xref: /freebsd/sys/vm/vm_map.c (revision 33b77e2decd50e53798014b70bf7ca3bdc4c0c7e)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_map.c,v 1.104 1998/01/06 05:25:58 dyson Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/buf.h>
78 #include <sys/vnode.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_prot.h>
83 #include <vm/vm_inherit.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/default_pager.h>
93 #include <vm/vm_zone.h>
94 
95 static MALLOC_DEFINE(M_VMMAP, "VM map", "VM map structures");
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	In order to properly represent the sharing of virtual
109  *	memory regions among maps, the map structure is bi-level.
110  *	Top-level ("address") maps refer to regions of sharable
111  *	virtual memory.  These regions are implemented as
112  *	("sharing") maps, which then refer to the actual virtual
113  *	memory objects.  When two address maps "share" memory,
114  *	their top-level maps both have references to the same
115  *	sharing map.  When memory is virtual-copied from one
116  *	address map to another, the references in the sharing
117  *	maps are actually copied -- no copying occurs at the
118  *	virtual memory object level.
119  *
120  *	Since portions of maps are specified by start/end addreses,
121  *	which may not align with existing map entries, all
122  *	routines merely "clip" entries to these start/end values.
123  *	[That is, an entry is split into two, bordering at a
124  *	start or end value.]  Note that these clippings may not
125  *	always be necessary (as the two resulting entries are then
126  *	not changed); however, the clipping is done for convenience.
127  *	No attempt is currently made to "glue back together" two
128  *	abutting entries.
129  *
130  *	As mentioned above, virtual copy operations are performed
131  *	by copying VM object references from one sharing map to
132  *	another, and then marking both regions as copy-on-write.
133  *	It is important to note that only one writeable reference
134  *	to a VM object region exists in any map -- this means that
135  *	shadow object creation can be delayed until a write operation
136  *	occurs.
137  */
138 
139 /*
140  *	vm_map_startup:
141  *
142  *	Initialize the vm_map module.  Must be called before
143  *	any other vm_map routines.
144  *
145  *	Map and entry structures are allocated from the general
146  *	purpose memory pool with some exceptions:
147  *
148  *	- The kernel map and kmem submap are allocated statically.
149  *	- Kernel map entries are allocated out of a static pool.
150  *
151  *	These restrictions are necessary since malloc() uses the
152  *	maps and requires map entries.
153  */
154 
155 extern char kstack[];
156 extern int inmprotect;
157 
158 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
159 static vm_zone_t mapentzone, kmapentzone, mapzone;
160 static struct vm_object kmapentobj, mapentobj, mapobj;
161 #define MAP_ENTRY_INIT	128
162 struct vm_map_entry map_entry_init[MAX_MAPENT];
163 struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
164 struct vm_map map_init[MAX_KMAP];
165 
166 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
167 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
168 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
169 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
170 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
171 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
172 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
173 		vm_map_entry_t));
174 static vm_page_t vm_freeze_page_alloc __P((vm_object_t, vm_pindex_t));
175 
176 void
177 vm_map_startup()
178 {
179 	mapzone = &mapzone_store;
180 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
181 		map_init, MAX_KMAP);
182 	kmapentzone = &kmapentzone_store;
183 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
184 		kmap_entry_init, MAX_KMAPENT);
185 	mapentzone = &mapentzone_store;
186 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
187 		map_entry_init, MAX_MAPENT);
188 }
189 
190 /*
191  * Allocate a vmspace structure, including a vm_map and pmap,
192  * and initialize those structures.  The refcnt is set to 1.
193  * The remaining fields must be initialized by the caller.
194  */
195 struct vmspace *
196 vmspace_alloc(min, max, pageable)
197 	vm_offset_t min, max;
198 	int pageable;
199 {
200 	register struct vmspace *vm;
201 
202 	MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK);
203 	bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm);
204 	vm_map_init(&vm->vm_map, min, max, pageable);
205 	pmap_pinit(&vm->vm_pmap);
206 	vm->vm_map.pmap = &vm->vm_pmap;		/* XXX */
207 	vm->vm_refcnt = 1;
208 	return (vm);
209 }
210 
211 void
212 vm_init2(void) {
213 	zinitna(kmapentzone, &kmapentobj,
214 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
215 	zinitna(mapentzone, &mapentobj,
216 		NULL, 0, 0, 0, 1);
217 	zinitna(mapzone, &mapobj,
218 		NULL, 0, 0, 0, 1);
219 	pmap_init2();
220 	vm_object_init2();
221 }
222 
223 void
224 vmspace_free(vm)
225 	register struct vmspace *vm;
226 {
227 
228 	if (vm->vm_refcnt == 0)
229 		panic("vmspace_free: attempt to free already freed vmspace");
230 
231 	if (--vm->vm_refcnt == 0) {
232 
233 		/*
234 		 * Lock the map, to wait out all other references to it.
235 		 * Delete all of the mappings and pages they hold, then call
236 		 * the pmap module to reclaim anything left.
237 		 */
238 		vm_map_lock(&vm->vm_map);
239 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
240 		    vm->vm_map.max_offset);
241 		vm_map_unlock(&vm->vm_map);
242 
243 		while( vm->vm_map.ref_count != 1)
244 			tsleep(&vm->vm_map.ref_count, PVM, "vmsfre", 0);
245 		--vm->vm_map.ref_count;
246 		pmap_release(&vm->vm_pmap);
247 		FREE(vm, M_VMMAP);
248 	} else {
249 		wakeup(&vm->vm_map.ref_count);
250 	}
251 }
252 
253 /*
254  *	vm_map_create:
255  *
256  *	Creates and returns a new empty VM map with
257  *	the given physical map structure, and having
258  *	the given lower and upper address bounds.
259  */
260 vm_map_t
261 vm_map_create(pmap, min, max, pageable)
262 	pmap_t pmap;
263 	vm_offset_t min, max;
264 	boolean_t pageable;
265 {
266 	register vm_map_t result;
267 
268 	result = zalloc(mapzone);
269 	vm_map_init(result, min, max, pageable);
270 	result->pmap = pmap;
271 	return (result);
272 }
273 
274 /*
275  * Initialize an existing vm_map structure
276  * such as that in the vmspace structure.
277  * The pmap is set elsewhere.
278  */
279 void
280 vm_map_init(map, min, max, pageable)
281 	register struct vm_map *map;
282 	vm_offset_t min, max;
283 	boolean_t pageable;
284 {
285 	map->header.next = map->header.prev = &map->header;
286 	map->nentries = 0;
287 	map->size = 0;
288 	map->ref_count = 1;
289 	map->is_main_map = TRUE;
290 	map->system_map = 0;
291 	map->min_offset = min;
292 	map->max_offset = max;
293 	map->entries_pageable = pageable;
294 	map->first_free = &map->header;
295 	map->hint = &map->header;
296 	map->timestamp = 0;
297 	lockinit(&map->lock, PVM, "thrd_sleep", 0, 0);
298 	simple_lock_init(&map->ref_lock);
299 }
300 
301 /*
302  *	vm_map_entry_dispose:	[ internal use only ]
303  *
304  *	Inverse of vm_map_entry_create.
305  */
306 static void
307 vm_map_entry_dispose(map, entry)
308 	vm_map_t map;
309 	vm_map_entry_t entry;
310 {
311 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
312 }
313 
314 /*
315  *	vm_map_entry_create:	[ internal use only ]
316  *
317  *	Allocates a VM map entry for insertion.
318  *	No entry fields are filled in.  This routine is
319  */
320 static vm_map_entry_t
321 vm_map_entry_create(map)
322 	vm_map_t map;
323 {
324 	return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone);
325 }
326 
327 /*
328  *	vm_map_entry_{un,}link:
329  *
330  *	Insert/remove entries from maps.
331  */
332 #define	vm_map_entry_link(map, after_where, entry) \
333 		{ \
334 		(map)->nentries++; \
335 		(entry)->prev = (after_where); \
336 		(entry)->next = (after_where)->next; \
337 		(entry)->prev->next = (entry); \
338 		(entry)->next->prev = (entry); \
339 		}
340 #define	vm_map_entry_unlink(map, entry) \
341 		{ \
342 		(map)->nentries--; \
343 		(entry)->next->prev = (entry)->prev; \
344 		(entry)->prev->next = (entry)->next; \
345 		}
346 
347 /*
348  *	vm_map_reference:
349  *
350  *	Creates another valid reference to the given map.
351  *
352  */
353 void
354 vm_map_reference(map)
355 	register vm_map_t map;
356 {
357 	if (map == NULL)
358 		return;
359 
360 	map->ref_count++;
361 }
362 
363 /*
364  *	vm_map_deallocate:
365  *
366  *	Removes a reference from the specified map,
367  *	destroying it if no references remain.
368  *	The map should not be locked.
369  */
370 void
371 vm_map_deallocate(map)
372 	register vm_map_t map;
373 {
374 	register int c;
375 
376 	if (map == NULL)
377 		return;
378 
379 	c = map->ref_count;
380 
381 	if (c == 0)
382 		panic("vm_map_deallocate: deallocating already freed map");
383 
384 	if (c != 1) {
385 		--map->ref_count;
386 		wakeup(&map->ref_count);
387 		return;
388 	}
389 	/*
390 	 * Lock the map, to wait out all other references to it.
391 	 */
392 
393 	vm_map_lock_drain_interlock(map);
394 	(void) vm_map_delete(map, map->min_offset, map->max_offset);
395 	--map->ref_count;
396 	if( map->ref_count != 0) {
397 		vm_map_unlock(map);
398 		return;
399 	}
400 
401 	pmap_destroy(map->pmap);
402 
403 	vm_map_unlock(map);
404 
405 	zfree(mapzone, map);
406 }
407 
408 /*
409  *	SAVE_HINT:
410  *
411  *	Saves the specified entry as the hint for
412  *	future lookups.
413  */
414 #define	SAVE_HINT(map,value) \
415 		(map)->hint = (value);
416 
417 /*
418  *	vm_map_lookup_entry:	[ internal use only ]
419  *
420  *	Finds the map entry containing (or
421  *	immediately preceding) the specified address
422  *	in the given map; the entry is returned
423  *	in the "entry" parameter.  The boolean
424  *	result indicates whether the address is
425  *	actually contained in the map.
426  */
427 boolean_t
428 vm_map_lookup_entry(map, address, entry)
429 	register vm_map_t map;
430 	register vm_offset_t address;
431 	vm_map_entry_t *entry;	/* OUT */
432 {
433 	register vm_map_entry_t cur;
434 	register vm_map_entry_t last;
435 
436 	/*
437 	 * Start looking either from the head of the list, or from the hint.
438 	 */
439 
440 	cur = map->hint;
441 
442 	if (cur == &map->header)
443 		cur = cur->next;
444 
445 	if (address >= cur->start) {
446 		/*
447 		 * Go from hint to end of list.
448 		 *
449 		 * But first, make a quick check to see if we are already looking
450 		 * at the entry we want (which is usually the case). Note also
451 		 * that we don't need to save the hint here... it is the same
452 		 * hint (unless we are at the header, in which case the hint
453 		 * didn't buy us anything anyway).
