break; 1466 } 1467 1468 start = *addr; 1469 } 1470 result = vm_map_insert(map, object, offset, start, start + 1471 length, prot, max, cow); 1472 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1473 find_space != VMFS_ANY_SPACE); 1474 vm_map_unlock(map); 1475 return (result); 1476 } 1477 1478 /* 1479 * vm_map_simplify_entry: 1480 * 1481 * Simplify the given map entry by merging with either neighbor. This 1482 * routine also has the ability to merge with both neighbors. 1483 * 1484 * The map must be locked. 1485 * 1486 * This routine guarentees that the passed entry remains valid (though 1487 * possibly extended). When merging, this routine may delete one or 1488 * both neighbors. 1489 */ 1490 void 1491 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1492 { 1493 vm_map_entry_t next, prev; 1494 vm_size_t prevsize, esize; 1495 1496 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1497 return; 1498 1499 prev = entry->prev; 1500 if (prev != &map->header) { 1501 prevsize = prev->end - prev->start; 1502 if ( (prev->end == entry->start) && 1503 (prev->object.vm_object == entry->object.vm_object) && 1504 (!prev->object.vm_object || 1505 (prev->offset + prevsize == entry->offset)) && 1506 (prev->eflags == entry->eflags) && 1507 (prev->protection == entry->protection) && 1508 (prev->max_protection == entry->max_protection) && 1509 (prev->inheritance == entry->inheritance) && 1510 (prev->wired_count == entry->wired_count) && 1511 (prev->cred == entry->cred)) { 1512 vm_map_entry_unlink(map, prev); 1513 entry->start = prev->start; 1514 entry->offset = prev->offset; 1515 if (entry->prev != &map->header) 1516 vm_map_entry_resize_free(map, entry->prev); 1517 1518 /* 1519 * If the backing object is a vnode object, 1520 * vm_object_deallocate() calls vrele(). 1521 * However, vrele() does not lock the vnode 1522 * because the vnode has additional 1523 * references. Thus, the map lock can be kept 1524 * without causing a lock-order reversal with 1525 * the vnode lock. 1526 * 1527 * Since we count the number of virtual page 1528 * mappings in object->un_pager.vnp.writemappings, 1529 * the writemappings value should not be adjusted 1530 * when the entry is disposed of. 1531 */ 1532 if (prev->object.vm_object) 1533 vm_object_deallocate(prev->object.vm_object); 1534 if (prev->cred != NULL) 1535 crfree(prev->cred); 1536 vm_map_entry_dispose(map, prev); 1537 } 1538 } 1539 1540 next = entry->next; 1541 if (next != &map->header) { 1542 esize = entry->end - entry->start; 1543 if ((entry->end == next->start) && 1544 (next->object.vm_object == entry->object.vm_object) && 1545 (!entry->object.vm_object || 1546 (entry->offset + esize == next->offset)) && 1547 (next->eflags == entry->eflags) && 1548 (next->protection == entry->protection) && 1549 (next->max_protection == entry->max_protection) && 1550 (next->inheritance == entry->inheritance) && 1551 (next->wired_count == entry->wired_count) && 1552 (next->cred == entry->cred)) { 1553 vm_map_entry_unlink(map, next); 1554 entry->end = next->end; 1555 vm_map_entry_resize_free(map, entry); 1556 1557 /* 1558 * See comment above. 1559 */ 1560 if (next->object.vm_object) 1561 vm_object_deallocate(next->object.vm_object); 1562 if (next->cred != NULL) 1563 crfree(next->cred); 1564 vm_map_entry_dispose(map, next); 1565 } 1566 } 1567 } 1568 /* 1569 * vm_map_clip_start: [ internal use only ] 1570 * 1571 * Asserts that the given entry begins at or after 1572 * the specified address; if necessary, 1573 * it splits the entry into two. 1574 */ 1575 #define vm_map_clip_start(map, entry, startaddr) \ 1576 { \ 1577 if (startaddr > entry->start) \ 1578 _vm_map_clip_start(map, entry, startaddr); \ 1579 } 1580 1581 /* 1582 * This routine is called only when it is known that 1583 * the entry must be split. 1584 */ 1585 static void 1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1587 { 1588 vm_map_entry_t new_entry; 1589 1590 VM_MAP_ASSERT_LOCKED(map); 1591 1592 /* 1593 * Split off the front portion -- note that we must insert the new 1594 * entry BEFORE this one, so that this entry has the specified 1595 * starting address. 1596 */ 1597 vm_map_simplify_entry(map, entry); 1598 1599 /* 1600 * If there is no object backing this entry, we might as well create 1601 * one now. If we defer it, an object can get created after the map 1602 * is clipped, and individual objects will be created for the split-up 1603 * map. This is a bit of a hack, but is also about the best place to 1604 * put this improvement. 1605 */ 1606 if (entry->object.vm_object == NULL && !map->system_map) { 1607 vm_object_t object; 1608 object = vm_object_allocate(OBJT_DEFAULT, 1609 atop(entry->end - entry->start)); 1610 entry->object.vm_object = object; 1611 entry->offset = 0; 1612 if (entry->cred != NULL) { 1613 object->cred = entry->cred; 1614 object->charge = entry->end - entry->start; 1615 entry->cred = NULL; 1616 } 1617 } else if (entry->object.vm_object != NULL && 1618 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1619 entry->cred != NULL) { 1620 VM_OBJECT_WLOCK(entry->object.vm_object); 1621 KASSERT(entry->object.vm_object->cred == NULL, 1622 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1623 entry->object.vm_object->cred = entry->cred; 1624 entry->object.vm_object->charge = entry->end - entry->start; 1625 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1626 entry->cred = NULL; 1627 } 1628 1629 new_entry = vm_map_entry_create(map); 1630 *new_entry = *entry; 1631 1632 new_entry->end = start; 1633 entry->offset += (start - entry->start); 1634 entry->start = start; 1635 if (new_entry->cred != NULL) 1636 crhold(entry->cred); 1637 1638 vm_map_entry_link(map, entry->prev, new_entry); 1639 1640 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1641 vm_object_reference(new_entry->object.vm_object); 1642 /* 1643 * The object->un_pager.vnp.writemappings for the 1644 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1645 * kept as is here. The virtual pages are 1646 * re-distributed among the clipped entries, so the sum is 1647 * left the same. 1648 */ 1649 } 1650 } 1651 1652 /* 1653 * vm_map_clip_end: [ internal use only ] 1654 * 1655 * Asserts that the given entry ends at or before 1656 * the specified address; if necessary, 1657 * it splits the entry into two. 1658 */ 1659 #define vm_map_clip_end(map, entry, endaddr) \ 1660 { \ 1661 if ((endaddr) < (entry->end)) \ 1662 _vm_map_clip_end((map), (entry), (endaddr)); \ 1663 } 1664 1665 /* 1666 * This routine is called only when it is known that 1667 * the entry must be split. 1668 */ 1669 static void 1670 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1671 { 1672 vm_map_entry_t new_entry; 1673 1674 VM_MAP_ASSERT_LOCKED(map); 1675 1676 /* 1677 * If there is no object backing this entry, we might as well create 1678 * one now. If we defer it, an object can get created after the map 1679 * is clipped, and individual objects will be created for the split-up 1680 * map. This is a bit of a hack, but is also about the best place to 1681 * put this improvement. 1682 */ 1683 if (entry->object.vm_object == NULL && !map->system_map) { 1684 vm_object_t object; 1685 object = vm_object_allocate(OBJT_DEFAULT, 1686 atop(entry->end - entry->start)); 1687 entry->object.vm_object = object; 1688 entry->offset = 0; 1689 if (entry->cred != NULL) { 1690 object->cred = entry->cred; 1691 object->charge = entry->end - entry->start; 1692 entry->cred = NULL; 1693 } 1694 } else if (entry->object.vm_object != NULL && 1695 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1696 entry->cred != NULL) { 1697 VM_OBJECT_WLOCK(entry->object.vm_object); 1698 KASSERT(entry->object.vm_object->cred == NULL, 1699 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1700 entry->object.vm_object->cred = entry->cred; 1701 entry->object.vm_object->charge = entry->end - entry->start; 1702 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1703 entry->cred = NULL; 1704 } 1705 1706 /* 1707 * Create a new entry and insert it AFTER the specified entry 1708 */ 1709 new_entry = vm_map_entry_create(map); 1710 *new_entry = *entry; 1711 1712 new_entry->start = entry->end = end; 1713 new_entry->offset += (end - entry->start); 1714 if (new_entry->cred != NULL) 1715 crhold(entry->cred); 1716 1717 vm_map_entry_link(map, entry, new_entry); 1718 1719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1720 vm_object_reference(new_entry->object.vm_object); 1721 } 1722 } 1723 1724 /* 1725 * vm_map_submap: [ kernel use only ] 1726 * 1727 * Mark the given range as handled by a subordinate map. 1728 * 1729 * This range must have been created with vm_map_find, 1730 * and no other operations may have been performed on this 1731 * range prior to calling vm_map_submap. 1732 * 1733 * Only a limited number of operations can be performed 1734 * within this rage after calling vm_map_submap: 1735 * vm_fault 1736 * [Don't try vm_map_copy!] 1737 * 1738 * To remove a submapping, one must first remove the 1739 * range from the superior map, and then destroy the 1740 * submap (if desired). [Better yet, don't try it.] 1741 */ 1742 int 1743 vm_map_submap( 1744 vm_map_t map, 1745 vm_offset_t start, 1746 vm_offset_t end, 1747 vm_map_t submap) 1748 { 1749 vm_map_entry_t entry; 1750 int result = KERN_INVALID_ARGUMENT; 1751 1752 vm_map_lock(map); 1753 1754 VM_MAP_RANGE_CHECK(map, start, end); 1755 1756 if (vm_map_lookup_entry(map, start, &entry)) { 1757 vm_map_clip_start(map, entry, start); 1758 } else 1759 entry = entry->next; 1760 1761 vm_map_clip_end(map, entry, end); 1762 1763 if ((entry->start == start) && (entry->end == end) && 1764 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1765 (entry->object.vm_object == NULL)) { 1766 entry->object.sub_map = submap; 1767 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1768 result = KERN_SUCCESS; 1769 } 1770 vm_map_unlock(map); 1771 1772 return (result); 1773 } 1774 1775 /* 1776 * The maximum number of pages to map 1777 */ 1778 #define MAX_INIT_PT 96 1779 1780 /* 1781 * vm_map_pmap_enter: 1782 * 1783 * Preload read-only mappings for the specified object's resident pages 1784 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1785 * the resident pages within the address range [addr, addr + ulmin(size, 1786 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1787 * the specified address range are mapped. This eliminates many soft 1788 * faults on process startup and immediately after an mmap(2). Because 1789 * these are speculative mappings, cached pages are not reactivated and 1790 * mapped. 