xref: /freebsd/sys/vm/vm_map.c (revision 2f5cff37506aaa5d4ebf53560981899efadcc5e2)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vm_map_zdtor(void *mem, int size, void *arg);
144 static void vmspace_zdtor(void *mem, int size, void *arg);
145 #endif
146 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
147     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
148     int cow);
149 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
150     vm_offset_t failed_addr);
151 
152 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
153     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
154      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
155 
156 /*
157  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
158  * stable.
159  */
160 #define PROC_VMSPACE_LOCK(p) do { } while (0)
161 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
162 
163 /*
164  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
165  *
166  *	Asserts that the starting and ending region
167  *	addresses fall within the valid range of the map.
168  */
169 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
170 		{					\
171 		if (start < vm_map_min(map))		\
172 			start = vm_map_min(map);	\
173 		if (end > vm_map_max(map))		\
174 			end = vm_map_max(map);		\
175 		if (start > end)			\
176 			start = end;			\
177 		}
178 
179 /*
180  *	vm_map_startup:
181  *
182  *	Initialize the vm_map module.  Must be called before
183  *	any other vm_map routines.
184  *
185  *	Map and entry structures are allocated from the general
186  *	purpose memory pool with some exceptions:
187  *
188  *	- The kernel map and kmem submap are allocated statically.
189  *	- Kernel map entries are allocated out of a static pool.
190  *
191  *	These restrictions are necessary since malloc() uses the
192  *	maps and requires map entries.
193  */
194 
195 void
196 vm_map_startup(void)
197 {
198 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
199 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
200 #ifdef INVARIANTS
201 	    vm_map_zdtor,
202 #else
203 	    NULL,
204 #endif
205 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 	uma_prealloc(mapzone, MAX_KMAP);
207 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
208 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
209 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
210 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
213 #ifdef INVARIANTS
214 	    vmspace_zdtor,
215 #else
216 	    NULL,
217 #endif
218 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
219 }
220 
221 static int
222 vmspace_zinit(void *mem, int size, int flags)
223 {
224 	struct vmspace *vm;
225 
226 	vm = (struct vmspace *)mem;
227 
228 	vm->vm_map.pmap = NULL;
229 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
230 	PMAP_LOCK_INIT(vmspace_pmap(vm));
231 	return (0);
232 }
233 
234 static int
235 vm_map_zinit(void *mem, int size, int flags)
236 {
237 	vm_map_t map;
238 
239 	map = (vm_map_t)mem;
240 	memset(map, 0, sizeof(*map));
241 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
242 	sx_init(&map->lock, "vm map (user)");
243 	return (0);
244 }
245 
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250 	struct vmspace *vm;
251 
252 	vm = (struct vmspace *)mem;
253 
254 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259 	vm_map_t map;
260 
261 	map = (vm_map_t)mem;
262 	KASSERT(map->nentries == 0,
263 	    ("map %p nentries == %d on free.",
264 	    map, map->nentries));
265 	KASSERT(map->size == 0,
266 	    ("map %p size == %lu on free.",
267 	    map, (unsigned long)map->size));
268 }
269 #endif	/* INVARIANTS */
270 
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  *
275  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
276  */
277 struct vmspace *
278 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
279 {
280 	struct vmspace *vm;
281 
282 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
283 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
284 	if (!pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 #ifdef RACCT
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306 
307 	PROC_LOCK(p);
308 	racct_set(p, RACCT_DATA, 0);
309 	racct_set(p, RACCT_STACK, 0);
310 	racct_set(p, RACCT_RSS, 0);
311 	racct_set(p, RACCT_MEMLOCK, 0);
312 	racct_set(p, RACCT_VMEM, 0);
313 	PROC_UNLOCK(p);
314 }
315 #endif
316 
317 static inline void
318 vmspace_dofree(struct vmspace *vm)
319 {
320 
321 	CTR1(KTR_VM, "vmspace_free: %p", vm);
322 
323 	/*
324 	 * Make sure any SysV shm is freed, it might not have been in
325 	 * exit1().
326 	 */
327 	shmexit(vm);
328 
329 	/*
330 	 * Lock the map, to wait out all other references to it.