454 		 */
455 		last = &map->header;
456 		if ((cur != last) && (cur->end > address)) {
457 			*entry = cur;
458 			return (TRUE);
459 		}
460 	} else {
461 		/*
462 		 * Go from start to hint, *inclusively*
463 		 */
464 		last = cur->next;
465 		cur = map->header.next;
466 	}
467 
468 	/*
469 	 * Search linearly
470 	 */
471 
472 	while (cur != last) {
473 		if (cur->end > address) {
474 			if (address >= cur->start) {
475 				/*
476 				 * Save this lookup for future hints, and
477 				 * return
478 				 */
479 
480 				*entry = cur;
481 				SAVE_HINT(map, cur);
482 				return (TRUE);
483 			}
484 			break;
485 		}
486 		cur = cur->next;
487 	}
488 	*entry = cur->prev;
489 	SAVE_HINT(map, *entry);
490 	return (FALSE);
491 }
492 
493 /*
494  *	vm_map_insert:
495  *
496  *	Inserts the given whole VM object into the target
497  *	map at the specified address range.  The object's
498  *	size should match that of the address range.
499  *
500  *	Requires that the map be locked, and leaves it so.
501  */
502 int
503 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
504 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
505 	      int cow)
506 {
507 	register vm_map_entry_t new_entry;
508 	register vm_map_entry_t prev_entry;
509 	vm_map_entry_t temp_entry;
510 	vm_object_t prev_object;
511 	u_char protoeflags;
512 
513 	if ((object != NULL) && (cow & MAP_NOFAULT)) {
514 		panic("vm_map_insert: paradoxical MAP_NOFAULT request");
515 	}
516 
517 	/*
518 	 * Check that the start and end points are not bogus.
519 	 */
520 
521 	if ((start < map->min_offset) || (end > map->max_offset) ||
522 	    (start >= end))
523 		return (KERN_INVALID_ADDRESS);
524 
525 	/*
526 	 * Find the entry prior to the proposed starting address; if it's part
527 	 * of an existing entry, this range is bogus.
528 	 */
529 
530 	if (vm_map_lookup_entry(map, start, &temp_entry))
531 		return (KERN_NO_SPACE);
532 
533 	prev_entry = temp_entry;
534 
535 	/*
536 	 * Assert that the next entry doesn't overlap the end point.
537 	 */
538 
539 	if ((prev_entry->next != &map->header) &&
540 	    (prev_entry->next->start < end))
541 		return (KERN_NO_SPACE);
542 
543 	protoeflags = 0;
544 	if (cow & MAP_COPY_NEEDED)
545 		protoeflags |= MAP_ENTRY_NEEDS_COPY;
546 
547 	if (cow & MAP_COPY_ON_WRITE)
548 		protoeflags |= MAP_ENTRY_COW;
549 
550 	if (cow & MAP_NOFAULT)
551 		protoeflags |= MAP_ENTRY_NOFAULT;
552 
553 	/*
554 	 * See if we can avoid creating a new entry by extending one of our
555 	 * neighbors.  Or at least extend the object.
556 	 */
557 
558 	if ((object == NULL) &&
559 	    (prev_entry != &map->header) &&
560 	    (( prev_entry->eflags & (MAP_ENTRY_IS_A_MAP | MAP_ENTRY_IS_SUB_MAP)) == 0) &&
561 		((prev_entry->object.vm_object == NULL) ||
562 			(prev_entry->object.vm_object->type == OBJT_DEFAULT)) &&
563 	    (prev_entry->end == start) &&
564 	    (prev_entry->wired_count == 0)) {
565 
566 
567 		if ((protoeflags == prev_entry->eflags) &&
568 		    ((cow & MAP_NOFAULT) ||
569 		     vm_object_coalesce(prev_entry->object.vm_object,
570 					OFF_TO_IDX(prev_entry->offset),
571 					(vm_size_t) (prev_entry->end - prev_entry->start),
572 					(vm_size_t) (end - prev_entry->end)))) {
573 
574 			/*
575 			 * Coalesced the two objects.  Can we extend the
576 			 * previous map entry to include the new range?
577 			 */
578 			if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
579 			    (prev_entry->protection == prot) &&
580 			    (prev_entry->max_protection == max)) {
581 
582 				map->size += (end - prev_entry->end);
583 				prev_entry->end = end;
584 				if ((cow & MAP_NOFAULT) == 0) {
585 					prev_object = prev_entry->object.vm_object;
586 					default_pager_convert_to_swapq(prev_object);
587 				}
588 				return (KERN_SUCCESS);
589 			}
590 			else {
591 				object = prev_entry->object.vm_object;
592 				offset = prev_entry->offset + (prev_entry->end -
593 							       prev_entry->start);
594 
595 				vm_object_reference(object);
596 			}
597 		}
598 	}
599 
600 	/*
601 	 * Create a new entry
602 	 */
603 
604 	new_entry = vm_map_entry_create(map);
605 	new_entry->start = start;
606 	new_entry->end = end;
607 
608 	new_entry->eflags = protoeflags;
609 	new_entry->object.vm_object = object;
610 	new_entry->offset = offset;
611 
612 	if (map->is_main_map) {
613 		new_entry->inheritance = VM_INHERIT_DEFAULT;
614 		new_entry->protection = prot;
615 		new_entry->max_protection = max;
616 		new_entry->wired_count = 0;
617 	}
618 	/*
619 	 * Insert the new entry into the list
620 	 */
621 
622 	vm_map_entry_link(map, prev_entry, new_entry);
623 	map->size += new_entry->end - new_entry->start;
624 
625 	/*
626 	 * Update the free space hint
627 	 */
628 	if ((map->first_free == prev_entry) &&
629 		(prev_entry->end >= new_entry->start))
630 		map->first_free = new_entry;
631 
632 	default_pager_convert_to_swapq(object);
633 	return (KERN_SUCCESS);
634 }
635 
636 /*
637  * Find sufficient space for `length' bytes in the given map, starting at
638  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
639  */
640 int
641 vm_map_findspace(map, start, length, addr)
642 	register vm_map_t map;
643 	register vm_offset_t start;
644 	vm_size_t length;
645 	vm_offset_t *addr;
646 {
647 	register vm_map_entry_t entry, next;
648 	register vm_offset_t end;
649 
650 	if (start < map->min_offset)
651 		start = map->min_offset;
652 	if (start > map->max_offset)
653 		return (1);
654 
655 	/*
656 	 * Look for the first possible address; if there's already something
657 	 * at this address, we have to start after it.
658 	 */
659 	if (start == map->min_offset) {
660 		if ((entry = map->first_free) != &map->header)
661 			start = entry->end;
662 	} else {
663 		vm_map_entry_t tmp;
664 
665 		if (vm_map_lookup_entry(map, start, &tmp))
666 			start = tmp->end;
667 		entry = tmp;
668 	}
669 
670 	/*
671 	 * Look through the rest of the map, trying to fit a new region in the
672 	 * gap between existing regions, or after the very last region.
673 	 */
674 	for (;; start = (entry = next)->end) {
675 		/*
676 		 * Find the end of the proposed new region.  Be sure we didn't
677 		 * go beyond the end of the map, or wrap around the address;
678 		 * if so, we lose.  Otherwise, if this is the last entry, or
679 		 * if the proposed new region fits before the next entry, we
680 		 * win.
681 		 */
682 		end = start + length;
683 		if (end > map->max_offset || end < start)
684 			return (1);
685 		next = entry->next;
686 		if (next == &map->header || next->start >= end)
687 			break;
688 	}
689 	SAVE_HINT(map, entry);
690 	*addr = start;
691 	if (map == kernel_map) {
692 		vm_offset_t ksize;
693 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
694 			pmap_growkernel(ksize);
695 		}
696 	}
697 	return (0);
698 }
699 
700 /*
701  *	vm_map_find finds an unallocated region in the target address
702  *	map with the given length.  The search is defined to be
703  *	first-fit from the specified address; the region found is
704  *	returned in the same parameter.
705  *
706  */
707 int
708 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
709 	    vm_offset_t *addr,	/* IN/OUT */
710 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
711 	    vm_prot_t max, int cow)
712 {
713 	register vm_offset_t start;
714 	int result, s = 0;
715 
716 	start = *addr;
717 
718 	if (map == kmem_map || map == mb_map)
719 		s = splvm();
720 
721 	vm_map_lock(map);
722 	if (find_space) {
723 		if (vm_map_findspace(map, start, length, addr)) {
724 			vm_map_unlock(map);
725 			if (map == kmem_map || map == mb_map)
726 				splx(s);
727 			return (KERN_NO_SPACE);
728 		}
729 		start = *addr;
730 	}
731 	result = vm_map_insert(map, object, offset,
732 		start, start + length, prot, max, cow);
733 	vm_map_unlock(map);
734 
735 	if (map == kmem_map || map == mb_map)
736 		splx(s);
737 
738 	return (result);
739 }
740 
741 /*
742  *	vm_map_simplify_entry:
743  *
744  *	Simplify the given map entry by merging with either neighbor.
745  */
746 void
747 vm_map_simplify_entry(map, entry)
748 	vm_map_t map;
749 	vm_map_entry_t entry;
750 {
751 	vm_map_entry_t next, prev;
752 	vm_size_t prevsize, esize;
753 
754 	if (entry->eflags & (MAP_ENTRY_IS_SUB_MAP|MAP_ENTRY_IS_A_MAP))
755 		return;
756 
757 	prev = entry->prev;
758 	if (prev != &map->header) {
759 		prevsize = prev->end - prev->start;
760 		if ( (prev->end == entry->start) &&
761 		     (prev->object.vm_object == entry->object.vm_object) &&
762 		     (!prev->object.vm_object ||
763 				(prev->object.vm_object->behavior == entry->object.vm_object->behavior)) &&
764 		     (!prev->object.vm_object ||
765 			(prev->offset + prevsize == entry->offset)) &&
766 		     (prev->eflags == entry->eflags) &&
767 		     (prev->protection == entry->protection) &&
768 		     (prev->max_protection == entry->max_protection) &&
769 		     (prev->inheritance == entry->inheritance) &&
770 		     (prev->wired_count == entry->wired_count)) {
771 			if (map->first_free == prev)
772 				map->first_free = entry;
773 			if (map->hint == prev)
774 				map->hint = entry;
775 			vm_map_entry_unlink(map, prev);
776 			entry->start = prev->start;
777 			entry->offset = prev->offset;
778 			if (prev->object.vm_object)
779 				vm_object_deallocate(prev->object.vm_object);
780 			vm_map_entry_dispose(map, prev);
781 		}
782 	}
783 
784 	next = entry->next;
785 	if (next != &map->header) {
786 		esize = entry->end - entry->start;
787 		if ((entry->end == next->start) &&
788 		    (next->object.vm_object == entry->object.vm_object) &&
789 		    (!next->object.vm_object ||
790 				(next->object.vm_object->behavior == entry->object.vm_object->behavior)) &&
791 		     (!entry->object.vm_object ||
792 			(entry->offset + esize == next->offset)) &&
793 		    (next->eflags == entry->eflags) &&
794 		    (next->protection == entry->protection) &&
795 		    (next->max_protection == entry->max_protection) &&
796 		    (next->inheritance == entry->inheritance) &&
797 		    (next->wired_count == entry->wired_count)) {
798 			if (map->first_free == next)
799 				map->first_free = entry;
800 			if (map->hint == next)
801 				map->hint = entry;
802 			vm_map_entry_unlink(map, next);
803 			entry->end = next->end;
804 			if (next->object.vm_object)
805 				vm_object_deallocate(next->object.vm_object);
806 			vm_map_entry_dispose(map, next);
807 	        }
808 	}
809 }
810 /*
811  *	vm_map_clip_start:	[ internal use only ]
812  *
813  *	Asserts that the given entry begins at or after
814  *	the specified address; if necessary,
815  *	it splits the entry into two.
816  */
817 #define vm_map_clip_start(map, entry, startaddr) \
818 { \
819 	if (startaddr > entry->start) \
820 		_vm_map_clip_start(map, entry, startaddr); \
821 }
822 
823 /*
824  *	This routine is called only when it is known that
825  *	the entry must be split.