1791 */ 1792 void 1793 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1794 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1795 { 1796 vm_offset_t start; 1797 vm_page_t p, p_start; 1798 vm_pindex_t psize, tmpidx; 1799 1800 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1801 return; 1802 VM_OBJECT_RLOCK(object); 1803 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1804 VM_OBJECT_RUNLOCK(object); 1805 VM_OBJECT_WLOCK(object); 1806 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1807 pmap_object_init_pt(map->pmap, addr, object, pindex, 1808 size); 1809 VM_OBJECT_WUNLOCK(object); 1810 return; 1811 } 1812 VM_OBJECT_LOCK_DOWNGRADE(object); 1813 } 1814 1815 psize = atop(size); 1816 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1817 psize = MAX_INIT_PT; 1818 if (psize + pindex > object->size) { 1819 if (object->size < pindex) { 1820 VM_OBJECT_RUNLOCK(object); 1821 return; 1822 } 1823 psize = object->size - pindex; 1824 } 1825 1826 start = 0; 1827 p_start = NULL; 1828 1829 p = vm_page_find_least(object, pindex); 1830 /* 1831 * Assert: the variable p is either (1) the page with the 1832 * least pindex greater than or equal to the parameter pindex 1833 * or (2) NULL. 1834 */ 1835 for (; 1836 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1837 p = TAILQ_NEXT(p, listq)) { 1838 /* 1839 * don't allow an madvise to blow away our really 1840 * free pages allocating pv entries. 1841 */ 1842 if ((flags & MAP_PREFAULT_MADVISE) && 1843 vm_cnt.v_free_count < vm_cnt.v_free_reserved) { 1844 psize = tmpidx; 1845 break; 1846 } 1847 if (p->valid == VM_PAGE_BITS_ALL) { 1848 if (p_start == NULL) { 1849 start = addr + ptoa(tmpidx); 1850 p_start = p; 1851 } 1852 } else if (p_start != NULL) { 1853 pmap_enter_object(map->pmap, start, addr + 1854 ptoa(tmpidx), p_start, prot); 1855 p_start = NULL; 1856 } 1857 } 1858 if (p_start != NULL) 1859 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1860 p_start, prot); 1861 VM_OBJECT_RUNLOCK(object); 1862 } 1863 1864 /* 1865 * vm_map_protect: 1866 * 1867 * Sets the protection of the specified address 1868 * region in the target map. If "set_max" is 1869 * specified, the maximum protection is to be set; 1870 * otherwise, only the current protection is affected. 1871 */ 1872 int 1873 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1874 vm_prot_t new_prot, boolean_t set_max) 1875 { 1876 vm_map_entry_t current, entry; 1877 vm_object_t obj; 1878 struct ucred *cred; 1879 vm_prot_t old_prot; 1880 1881 if (start == end) 1882 return (KERN_SUCCESS); 1883 1884 vm_map_lock(map); 1885 1886 VM_MAP_RANGE_CHECK(map, start, end); 1887 1888 if (vm_map_lookup_entry(map, start, &entry)) { 1889 vm_map_clip_start(map, entry, start); 1890 } else { 1891 entry = entry->next; 1892 } 1893 1894 /* 1895 * Make a first pass to check for protection violations. 1896 */ 1897 current = entry; 1898 while ((current != &map->header) && (current->start < end)) { 1899 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1900 vm_map_unlock(map); 1901 return (KERN_INVALID_ARGUMENT); 1902 } 1903 if ((new_prot & current->max_protection) != new_prot) { 1904 vm_map_unlock(map); 1905 return (KERN_PROTECTION_FAILURE); 1906 } 1907 current = current->next; 1908 } 1909 1910 1911 /* 1912 * Do an accounting pass for private read-only mappings that 1913 * now will do cow due to allowed write (e.g. debugger sets 1914 * breakpoint on text segment) 1915 */ 1916 for (current = entry; (current != &map->header) && 1917 (current->start < end); current = current->next) { 1918 1919 vm_map_clip_end(map, current, end); 1920 1921 if (set_max || 1922 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1923 ENTRY_CHARGED(current)) { 1924 continue; 1925 } 1926 1927 cred = curthread->td_ucred; 1928 obj = current->object.vm_object; 1929 1930 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1931 if (!swap_reserve(current->end - current->start)) { 1932 vm_map_unlock(map); 1933 return (KERN_RESOURCE_SHORTAGE); 1934 } 1935 crhold(cred); 1936 current->cred = cred; 1937 continue; 1938 } 1939 1940 VM_OBJECT_WLOCK(obj); 1941 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1942 VM_OBJECT_WUNLOCK(obj); 1943 continue; 1944 } 1945 1946 /* 1947 * Charge for the whole object allocation now, since 1948 * we cannot distinguish between non-charged and 1949 * charged clipped mapping of the same object later. 1950 */ 1951 KASSERT(obj->charge == 0, 1952 ("vm_map_protect: object %p overcharged\n", obj)); 1953 if (!swap_reserve(ptoa(obj->size))) { 1954 VM_OBJECT_WUNLOCK(obj); 1955 vm_map_unlock(map); 1956 return (KERN_RESOURCE_SHORTAGE); 1957 } 1958 1959 crhold(cred); 1960 obj->cred = cred; 1961 obj->charge = ptoa(obj->size); 1962 VM_OBJECT_WUNLOCK(obj); 1963 } 1964 1965 /* 1966 * Go back and fix up protections. [Note that clipping is not 1967 * necessary the second time.] 1968 */ 1969 current = entry; 1970 while ((current != &map->header) && (current->start < end)) { 1971 old_prot = current->protection; 1972 1973 if (set_max) 1974 current->protection = 1975 (current->max_protection = new_prot) & 1976 old_prot; 1977 else 1978 current->protection = new_prot; 1979 1980 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1981 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1982 (current->protection & VM_PROT_WRITE) != 0 && 1983 (old_prot & VM_PROT_WRITE) == 0) { 1984 vm_fault_copy_entry(map, map, current, current, NULL); 1985 } 1986 1987 /* 1988 * When restricting access, update the physical map. Worry 1989 * about copy-on-write here. 1990 */ 1991 if ((old_prot & ~current->protection) != 0) { 1992 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1993 VM_PROT_ALL) 1994 pmap_protect(map->pmap, current->start, 1995 current->end, 1996 current->protection & MASK(current)); 1997 #undef MASK 1998 } 1999 vm_map_simplify_entry(map, current); 2000 current = current->next; 2001 } 2002 vm_map_unlock(map); 2003 return (KERN_SUCCESS); 2004 } 2005 2006 /* 2007 * vm_map_madvise: 2008 * 2009 * This routine traverses a processes map handling the madvise 2010 * system call. Advisories are classified as either those effecting 2011 * the vm_map_entry structure, or those effecting the underlying 2012 * objects. 2013 */ 2014 int 2015 vm_map_madvise( 2016 vm_map_t map, 2017 vm_offset_t start, 2018 vm_offset_t end, 2019 int behav) 2020 { 2021 vm_map_entry_t current, entry; 2022 int modify_map = 0; 2023 2024 /* 2025 * Some madvise calls directly modify the vm_map_entry, in which case 2026 * we need to use an exclusive lock on the map and we need to perform 2027 * various clipping operations. Otherwise we only need a read-lock 2028 * on the map. 2029 */ 2030 switch(behav) { 2031 case MADV_NORMAL: 2032 case MADV_SEQUENTIAL: 2033 case MADV_RANDOM: 2034 case MADV_NOSYNC: 2035 case MADV_AUTOSYNC: 2036 case MADV_NOCORE: 2037 case MADV_CORE: 2038 if (start == end) 2039 return (KERN_SUCCESS); 2040 modify_map = 1; 2041 vm_map_lock(map); 2042 break; 2043 case MADV_WILLNEED: 2044 case MADV_DONTNEED: 2045 case MADV_FREE: 2046 if (start == end) 2047 return (KERN_SUCCESS); 2048 vm_map_lock_read(map); 2049 break; 2050 default: 2051 return (KERN_INVALID_ARGUMENT); 2052 } 2053 2054 /* 2055 * Locate starting entry and clip if necessary. 2056 */ 2057 VM_MAP_RANGE_CHECK(map, start, end); 2058 2059 if (vm_map_lookup_entry(map, start, &entry)) { 2060 if (modify_map) 2061 vm_map_clip_start(map, entry, start); 2062 } else { 2063 entry = entry->next; 2064 } 2065 2066 if (modify_map) { 2067 /* 2068 * madvise behaviors that are implemented in the vm_map_entry. 2069 * 2070 * We clip the vm_map_entry so that behavioral changes are 2071 * limited to the specified address range. 2072 */ 2073 for (current = entry; 2074 (current != &map->header) && (current->start < end); 2075 current = current->next 2076 ) { 2077 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2078 continue; 2079 2080 vm_map_clip_end(map, current, end); 2081 2082 switch (behav) { 2083 case MADV_NORMAL: 2084 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2085 break; 2086 case MADV_SEQUENTIAL: 2087 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2088 break; 2089 case MADV_RANDOM: 2090 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2091 break; 2092 case MADV_NOSYNC: 2093 current->eflags |= MAP_ENTRY_NOSYNC; 2094 break; 2095 case MADV_AUTOSYNC: 2096 current->eflags &= ~MAP_ENTRY_NOSYNC; 2097 break; 2098 case MADV_NOCORE: 2099 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2100 break; 2101 case MADV_CORE: 2102 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2103 break; 2104 default: 2105 break; 2106 } 2107 vm_map_simplify_entry(map, current); 2108 } 2109 vm_map_unlock(map); 2110 } else { 2111 vm_pindex_t pstart, pend; 2112 2113 /* 2114 * madvise behaviors that are implemented in the underlying 2115 * vm_object. 2116 * 2117 * Since we don't clip the vm_map_entry, we have to clip 2118 * the vm_object pindex and count. 