331 	 * Delete all of the mappings and pages they hold, then call
332 	 * the pmap module to reclaim anything left.
333 	 */
334 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
335 	    vm_map_max(&vm->vm_map));
336 
337 	pmap_release(vmspace_pmap(vm));
338 	vm->vm_map.pmap = NULL;
339 	uma_zfree(vmspace_zone, vm);
340 }
341 
342 void
343 vmspace_free(struct vmspace *vm)
344 {
345 
346 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
347 	    "vmspace_free() called");
348 
349 	if (vm->vm_refcnt == 0)
350 		panic("vmspace_free: attempt to free already freed vmspace");
351 
352 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
353 		vmspace_dofree(vm);
354 }
355 
356 void
357 vmspace_exitfree(struct proc *p)
358 {
359 	struct vmspace *vm;
360 
361 	PROC_VMSPACE_LOCK(p);
362 	vm = p->p_vmspace;
363 	p->p_vmspace = NULL;
364 	PROC_VMSPACE_UNLOCK(p);
365 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
366 	vmspace_free(vm);
367 }
368 
369 void
370 vmspace_exit(struct thread *td)
371 {
372 	int refcnt;
373 	struct vmspace *vm;
374 	struct proc *p;
375 
376 	/*
377 	 * Release user portion of address space.
378 	 * This releases references to vnodes,
379 	 * which could cause I/O if the file has been unlinked.
380 	 * Need to do this early enough that we can still sleep.
381 	 *
382 	 * The last exiting process to reach this point releases as
383 	 * much of the environment as it can. vmspace_dofree() is the
384 	 * slower fallback in case another process had a temporary
385 	 * reference to the vmspace.
386 	 */
387 
388 	p = td->td_proc;
389 	vm = p->p_vmspace;
390 	atomic_add_int(&vmspace0.vm_refcnt, 1);
391 	refcnt = vm->vm_refcnt;
392 	do {
393 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
394 			/* Switch now since other proc might free vmspace */
395 			PROC_VMSPACE_LOCK(p);
396 			p->p_vmspace = &vmspace0;
397 			PROC_VMSPACE_UNLOCK(p);
398 			pmap_activate(td);
399 		}
400 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
401 	if (refcnt == 1) {
402 		if (p->p_vmspace != vm) {
403 			/* vmspace not yet freed, switch back */
404 			PROC_VMSPACE_LOCK(p);
405 			p->p_vmspace = vm;
406 			PROC_VMSPACE_UNLOCK(p);
407 			pmap_activate(td);
408 		}
409 		pmap_remove_pages(vmspace_pmap(vm));
410 		/* Switch now since this proc will free vmspace */
411 		PROC_VMSPACE_LOCK(p);
412 		p->p_vmspace = &vmspace0;
413 		PROC_VMSPACE_UNLOCK(p);
414 		pmap_activate(td);
415 		vmspace_dofree(vm);
416 	}
417 #ifdef RACCT
418 	if (racct_enable)
419 		vmspace_container_reset(p);
420 #endif
421 }
422 
423 /* Acquire reference to vmspace owned by another process. */
424 
425 struct vmspace *
426 vmspace_acquire_ref(struct proc *p)
427 {
428 	struct vmspace *vm;
429 	int refcnt;
430 
431 	PROC_VMSPACE_LOCK(p);
432 	vm = p->p_vmspace;
433 	if (vm == NULL) {
434 		PROC_VMSPACE_UNLOCK(p);
435 		return (NULL);
436 	}
437 	refcnt = vm->vm_refcnt;
438 	do {
439 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
440 			PROC_VMSPACE_UNLOCK(p);
441 			return (NULL);
442 		}
443 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
444 	if (vm != p->p_vmspace) {
445 		PROC_VMSPACE_UNLOCK(p);
446 		vmspace_free(vm);
447 		return (NULL);
448 	}
449 	PROC_VMSPACE_UNLOCK(p);
450 	return (vm);
451 }
452 
453 /*
454  * Switch between vmspaces in an AIO kernel process.