826  */
827 static void
828 _vm_map_clip_start(map, entry, start)
829 	register vm_map_t map;
830 	register vm_map_entry_t entry;
831 	register vm_offset_t start;
832 {
833 	register vm_map_entry_t new_entry;
834 
835 	/*
836 	 * Split off the front portion -- note that we must insert the new
837 	 * entry BEFORE this one, so that this entry has the specified
838 	 * starting address.
839 	 */
840 
841 	vm_map_simplify_entry(map, entry);
842 
843 	/*
844 	 * If there is no object backing this entry, we might as well create
845 	 * one now.  If we defer it, an object can get created after the map
846 	 * is clipped, and individual objects will be created for the split-up
847 	 * map.  This is a bit of a hack, but is also about the best place to
848 	 * put this improvement.
849 	 */
850 
851 	if (entry->object.vm_object == NULL) {
852 			vm_object_t object;
853 
854 			object = vm_object_allocate(OBJT_DEFAULT,
855 					atop(entry->end - entry->start));
856 			entry->object.vm_object = object;
857 			entry->offset = 0;
858 	}
859 
860 	new_entry = vm_map_entry_create(map);
861 	*new_entry = *entry;
862 
863 	new_entry->end = start;
864 	entry->offset += (start - entry->start);
865 	entry->start = start;
866 
867 	vm_map_entry_link(map, entry->prev, new_entry);
868 
869 	if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP))
870 		vm_map_reference(new_entry->object.share_map);
871 	else
872 		vm_object_reference(new_entry->object.vm_object);
873 }
874 
875 /*
876  *	vm_map_clip_end:	[ internal use only ]
877  *
878  *	Asserts that the given entry ends at or before
879  *	the specified address; if necessary,
880  *	it splits the entry into two.
881  */
882 
883 #define vm_map_clip_end(map, entry, endaddr) \
884 { \
885 	if (endaddr < entry->end) \
886 		_vm_map_clip_end(map, entry, endaddr); \
887 }
888 
889 /*
890  *	This routine is called only when it is known that
891  *	the entry must be split.
892  */
893 static void
894 _vm_map_clip_end(map, entry, end)
895 	register vm_map_t map;
896 	register vm_map_entry_t entry;
897 	register vm_offset_t end;
898 {
899 	register vm_map_entry_t new_entry;
900 
901 	/*
902 	 * If there is no object backing this entry, we might as well create
903 	 * one now.  If we defer it, an object can get created after the map
904 	 * is clipped, and individual objects will be created for the split-up
905 	 * map.  This is a bit of a hack, but is also about the best place to
906 	 * put this improvement.
907 	 */
908 
909 	if (entry->object.vm_object == NULL) {
910 			vm_object_t object;
911 
912 			object = vm_object_allocate(OBJT_DEFAULT,
913 					atop(entry->end - entry->start));
914 			entry->object.vm_object = object;
915 			entry->offset = 0;
916 	}
917 
918 	/*
919 	 * Create a new entry and insert it AFTER the specified entry
920 	 */
921 
922 	new_entry = vm_map_entry_create(map);
923 	*new_entry = *entry;
924 
925 	new_entry->start = entry->end = end;
926 	new_entry->offset += (end - entry->start);
927 
928 	vm_map_entry_link(map, entry, new_entry);
929 
930 	if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP))
931 		vm_map_reference(new_entry->object.share_map);
932 	else
933 		vm_object_reference(new_entry->object.vm_object);
934 }
935 
936 /*
937  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
938  *
939  *	Asserts that the starting and ending region
940  *	addresses fall within the valid range of the map.
941  */
942 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
943 		{					\
944 		if (start < vm_map_min(map))		\
945 			start = vm_map_min(map);	\
946 		if (end > vm_map_max(map))		\
947 			end = vm_map_max(map);		\
948 		if (start > end)			\
949 			start = end;			\
950 		}
951 
952 /*
953  *	vm_map_submap:		[ kernel use only ]
954  *
955  *	Mark the given range as handled by a subordinate map.
956  *
957  *	This range must have been created with vm_map_find,
958  *	and no other operations may have been performed on this
959  *	range prior to calling vm_map_submap.
960  *
961  *	Only a limited number of operations can be performed
962  *	within this rage after calling vm_map_submap:
963  *		vm_fault
964  *	[Don't try vm_map_copy!]
965  *
966  *	To remove a submapping, one must first remove the
967  *	range from the superior map, and then destroy the
968  *	submap (if desired).  [Better yet, don't try it.]
969  */
970 int
971 vm_map_submap(map, start, end, submap)
972 	register vm_map_t map;
973 	register vm_offset_t start;
974 	register vm_offset_t end;
975 	vm_map_t submap;
976 {
977 	vm_map_entry_t entry;
978 	register int result = KERN_INVALID_ARGUMENT;
979 
980 	vm_map_lock(map);
981 
982 	VM_MAP_RANGE_CHECK(map, start, end);
983 
984 	if (vm_map_lookup_entry(map, start, &entry)) {
985 		vm_map_clip_start(map, entry, start);
986 	} else
987 		entry = entry->next;
988 
989 	vm_map_clip_end(map, entry, end);
990 
991 	if ((entry->start == start) && (entry->end == end) &&
992 	    ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_COW)) == 0) &&
993 	    (entry->object.vm_object == NULL)) {
994 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
995 		vm_map_reference(entry->object.sub_map = submap);
996 		result = KERN_SUCCESS;
997 	}
998 	vm_map_unlock(map);
999 
1000 	return (result);
1001 }
1002 
1003 /*
1004  *	vm_map_protect:
1005  *
1006  *	Sets the protection of the specified address
1007  *	region in the target map.  If "set_max" is
1008  *	specified, the maximum protection is to be set;
1009  *	otherwise, only the current protection is affected.
1010  */
1011 int
1012 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1013 	       vm_prot_t new_prot, boolean_t set_max)
1014 {
1015 	register vm_map_entry_t current;
1016 	vm_map_entry_t entry;
1017 
1018 	vm_map_lock(map);
1019 
1020 	VM_MAP_RANGE_CHECK(map, start, end);
1021 
1022 	if (vm_map_lookup_entry(map, start, &entry)) {
1023 		vm_map_clip_start(map, entry, start);
1024 	} else {
1025 		entry = entry->next;
1026 	}
1027 
1028 	/*
1029 	 * Make a first pass to check for protection violations.
1030 	 */
1031 
1032 	current = entry;
1033 	while ((current != &map->header) && (current->start < end)) {
1034 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1035 			vm_map_unlock(map);
1036 			return (KERN_INVALID_ARGUMENT);
1037 		}
1038 		if ((new_prot & current->max_protection) != new_prot) {
1039 			vm_map_unlock(map);
1040 			return (KERN_PROTECTION_FAILURE);
1041 		}
1042 		current = current->next;
1043 	}
1044 
1045 	/*
1046 	 * Go back and fix up protections. [Note that clipping is not
1047 	 * necessary the second time.]
1048 	 */
1049 
1050 	current = entry;
1051 
1052 	while ((current != &map->header) && (current->start < end)) {
1053 		vm_prot_t old_prot;
1054 
1055 		vm_map_clip_end(map, current, end);
1056 
1057 		old_prot = current->protection;
1058 		if (set_max)
1059 			current->protection =
1060 			    (current->max_protection = new_prot) &
1061 			    old_prot;
1062 		else
1063 			current->protection = new_prot;
1064 
1065 		/*
1066 		 * Update physical map if necessary. Worry about copy-on-write
1067 		 * here -- CHECK THIS XXX
1068 		 */
1069 
1070 		if (current->protection != old_prot) {
1071 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1072 							VM_PROT_ALL)
1073 
1074 			if (current->eflags & MAP_ENTRY_IS_A_MAP) {
1075 				vm_map_entry_t share_entry;
1076 				vm_offset_t share_end;
1077 
1078 				vm_map_lock(current->object.share_map);
1079 				(void) vm_map_lookup_entry(
1080 				    current->object.share_map,
1081 				    current->offset,
1082 				    &share_entry);
1083 				share_end = current->offset +
1084 				    (current->end - current->start);
1085 				while ((share_entry !=
1086 					&current->object.share_map->header) &&
1087 				    (share_entry->start < share_end)) {
1088 
1089 					pmap_protect(map->pmap,
1090 					    (qmax(share_entry->start,
1091 						    current->offset) -
1092 						current->offset +
1093 						current->start),
1094 					    min(share_entry->end,
1095 						share_end) -
1096 					    current->offset +
1097 					    current->start,
1098 					    current->protection &
1099 					    MASK(share_entry));
1100 
1101 					share_entry = share_entry->next;
1102 				}
1103 				vm_map_unlock(current->object.share_map);
1104 			} else
1105 				pmap_protect(map->pmap, current->start,
1106 				    current->end,
1107 				    current->protection & MASK(entry));
1108 #undef	MASK
1109 		}
1110 
1111 		vm_map_simplify_entry(map, current);
1112 
1113 		current = current->next;
1114 	}
1115 
1116 	vm_map_unlock(map);
1117 	return (KERN_SUCCESS);
1118 }
1119 
1120 /*
1121  *	vm_map_madvise:
1122  *
1123  * 	This routine traverses a processes map handling the madvise
1124  *	system call.
1125  */
1126 void
1127 vm_map_madvise(map, pmap, start, end, advise)
1128 	vm_map_t map;
1129 	pmap_t pmap;
1130 	vm_offset_t start, end;
1131 	int advise;
1132 {
1133 	register vm_map_entry_t current;
1134 	vm_map_entry_t entry;
1135 
1136 	vm_map_lock(map);
1137 
1138 	VM_MAP_RANGE_CHECK(map, start, end);
1139 
1140 	if (vm_map_lookup_entry(map, start, &entry)) {
1141 		vm_map_clip_start(map, entry, start);
1142 	} else
1143 		entry = entry->next;
1144 
1145 	for(current = entry;
1146 		(current != &map->header) && (current->start < end);
1147 		current = current->next) {
1148 		vm_size_t size = current->end - current->start;
1149 
1150 		if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) {
1151 			continue;
1152 		}
1153 
1154 		/*
1155 		 * Create an object if needed
1156 		 */
1157 		if (current->object.vm_object == NULL) {
1158 			vm_object_t object;
1159 			object = vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(size));
1160 			current->object.vm_object = object;
1161 			current->offset = 0;
1162 		}
1163 
1164 		vm_map_clip_end(map, current, end);
1165 		switch (advise) {
1166 	case MADV_NORMAL:
1167 			current->object.vm_object->behavior = OBJ_NORMAL;
1168 			break;
1169 	case MADV_SEQUENTIAL:
1170 			current->object.vm_object->behavior = OBJ_SEQUENTIAL;
1171 			break;
1172 	case MADV_RANDOM:
1173 			current->object.vm_object->behavior = OBJ_RANDOM;
1174 			break;
1175 	/*
1176 	 * Right now, we could handle DONTNEED and WILLNEED with common code.
1177 	 * They are mostly the same, except for the potential async reads (NYI).
1178 	 */
1179 	case MADV_FREE:
1180 	case MADV_DONTNEED:
1181 			{
1182 				vm_pindex_t pindex;
1183 				int count;
1184 				size = current->end - current->start;
1185 				pindex = OFF_TO_IDX(entry->offset);
1186 				count = OFF_TO_IDX(size);
1187 				/*
1188 				 * MADV_DONTNEED removes the page from all
1189 				 * pmaps, so pmap_remove is not necessary.