2119 */ 2120 for (current = entry; 2121 (current != &map->header) && (current->start < end); 2122 current = current->next 2123 ) { 2124 vm_offset_t useEnd, useStart; 2125 2126 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2127 continue; 2128 2129 pstart = OFF_TO_IDX(current->offset); 2130 pend = pstart + atop(current->end - current->start); 2131 useStart = current->start; 2132 useEnd = current->end; 2133 2134 if (current->start < start) { 2135 pstart += atop(start - current->start); 2136 useStart = start; 2137 } 2138 if (current->end > end) { 2139 pend -= atop(current->end - end); 2140 useEnd = end; 2141 } 2142 2143 if (pstart >= pend) 2144 continue; 2145 2146 /* 2147 * Perform the pmap_advise() before clearing 2148 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2149 * concurrent pmap operation, such as pmap_remove(), 2150 * could clear a reference in the pmap and set 2151 * PGA_REFERENCED on the page before the pmap_advise() 2152 * had completed. Consequently, the page would appear 2153 * referenced based upon an old reference that 2154 * occurred before this pmap_advise() ran. 2155 */ 2156 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2157 pmap_advise(map->pmap, useStart, useEnd, 2158 behav); 2159 2160 vm_object_madvise(current->object.vm_object, pstart, 2161 pend, behav); 2162 if (behav == MADV_WILLNEED) { 2163 vm_map_pmap_enter(map, 2164 useStart, 2165 current->protection, 2166 current->object.vm_object, 2167 pstart, 2168 ptoa(pend - pstart), 2169 MAP_PREFAULT_MADVISE 2170 ); 2171 } 2172 } 2173 vm_map_unlock_read(map); 2174 } 2175 return (0); 2176 } 2177 2178 2179 /* 2180 * vm_map_inherit: 2181 * 2182 * Sets the inheritance of the specified address 2183 * range in the target map. Inheritance 2184 * affects how the map will be shared with 2185 * child maps at the time of vmspace_fork. 2186 */ 2187 int 2188 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2189 vm_inherit_t new_inheritance) 2190 { 2191 vm_map_entry_t entry; 2192 vm_map_entry_t temp_entry; 2193 2194 switch (new_inheritance) { 2195 case VM_INHERIT_NONE: 2196 case VM_INHERIT_COPY: 2197 case VM_INHERIT_SHARE: 2198 break; 2199 default: 2200 return (KERN_INVALID_ARGUMENT); 2201 } 2202 if (start == end) 2203 return (KERN_SUCCESS); 2204 vm_map_lock(map); 2205 VM_MAP_RANGE_CHECK(map, start, end); 2206 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2207 entry = temp_entry; 2208 vm_map_clip_start(map, entry, start); 2209 } else 2210 entry = temp_entry->next; 2211 while ((entry != &map->header) && (entry->start < end)) { 2212 vm_map_clip_end(map, entry, end); 2213 entry->inheritance = new_inheritance; 2214 vm_map_simplify_entry(map, entry); 2215 entry = entry->next; 2216 } 2217 vm_map_unlock(map); 2218 return (KERN_SUCCESS); 2219 } 2220 2221 /* 2222 * vm_map_unwire: 2223 * 2224 * Implements both kernel and user unwiring. 2225 */ 2226 int 2227 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2228 int flags) 2229 { 2230 vm_map_entry_t entry, first_entry, tmp_entry; 2231 vm_offset_t saved_start; 2232 unsigned int last_timestamp; 2233 int rv; 2234 boolean_t need_wakeup, result, user_unwire; 2235 2236 if (start == end) 2237 return (KERN_SUCCESS); 2238 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2239 vm_map_lock(map); 2240 VM_MAP_RANGE_CHECK(map, start, end); 2241 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2242 if (flags & VM_MAP_WIRE_HOLESOK) 2243 first_entry = first_entry->next; 2244 else { 2245 vm_map_unlock(map); 2246 return (KERN_INVALID_ADDRESS); 2247 } 2248 } 2249 last_timestamp = map->timestamp; 2250 entry = first_entry; 2251 while (entry != &map->header && entry->start < end) { 2252 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2253 /* 2254 * We have not yet clipped the entry. 2255 */ 2256 saved_start = (start >= entry->start) ? start : 2257 entry->start; 2258 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2259 if (vm_map_unlock_and_wait(map, 0)) { 2260 /* 2261 * Allow interruption of user unwiring? 2262 */ 2263 } 2264 vm_map_lock(map); 2265 if (last_timestamp+1 != map->timestamp) { 2266 /* 2267 * Look again for the entry because the map was 2268 * modified while it was unlocked. 2269 * Specifically, the entry may have been 2270 * clipped, merged, or deleted. 2271 */ 2272 if (!vm_map_lookup_entry(map, saved_start, 2273 &tmp_entry)) { 2274 if (flags & VM_MAP_WIRE_HOLESOK) 2275 tmp_entry = tmp_entry->next; 2276 else { 2277 if (saved_start == start) { 2278 /* 2279 * First_entry has been deleted. 2280 */ 2281 vm_map_unlock(map); 2282 return (KERN_INVALID_ADDRESS); 2283 } 2284 end = saved_start; 2285 rv = KERN_INVALID_ADDRESS; 2286 goto done; 2287 } 2288 } 2289 if (entry == first_entry) 2290 first_entry = tmp_entry; 2291 else 2292 first_entry = NULL; 2293 entry = tmp_entry; 2294 } 2295 last_timestamp = map->timestamp; 2296 continue; 2297 } 2298 vm_map_clip_start(map, entry, start); 2299 vm_map_clip_end(map, entry, end); 2300 /* 2301 * Mark the entry in case the map lock is released. (See 2302 * above.) 2303 */ 2304 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2305 entry->wiring_thread == NULL, 2306 ("owned map entry %p", entry)); 2307 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2308 entry->wiring_thread = curthread; 2309 /* 2310 * Check the map for holes in the specified region. 2311 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2312 */ 2313 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2314 (entry->end < end && (entry->next == &map->header || 2315 entry->next->start > entry->end))) { 2316 end = entry->end; 2317 rv = KERN_INVALID_ADDRESS; 2318 goto done; 2319 } 2320 /* 2321 * If system unwiring, require that the entry is system wired. 2322 */ 2323 if (!user_unwire && 2324 vm_map_entry_system_wired_count(entry) == 0) { 2325 end = entry->end; 2326 rv = KERN_INVALID_ARGUMENT; 2327 goto done; 2328 } 2329 entry = entry->next; 2330 } 2331 rv = KERN_SUCCESS; 2332 done: 2333 need_wakeup = FALSE; 2334 if (first_entry == NULL) { 2335 result = vm_map_lookup_entry(map, start, &first_entry); 2336 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2337 first_entry = first_entry->next; 2338 else 2339 KASSERT(result, ("vm_map_unwire: lookup failed")); 2340 } 2341 for (entry = first_entry; entry != &map->header && entry->start < end; 2342 entry = entry->next) { 2343 /* 2344 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2345 * space in the unwired region could have been mapped 2346 * while the map lock was dropped for draining 2347 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2348 * could be simultaneously wiring this new mapping 2349 * entry. Detect these cases and skip any entries 2350 * marked as in transition by us. 2351 */ 2352 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2353 entry->wiring_thread != curthread) { 2354 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2355 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2356 continue; 2357 } 2358 2359 if (rv == KERN_SUCCESS && (!user_unwire || 2360 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2361 if (user_unwire) 2362 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2363 entry->wired_count--; 2364 if (entry->wired_count == 0) { 2365 /* 2366 * Retain the map lock. 2367 */ 2368 vm_fault_unwire(map, entry->start, entry->end, 2369 entry->object.vm_object != NULL && 2370 (entry->object.vm_object->flags & 2371 OBJ_FICTITIOUS) != 0); 2372 } 2373 } 2374 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2375 ("vm_map_unwire: in-transition flag missing %p", entry)); 2376 KASSERT(entry->wiring_thread == curthread, 2377 ("vm_map_unwire: alien wire %p", entry)); 2378 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2379 entry->wiring_thread = NULL; 2380 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2381 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2382 need_wakeup = TRUE; 2383 } 2384 vm_map_simplify_entry(map, entry); 2385 } 2386 vm_map_unlock(map); 2387 if (need_wakeup) 2388 vm_map_wakeup(map); 2389 return (rv); 2390 } 2391 2392 /* 2393 * vm_map_wire: 2394 * 2395 * Implements both kernel and user wiring. 2396 */ 2397 int 2398 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2399 int flags) 2400 { 2401 vm_map_entry_t entry, first_entry, tmp_entry; 2402 vm_offset_t saved_end, saved_start; 2403 unsigned int last_timestamp; 2404 int rv; 2405 boolean_t fictitious, need_wakeup, result, user_wire; 2406 vm_prot_t prot; 2407 2408 if (start == end) 2409 return (KERN_SUCCESS); 2410 prot = 0; 2411 if (flags & VM_MAP_WIRE_WRITE) 2412 prot |= VM_PROT_WRITE; 2413 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2414 vm_map_lock(map); 2415 VM_MAP_RANGE_CHECK(map, start, end); 2416 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2417 if (flags & VM_MAP_WIRE_HOLESOK) 2418 first_entry = first_entry->next; 2419 else { 2420 vm_map_unlock(map); 2421 return (KERN_INVALID_ADDRESS); 2422 } 2423 } 2424 last_timestamp = map->timestamp; 2425 entry = first_entry; 2426 while (entry != &map->header && entry->start < end) { 2427 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2428 /* 2429 * We have not yet clipped the entry. 2430 */ 2431 saved_start = (start >= entry->start) ? start : 2432 entry->start; 2433 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2434 if (vm_map_unlock_and_wait(map, 0)) { 2435 /* 2436 * Allow interruption of user wiring? 2437 */ 2438 } 2439 vm_map_lock(map); 2440 if (last_timestamp + 1 != map->timestamp) { 2441 /* 2442 * Look again for the entry because the map was 2443 * modified while it was unlocked. 2444 * Specifically, the entry may have been 2445 * clipped, merged, or deleted. 2446 */ 2447 if (!vm_map_lookup_entry(map, saved_start, 2448 &tmp_entry)) { 2449 if (flags & VM_MAP_WIRE_HOLESOK) 2450 tmp_entry = tmp_entry->next; 2451 else { 2452 if (saved_start == start) { 2453 /* 2454 * first_entry has been deleted. 2455 */ 2456 vm_map_unlock(map); 2457 return (KERN_INVALID_ADDRESS); 2458 } 2459 end = saved_start; 2460 rv = KERN_INVALID_ADDRESS; 2461 goto done; 2462 } 2463 } 2464 if (entry == first_entry) 2465 first_entry = tmp_entry; 2466 else 2467 first_entry = NULL; 2468 entry = tmp_entry; 2469 } 2470 last_timestamp = map->timestamp; 2471 continue; 2472 } 2473 vm_map_clip_start(map, entry, start); 2474 vm_map_clip_end(map, entry, end); 2475 /* 2476 * Mark the entry in case the map lock is released. (See 2477 * above.) 2478 */ 2479 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2480 entry->wiring_thread == NULL, 2481 ("owned map entry %p", entry)); 2482 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2483 entry->wiring_thread = curthread; 2484 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2485 || (entry->protection & prot) != prot) { 2486 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2487 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2488 end = entry->end; 2489 rv = KERN_INVALID_ADDRESS; 2490 goto done; 2491 } 2492 goto next_entry; 2493 } 2494 if (entry->wired_count == 0) { 2495 entry->wired_count++; 2496 saved_start = entry->start; 2497 saved_end = entry->end; 2498 fictitious = entry->object.vm_object != NULL && 2499 (entry->object.vm_object->flags & 2500 OBJ_FICTITIOUS) != 0; 2501 /* 2502 * Release the map lock, relying on the in-transition 2503 * mark. Mark the map busy for fork. 2504 */ 2505 vm_map_busy(map); 2506 vm_map_unlock(map); 2507 rv = vm_fault_wire(map, saved_start, saved_end, 2508 fictitious); 2509 vm_map_lock(map); 2510 vm_map_unbusy(map); 2511 if (last_timestamp + 1 != map->timestamp) { 2512 /* 2513 * Look again for the entry because the map was 2514 * modified while it was unlocked. The entry 2515 * may have been clipped, but NOT merged or 2516 * deleted. 2517 */ 2518 result = vm_map_lookup_entry(map, saved_start, 2519 &tmp_entry); 2520 KASSERT(result, ("vm_map_wire: lookup failed")); 2521 if (entry == first_entry) 2522 first_entry = tmp_entry; 2523 else 2524 first_entry = NULL; 2525 entry = tmp_entry; 2526 while (entry->end < saved_end) { 2527 if (rv != KERN_SUCCESS) { 2528 KASSERT(entry->wired_count == 1, 2529 ("vm_map_wire: bad count")); 2530 entry->wired_count = -1; 2531 } 2532 entry = entry->next; 2533 } 2534 } 2535 last_timestamp = map->timestamp; 2536 if (rv != KERN_SUCCESS) { 2537 KASSERT(entry->wired_count == 1, 2538 ("vm_map_wire: bad count")); 2539 /* 2540 * Assign an out-of-range value to represent 2541 * the failure to wire this entry. 2542 */ 2543 entry->wired_count = -1; 2544 end = entry->end; 2545 goto done; 2546 } 2547 } else if (!user_wire || 2548 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2549 entry->wired_count++; 2550 } 2551 /* 2552 * Check the map for holes in the specified region. 2553 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2554 */ 2555 next_entry: 2556 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2557 (entry->end < end && (entry->next == &map->header || 2558 entry->next->start > entry->end))) { 2559 end = entry->end; 2560 rv = KERN_INVALID_ADDRESS; 2561 goto done; 2562 } 2563 entry = entry->next; 2564 } 2565 rv = KERN_SUCCESS; 2566 done: 2567 need_wakeup = FALSE; 2568 if (first_entry == NULL) { 2569 result = vm_map_lookup_entry(map, start, &first_entry); 2570 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2571 first_entry = first_entry->next; 2572 else 2573 KASSERT(result, ("vm_map_wire: lookup failed")); 2574 } 2575 for (entry = first_entry; entry != &map->header && entry->start < end; 2576 entry = entry->next) { 2577 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2578 goto next_entry_done; 2579 2580 /* 2581 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2582 * space in the unwired region could have been mapped 2583 * while the map lock was dropped for faulting in the 2584 * pages or draining MAP_ENTRY_IN_TRANSITION. 2585 * Moreover, another thread could be simultaneously 2586 * wiring this new mapping entry. Detect these cases 2587 * and skip any entries marked as in transition by us. 2588 */ 2589 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2590 entry->wiring_thread != curthread) { 2591 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2592 ("vm_map_wire: !HOLESOK and new/changed entry")); 2593 continue; 2594 } 2595 2596 if (rv == KERN_SUCCESS) { 2597 if (user_wire) 2598 entry->eflags |= MAP_ENTRY_USER_WIRED; 2599 } else if (entry->wired_count == -1) { 2600 /* 2601 * Wiring failed on this entry. Thus, unwiring is 2602 * unnecessary. 2603 */ 2604 entry->wired_count = 0; 2605 } else { 2606 if (!user_wire || 2607 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2608 entry->wired_count--; 2609 if (entry->wired_count == 0) { 2610 /* 2611 * Retain the map lock. 2612 */ 2613 vm_fault_unwire(map, entry->start, entry->end, 2614 entry->object.vm_object != NULL && 2615 (entry->object.vm_object->flags & 2616 OBJ_FICTITIOUS) != 0); 2617 } 2618 } 2619 next_entry_done: 2620 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2621 ("vm_map_wire: in-transition flag missing %p", entry)); 2622 KASSERT(entry->wiring_thread == curthread, 2623 ("vm_map_wire: alien wire %p", entry)); 2624 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2625 MAP_ENTRY_WIRE_SKIPPED); 2626 entry->wiring_thread = NULL; 2627 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2628 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2629 need_wakeup = TRUE; 2630 } 2631 vm_map_simplify_entry(map, entry); 2632 } 2633 vm_map_unlock(map); 2634 if (need_wakeup) 2635 vm_map_wakeup(map); 2636 return (rv); 2637 } 2638 2639 /* 2640 * vm_map_sync 2641 * 2642 * Push any dirty cached pages in the address range to their pager. 2643 * If syncio is TRUE, dirty pages are written synchronously. 2644 * If invalidate is TRUE, any cached pages are freed as well. 2645 * 2646 * If the size of the region from start to end is zero, we are 2647 * supposed to flush all modified pages within the region containing 2648 * start. Unfortunately, a region can be split or coalesced with 2649 * neighboring regions, making it difficult to determine what the 2650 * original region was. Therefore, we approximate this requirement by 2651 * flushing the current region containing start. 2652 * 2653 * Returns an error if any part of the specified range is not mapped. 2654 */ 2655 int 2656 vm_map_sync( 2657 vm_map_t map, 2658 vm_offset_t start, 2659 vm_offset_t end, 2660 boolean_t syncio, 2661 boolean_t invalidate) 2662 { 2663 vm_map_entry_t current; 2664 vm_map_entry_t entry; 2665 vm_size_t size; 2666 vm_object_t object; 2667 vm_ooffset_t offset; 2668 unsigned int last_timestamp; 2669 boolean_t failed; 2670 2671 vm_map_lock_read(map); 2672 VM_MAP_RANGE_CHECK(map, start, end); 2673 if (!vm_map_lookup_entry(map, start, &entry)) { 2674 vm_map_unlock_read(map); 2675 return (KERN_INVALID_ADDRESS); 2676 } else if (start == end) { 2677 start = entry->start; 2678 end = entry->end; 2679 } 2680 /* 2681 * Make a first pass to check for user-wired memory and holes. 2682 */ 2683 for (current = entry; current != &map->header && current->start < end; 2684 current = current->next) { 2685 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2686 vm_map_unlock_read(map); 2687 return (KERN_INVALID_ARGUMENT); 2688 } 2689 if (end > current->end && 2690 (current->next == &map->header || 2691 current->end != current->next->start)) { 2692 vm_map_unlock_read(map); 2693 return (KERN_INVALID_ADDRESS); 2694 } 2695 } 2696 2697 if (invalidate) 2698 pmap_remove(map->pmap, start, end); 2699 failed = FALSE; 2700 2701 /* 2702 * Make a second pass, cleaning/uncaching pages from the indicated 2703 * objects as we go. 2704 */ 2705 for (current = entry; current != &map->header && current->start < end;) { 2706 offset = current->offset + (start - current->start); 2707 size = (end <= current->end ? end : current->end) - start; 2708 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2709 vm_map_t smap; 2710 vm_map_entry_t tentry; 2711 vm_size_t tsize; 2712 2713 smap = current->object.sub_map; 2714 vm_map_lock_read(smap); 2715 (void) vm_map_lookup_entry(smap, offset, &tentry); 2716 tsize = tentry->end - offset; 2717 if (tsize < size) 2718 size = tsize; 2719 object = tentry->object.vm_object; 2720 offset = tentry->offset + (offset - tentry->start); 2721 vm_map_unlock_read(smap); 2722 } else { 2723 object = current->object.vm_object; 2724 } 2725 vm_object_reference(object); 2726 last_timestamp = map->timestamp; 2727 vm_map_unlock_read(map); 2728 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2729 failed = TRUE; 2730 start += size; 2731 vm_object_deallocate(object); 2732 vm_map_lock_read(map); 2733 if (last_timestamp == map->timestamp || 2734 !vm_map_lookup_entry(map, start, ¤t)) 2735 current = current->next; 2736 } 2737 2738 vm_map_unlock_read(map); 2739 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2740 } 2741 2742 /* 2743 * vm_map_entry_unwire: [ internal use only ] 2744 * 2745 * Make the region specified by this entry pageable. 2746 * 2747 * The map in question should be locked. 2748 * [This is the reason for this routine's existence.] 2749 */ 2750 static void 2751 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2752 { 2753 vm_fault_unwire(map, entry->start, entry->end, 2754 entry->object.vm_object != NULL && 2755 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2756 entry->wired_count = 0; 2757 } 2758 2759 static void 2760 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2761 { 2762 2763 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2764 vm_object_deallocate(entry->object.vm_object); 2765 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2766 } 2767 2768 /* 2769 * vm_map_entry_delete: [ internal use only ] 2770 * 2771 * Deallocate the given entry from the target map. 2772 */ 2773 static void 2774 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2775 { 2776 vm_object_t object; 2777 vm_pindex_t offidxstart, offidxend, count, size1; 2778 vm_ooffset_t size; 2779 2780 vm_map_entry_unlink(map, entry); 2781 object = entry->object.vm_object; 2782 size = entry->end - entry->start; 2783 map->size -= size; 2784 2785 if (entry->cred != NULL) { 2786 swap_release_by_cred(size, entry->cred); 2787 crfree(entry->cred); 2788 } 2789 2790 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2791 (object != NULL)) { 2792 KASSERT(entry->cred == NULL || object->cred == NULL || 2793 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2794 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2795 count = OFF_TO_IDX(size); 2796 offidxstart = OFF_TO_IDX(entry->offset); 2797 offidxend = offidxstart + count; 2798 VM_OBJECT_WLOCK(object); 2799 if (object->ref_count != 1 && 2800 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2801 object == kernel_object || object == kmem_object)) { 2802 vm_object_collapse(object); 2803 2804 /* 2805 * The option OBJPR_NOTMAPPED can be passed here 2806 * because vm_map_delete() already performed 2807 * pmap_remove() on the only mapping to this range 2808 * of pages. 