1190 				 */
1191 				vm_object_madvise(current->object.vm_object,
1192 					pindex, count, advise);
1193 			}
1194 			break;
1195 
1196 	case MADV_WILLNEED:
1197 			{
1198 				vm_pindex_t pindex;
1199 				int count;
1200 				size = current->end - current->start;
1201 				pindex = OFF_TO_IDX(current->offset);
1202 				count = OFF_TO_IDX(size);
1203 				vm_object_madvise(current->object.vm_object,
1204 					pindex, count, advise);
1205 				pmap_object_init_pt(pmap, current->start,
1206 					current->object.vm_object, pindex,
1207 					(count << PAGE_SHIFT), 0);
1208 			}
1209 			break;
1210 
1211 	default:
1212 			break;
1213 		}
1214 	}
1215 
1216 	vm_map_simplify_entry(map, entry);
1217 	vm_map_unlock(map);
1218 	return;
1219 }
1220 
1221 
1222 /*
1223  *	vm_map_inherit:
1224  *
1225  *	Sets the inheritance of the specified address
1226  *	range in the target map.  Inheritance
1227  *	affects how the map will be shared with
1228  *	child maps at the time of vm_map_fork.
1229  */
1230 int
1231 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1232 	       vm_inherit_t new_inheritance)
1233 {
1234 	register vm_map_entry_t entry;
1235 	vm_map_entry_t temp_entry;
1236 
1237 	switch (new_inheritance) {
1238 	case VM_INHERIT_NONE:
1239 	case VM_INHERIT_COPY:
1240 	case VM_INHERIT_SHARE:
1241 		break;
1242 	default:
1243 		return (KERN_INVALID_ARGUMENT);
1244 	}
1245 
1246 	vm_map_lock(map);
1247 
1248 	VM_MAP_RANGE_CHECK(map, start, end);
1249 
1250 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1251 		entry = temp_entry;
1252 		vm_map_clip_start(map, entry, start);
1253 	} else
1254 		entry = temp_entry->next;
1255 
1256 	while ((entry != &map->header) && (entry->start < end)) {
1257 		vm_map_clip_end(map, entry, end);
1258 
1259 		entry->inheritance = new_inheritance;
1260 
1261 		entry = entry->next;
1262 	}
1263 
1264 	vm_map_simplify_entry(map, temp_entry);
1265 	vm_map_unlock(map);
1266 	return (KERN_SUCCESS);
1267 }
1268 
1269 /*
1270  * Implement the semantics of mlock
1271  */
1272 int
1273 vm_map_user_pageable(map, start, end, new_pageable)
1274 	register vm_map_t map;
1275 	register vm_offset_t start;
1276 	register vm_offset_t end;
1277 	register boolean_t new_pageable;
1278 {
1279 	vm_map_entry_t entry;
1280 	vm_map_entry_t start_entry;
1281 	vm_offset_t estart;
1282 	int rv;
1283 
1284 	vm_map_lock(map);
1285 	VM_MAP_RANGE_CHECK(map, start, end);
1286 
1287 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1288 		vm_map_unlock(map);
1289 		return (KERN_INVALID_ADDRESS);
1290 	}
1291 
1292 	if (new_pageable) {
1293 
1294 		entry = start_entry;
1295 		vm_map_clip_start(map, entry, start);
1296 
1297 		/*
1298 		 * Now decrement the wiring count for each region. If a region
1299 		 * becomes completely unwired, unwire its physical pages and
1300 		 * mappings.
1301 		 */
1302 		vm_map_set_recursive(map);
1303 
1304 		entry = start_entry;
1305 		while ((entry != &map->header) && (entry->start < end)) {
1306 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1307 				vm_map_clip_end(map, entry, end);
1308 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1309 				entry->wired_count--;
1310 				if (entry->wired_count == 0)
1311 					vm_fault_unwire(map, entry->start, entry->end);
1312 			}
1313 			vm_map_simplify_entry(map,entry);
1314 			entry = entry->next;
1315 		}
1316 		vm_map_clear_recursive(map);
1317 	} else {
1318 
1319 		entry = start_entry;
1320 
1321 		while ((entry != &map->header) && (entry->start < end)) {
1322 
1323 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1324 				entry = entry->next;
1325 				continue;
1326 			}
1327 
1328 			if (entry->wired_count != 0) {
1329 				entry->wired_count++;
1330 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1331 				entry = entry->next;
1332 				continue;
1333 			}
1334 
1335 			/* Here on entry being newly wired */
1336 
1337 			if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
1338 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1339 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1340 
1341 					vm_object_shadow(&entry->object.vm_object,
1342 					    &entry->offset,
1343 					    atop(entry->end - entry->start));
1344 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1345 
1346 				} else if (entry->object.vm_object == NULL) {
1347 
1348 					entry->object.vm_object =
1349 					    vm_object_allocate(OBJT_DEFAULT,
1350 						atop(entry->end - entry->start));
1351 					entry->offset = (vm_offset_t) 0;
1352 
1353 				}
1354 				default_pager_convert_to_swapq(entry->object.vm_object);
1355 			}
1356 
1357 			vm_map_clip_start(map, entry, start);
1358 			vm_map_clip_end(map, entry, end);
1359 
1360 			entry->wired_count++;
1361 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1362 			estart = entry->start;
1363 
1364 			/* First we need to allow map modifications */
1365 			vm_map_set_recursive(map);
1366 			vm_map_lock_downgrade(map);
1367 
1368 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1369 			if (rv) {
1370 
1371 				entry->wired_count--;
1372 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1373 
1374 				vm_map_clear_recursive(map);
1375 				vm_map_unlock(map);
1376 
1377 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1378 				return rv;
1379 			}
1380 
1381 			vm_map_clear_recursive(map);
1382 			if (vm_map_lock_upgrade(map)) {
1383 				vm_map_lock(map);
1384 				if (vm_map_lookup_entry(map, estart, &entry)
1385 				    == FALSE) {
1386 					vm_map_unlock(map);
1387 					(void) vm_map_user_pageable(map,
1388 								    start,
1389 								    estart,
1390 								    TRUE);
1391 					return (KERN_INVALID_ADDRESS);
1392 				}
1393 			}
1394 			vm_map_simplify_entry(map,entry);
1395 		}
1396 	}
1397 	vm_map_unlock(map);
1398 	return KERN_SUCCESS;
1399 }
1400 
1401 /*
1402  *	vm_map_pageable:
1403  *
1404  *	Sets the pageability of the specified address
1405  *	range in the target map.  Regions specified
1406  *	as not pageable require locked-down physical
1407  *	memory and physical page maps.
1408  *
1409  *	The map must not be locked, but a reference
1410  *	must remain to the map throughout the call.
1411  */
1412 int
1413 vm_map_pageable(map, start, end, new_pageable)
1414 	register vm_map_t map;
1415 	register vm_offset_t start;
1416 	register vm_offset_t end;
1417 	register boolean_t new_pageable;
1418 {
1419 	register vm_map_entry_t entry;
1420 	vm_map_entry_t start_entry;
1421 	register vm_offset_t failed = 0;
1422 	int rv;
1423 
1424 	vm_map_lock(map);
1425 
1426 	VM_MAP_RANGE_CHECK(map, start, end);
1427 
1428 	/*
1429 	 * Only one pageability change may take place at one time, since
1430 	 * vm_fault assumes it will be called only once for each
1431 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1432 	 * changing the pageability for the entire region.  We do so before
1433 	 * making any changes.
1434 	 */
1435 
1436 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1437 		vm_map_unlock(map);
1438 		return (KERN_INVALID_ADDRESS);
1439 	}
1440 	entry = start_entry;
1441 
1442 	/*
1443 	 * Actions are rather different for wiring and unwiring, so we have
1444 	 * two separate cases.
1445 	 */
1446 
1447 	if (new_pageable) {
1448 
1449 		vm_map_clip_start(map, entry, start);
1450 
1451 		/*
1452 		 * Unwiring.  First ensure that the range to be unwired is
1453 		 * really wired down and that there are no holes.
1454 		 */
1455 		while ((entry != &map->header) && (entry->start < end)) {
1456 
1457 			if (entry->wired_count == 0 ||
1458 			    (entry->end < end &&
1459 				(entry->next == &map->header ||
1460 				    entry->next->start > entry->end))) {
1461 				vm_map_unlock(map);
1462 				return (KERN_INVALID_ARGUMENT);
1463 			}
1464 			entry = entry->next;
1465 		}
1466 
1467 		/*
1468 		 * Now decrement the wiring count for each region. If a region
1469 		 * becomes completely unwired, unwire its physical pages and
1470 		 * mappings.
1471 		 */
1472 		vm_map_set_recursive(map);
1473 
1474 		entry = start_entry;
1475 		while ((entry != &map->header) && (entry->start < end)) {
1476 			vm_map_clip_end(map, entry, end);
1477 
1478 			entry->wired_count--;
1479 			if (entry->wired_count == 0)
1480 				vm_fault_unwire(map, entry->start, entry->end);
1481 
1482 			entry = entry->next;
1483 		}
1484 		vm_map_simplify_entry(map, start_entry);
1485 		vm_map_clear_recursive(map);
1486 	} else {
1487 		/*
1488 		 * Wiring.  We must do this in two passes:
1489 		 *
1490 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1491 		 * objects that need to be created. Then we clip each map
1492 		 * entry to the region to be wired and increment its wiring
1493 		 * count.  We create objects before clipping the map entries
1494 		 * to avoid object proliferation.
1495 		 *
1496 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1497 		 * fault in the pages for any newly wired area (wired_count is
1498 		 * 1).
1499 		 *
1500 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1501 		 * deadlock with another process that may have faulted on one
1502 		 * of the pages to be wired (it would mark the page busy,
1503 		 * blocking us, then in turn block on the map lock that we
1504 		 * hold).  Because of problems in the recursive lock package,
1505 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1506 		 * any actions that require the write lock must be done
1507 		 * beforehand.  Because we keep the read lock on the map, the
1508 		 * copy-on-write status of the entries we modify here cannot
1509 		 * change.
1510 		 */
1511 
1512 		/*
1513 		 * Pass 1.
1514 		 */
1515 		while ((entry != &map->header) && (entry->start < end)) {
1516 			if (entry->wired_count == 0) {
1517 
1518 				/*
1519 				 * Perform actions of vm_map_lookup that need
1520 				 * the write lock on the map: create a shadow
1521 				 * object for a copy-on-write region, or an
1522 				 * object for a zero-fill region.
1523 				 *
1524 				 * We don't have to do this for entries that
1525 				 * point to sharing maps, because we won't
1526 				 * hold the lock on the sharing map.
1527 				 */
1528 				if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) {
1529 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1530 					if (copyflag &&
1531 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1532 
1533 						vm_object_shadow(&entry->object.vm_object,
1534 						    &entry->offset,
1535 						    atop(entry->end - entry->start));
1536 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1537 					} else if (entry->object.vm_object == NULL) {
1538 						entry->object.vm_object =
1539 						    vm_object_allocate(OBJT_DEFAULT,
1540 							atop(entry->end - entry->start));
1541 						entry->offset = (vm_offset_t) 0;
1542 					}
1543 					default_pager_convert_to_swapq(entry->object.vm_object);
1544 				}
1545 			}
1546 			vm_map_clip_start(map, entry, start);
1547 			vm_map_clip_end(map, entry, end);
1548 			entry->wired_count++;
1549 
1550 			/*
1551 			 * Check for holes
1552 			 */
1553 			if (entry->end < end &&
1554 			    (entry->next == &map->header ||
1555 				entry->next->start > entry->end)) {
1556 				/*
1557 				 * Found one.  Object creation actions do not
1558 				 * need to be undone, but the wired counts
1559 				 * need to be restored.