2809 */ 2810 vm_object_page_remove(object, offidxstart, offidxend, 2811 OBJPR_NOTMAPPED); 2812 if (object->type == OBJT_SWAP) 2813 swap_pager_freespace(object, offidxstart, count); 2814 if (offidxend >= object->size && 2815 offidxstart < object->size) { 2816 size1 = object->size; 2817 object->size = offidxstart; 2818 if (object->cred != NULL) { 2819 size1 -= object->size; 2820 KASSERT(object->charge >= ptoa(size1), 2821 ("vm_map_entry_delete: object->charge < 0")); 2822 swap_release_by_cred(ptoa(size1), object->cred); 2823 object->charge -= ptoa(size1); 2824 } 2825 } 2826 } 2827 VM_OBJECT_WUNLOCK(object); 2828 } else 2829 entry->object.vm_object = NULL; 2830 if (map->system_map) 2831 vm_map_entry_deallocate(entry, TRUE); 2832 else { 2833 entry->next = curthread->td_map_def_user; 2834 curthread->td_map_def_user = entry; 2835 } 2836 } 2837 2838 /* 2839 * vm_map_delete: [ internal use only ] 2840 * 2841 * Deallocates the given address range from the target 2842 * map. 2843 */ 2844 int 2845 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2846 { 2847 vm_map_entry_t entry; 2848 vm_map_entry_t first_entry; 2849 2850 VM_MAP_ASSERT_LOCKED(map); 2851 if (start == end) 2852 return (KERN_SUCCESS); 2853 2854 /* 2855 * Find the start of the region, and clip it 2856 */ 2857 if (!vm_map_lookup_entry(map, start, &first_entry)) 2858 entry = first_entry->next; 2859 else { 2860 entry = first_entry; 2861 vm_map_clip_start(map, entry, start); 2862 } 2863 2864 /* 2865 * Step through all entries in this region 2866 */ 2867 while ((entry != &map->header) && (entry->start < end)) { 2868 vm_map_entry_t next; 2869 2870 /* 2871 * Wait for wiring or unwiring of an entry to complete. 2872 * Also wait for any system wirings to disappear on 2873 * user maps. 2874 */ 2875 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2876 (vm_map_pmap(map) != kernel_pmap && 2877 vm_map_entry_system_wired_count(entry) != 0)) { 2878 unsigned int last_timestamp; 2879 vm_offset_t saved_start; 2880 vm_map_entry_t tmp_entry; 2881 2882 saved_start = entry->start; 2883 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2884 last_timestamp = map->timestamp; 2885 (void) vm_map_unlock_and_wait(map, 0); 2886 vm_map_lock(map); 2887 if (last_timestamp + 1 != map->timestamp) { 2888 /* 2889 * Look again for the entry because the map was 2890 * modified while it was unlocked. 2891 * Specifically, the entry may have been 2892 * clipped, merged, or deleted. 2893 */ 2894 if (!vm_map_lookup_entry(map, saved_start, 2895 &tmp_entry)) 2896 entry = tmp_entry->next; 2897 else { 2898 entry = tmp_entry; 2899 vm_map_clip_start(map, entry, 2900 saved_start); 2901 } 2902 } 2903 continue; 2904 } 2905 vm_map_clip_end(map, entry, end); 2906 2907 next = entry->next; 2908 2909 /* 2910 * Unwire before removing addresses from the pmap; otherwise, 2911 * unwiring will put the entries back in the pmap. 2912 */ 2913 if (entry->wired_count != 0) { 2914 vm_map_entry_unwire(map, entry); 2915 } 2916 2917 pmap_remove(map->pmap, entry->start, entry->end); 2918 2919 /* 2920 * Delete the entry only after removing all pmap 2921 * entries pointing to its pages. (Otherwise, its 2922 * page frames may be reallocated, and any modify bits 2923 * will be set in the wrong object!) 2924 */ 2925 vm_map_entry_delete(map, entry); 2926 entry = next; 2927 } 2928 return (KERN_SUCCESS); 2929 } 2930 2931 /* 2932 * vm_map_remove: 2933 * 2934 * Remove the given address range from the target map. 2935 * This is the exported form of vm_map_delete. 2936 */ 2937 int 2938 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2939 { 2940 int result; 2941 2942 vm_map_lock(map); 2943 VM_MAP_RANGE_CHECK(map, start, end); 2944 result = vm_map_delete(map, start, end); 2945 vm_map_unlock(map); 2946 return (result); 2947 } 2948 2949 /* 2950 * vm_map_check_protection: 2951 * 2952 * Assert that the target map allows the specified privilege on the 2953 * entire address region given. The entire region must be allocated. 2954 * 2955 * WARNING! This code does not and should not check whether the 2956 * contents of the region is accessible. For example a smaller file 2957 * might be mapped into a larger address space. 2958 * 2959 * NOTE! This code is also called by munmap(). 2960 * 2961 * The map must be locked. A read lock is sufficient. 2962 */ 2963 boolean_t 2964 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2965 vm_prot_t protection) 2966 { 2967 vm_map_entry_t entry; 2968 vm_map_entry_t tmp_entry; 2969 2970 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2971 return (FALSE); 2972 entry = tmp_entry; 2973 2974 while (start < end) { 2975 if (entry == &map->header) 2976 return (FALSE); 2977 /* 2978 * No holes allowed! 2979 */ 2980 if (start < entry->start) 2981 return (FALSE); 2982 /* 2983 * Check protection associated with entry. 2984 */ 2985 if ((entry->protection & protection) != protection) 2986 return (FALSE); 2987 /* go to next entry */ 2988 start = entry->end; 2989 entry = entry->next; 2990 } 2991 return (TRUE); 2992 } 2993 2994 /* 2995 * vm_map_copy_entry: 2996 * 2997 * Copies the contents of the source entry to the destination 2998 * entry. The entries *must* be aligned properly. 2999 */ 3000 static void 3001 vm_map_copy_entry( 3002 vm_map_t src_map, 3003 vm_map_t dst_map, 3004 vm_map_entry_t src_entry, 3005 vm_map_entry_t dst_entry, 3006 vm_ooffset_t *fork_charge) 3007 { 3008 vm_object_t src_object; 3009 vm_map_entry_t fake_entry; 3010 vm_offset_t size; 3011 struct ucred *cred; 3012 int charged; 3013 3014 VM_MAP_ASSERT_LOCKED(dst_map); 3015 3016 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3017 return; 3018 3019 if (src_entry->wired_count == 0) { 3020 3021 /* 3022 * If the source entry is marked needs_copy, it is already 3023 * write-protected. 3024 */ 3025 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3026 pmap_protect(src_map->pmap, 3027 src_entry->start, 3028 src_entry->end, 3029 src_entry->protection & ~VM_PROT_WRITE); 3030 } 3031 3032 /* 3033 * Make a copy of the object. 3034 */ 3035 size = src_entry->end - src_entry->start; 3036 if ((src_object = src_entry->object.vm_object) != NULL) { 3037 VM_OBJECT_WLOCK(src_object); 3038 charged = ENTRY_CHARGED(src_entry); 3039 if ((src_object->handle == NULL) && 3040 (src_object->type == OBJT_DEFAULT || 3041 src_object->type == OBJT_SWAP)) { 3042 vm_object_collapse(src_object); 3043 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3044 vm_object_split(src_entry); 3045 src_object = src_entry->object.vm_object; 3046 } 3047 } 3048 vm_object_reference_locked(src_object); 3049 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3050 if (src_entry->cred != NULL && 3051 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3052 KASSERT(src_object->cred == NULL, 3053 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3054 src_object)); 3055 src_object->cred = src_entry->cred; 3056 src_object->charge = size; 3057 } 3058 VM_OBJECT_WUNLOCK(src_object); 3059 dst_entry->object.vm_object = src_object; 3060 if (charged) { 3061 cred = curthread->td_ucred; 3062 crhold(cred); 3063 dst_entry->cred = cred; 3064 *fork_charge += size; 3065 if (!(src_entry->eflags & 3066 MAP_ENTRY_NEEDS_COPY)) { 3067 crhold(cred); 3068 src_entry->cred = cred; 3069 *fork_charge += size; 3070 } 3071 } 3072 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3073 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3074 dst_entry->offset = src_entry->offset; 3075 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3076 /* 3077 * MAP_ENTRY_VN_WRITECNT cannot 3078 * indicate write reference from 3079 * src_entry, since the entry is 3080 * marked as needs copy. Allocate a 3081 * fake entry that is used to 3082 * decrement object->un_pager.vnp.writecount 3083 * at the appropriate time. Attach 3084 * fake_entry to the deferred list. 3085 */ 3086 fake_entry = vm_map_entry_create(dst_map); 3087 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3088 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3089 vm_object_reference(src_object); 3090 fake_entry->object.vm_object = src_object; 3091 fake_entry->start = src_entry->start; 3092 fake_entry->end = src_entry->end; 3093 fake_entry->next = curthread->td_map_def_user; 3094 curthread->td_map_def_user = fake_entry; 3095 } 3096 } else { 3097 dst_entry->object.vm_object = NULL; 3098 dst_entry->offset = 0; 3099 if (src_entry->cred != NULL) { 3100 dst_entry->cred = curthread->td_ucred; 3101 crhold(dst_entry->cred); 3102 *fork_charge += size; 3103 } 3104 } 3105 3106 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3107 dst_entry->end - dst_entry->start, src_entry->start); 3108 } else { 3109 /* 3110 * Of course, wired down pages can't be set copy-on-write. 3111 * Cause wired pages to be copied into the new map by 3112 * simulating faults (the new pages are pageable) 3113 */ 3114 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3115 fork_charge); 3116 } 3117 } 3118 3119 /* 3120 * vmspace_map_entry_forked: 3121 * Update the newly-forked vmspace each time a map entry is inherited 3122 * or copied. The values for vm_dsize and vm_tsize are approximate 3123 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3124 */ 3125 static void 3126 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3127 vm_map_entry_t entry) 3128 { 3129 vm_size_t entrysize; 3130 vm_offset_t newend; 3131 3132 entrysize = entry->end - entry->start; 3133 vm2->vm_map.size += entrysize; 3134 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3135 vm2->vm_ssize += btoc(entrysize); 3136 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3137 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3138 newend = MIN(entry->end, 3139 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3140 vm2->vm_dsize += btoc(newend - entry->start); 3141 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3142 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3143 newend = MIN(entry->end, 3144 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3145 vm2->vm_tsize += btoc(newend - entry->start); 3146 } 3147 } 3148 3149 /* 3150 * vmspace_fork: 3151 * Create a new process vmspace structure and vm_map 3152 * based on those of an existing process. The new map 3153 * is based on the old map, according to the inheritance 3154 * values on the regions in that map. 3155 * 3156 * XXX It might be worth coalescing the entries added to the new vmspace. 3157 * 3158 * The source map must not be locked. 3159 */ 3160 struct vmspace * 3161 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3162 { 3163 struct vmspace *vm2; 3164 vm_map_t new_map, old_map; 3165 vm_map_entry_t new_entry, old_entry; 3166 vm_object_t object; 3167 int locked; 3168 3169 old_map = &vm1->vm_map; 3170 /* Copy immutable fields of vm1 to vm2. */ 3171 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3172 if (vm2 == NULL) 3173 return (NULL); 3174 vm2->vm_taddr = vm1->vm_taddr; 3175 vm2->vm_daddr = vm1->vm_daddr; 3176 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3177 vm_map_lock(old_map); 3178 if (old_map->busy) 3179 vm_map_wait_busy(old_map); 3180 new_map = &vm2->vm_map; 3181 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3182 KASSERT(locked, ("vmspace_fork: lock failed")); 3183 3184 old_entry = old_map->header.next; 3185 3186 while (old_entry != &old_map->header) { 3187 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3188 panic("vm_map_fork: encountered a submap"); 3189 3190 switch (old_entry->inheritance) { 3191 case VM_INHERIT_NONE: 3192 break; 3193 3194 case VM_INHERIT_SHARE: 3195 /* 3196 * Clone the entry, creating the shared object if necessary. 3197 */ 3198 object = old_entry->object.vm_object; 3199 if (object == NULL) { 3200 object = vm_object_allocate(OBJT_DEFAULT, 3201 atop(old_entry->end - old_entry->start)); 3202 old_entry->object.vm_object = object; 3203 old_entry->offset = 0; 3204 if (old_entry->cred != NULL) { 3205 object->cred = old_entry->cred; 3206 object->charge = old_entry->end - 3207 old_entry->start; 3208 old_entry->cred = NULL; 3209 } 3210 } 3211 3212 /* 3213 * Add the reference before calling vm_object_shadow 3214 * to insure that a shadow object is created. 3215 */ 3216 vm_object_reference(object); 3217 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3218 vm_object_shadow(&old_entry->object.vm_object, 3219 &old_entry->offset, 3220 old_entry->end - old_entry->start); 3221 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3222 /* Transfer the second reference too. */ 3223 vm_object_reference( 3224 old_entry->object.vm_object); 3225 3226 /* 3227 * As in vm_map_simplify_entry(), the 3228 * vnode lock will not be acquired in 3229 * this call to vm_object_deallocate(). 3230 */ 3231 vm_object_deallocate(object); 3232 object = old_entry->object.vm_object; 3233 } 3234 VM_OBJECT_WLOCK(object); 3235 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3236 if (old_entry->cred != NULL) { 3237 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3238 object->cred = old_entry->cred; 3239 object->charge = old_entry->end - old_entry->start; 3240 old_entry->cred = NULL; 3241 } 3242 3243 /* 3244 * Assert the correct state of the vnode 3245 * v_writecount while the object is locked, to 3246 * not relock it later for the assertion 3247 * correctness. 3248 */ 3249 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3250 object->type == OBJT_VNODE) { 3251 KASSERT(((struct vnode *)object->handle)-> 3252 v_writecount > 0, 3253 ("vmspace_fork: v_writecount %p", object)); 3254 KASSERT(object->un_pager.vnp.writemappings > 0, 3255 ("vmspace_fork: vnp.writecount %p", 3256 object)); 3257 } 3258 VM_OBJECT_WUNLOCK(object); 3259 3260 /* 3261 * Clone the entry, referencing the shared object. 3262 */ 3263 new_entry = vm_map_entry_create(new_map); 3264 *new_entry = *old_entry; 3265 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3266 MAP_ENTRY_IN_TRANSITION); 3267 new_entry->wiring_thread = NULL; 3268 new_entry->wired_count = 0; 3269 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3270 vnode_pager_update_writecount(object, 3271 new_entry->start, new_entry->end); 3272 } 3273 3274 /* 3275 * Insert the entry into the new map -- we know we're 3276 * inserting at the end of the new map. 3277 */ 3278 vm_map_entry_link(new_map, new_map->header.prev, 3279 new_entry); 3280 vmspace_map_entry_forked(vm1, vm2, new_entry); 3281 3282 /* 3283 * Update the physical map 3284 */ 3285 pmap_copy(new_map->pmap, old_map->pmap, 3286 new_entry->start, 3287 (old_entry->end - old_entry->start), 3288 old_entry->start); 3289 break; 3290 3291 case VM_INHERIT_COPY: 3292 /* 3293 * Clone the entry and link into the map. 3294 */ 3295 new_entry = vm_map_entry_create(new_map); 3296 *new_entry = *old_entry; 3297 /* 3298 * Copied entry is COW over the old object. 3299 */ 3300 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3301 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3302 new_entry->wiring_thread = NULL; 3303 new_entry->wired_count = 0; 3304 new_entry->object.vm_object = NULL; 3305 new_entry->cred = NULL; 3306 vm_map_entry_link(new_map, new_map->header.prev, 3307 new_entry); 3308 vmspace_map_entry_forked(vm1, vm2, new_entry); 3309 vm_map_copy_entry(old_map, new_map, old_entry, 3310 new_entry, fork_charge); 3311 break; 3312 } 3313 old_entry = old_entry->next; 3314 } 3315 /* 3316 * Use inlined vm_map_unlock() to postpone handling the deferred 3317 * map entries, which cannot be done until both old_map and 3318 * new_map locks are released. 3319 */ 3320 sx_xunlock(&old_map->lock); 3321 sx_xunlock(&new_map->lock); 3322 vm_map_process_deferred(); 3323 3324 return (vm2); 3325 } 3326 3327 int 3328 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3329 vm_prot_t prot, vm_prot_t max, int cow) 3330 { 3331 vm_map_entry_t new_entry, prev_entry; 3332 vm_offset_t bot, top; 3333 vm_size_t growsize, init_ssize; 3334 int orient, rv; 3335 rlim_t lmemlim, vmemlim; 3336 3337 /* 3338 * The stack orientation is piggybacked with the cow argument. 3339 * Extract it into orient and mask the cow argument so that we 3340 * don't pass it around further. 3341 * NOTE: We explicitly allow bi-directional stacks. 3342 */ 3343 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3344 KASSERT(orient != 0, ("No stack grow direction")); 3345 3346 if (addrbos < vm_map_min(map) || 3347 addrbos > vm_map_max(map) || 3348 addrbos + max_ssize < addrbos) 3349 return (KERN_NO_SPACE); 3350 3351 growsize = sgrowsiz; 3352 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3353 3354 PROC_LOCK(curproc); 3355 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3356 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3357 PROC_UNLOCK(curproc); 3358 3359 vm_map_lock(map); 3360 3361 /* If addr is already mapped, no go */ 3362 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3363 vm_map_unlock(map); 3364 return (KERN_NO_SPACE); 3365 } 3366 3367 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3368 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3369 vm_map_unlock(map); 3370 return (KERN_NO_SPACE); 3371 } 3372 } 3373 3374 /* If we would blow our VMEM resource limit, no go */ 3375 if (map->size + init_ssize > vmemlim) { 3376 vm_map_unlock(map); 3377 return (KERN_NO_SPACE); 3378 } 3379 3380 /* 3381 * If we can't accomodate max_ssize in the current mapping, no go. 3382 * However, we need to be aware that subsequent user mappings might 3383 * map into the space we have reserved for stack, and currently this 3384 * space is not protected. 3385 * 3386 * Hopefully we will at least detect this condition when we try to 3387 * grow the stack. 3388 */ 3389 if ((prev_entry->next != &map->header) && 3390 (prev_entry->next->start < addrbos + max_ssize)) { 3391 vm_map_unlock(map); 3392 return (KERN_NO_SPACE); 3393 } 3394 3395 /* 3396 * We initially map a stack of only init_ssize. We will grow as 3397 * needed later. Depending on the orientation of the stack (i.e. 3398 * the grow direction) we either map at the top of the range, the 3399 * bottom of the range or in the middle. 3400 * 3401 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3402 * and cow to be 0. Possibly we should eliminate these as input 3403 * parameters, and just pass these values here in the insert call. 3404 */ 3405 if (orient == MAP_STACK_GROWS_DOWN) 3406 bot = addrbos + max_ssize - init_ssize; 3407 else if (orient == MAP_STACK_GROWS_UP) 3408 bot = addrbos; 3409 else 3410 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3411 top = bot + init_ssize; 3412 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3413 3414 /* Now set the avail_ssize amount. */ 3415 if (rv == KERN_SUCCESS) { 3416 if (prev_entry != &map->header) 3417 vm_map_clip_end(map, prev_entry, bot); 3418 new_entry = prev_entry->next; 3419 if (new_entry->end != top || new_entry->start != bot) 3420 panic("Bad entry start/end for new stack entry"); 3421 3422 new_entry->avail_ssize = max_ssize - init_ssize; 3423 if (orient & MAP_STACK_GROWS_DOWN) 3424 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3425 if (orient & MAP_STACK_GROWS_UP) 3426 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3427 } 3428 3429 vm_map_unlock(map); 3430 return (rv); 3431 } 3432 3433 static int stack_guard_page = 0; 3434 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3435 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3436 &stack_guard_page, 0, 3437 "Insert stack guard page ahead of the growable segments."); 3438 3439 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3440 * desired address is already mapped, or if we successfully grow 3441 * the stack. Also returns KERN_SUCCESS if addr is outside the 3442 * stack range (this is strange, but preserves compatibility with 3443 * the grow function in vm_machdep.c). 3444 */ 3445 int 3446 vm_map_growstack(struct proc *p, vm_offset_t addr) 3447 { 3448 vm_map_entry_t next_entry, prev_entry; 3449 vm_map_entry_t new_entry, stack_entry; 3450 struct vmspace *vm = p->p_vmspace; 3451 vm_map_t map = &vm->vm_map; 3452 vm_offset_t end; 3453 vm_size_t growsize; 3454 size_t grow_amount, max_grow; 3455 rlim_t lmemlim, stacklim, vmemlim; 3456 int is_procstack, rv; 3457 struct ucred *cred; 3458 #ifdef notyet 3459 uint64_t limit; 3460 #endif 3461 #ifdef RACCT 3462 int error; 3463 #endif 3464 3465 Retry: 3466 PROC_LOCK(p); 3467 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3468 stacklim = lim_cur(p, RLIMIT_STACK); 3469 vmemlim = lim_cur(p, RLIMIT_VMEM); 3470 PROC_UNLOCK(p); 3471 3472 vm_map_lock_read(map); 3473 3474 /* If addr is already in the entry range, no need to grow.*/ 3475 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3476 vm_map_unlock_read(map); 3477 return (KERN_SUCCESS); 3478 } 3479 3480 next_entry = prev_entry->next; 3481 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3482 /* 3483 * This entry does not grow upwards. Since the address lies 3484 * beyond this entry, the next entry (if one exists) has to 3485 * be a downward growable entry. The entry list header is 3486 * never a growable entry, so it suffices to check the flags. 