1560 				 */
1561 				while (entry != &map->header && entry->end > start) {
1562 					entry->wired_count--;
1563 					entry = entry->prev;
1564 				}
1565 				vm_map_unlock(map);
1566 				return (KERN_INVALID_ARGUMENT);
1567 			}
1568 			entry = entry->next;
1569 		}
1570 
1571 		/*
1572 		 * Pass 2.
1573 		 */
1574 
1575 		/*
1576 		 * HACK HACK HACK HACK
1577 		 *
1578 		 * If we are wiring in the kernel map or a submap of it,
1579 		 * unlock the map to avoid deadlocks.  We trust that the
1580 		 * kernel is well-behaved, and therefore will not do
1581 		 * anything destructive to this region of the map while
1582 		 * we have it unlocked.  We cannot trust user processes
1583 		 * to do the same.
1584 		 *
1585 		 * HACK HACK HACK HACK
1586 		 */
1587 		if (vm_map_pmap(map) == kernel_pmap) {
1588 			vm_map_unlock(map);	/* trust me ... */
1589 		} else {
1590 			vm_map_set_recursive(map);
1591 			vm_map_lock_downgrade(map);
1592 		}
1593 
1594 		rv = 0;
1595 		entry = start_entry;
1596 		while (entry != &map->header && entry->start < end) {
1597 			/*
1598 			 * If vm_fault_wire fails for any page we need to undo
1599 			 * what has been done.  We decrement the wiring count
1600 			 * for those pages which have not yet been wired (now)
1601 			 * and unwire those that have (later).
1602 			 *
1603 			 * XXX this violates the locking protocol on the map,
1604 			 * needs to be fixed.
1605 			 */
1606 			if (rv)
1607 				entry->wired_count--;
1608 			else if (entry->wired_count == 1) {
1609 				rv = vm_fault_wire(map, entry->start, entry->end);
1610 				if (rv) {
1611 					failed = entry->start;
1612 					entry->wired_count--;
1613 				}
1614 			}
1615 			entry = entry->next;
1616 		}
1617 
1618 		if (vm_map_pmap(map) == kernel_pmap) {
1619 			vm_map_lock(map);
1620 		} else {
1621 			vm_map_clear_recursive(map);
1622 		}
1623 		if (rv) {
1624 			vm_map_unlock(map);
1625 			(void) vm_map_pageable(map, start, failed, TRUE);
1626 			return (rv);
1627 		}
1628 		vm_map_simplify_entry(map, start_entry);
1629 	}
1630 
1631 	vm_map_unlock(map);
1632 
1633 	return (KERN_SUCCESS);
1634 }
1635 
1636 /*
1637  * vm_map_clean
1638  *
1639  * Push any dirty cached pages in the address range to their pager.
1640  * If syncio is TRUE, dirty pages are written synchronously.
1641  * If invalidate is TRUE, any cached pages are freed as well.
1642  *
1643  * Returns an error if any part of the specified range is not mapped.
1644  */
1645 int
1646 vm_map_clean(map, start, end, syncio, invalidate)
1647 	vm_map_t map;
1648 	vm_offset_t start;
1649 	vm_offset_t end;
1650 	boolean_t syncio;
1651 	boolean_t invalidate;
1652 {
1653 	register vm_map_entry_t current;
1654 	vm_map_entry_t entry;
1655 	vm_size_t size;
1656 	vm_object_t object;
1657 	vm_ooffset_t offset;
1658 
1659 	vm_map_lock_read(map);
1660 	VM_MAP_RANGE_CHECK(map, start, end);
1661 	if (!vm_map_lookup_entry(map, start, &entry)) {
1662 		vm_map_unlock_read(map);
1663 		return (KERN_INVALID_ADDRESS);
1664 	}
1665 	/*
1666 	 * Make a first pass to check for holes.
1667 	 */
1668 	for (current = entry; current->start < end; current = current->next) {
1669 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1670 			vm_map_unlock_read(map);
1671 			return (KERN_INVALID_ARGUMENT);
1672 		}
1673 		if (end > current->end &&
1674 		    (current->next == &map->header ||
1675 			current->end != current->next->start)) {
1676 			vm_map_unlock_read(map);
1677 			return (KERN_INVALID_ADDRESS);
1678 		}
1679 	}
1680 
1681 	/*
1682 	 * Make a second pass, cleaning/uncaching pages from the indicated
1683 	 * objects as we go.
1684 	 */
1685 	for (current = entry; current->start < end; current = current->next) {
1686 		offset = current->offset + (start - current->start);
1687 		size = (end <= current->end ? end : current->end) - start;
1688 		if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) {
1689 			register vm_map_t smap;
1690 			vm_map_entry_t tentry;
1691 			vm_size_t tsize;
1692 
1693 			smap = current->object.share_map;
1694 			vm_map_lock_read(smap);
1695 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1696 			tsize = tentry->end - offset;
1697 			if (tsize < size)
1698 				size = tsize;
1699 			object = tentry->object.vm_object;
1700 			offset = tentry->offset + (offset - tentry->start);
1701 			vm_map_unlock_read(smap);
1702 		} else {
1703 			object = current->object.vm_object;
1704 		}
1705 		/*
1706 		 * Note that there is absolutely no sense in writing out
1707 		 * anonymous objects, so we track down the vnode object
1708 		 * to write out.
1709 		 * We invalidate (remove) all pages from the address space
1710 		 * anyway, for semantic correctness.
1711 		 */
1712 		while (object->backing_object) {
1713 			object = object->backing_object;
1714 			offset += object->backing_object_offset;
1715 			if (object->size < OFF_TO_IDX( offset + size))
1716 				size = IDX_TO_OFF(object->size) - offset;
1717 		}
1718 		if (invalidate)
1719 			pmap_remove(vm_map_pmap(map), current->start,
1720 				current->start + size);
1721 		if (object && (object->type == OBJT_VNODE)) {
1722 			/*
1723 			 * Flush pages if writing is allowed. XXX should we continue
1724 			 * on an error?
1725 			 *
1726 			 * XXX Doing async I/O and then removing all the pages from
1727 			 *     the object before it completes is probably a very bad
1728 			 *     idea.
1729 			 */
1730 			if (current->protection & VM_PROT_WRITE) {
1731 				if (object->type == OBJT_VNODE)
1732 					vn_lock(object->handle, LK_EXCLUSIVE, curproc);
1733 		   	    vm_object_page_clean(object,
1734 					OFF_TO_IDX(offset),
1735 					OFF_TO_IDX(offset + size + PAGE_MASK),
1736 					(syncio||invalidate)?1:0);
1737 				if (invalidate)
1738 					vm_object_page_remove(object,
1739 						OFF_TO_IDX(offset),
1740 						OFF_TO_IDX(offset + size + PAGE_MASK),
1741 						FALSE);
1742 				if (object->type == OBJT_VNODE)
1743 					VOP_UNLOCK(object->handle, 0, curproc);
1744 			}
1745 		}
1746 		start += size;
1747 	}
1748 
1749 	vm_map_unlock_read(map);
1750 	return (KERN_SUCCESS);
1751 }
1752 
1753 /*
1754  *	vm_map_entry_unwire:	[ internal use only ]
1755  *
1756  *	Make the region specified by this entry pageable.
1757  *
1758  *	The map in question should be locked.
1759  *	[This is the reason for this routine's existence.]
1760  */
1761 static void
1762 vm_map_entry_unwire(map, entry)
1763 	vm_map_t map;
1764 	register vm_map_entry_t entry;
1765 {
1766 	vm_fault_unwire(map, entry->start, entry->end);
1767 	entry->wired_count = 0;
1768 }
1769 
1770 /*
1771  *	vm_map_entry_delete:	[ internal use only ]
1772  *
1773  *	Deallocate the given entry from the target map.
1774  */
1775 static void
1776 vm_map_entry_delete(map, entry)
1777 	register vm_map_t map;
1778 	register vm_map_entry_t entry;
1779 {
1780 	vm_map_entry_unlink(map, entry);
1781 	map->size -= entry->end - entry->start;
1782 
1783 	if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) {
1784 		vm_map_deallocate(entry->object.share_map);
1785 	} else {
1786 		vm_object_deallocate(entry->object.vm_object);
1787 	}
1788 
1789 	vm_map_entry_dispose(map, entry);
1790 }
1791 
1792 /*
1793  *	vm_map_delete:	[ internal use only ]
1794  *
1795  *	Deallocates the given address range from the target
1796  *	map.
1797  *
1798  *	When called with a sharing map, removes pages from
1799  *	that region from all physical maps.
1800  */
1801 int
1802 vm_map_delete(map, start, end)
1803 	register vm_map_t map;
1804 	vm_offset_t start;
1805 	register vm_offset_t end;
1806 {
1807 	register vm_map_entry_t entry;
1808 	vm_map_entry_t first_entry;
1809 
1810 	/*
1811 	 * Find the start of the region, and clip it
1812 	 */
1813 
1814 	if (!vm_map_lookup_entry(map, start, &first_entry))
1815 		entry = first_entry->next;
1816 	else {
1817 		entry = first_entry;
1818 		vm_map_clip_start(map, entry, start);
1819 
1820 		/*
1821 		 * Fix the lookup hint now, rather than each time though the
1822 		 * loop.
1823 		 */
1824 
1825 		SAVE_HINT(map, entry->prev);
1826 	}
1827 
1828 	/*
1829 	 * Save the free space hint
1830 	 */
1831 
1832 	if (entry == &map->header) {
1833 		map->first_free = &map->header;
1834 	} else if (map->first_free->start >= start)
1835 		map->first_free = entry->prev;
1836 
1837 	/*
1838 	 * Step through all entries in this region
1839 	 */
1840 
1841 	while ((entry != &map->header) && (entry->start < end)) {
1842 		vm_map_entry_t next;
1843 		vm_offset_t s, e;
1844 		vm_object_t object;
1845 		vm_ooffset_t offset;
1846 
1847 		vm_map_clip_end(map, entry, end);
1848 
1849 		next = entry->next;
1850 		s = entry->start;
1851 		e = entry->end;
1852 		offset = entry->offset;
1853 
1854 		/*
1855 		 * Unwire before removing addresses from the pmap; otherwise,
1856 		 * unwiring will put the entries back in the pmap.
1857 		 */
1858 
1859 		object = entry->object.vm_object;
1860 		if (entry->wired_count != 0)
1861 			vm_map_entry_unwire(map, entry);
1862 
1863 		/*
1864 		 * If this is a sharing map, we must remove *all* references
1865 		 * to this data, since we can't find all of the physical maps
1866 		 * which are sharing it.
1867 		 */
1868 
1869 		if (object == kernel_object || object == kmem_object) {
1870 			vm_object_page_remove(object, OFF_TO_IDX(offset),
1871 			    OFF_TO_IDX(offset + (e - s)), FALSE);
1872 		} else if (!map->is_main_map) {
1873 			vm_object_pmap_remove(object,
1874 			    OFF_TO_IDX(offset),
1875 			    OFF_TO_IDX(offset + (e - s)));
1876 		} else {
1877 			pmap_remove(map->pmap, s, e);
1878 		}
1879 
1880 		/*
1881 		 * Delete the entry (which may delete the object) only after
1882 		 * removing all pmap entries pointing to its pages.
1883 		 * (Otherwise, its page frames may be reallocated, and any
1884 		 * modify bits will be set in the wrong object!)
1885 		 */
1886 
1887 		vm_map_entry_delete(map, entry);
1888 		entry = next;
1889 	}
1890 	return (KERN_SUCCESS);
1891 }
1892 
1893 /*
1894  *	vm_map_remove:
1895  *
1896  *	Remove the given address range from the target map.
1897  *	This is the exported form of vm_map_delete.
1898  */
1899 int
1900 vm_map_remove(map, start, end)
1901 	register vm_map_t map;
1902 	register vm_offset_t start;
1903 	register vm_offset_t end;
1904 {
1905 	register int result, s = 0;
1906 
1907 	if (map == kmem_map || map == mb_map)
1908 		s = splvm();
1909 
1910 	vm_map_lock(map);
1911 	VM_MAP_RANGE_CHECK(map, start, end);
1912 	result = vm_map_delete(map, start, end);
1913 	vm_map_unlock(map);
1914 
1915 	if (map == kmem_map || map == mb_map)
1916 		splx(s);
1917 
1918 	return (result);
1919 }
1920 
1921 /*
1922  *	vm_map_check_protection:
1923  *
1924  *	Assert that the target map allows the specified
1925  *	privilege on the entire address region given.
1926  *	The entire region must be allocated.
1927  */
1928 boolean_t
1929 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1930 			vm_prot_t protection)
1931 {
1932 	register vm_map_entry_t entry;
1933 	vm_map_entry_t tmp_entry;
1934 
1935 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1936 		return (FALSE);
1937 	}
1938 	entry = tmp_entry;
1939 
1940 	while (start < end) {
1941 		if (entry == &map->header) {
1942 			return (FALSE);
1943 		}
1944 		/*
1945 		 * No holes allowed!
1946 		 */
1947 
1948 		if (start < entry->start) {
1949 			return (FALSE);
1950 		}
1951 		/*
1952 		 * Check protection associated with entry.
1953 		 */
1954 
1955 		if ((entry->protection & protection) != protection) {
1956 			return (FALSE);
1957 		}
1958 		/* go to next entry */
1959 
1960 		start = entry->end;
1961 		entry = entry->next;
1962 	}
1963 	return (TRUE);
1964 }
1965 
1966 /*
1967  *	vm_map_copy_entry:
1968  *
1969  *	Copies the contents of the source entry to the destination
1970  *	entry.  The entries *must* be aligned properly.
1971  */
1972 static void
1973 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
1974 	vm_map_t src_map, dst_map;
1975 	register vm_map_entry_t src_entry, dst_entry;
1976 {
1977 	if ((dst_entry->eflags|src_entry->eflags) &
1978 		(MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP))
1979 		return;
1980 
1981 	if (src_entry->wired_count == 0) {
1982 
1983 		/*
1984 		 * If the source entry is marked needs_copy, it is already
1985 		 * write-protected.
1986 		 */
1987 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1988 
1989 			boolean_t su;
1990 
1991 			/*
1992 			 * If the source entry has only one mapping, we can
1993 			 * just protect the virtual address range.
1994 			 */
1995 			if (!(su = src_map->is_main_map)) {
1996 				su = (src_map->ref_count == 1);
1997 			}
1998 			if (su) {
1999 				pmap_protect(src_map->pmap,
2000 				    src_entry->start,
2001 				    src_entry->end,
2002 				    src_entry->protection & ~VM_PROT_WRITE);
2003 			} else {
2004 				vm_object_pmap_copy(src_entry->object.vm_object,
2005 				    OFF_TO_IDX(src_entry->offset),
2006 				    OFF_TO_IDX(src_entry->offset + (src_entry->end
2007 					- src_entry->start)));
2008 			}
2009 		}
2010 
2011 		/*
2012 		 * Make a copy of the object.
2013 		 */
2014 		if (src_entry->object.vm_object) {
2015 			if ((src_entry->object.vm_object->handle == NULL) &&
2016 				(src_entry->object.vm_object->type == OBJT_DEFAULT ||
2017 				 src_entry->object.vm_object->type == OBJT_SWAP))
2018 				vm_object_collapse(src_entry->object.vm_object);
2019 			vm_object_reference(src_entry->object.vm_object);
2020 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2021 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2022 			dst_entry->object.vm_object =
2023 				src_entry->object.vm_object;
2024 			dst_entry->offset = src_entry->offset;
2025 		} else {
2026 			dst_entry->object.vm_object = NULL;
2027 			dst_entry->offset = 0;
2028 		}
2029 
2030 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2031 		    dst_entry->end - dst_entry->start, src_entry->start);
2032 	} else {
2033 		/*
2034 		 * Of course, wired down pages can't be set copy-on-write.
2035 		 * Cause wired pages to be copied into the new map by
2036 		 * simulating faults (the new pages are pageable)
2037 		 */
2038 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2039 	}
2040 }
2041 
2042 /*
2043  * vmspace_fork:
2044  * Create a new process vmspace structure and vm_map
2045  * based on those of an existing process.  The new map
2046  * is based on the old map, according to the inheritance
2047  * values on the regions in that map.
2048  *
2049  * The source map must not be locked.
2050  */
2051 struct vmspace *
2052 vmspace_fork(vm1)
2053 	register struct vmspace *vm1;
2054 {
2055 	register struct vmspace *vm2;
2056 	vm_map_t old_map = &vm1->vm_map;
2057 	vm_map_t new_map;
2058 	vm_map_entry_t old_entry;
2059 	vm_map_entry_t new_entry;
2060 	pmap_t new_pmap;
2061 	vm_object_t object;
2062 
2063 	vm_map_lock(old_map);
2064 
2065 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset,
2066 	    old_map->entries_pageable);
2067 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2068 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2069 	new_pmap = &vm2->vm_pmap;	/* XXX */
2070 	new_map = &vm2->vm_map;	/* XXX */
2071 
2072 	old_entry = old_map->header.next;
2073 
2074 	while (old_entry != &old_map->header) {
2075 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2076 			panic("vm_map_fork: encountered a submap");
2077 
2078 		switch (old_entry->inheritance) {
2079 		case VM_INHERIT_NONE:
2080 			break;
2081 
2082 		case VM_INHERIT_SHARE:
2083 			/*
2084 			 * Clone the entry, creating the shared object if necessary.
2085 			 */
2086 			object = old_entry->object.vm_object;
2087 			if (object == NULL) {
2088 				object = vm_object_allocate(OBJT_DEFAULT,
2089 					atop(old_entry->end - old_entry->start));
2090 				old_entry->object.vm_object = object;
2091 				old_entry->offset = (vm_offset_t) 0;
2092 			} else if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2093 				vm_object_shadow(&old_entry->object.vm_object,
2094 					&old_entry->offset,
2095 					atop(old_entry->end - old_entry->start));
2096 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2097 				object = old_entry->object.vm_object;
2098 			}
2099 
2100 			/*
2101 			 * Clone the entry, referencing the sharing map.
2102 			 */
2103 			new_entry = vm_map_entry_create(new_map);
2104 			*new_entry = *old_entry;
2105 			new_entry->wired_count = 0;
2106 			vm_object_reference(object);
2107 
2108 			/*
2109 			 * Insert the entry into the new map -- we know we're
2110 			 * inserting at the end of the new map.
2111 			 */
2112 
2113 			vm_map_entry_link(new_map, new_map->header.prev,
2114 			    new_entry);
2115 
2116 			/*
2117 			 * Update the physical map
2118 			 */
2119 
2120 			pmap_copy(new_map->pmap, old_map->pmap,
2121 			    new_entry->start,
2122 			    (old_entry->end - old_entry->start),
2123 			    old_entry->start);
2124 			break;
2125 
2126 		case VM_INHERIT_COPY:
2127 			/*
2128 			 * Clone the entry and link into the map.
2129 			 */
2130 			new_entry = vm_map_entry_create(new_map);
2131 			*new_entry = *old_entry;
2132 			new_entry->wired_count = 0;
2133 			new_entry->object.vm_object = NULL;
2134 			new_entry->eflags &= ~MAP_ENTRY_IS_A_MAP;
2135 			vm_map_entry_link(new_map, new_map->header.prev,
2136 			    new_entry);
2137 			vm_map_copy_entry(old_map, new_map, old_entry,
2138 			    new_entry);
2139 			break;
2140 		}
2141 		old_entry = old_entry->next;
2142 	}
2143 
2144 	new_map->size = old_map->size;
2145 	vm_map_unlock(old_map);
2146 
2147 	return (vm2);
2148 }
2149 
2150 /*
2151  * Unshare the specified VM space for exec.  If other processes are
2152  * mapped to it, then create a new one.  The new vmspace is null.
2153  */
2154 
2155 void
2156 vmspace_exec(struct proc *p) {
2157 	struct vmspace *oldvmspace = p->p_vmspace;
2158 	struct vmspace *newvmspace;
2159 	vm_map_t map = &p->p_vmspace->vm_map;
2160 
2161 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset,
2162 	    map->entries_pageable);
2163 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2164 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2165 	/*
2166 	 * This code is written like this for prototype purposes.  The
2167 	 * goal is to avoid running down the vmspace here, but let the
2168 	 * other process's that are still using the vmspace to finally
2169 	 * run it down.  Even though there is little or no chance of blocking
2170 	 * here, it is a good idea to keep this form for future mods.
2171 	 */
2172 	vm_map_reference(&oldvmspace->vm_map);
2173 	vmspace_free(oldvmspace);
2174 	p->p_vmspace = newvmspace;
2175 	if (p == curproc)
2176 		pmap_activate(p);
2177 	vm_map_deallocate(&oldvmspace->vm_map);
2178 }
2179 
2180 /*
2181  * Unshare the specified VM space for forcing COW.  This
2182  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2183  */
2184 
2185 void
2186 vmspace_unshare(struct proc *p) {
2187 	struct vmspace *oldvmspace = p->p_vmspace;
2188 	struct vmspace *newvmspace;
2189 
2190 	if (oldvmspace->vm_refcnt == 1)
2191 		return;
2192 	newvmspace = vmspace_fork(oldvmspace);
2193 	vm_map_reference(&oldvmspace->vm_map);
2194 	vmspace_free(oldvmspace);
2195 	p->p_vmspace = newvmspace;
2196 	if (p == curproc)
2197 		pmap_activate(p);
2198 	vm_map_deallocate(&oldvmspace->vm_map);
2199 }
2200 
2201 
2202 /*
2203  *	vm_map_lookup:
2204  *
2205  *	Finds the VM object, offset, and
2206  *	protection for a given virtual address in the
2207  *	specified map, assuming a page fault of the
2208  *	type specified.
2209  *
2210  *	Leaves the map in question locked for read; return
2211  *	values are guaranteed until a vm_map_lookup_done
2212  *	call is performed.  Note that the map argument
2213  *	is in/out; the returned map must be used in
2214  *	the call to vm_map_lookup_done.
2215  *
2216  *	A handle (out_entry) is returned for use in
2217  *	vm_map_lookup_done, to make that fast.
2218  *
2219  *	If a lookup is requested with "write protection"
2220  *	specified, the map may be changed to perform virtual
2221  *	copying operations, although the data referenced will
2222  *	remain the same.
2223  */
2224 int
2225 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2226 	      vm_offset_t vaddr,
2227 	      vm_prot_t fault_type,
2228 	      vm_map_entry_t *out_entry,	/* OUT */
2229 	      vm_object_t *object,		/* OUT */
2230 	      vm_pindex_t *pindex,		/* OUT */
2231 	      vm_prot_t *out_prot,		/* OUT */
2232 	      boolean_t *wired,			/* OUT */
2233 	      boolean_t *single_use)		/* OUT */
2234 {
2235 	vm_map_t share_map;
2236 	vm_offset_t share_offset;
2237 	register vm_map_entry_t entry;
2238 	register vm_map_t map = *var_map;
2239 	register vm_prot_t prot;
2240 	register boolean_t su;
2241 
2242 RetryLookup:;
2243 
2244 	/*
2245 	 * Lookup the faulting address.