3487 */ 3488 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3489 vm_map_unlock_read(map); 3490 return (KERN_SUCCESS); 3491 } 3492 stack_entry = next_entry; 3493 } else { 3494 /* 3495 * This entry grows upward. If the next entry does not at 3496 * least grow downwards, this is the entry we need to grow. 3497 * otherwise we have two possible choices and we have to 3498 * select one. 3499 */ 3500 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3501 /* 3502 * We have two choices; grow the entry closest to 3503 * the address to minimize the amount of growth. 3504 */ 3505 if (addr - prev_entry->end <= next_entry->start - addr) 3506 stack_entry = prev_entry; 3507 else 3508 stack_entry = next_entry; 3509 } else 3510 stack_entry = prev_entry; 3511 } 3512 3513 if (stack_entry == next_entry) { 3514 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3515 KASSERT(addr < stack_entry->start, ("foo")); 3516 end = (prev_entry != &map->header) ? prev_entry->end : 3517 stack_entry->start - stack_entry->avail_ssize; 3518 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3519 max_grow = stack_entry->start - end; 3520 } else { 3521 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3522 KASSERT(addr >= stack_entry->end, ("foo")); 3523 end = (next_entry != &map->header) ? next_entry->start : 3524 stack_entry->end + stack_entry->avail_ssize; 3525 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3526 max_grow = end - stack_entry->end; 3527 } 3528 3529 if (grow_amount > stack_entry->avail_ssize) { 3530 vm_map_unlock_read(map); 3531 return (KERN_NO_SPACE); 3532 } 3533 3534 /* 3535 * If there is no longer enough space between the entries nogo, and 3536 * adjust the available space. Note: this should only happen if the 3537 * user has mapped into the stack area after the stack was created, 3538 * and is probably an error. 3539 * 3540 * This also effectively destroys any guard page the user might have 3541 * intended by limiting the stack size. 3542 */ 3543 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3544 if (vm_map_lock_upgrade(map)) 3545 goto Retry; 3546 3547 stack_entry->avail_ssize = max_grow; 3548 3549 vm_map_unlock(map); 3550 return (KERN_NO_SPACE); 3551 } 3552 3553 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3554 3555 /* 3556 * If this is the main process stack, see if we're over the stack 3557 * limit. 3558 */ 3559 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3560 vm_map_unlock_read(map); 3561 return (KERN_NO_SPACE); 3562 } 3563 #ifdef RACCT 3564 PROC_LOCK(p); 3565 if (is_procstack && 3566 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3567 PROC_UNLOCK(p); 3568 vm_map_unlock_read(map); 3569 return (KERN_NO_SPACE); 3570 } 3571 PROC_UNLOCK(p); 3572 #endif 3573 3574 /* Round up the grow amount modulo sgrowsiz */ 3575 growsize = sgrowsiz; 3576 grow_amount = roundup(grow_amount, growsize); 3577 if (grow_amount > stack_entry->avail_ssize) 3578 grow_amount = stack_entry->avail_ssize; 3579 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3580 grow_amount = trunc_page((vm_size_t)stacklim) - 3581 ctob(vm->vm_ssize); 3582 } 3583 #ifdef notyet 3584 PROC_LOCK(p); 3585 limit = racct_get_available(p, RACCT_STACK); 3586 PROC_UNLOCK(p); 3587 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3588 grow_amount = limit - ctob(vm->vm_ssize); 3589 #endif 3590 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3591 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3592 vm_map_unlock_read(map); 3593 rv = KERN_NO_SPACE; 3594 goto out; 3595 } 3596 #ifdef RACCT 3597 PROC_LOCK(p); 3598 if (racct_set(p, RACCT_MEMLOCK, 3599 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3600 PROC_UNLOCK(p); 3601 vm_map_unlock_read(map); 3602 rv = KERN_NO_SPACE; 3603 goto out; 3604 } 3605 PROC_UNLOCK(p); 3606 #endif 3607 } 3608 /* If we would blow our VMEM resource limit, no go */ 3609 if (map->size + grow_amount > vmemlim) { 3610 vm_map_unlock_read(map); 3611 rv = KERN_NO_SPACE; 3612 goto out; 3613 } 3614 #ifdef RACCT 3615 PROC_LOCK(p); 3616 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3617 PROC_UNLOCK(p); 3618 vm_map_unlock_read(map); 3619 rv = KERN_NO_SPACE; 3620 goto out; 3621 } 3622 PROC_UNLOCK(p); 3623 #endif 3624 3625 if (vm_map_lock_upgrade(map)) 3626 goto Retry; 3627 3628 if (stack_entry == next_entry) { 3629 /* 3630 * Growing downward. 3631 */ 3632 /* Get the preliminary new entry start value */ 3633 addr = stack_entry->start - grow_amount; 3634 3635 /* 3636 * If this puts us into the previous entry, cut back our 3637 * growth to the available space. Also, see the note above. 3638 */ 3639 if (addr < end) { 3640 stack_entry->avail_ssize = max_grow; 3641 addr = end; 3642 if (stack_guard_page) 3643 addr += PAGE_SIZE; 3644 } 3645 3646 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3647 next_entry->protection, next_entry->max_protection, 0); 3648 3649 /* Adjust the available stack space by the amount we grew. */ 3650 if (rv == KERN_SUCCESS) { 3651 if (prev_entry != &map->header) 3652 vm_map_clip_end(map, prev_entry, addr); 3653 new_entry = prev_entry->next; 3654 KASSERT(new_entry == stack_entry->prev, ("foo")); 3655 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3656 KASSERT(new_entry->start == addr, ("foo")); 3657 grow_amount = new_entry->end - new_entry->start; 3658 new_entry->avail_ssize = stack_entry->avail_ssize - 3659 grow_amount; 3660 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3661 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3662 } 3663 } else { 3664 /* 3665 * Growing upward. 3666 */ 3667 addr = stack_entry->end + grow_amount; 3668 3669 /* 3670 * If this puts us into the next entry, cut back our growth 3671 * to the available space. Also, see the note above. 3672 */ 3673 if (addr > end) { 3674 stack_entry->avail_ssize = end - stack_entry->end; 3675 addr = end; 3676 if (stack_guard_page) 3677 addr -= PAGE_SIZE; 3678 } 3679 3680 grow_amount = addr - stack_entry->end; 3681 cred = stack_entry->cred; 3682 if (cred == NULL && stack_entry->object.vm_object != NULL) 3683 cred = stack_entry->object.vm_object->cred; 3684 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3685 rv = KERN_NO_SPACE; 3686 /* Grow the underlying object if applicable. */ 3687 else if (stack_entry->object.vm_object == NULL || 3688 vm_object_coalesce(stack_entry->object.vm_object, 3689 stack_entry->offset, 3690 (vm_size_t)(stack_entry->end - stack_entry->start), 3691 (vm_size_t)grow_amount, cred != NULL)) { 3692 map->size += (addr - stack_entry->end); 3693 /* Update the current entry. */ 3694 stack_entry->end = addr; 3695 stack_entry->avail_ssize -= grow_amount; 3696 vm_map_entry_resize_free(map, stack_entry); 3697 rv = KERN_SUCCESS; 3698 3699 if (next_entry != &map->header) 3700 vm_map_clip_start(map, next_entry, addr); 3701 } else 3702 rv = KERN_FAILURE; 3703 } 3704 3705 if (rv == KERN_SUCCESS && is_procstack) 3706 vm->vm_ssize += btoc(grow_amount); 3707 3708 vm_map_unlock(map); 3709 3710 /* 3711 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3712 */ 3713 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3714 vm_map_wire(map, 3715 (stack_entry == next_entry) ? addr : addr - grow_amount, 3716 (stack_entry == next_entry) ? stack_entry->start : addr, 3717 (p->p_flag & P_SYSTEM) 3718 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3719 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3720 } 3721 3722 out: 3723 #ifdef RACCT 3724 if (rv != KERN_SUCCESS) { 3725 PROC_LOCK(p); 3726 error = racct_set(p, RACCT_VMEM, map->size); 3727 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3728 if (!old_mlock) { 3729 error = racct_set(p, RACCT_MEMLOCK, 3730 ptoa(pmap_wired_count(map->pmap))); 3731 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3732 } 3733 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3734 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3735 PROC_UNLOCK(p); 3736 } 3737 #endif 3738 3739 return (rv); 3740 } 3741 3742 /* 3743 * Unshare the specified VM space for exec. If other processes are 3744 * mapped to it, then create a new one. The new vmspace is null. 3745 */ 3746 int 3747 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3748 { 3749 struct vmspace *oldvmspace = p->p_vmspace; 3750 struct vmspace *newvmspace; 3751 3752 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3753 if (newvmspace == NULL) 3754 return (ENOMEM); 3755 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3756 /* 3757 * This code is written like this for prototype purposes. The 3758 * goal is to avoid running down the vmspace here, but let the 3759 * other process's that are still using the vmspace to finally 3760 * run it down. Even though there is little or no chance of blocking 3761 * here, it is a good idea to keep this form for future mods. 3762 */ 3763 PROC_VMSPACE_LOCK(p); 3764 p->p_vmspace = newvmspace; 3765 PROC_VMSPACE_UNLOCK(p); 3766 if (p == curthread->td_proc) 3767 pmap_activate(curthread); 3768 vmspace_free(oldvmspace); 3769 return (0); 3770 } 3771 3772 /* 3773 * Unshare the specified VM space for forcing COW. This 3774 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3775 */ 3776 int 3777 vmspace_unshare(struct proc *p) 3778 { 3779 struct vmspace *oldvmspace = p->p_vmspace; 3780 struct vmspace *newvmspace; 3781 vm_ooffset_t fork_charge; 3782 3783 if (oldvmspace->vm_refcnt == 1) 3784 return (0); 3785 fork_charge = 0; 3786 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3787 if (newvmspace == NULL) 3788 return (ENOMEM); 3789 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3790 vmspace_free(newvmspace); 3791 return (ENOMEM); 3792 } 3793 PROC_VMSPACE_LOCK(p); 3794 p->p_vmspace = newvmspace; 3795 PROC_VMSPACE_UNLOCK(p); 3796 if (p == curthread->td_proc) 3797 pmap_activate(curthread); 3798 vmspace_free(oldvmspace); 3799 return (0); 3800 } 3801 3802 /* 3803 * vm_map_lookup: 3804 * 3805 * Finds the VM object, offset, and 3806 * protection for a given virtual address in the 3807 * specified map, assuming a page fault of the 3808 * type specified. 