2246 	 */
2247 
2248 	vm_map_lock_read(map);
2249 
2250 #define	RETURN(why) \
2251 		{ \
2252 		vm_map_unlock_read(map); \
2253 		return(why); \
2254 		}
2255 
2256 	/*
2257 	 * If the map has an interesting hint, try it before calling full
2258 	 * blown lookup routine.
2259 	 */
2260 
2261 	entry = map->hint;
2262 
2263 	*out_entry = entry;
2264 
2265 	if ((entry == &map->header) ||
2266 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2267 		vm_map_entry_t tmp_entry;
2268 
2269 		/*
2270 		 * Entry was either not a valid hint, or the vaddr was not
2271 		 * contained in the entry, so do a full lookup.
2272 		 */
2273 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2274 			RETURN(KERN_INVALID_ADDRESS);
2275 
2276 		entry = tmp_entry;
2277 		*out_entry = entry;
2278 	}
2279 
2280 	/*
2281 	 * Handle submaps.
2282 	 */
2283 
2284 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2285 		vm_map_t old_map = map;
2286 
2287 		*var_map = map = entry->object.sub_map;
2288 		vm_map_unlock_read(old_map);
2289 		goto RetryLookup;
2290 	}
2291 
2292 	/*
2293 	 * Check whether this task is allowed to have this page.
2294 	 * Note the special case for MAP_ENTRY_COW
2295 	 * pages with an override.  This is to implement a forced
2296 	 * COW for debuggers.
2297 	 */
2298 
2299 	prot = entry->protection;
2300 	if ((fault_type & VM_PROT_OVERRIDE_WRITE) == 0 ||
2301 		(entry->eflags & MAP_ENTRY_COW) == 0 ||
2302 		(entry->wired_count != 0)) {
2303 		if ((fault_type & (prot)) !=
2304 		    (fault_type & ~VM_PROT_OVERRIDE_WRITE))
2305 			RETURN(KERN_PROTECTION_FAILURE);
2306 	}
2307 
2308 	/*
2309 	 * If this page is not pageable, we have to get it for all possible
2310 	 * accesses.
2311 	 */
2312 
2313 	*wired = (entry->wired_count != 0);
2314 	if (*wired)
2315 		prot = fault_type = entry->protection;
2316 
2317 	/*
2318 	 * If we don't already have a VM object, track it down.
2319 	 */
2320 
2321 	su = (entry->eflags & MAP_ENTRY_IS_A_MAP) == 0;
2322 	if (su) {
2323 		share_map = map;
2324 		share_offset = vaddr;
2325 	} else {
2326 		vm_map_entry_t share_entry;
2327 
2328 		/*
2329 		 * Compute the sharing map, and offset into it.
2330 		 */
2331 
2332 		share_map = entry->object.share_map;
2333 		share_offset = (vaddr - entry->start) + entry->offset;
2334 
2335 		/*
2336 		 * Look for the backing store object and offset
2337 		 */
2338 
2339 		vm_map_lock_read(share_map);
2340 
2341 		if (!vm_map_lookup_entry(share_map, share_offset,
2342 			&share_entry)) {
2343 			vm_map_unlock_read(share_map);
2344 			RETURN(KERN_INVALID_ADDRESS);
2345 		}
2346 		entry = share_entry;
2347 	}
2348 
2349 	/*
2350 	 * If the entry was copy-on-write, we either ...
2351 	 */
2352 
2353 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2354 		/*
2355 		 * If we want to write the page, we may as well handle that
2356 		 * now since we've got the sharing map locked.
2357 		 *
2358 		 * If we don't need to write the page, we just demote the
2359 		 * permissions allowed.
2360 		 */
2361 
2362 		if (fault_type & VM_PROT_WRITE) {
2363 			/*
2364 			 * Make a new object, and place it in the object
2365 			 * chain.  Note that no new references have appeared
2366 			 * -- one just moved from the share map to the new
2367 			 * object.
2368 			 */
2369 
2370 			if (vm_map_lock_upgrade(share_map)) {
2371 				if (share_map != map)
2372 					vm_map_unlock_read(map);
2373 
2374 				goto RetryLookup;
2375 			}
2376 			vm_object_shadow(
2377 			    &entry->object.vm_object,
2378 			    &entry->offset,
2379 			    atop(entry->end - entry->start));
2380 
2381 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2382 			vm_map_lock_downgrade(share_map);
2383 		} else {
2384 			/*
2385 			 * We're attempting to read a copy-on-write page --
2386 			 * don't allow writes.
2387 			 */
2388 
2389 			prot &= (~VM_PROT_WRITE);
2390 		}
2391 	}
2392 	/*
2393 	 * Create an object if necessary.
2394 	 */
2395 	if (entry->object.vm_object == NULL) {
2396 
2397 		if (vm_map_lock_upgrade(share_map)) {
2398 			if (share_map != map)
2399 				vm_map_unlock_read(map);
2400 			goto RetryLookup;
2401 		}
2402 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2403 		    atop(entry->end - entry->start));
2404 		entry->offset = 0;
2405 		vm_map_lock_downgrade(share_map);
2406 	}
2407 
2408 	if (entry->object.vm_object->type == OBJT_DEFAULT)
2409 		default_pager_convert_to_swapq(entry->object.vm_object);
2410 	/*
2411 	 * Return the object/offset from this entry.  If the entry was
2412 	 * copy-on-write or empty, it has been fixed up.
2413 	 */
2414 
2415 	*pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset);
2416 	*object = entry->object.vm_object;
2417 
2418 	/*
2419 	 * Return whether this is the only map sharing this data.
2420 	 */
2421 
2422 	if (!su) {
2423 		su = (share_map->ref_count == 1);
2424 	}
2425 	*out_prot = prot;
2426 	*single_use = su;
2427 
2428 	return (KERN_SUCCESS);
2429 
2430 #undef	RETURN
2431 }
2432 
2433 /*
2434  *	vm_map_lookup_done:
2435  *
2436  *	Releases locks acquired by a vm_map_lookup
2437  *	(according to the handle returned by that lookup).
2438  */
2439 
2440 void
2441 vm_map_lookup_done(map, entry)
2442 	register vm_map_t map;
2443 	vm_map_entry_t entry;
2444 {
2445 	/*
2446 	 * If this entry references a map, unlock it first.
2447 	 */
2448 
2449 	if (entry->eflags & MAP_ENTRY_IS_A_MAP)
2450 		vm_map_unlock_read(entry->object.share_map);
2451 
2452 	/*
2453 	 * Unlock the main-level map
2454 	 */
2455 
2456 	vm_map_unlock_read(map);
2457 }
2458 
2459 /*
2460  * Implement uiomove with VM operations.  This handles (and collateral changes)
2461  * support every combination of source object modification, and COW type
2462  * operations.
2463  */
2464 int
2465 vm_uiomove(mapa, srcobject, cp, cnt, uaddra, npages)
2466 	vm_map_t mapa;
2467 	vm_object_t srcobject;
2468 	off_t cp;
2469 	int cnt;
2470 	vm_offset_t uaddra;
2471 	int *npages;
2472 {
2473 	vm_map_t map;
2474 	vm_object_t first_object, object;
2475 	vm_map_entry_t first_entry, entry;
2476 	vm_prot_t prot;
2477 	boolean_t wired, su;
2478 	int tcnt, rv;
2479 	vm_offset_t uaddr, start, end;
2480 	vm_pindex_t first_pindex, osize, oindex;
2481 	off_t ooffset;
2482 	int skipinit, allremoved;
2483 
2484 	if (npages)
2485 		*npages = 0;
2486 
2487 	allremoved = 0;
2488 
2489 	while (cnt > 0) {
2490 		map = mapa;
2491 		uaddr = uaddra;
2492 		skipinit = 0;
2493 
2494 		if ((vm_map_lookup(&map, uaddr,
2495 			VM_PROT_READ, &first_entry, &first_object,
2496 			&first_pindex, &prot, &wired, &su)) != KERN_SUCCESS) {
2497 			return EFAULT;
2498 		}
2499 
2500 		vm_map_clip_start(map, first_entry, uaddr);
2501 
2502 		tcnt = cnt;
2503 		if ((uaddr + tcnt) > first_entry->end)
2504 			tcnt = first_entry->end - uaddr;
2505 
2506 		vm_map_clip_end(map, first_entry, uaddr + tcnt);
2507 
2508 		start = first_entry->start;
2509 		end = first_entry->end;
2510 
2511 		osize = atop(tcnt);
2512 
2513 		oindex = OFF_TO_IDX(cp);
2514 		if (npages) {
2515 			vm_pindex_t idx;
2516 			for (idx = 0; idx < osize; idx++) {
2517 				vm_page_t m;
2518 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2519 					vm_map_lookup_done(map, first_entry);
2520 					return 0;
2521 				}
2522 				if ((m->flags & PG_BUSY) ||
2523 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2524 					vm_map_lookup_done(map, first_entry);
2525 					return 0;
2526 				}
2527 			}
2528 		}
2529 
2530 /*
2531  * If we are changing an existing map entry, just redirect
2532  * the object, and change mappings.
2533  */
2534 		if (first_object->type == OBJT_VNODE) {
2535 
2536 			if (first_object != srcobject) {
2537 
2538 				vm_object_deallocate(first_object);
2539 				srcobject->flags |= OBJ_OPT;
2540 				vm_object_reference(srcobject);
2541 
2542 				first_entry->object.vm_object = srcobject;
2543 				first_entry->offset = cp;
2544 
2545 			} else if (first_entry->offset != cp) {
2546 
2547 				first_entry->offset = cp;
2548 
2549 			} else {
2550 
2551 				skipinit = 1;
2552 
2553 			}
2554 
2555 			if (skipinit == 0) {
2556 				/*
2557    				* Remove old window into the file
2558    				*/
2559 				if (!allremoved) {
2560 					pmap_remove (map->pmap, uaddra, uaddra + cnt);
2561 					allremoved = 1;
2562 				}
2563 
2564 				/*
2565    				* Force copy on write for mmaped regions
2566    				*/
2567 				vm_object_pmap_copy_1 (srcobject,
2568 					oindex, oindex + osize);
2569 			}
2570 
2571 		} else if ((first_object->ref_count == 1) &&
2572 			(first_object->size == osize) &&
2573 			(first_object->resident_page_count == 0)) {
2574 			vm_object_t oldobject;
2575 
2576 			oldobject = first_object->backing_object;
2577 
2578 			if ((first_object->backing_object_offset != cp) ||
2579 				(oldobject != srcobject)) {
2580 				/*
2581    				* Remove old window into the file
2582    				*/
2583 				if (!allremoved) {
2584 					pmap_remove (map->pmap, uaddra, uaddra + cnt);
2585 					allremoved = 1;
2586 				}
2587 
2588 				/*
2589    				* Force copy on write for mmaped regions
2590    				*/
2591 				vm_object_pmap_copy_1 (srcobject,
2592 					oindex, oindex + osize);
2593 
2594 				/*
2595    				* Point the object appropriately
2596    				*/
2597 				if (oldobject != srcobject) {
2598 				/*
2599    				* Set the object optimization hint flag
2600    				*/
2601 					srcobject->flags |= OBJ_OPT;
2602 					vm_object_reference(srcobject);
2603 
2604 					if (oldobject) {
2605 						TAILQ_REMOVE(&oldobject->shadow_head,
2606 							first_object, shadow_list);
2607 						oldobject->shadow_count--;
2608 						if (oldobject->shadow_count == 0)
2609 							oldobject->flags &= ~OBJ_OPT;
2610 						vm_object_deallocate(oldobject);
2611 					}
2612 
2613 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2614 						first_object, shadow_list);
2615 					srcobject->shadow_count++;
2616 
2617 					first_object->backing_object = srcobject;
2618 				}
2619 
2620 				first_object->backing_object_offset = cp;
2621 			} else {
2622 				skipinit = 1;
2623 			}
2624 /*
2625  * Otherwise, we have to do a logical mmap.
2626  */
2627 		} else {
2628 
2629 			srcobject->flags |= OBJ_OPT;
2630 			vm_object_reference(srcobject);
2631 
2632 			if (!allremoved) {
2633 				pmap_remove (map->pmap, uaddra, uaddra + cnt);
2634 				allremoved = 1;
2635 			}
2636 			vm_object_pmap_copy_1 (srcobject,
2637 				oindex, oindex + osize);
2638 			vm_map_lookup_done(map, first_entry);
2639 
2640 			vm_map_lock(map);
2641 
2642 			if (first_entry == &map->header) {
2643 				map->first_free = &map->header;
2644 			} else if (map->first_free->start >= start) {
2645 				map->first_free = first_entry->prev;
2646 			}
2647 
2648 			SAVE_HINT(map, first_entry->prev);
2649 			vm_map_entry_delete(map, first_entry);
2650 
2651 			rv = vm_map_insert(map, srcobject, cp, start, end,
2652 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE | MAP_COPY_NEEDED);
2653 
2654 			if (rv != KERN_SUCCESS)
2655 				panic("vm_uiomove: could not insert new entry: %d", rv);
2656 		}
2657 
2658 /*
2659  * Map the window directly, if it is already in memory
2660  */
2661 		if (!skipinit)
2662 			pmap_object_init_pt(map->pmap, start,
2663 				srcobject, (vm_pindex_t) OFF_TO_IDX(cp), end - start, 0);
2664 
2665 		vm_map_unlock(map);
2666 
2667 		cnt -= tcnt;
2668 		uaddra += tcnt;
2669 		cp += tcnt;
2670 		if (npages)
2671 			*npages += osize;
2672 	}
2673 	return 0;
2674 }
2675 
2676 /*
2677  * local routine to allocate a page for an object.
2678  */
2679 static vm_page_t
2680 vm_freeze_page_alloc(object, pindex)
2681 	vm_object_t object;
2682 	vm_pindex_t pindex;
2683 {
2684 	vm_page_t m;
2685 
2686 	while ((m = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL)) == NULL) {
2687 		VM_WAIT;
2688 		if (m = vm_page_lookup(object, pindex))
2689 			return NULL;
2690 	}
2691 
2692 	m->valid = VM_PAGE_BITS_ALL;
2693 	m->dirty = 0;
2694 	vm_page_deactivate(m);
2695 	return m;
2696 }
2697 
2698 /*
2699  * Performs the copy_on_write operations necessary to allow the virtual copies
2700  * into user space to work.  This has to be called for write(2) system calls
2701  * from other processes, file unlinking, and file size shrinkage.
2702  */
2703 void
2704 vm_freeze_copyopts(object, froma, toa)
2705 	vm_object_t object;
2706 	vm_pindex_t froma, toa;
2707 {
2708 	int s;
2709 	vm_object_t robject, robjectn;
2710 	vm_pindex_t idx, from, to;
2711 	return;
2712 
2713 	if ((vfs_ioopt == 0) || (object == NULL) ||
2714 		((object->flags & OBJ_OPT) == 0))
2715 		return;
2716 
2717 	if (object->shadow_count > object->ref_count)
2718 		panic("vm_freeze_copyopts: sc > rc");
2719 
2720 	for( robject = TAILQ_FIRST(&object->shadow_head);
2721 		 robject;
2722 		 robject = robjectn) {
2723 		vm_pindex_t bo_pindex;
2724 		vm_pindex_t dstpindex;
2725 		vm_page_t m_in, m_out;
2726 
2727 		robjectn = TAILQ_NEXT(robject, shadow_list);
2728 
2729 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
2730 		if (bo_pindex > toa)
2731 			continue;
2732 
2733 		if ((bo_pindex + robject->size) < froma)
2734 			continue;
2735 
2736 		vm_object_reference(robject);
2737 
2738 		s = splvm();
2739 		while (robject->paging_in_progress) {
2740 			robject->flags |= OBJ_PIPWNT;
2741 			tsleep(robject, PVM, "objfrz", 0);
2742 		}
2743 		splx(s);
2744 
2745 		if (robject->ref_count == 1) {
2746 			vm_object_deallocate(robject);
2747 			continue;
2748 		}
2749 
2750 		robject->paging_in_progress++;
2751 		from = froma;
2752 		if (from < bo_pindex)
2753 			from = bo_pindex;
2754 
2755 		to = toa;
2756 
2757 		for (idx = from; idx < to; idx++) {
2758 
2759 			dstpindex = idx - bo_pindex;
2760 			if (dstpindex >= robject->size)
2761 				break;
2762 
2763 			m_in = vm_page_lookup(object, idx);
2764 			if (m_in == NULL)
2765 				continue;
2766 
2767 			if( m_in->flags & PG_BUSY) {
2768 				s = splvm();
2769 				while (m_in && (m_in->flags & PG_BUSY)) {
2770 					m_in->flags |= PG_WANTED;
2771 					tsleep(m_in, PVM, "pwtfrz", 0);
2772 					m_in = vm_page_lookup(object, idx);
2773 				}
2774 				splx(s);
2775 				if (m_in == NULL)
2776 					continue;
2777 			}
2778 			m_in->flags |= PG_BUSY;
2779 
2780 retryout:
2781 			m_out = vm_page_lookup(robject, dstpindex);
2782 			if( m_out && (m_out->flags & PG_BUSY)) {
2783 				s = splvm();
2784 				while (m_out && (m_out->flags & PG_BUSY)) {
2785 					m_out->flags |= PG_WANTED;
2786 					tsleep(m_out, PVM, "pwtfrz", 0);
2787 					m_out = vm_page_lookup(robject, dstpindex);
2788 				}
2789 				splx(s);
2790 			}
2791 
2792 			if (m_out == NULL) {
2793 				m_out = vm_freeze_page_alloc(robject, dstpindex);
2794 				if (m_out == NULL)
2795 					goto retryout;
2796 			}
2797 
2798 			if (m_out->valid == 0) {
2799 				vm_page_protect(m_in, VM_PROT_NONE);
2800 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in),
2801 					VM_PAGE_TO_PHYS(m_out));
2802 				m_out->valid = VM_PAGE_BITS_ALL;
2803 			}
2804 			PAGE_WAKEUP(m_out);
2805 			PAGE_WAKEUP(m_in);
2806 		}
2807 
2808 		vm_object_pip_wakeup(robject);
2809 
2810 		if (((from - bo_pindex) == 0) && ((to - bo_pindex) == robject->size)) {
2811 
2812 			object->shadow_count--;
2813 
2814 			TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
2815 			robject->backing_object = NULL;
2816 			robject->backing_object_offset = 0;
2817 
2818 			if (object->ref_count == 1) {
2819 				if (object->shadow_count == 0)
2820 					object->flags &= ~OBJ_OPT;
2821 				vm_object_deallocate(object);
2822 				vm_object_deallocate(robject);
2823 				return;
2824 			}
2825 			vm_object_deallocate(object);
2826 		}
2827 		vm_object_deallocate(robject);
2828 	}
2829 	if (object->shadow_count == 0)
2830 		object->flags &= ~OBJ_OPT;
2831 }
2832 
2833 #include "opt_ddb.h"
2834 #ifdef DDB
2835 #include <sys/kernel.h>
2836 
2837 #include <ddb/ddb.h>
2838 
2839 /*
2840  *	vm_map_print:	[ debug ]
2841  */
2842 DB_SHOW_COMMAND(map, vm_map_print)
2843 {
2844 	static int nlines;
2845 	/* XXX convert args. */
2846 	register vm_map_t map = (vm_map_t)addr;
2847 	boolean_t full = have_addr;
2848 
2849 	register vm_map_entry_t entry;
2850 
2851 	db_iprintf("%s map 0x%x: pmap=0x%x, ref=%d, nentries=%d, version=%d\n",
2852 	    (map->is_main_map ? "Task" : "Share"),
2853 	    (int) map, (int) (map->pmap), map->ref_count, map->nentries,
2854 	    map->timestamp);
2855 	nlines++;
2856 
2857 	if (!full && db_indent)
2858 		return;
2859 
2860 	db_indent += 2;
2861 	for (entry = map->header.next; entry != &map->header;
2862 	    entry = entry->next) {
2863 #if 0
2864 		if (nlines > 18) {
2865 			db_printf("--More--");
2866 			cngetc();
2867 			db_printf("\r");
2868 			nlines = 0;
2869 		}
2870 #endif
2871 
2872 		db_iprintf("map entry 0x%x: start=0x%x, end=0x%x\n",
2873 		    (int) entry, (int) entry->start, (int) entry->end);
2874 		nlines++;
2875 		if (map->is_main_map) {
2876 			static char *inheritance_name[4] =
2877 			{"share", "copy", "none", "donate_copy"};
2878 
2879 			db_iprintf(" prot=%x/%x/%s",
2880 			    entry->protection,
2881 			    entry->max_protection,
2882 			    inheritance_name[entry->inheritance]);
2883 			if (entry->wired_count != 0)
2884 				db_printf(", wired");
2885 		}
2886 		if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) {
2887 			db_printf(", share=0x%x, offset=0x%x\n",
2888 			    (int) entry->object.share_map,
2889 			    (int) entry->offset);
2890 			nlines++;
2891 			if ((entry->prev == &map->header) ||
2892 			    ((entry->prev->eflags & MAP_ENTRY_IS_A_MAP) == 0) ||
2893 			    (entry->prev->object.share_map !=
2894 				entry->object.share_map)) {
2895 				db_indent += 2;
2896 				vm_map_print((int)entry->object.share_map,
2897 					     full, 0, (char *)0);
2898 				db_indent -= 2;
2899 			}
2900 		} else {
2901 			db_printf(", object=0x%x, offset=0x%x",
2902 			    (int) entry->object.vm_object,
2903 			    (int) entry->offset);
2904 			if (entry->eflags & MAP_ENTRY_COW)
2905 				db_printf(", copy (%s)",
2906 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
2907 			db_printf("\n");
2908 			nlines++;
2909 
2910 			if ((entry->prev == &map->header) ||
2911 			    (entry->prev->eflags & MAP_ENTRY_IS_A_MAP) ||
2912 			    (entry->prev->object.vm_object !=
2913 				entry->object.vm_object)) {
2914 				db_indent += 2;
2915 				vm_object_print((int)entry->object.vm_object,
2916 						full, 0, (char *)0);
2917 				nlines += 4;
2918 				db_indent -= 2;
2919 			}
2920 		}
2921 	}
2922 	db_indent -= 2;
2923 	if (db_indent == 0)
2924 		nlines = 0;
2925 }
2926 
2927 
2928 DB_SHOW_COMMAND(procvm, procvm)
2929 {
2930 	struct proc *p;
2931 
2932 	if (have_addr) {
2933 		p = (struct proc *) addr;
2934 	} else {
2935 		p = curproc;
2936 	}
2937 
2938 	printf("p = 0x%x, vmspace = 0x%x, map = 0x%x, pmap = 0x%x\n",
2939 		p, p->p_vmspace, &p->p_vmspace->vm_map, &p->p_vmspace->vm_pmap);
2940 
2941 	vm_map_print ((int) &p->p_vmspace->vm_map, 1, 0, NULL);
2942 }
2943 
2944 #endif /* DDB */
2945