3809 * 3810 * Leaves the map in question locked for read; return 3811 * values are guaranteed until a vm_map_lookup_done 3812 * call is performed. Note that the map argument 3813 * is in/out; the returned map must be used in 3814 * the call to vm_map_lookup_done. 3815 * 3816 * A handle (out_entry) is returned for use in 3817 * vm_map_lookup_done, to make that fast. 3818 * 3819 * If a lookup is requested with "write protection" 3820 * specified, the map may be changed to perform virtual 3821 * copying operations, although the data referenced will 3822 * remain the same. 3823 */ 3824 int 3825 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3826 vm_offset_t vaddr, 3827 vm_prot_t fault_typea, 3828 vm_map_entry_t *out_entry, /* OUT */ 3829 vm_object_t *object, /* OUT */ 3830 vm_pindex_t *pindex, /* OUT */ 3831 vm_prot_t *out_prot, /* OUT */ 3832 boolean_t *wired) /* OUT */ 3833 { 3834 vm_map_entry_t entry; 3835 vm_map_t map = *var_map; 3836 vm_prot_t prot; 3837 vm_prot_t fault_type = fault_typea; 3838 vm_object_t eobject; 3839 vm_size_t size; 3840 struct ucred *cred; 3841 3842 RetryLookup:; 3843 3844 vm_map_lock_read(map); 3845 3846 /* 3847 * Lookup the faulting address. 3848 */ 3849 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3850 vm_map_unlock_read(map); 3851 return (KERN_INVALID_ADDRESS); 3852 } 3853 3854 entry = *out_entry; 3855 3856 /* 3857 * Handle submaps. 3858 */ 3859 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3860 vm_map_t old_map = map; 3861 3862 *var_map = map = entry->object.sub_map; 3863 vm_map_unlock_read(old_map); 3864 goto RetryLookup; 3865 } 3866 3867 /* 3868 * Check whether this task is allowed to have this page. 3869 */ 3870 prot = entry->protection; 3871 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3872 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3873 vm_map_unlock_read(map); 3874 return (KERN_PROTECTION_FAILURE); 3875 } 3876 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3877 (entry->eflags & MAP_ENTRY_COW) && 3878 (fault_type & VM_PROT_WRITE)) { 3879 vm_map_unlock_read(map); 3880 return (KERN_PROTECTION_FAILURE); 3881 } 3882 if ((fault_typea & VM_PROT_COPY) != 0 && 3883 (entry->max_protection & VM_PROT_WRITE) == 0 && 3884 (entry->eflags & MAP_ENTRY_COW) == 0) { 3885 vm_map_unlock_read(map); 3886 return (KERN_PROTECTION_FAILURE); 3887 } 3888 3889 /* 3890 * If this page is not pageable, we have to get it for all possible 3891 * accesses. 3892 */ 3893 *wired = (entry->wired_count != 0); 3894 if (*wired) 3895 fault_type = entry->protection; 3896 size = entry->end - entry->start; 3897 /* 3898 * If the entry was copy-on-write, we either ... 3899 */ 3900 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3901 /* 3902 * If we want to write the page, we may as well handle that 3903 * now since we've got the map locked. 3904 * 3905 * If we don't need to write the page, we just demote the 3906 * permissions allowed. 3907 */ 3908 if ((fault_type & VM_PROT_WRITE) != 0 || 3909 (fault_typea & VM_PROT_COPY) != 0) { 3910 /* 3911 * Make a new object, and place it in the object 3912 * chain. Note that no new references have appeared 3913 * -- one just moved from the map to the new 3914 * object. 3915 */ 3916 if (vm_map_lock_upgrade(map)) 3917 goto RetryLookup; 3918 3919 if (entry->cred == NULL) { 3920 /* 3921 * The debugger owner is charged for 3922 * the memory. 3923 */ 3924 cred = curthread->td_ucred; 3925 crhold(cred); 3926 if (!swap_reserve_by_cred(size, cred)) { 3927 crfree(cred); 3928 vm_map_unlock(map); 3929 return (KERN_RESOURCE_SHORTAGE); 3930 } 3931 entry->cred = cred; 3932 } 3933 vm_object_shadow(&entry->object.vm_object, 3934 &entry->offset, size); 3935 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3936 eobject = entry->object.vm_object; 3937 if (eobject->cred != NULL) { 3938 /* 3939 * The object was not shadowed. 3940 */ 3941 swap_release_by_cred(size, entry->cred); 3942 crfree(entry->cred); 3943 entry->cred = NULL; 3944 } else if (entry->cred != NULL) { 3945 VM_OBJECT_WLOCK(eobject); 3946 eobject->cred = entry->cred; 3947 eobject->charge = size; 3948 VM_OBJECT_WUNLOCK(eobject); 3949 entry->cred = NULL; 3950 } 3951 3952 vm_map_lock_downgrade(map); 3953 } else { 3954 /* 3955 * We're attempting to read a copy-on-write page -- 3956 * don't allow writes. 3957 */ 3958 prot &= ~VM_PROT_WRITE; 3959 } 3960 } 3961 3962 /* 3963 * Create an object if necessary. 3964 */ 3965 if (entry->object.vm_object == NULL && 3966 !map->system_map) { 3967 if (vm_map_lock_upgrade(map)) 3968 goto RetryLookup; 3969 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3970 atop(size)); 3971 entry->offset = 0; 3972 if (entry->cred != NULL) { 3973 VM_OBJECT_WLOCK(entry->object.vm_object); 3974 entry->object.vm_object->cred = entry->cred; 3975 entry->object.vm_object->charge = size; 3976 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3977 entry->cred = NULL; 3978 } 3979 vm_map_lock_downgrade(map); 3980 } 3981 3982 /* 3983 * Return the object/offset from this entry. If the entry was 3984 * copy-on-write or empty, it has been fixed up. 3985 */ 3986 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3987 *object = entry->object.vm_object; 3988 3989 *out_prot = prot; 3990 return (KERN_SUCCESS); 3991 } 3992 3993 /* 3994 * vm_map_lookup_locked: 3995 * 3996 * Lookup the faulting address. A version of vm_map_lookup that returns 3997 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3998 */ 3999 int 4000 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4001 vm_offset_t vaddr, 4002 vm_prot_t fault_typea, 4003 vm_map_entry_t *out_entry, /* OUT */ 4004 vm_object_t *object, /* OUT */ 4005 vm_pindex_t *pindex, /* OUT */ 4006 vm_prot_t *out_prot, /* OUT */ 4007 boolean_t *wired) /* OUT */ 4008 { 4009 vm_map_entry_t entry; 4010 vm_map_t map = *var_map; 4011 vm_prot_t prot; 4012 vm_prot_t fault_type = fault_typea; 4013 4014 /* 4015 * Lookup the faulting address. 4016 */ 4017 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4018 return (KERN_INVALID_ADDRESS); 4019 4020 entry = *out_entry; 4021 4022 /* 4023 * Fail if the entry refers to a submap. 4024 */ 4025 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4026 return (KERN_FAILURE); 4027 4028 /* 4029 * Check whether this task is allowed to have this page. 4030 */ 4031 prot = entry->protection; 4032 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4033 if ((fault_type & prot) != fault_type) 4034 return (KERN_PROTECTION_FAILURE); 4035 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4036 (entry->eflags & MAP_ENTRY_COW) && 4037 (fault_type & VM_PROT_WRITE)) 4038 return (KERN_PROTECTION_FAILURE); 4039 4040 /* 4041 * If this page is not pageable, we have to get it for all possible 4042 * accesses. 4043 */ 4044 *wired = (entry->wired_count != 0); 4045 if (*wired) 4046 fault_type = entry->protection; 4047 4048 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4049 /* 4050 * Fail if the entry was copy-on-write for a write fault. 4051 */ 4052 if (fault_type & VM_PROT_WRITE) 4053 return (KERN_FAILURE); 4054 /* 4055 * We're attempting to read a copy-on-write page -- 4056 * don't allow writes. 4057 */ 4058 prot &= ~VM_PROT_WRITE; 4059 } 4060 4061 /* 4062 * Fail if an object should be created. 4063 */ 4064 if (entry->object.vm_object == NULL && !map->system_map) 4065 return (KERN_FAILURE); 4066 4067 /* 4068 * Return the object/offset from this entry. If the entry was 4069 * copy-on-write or empty, it has been fixed up. 4070 */ 4071 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4072 *object = entry->object.vm_object; 4073 4074 *out_prot = prot; 4075 return (KERN_SUCCESS); 4076 } 4077 4078 /* 4079 * vm_map_lookup_done: 4080 * 4081 * Releases locks acquired by a vm_map_lookup 4082 * (according to the handle returned by that lookup). 4083 */ 4084 void 4085 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4086 { 4087 /* 4088 * Unlock the main-level map 4089 */ 4090 vm_map_unlock_read(map); 4091 } 4092 4093 #include "opt_ddb.h" 4094 #ifdef DDB 4095 #include <sys/kernel.h> 4096 4097 #include <ddb/ddb.h> 4098 4099 static void 4100 vm_map_print(vm_map_t map) 4101 { 4102 vm_map_entry_t entry; 4103 4104 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4105 (void *)map, 4106 (void *)map->pmap, map->nentries, map->timestamp); 4107 4108 db_indent += 2; 4109 for (entry = map->header.next; entry != &map->header; 4110 entry = entry->next) { 4111 db_iprintf("map entry %p: start=%p, end=%p\n", 4112 (void *)entry, (void *)entry->start, (void *)entry->end); 4113 { 4114 static char *inheritance_name[4] = 4115 {"share", "copy", "none", "donate_copy"}; 4116 4117 db_iprintf(" prot=%x/%x/%s", 4118 entry->protection, 4119 entry->max_protection, 4120 inheritance_name[(int)(unsigned char)entry->inheritance]); 4121 if (entry->wired_count != 0) 4122 db_printf(", wired"); 4123 } 4124 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4125 db_printf(", share=%p, offset=0x%jx\n", 4126 (void *)entry->object.sub_map, 4127 (uintmax_t)entry->offset); 4128 if ((entry->prev == &map->header) || 4129 (entry->prev->object.sub_map != 4130 entry->object.sub_map)) { 4131 db_indent += 2; 4132 vm_map_print((vm_map_t)entry->object.sub_map); 4133 db_indent -= 2; 4134 } 4135 } else { 4136 if (entry->cred != NULL) 4137 db_printf(", ruid %d", entry->cred->cr_ruid); 4138 db_printf(", object=%p, offset=0x%jx", 4139 (void *)entry->object.vm_object, 4140 (uintmax_t)entry->offset); 4141 if (entry->object.vm_object && entry->object.vm_object->cred) 4142 db_printf(", obj ruid %d charge %jx", 4143 entry->object.vm_object->cred->cr_ruid, 4144 (uintmax_t)entry->object.vm_object->charge); 4145 if (entry->eflags & MAP_ENTRY_COW) 4146 db_printf(", copy (%s)", 4147 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4148 db_printf("\n"); 4149 4150 if ((entry->prev == &map->header) || 4151 (entry->prev->object.vm_object != 4152 entry->object.vm_object)) { 4153 db_indent += 2; 4154 vm_object_print((db_expr_t)(intptr_t) 4155 entry->object.vm_object, 4156 1, 0, (char *)0); 4157 db_indent -= 2; 4158 } 4159 } 4160 } 4161 db_indent -= 2; 4162 } 4163 4164 DB_SHOW_COMMAND(map, map) 4165 { 4166 4167 if (!have_addr) { 4168 db_printf("usage: show map <addr>\n"); 4169 return; 4170 } 4171 vm_map_print((vm_map_t)addr); 4172 } 4173 4174 DB_SHOW_COMMAND(procvm, procvm) 4175 { 4176 struct proc *p; 4177 4178 if (have_addr) { 4179 p = (struct proc *) addr; 4180 } else { 4181 p = curproc; 4182 } 4183 4184 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4185 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4186 (void *)vmspace_pmap(p->p_vmspace)); 4187 4188 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4189 } 4190 4191 #endif /* DDB */ 4192