455  *
456  * The AIO kernel processes switch to and from a user process's
457  * vmspace while performing an I/O operation on behalf of a user
458  * process.  The new vmspace is either the vmspace of a user process
459  * obtained from an active AIO request or the initial vmspace of the
460  * AIO kernel process (when it is idling).  Because user processes
461  * will block to drain any active AIO requests before proceeding in
462  * exit() or execve(), the vmspace reference count for these vmspaces
463  * can never be 0.  This allows for a much simpler implementation than
464  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
465  * processes hold an extra reference on their initial vmspace for the
466  * life of the process so that this guarantee is true for any vmspace
467  * passed as 'newvm'.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472 	struct vmspace *oldvm;
473 
474 	/* XXX: Need some way to assert that this is an aio daemon. */
475 
476 	KASSERT(newvm->vm_refcnt > 0,
477 	    ("vmspace_switch_aio: newvm unreferenced"));
478 
479 	oldvm = curproc->p_vmspace;
480 	if (oldvm == newvm)
481 		return;
482 
483 	/*
484 	 * Point to the new address space and refer to it.
485 	 */
486 	curproc->p_vmspace = newvm;
487 	atomic_add_int(&newvm->vm_refcnt, 1);
488 
489 	/* Activate the new mapping. */
490 	pmap_activate(curthread);
491 
492 	/* Remove the daemon's reference to the old address space. */
493 	KASSERT(oldvm->vm_refcnt > 1,
494 	    ("vmspace_switch_aio: oldvm dropping last reference"));
495 	vmspace_free(oldvm);
496 }
497 
498 void
499 _vm_map_lock(vm_map_t map, const char *file, int line)
500 {
501 
502 	if (map->system_map)
503 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
504 	else
505 		sx_xlock_(&map->lock, file, line);
506 	map->timestamp++;
507 }
508 
509 static void
510 vm_map_process_deferred(void)
511 {
512 	struct thread *td;
513 	vm_map_entry_t entry, next;
514 	vm_object_t object;
515 
516 	td = curthread;
517 	entry = td->td_map_def_user;
518 	td->td_map_def_user = NULL;
519 	while (entry != NULL) {
520 		next = entry->next;
521 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
522 			/*
523 			 * Decrement the object's writemappings and
524 			 * possibly the vnode's v_writecount.
525 			 */
526 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
527 			    ("Submap with writecount"));
528 			object = entry->object.vm_object;
529 			KASSERT(object != NULL, ("No object for writecount"));
530 			vnode_pager_release_writecount(object, entry->start,
531 			    entry->end);
532 		}
533 		vm_map_entry_deallocate(entry, FALSE);
534 		entry = next;
535 	}
536 }
537 
538 void
539 _vm_map_unlock(vm_map_t map, const char *file, int line)
540 {
541 
542 	if (map->system_map)
543 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
544 	else {
545 		sx_xunlock_(&map->lock, file, line);
546 		vm_map_process_deferred();
547 	}
548 }
549 
550 void
551 _vm_map_lock_read(vm_map_t map, const char *file, int line)
552 {
553 
554 	if (map->system_map)
555 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
556 	else
557 		sx_slock_(&map->lock, file, line);
558 }
559 
560 void
561 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
562 {
563 
564 	if (map->system_map)
565 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
566 	else {
567 		sx_sunlock_(&map->lock, file, line);
568 		vm_map_process_deferred();
569 	}
570 }
571 
572 int
573 _vm_map_trylock(vm_map_t map, const char *file, int line)
574 {
575 	int error;
576 
577 	error = map->system_map ?
578 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
579 	    !sx_try_xlock_(&map->lock, file, line);
580 	if (error == 0)
581 		map->timestamp++;
582 	return (error == 0);
583 }
584 
585 int
586 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
587 {
588 	int error;
589 
590 	error = map->system_map ?
591 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
592 	    !sx_try_slock_(&map->lock, file, line);
593 	return (error == 0);
594 }
595 
596 /*
597  *	_vm_map_lock_upgrade:	[ internal use only ]
598  *
599  *	Tries to upgrade a read (shared) lock on the specified map to a write
600  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
601  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
602  *	returned without a read or write lock held.
603  *
604  *	Requires that the map be read locked.
605  */
606 int
607 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
608 {
609 	unsigned int last_timestamp;
610 
611 	if (map->system_map) {
612 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
613 	} else {
614 		if (!sx_try_upgrade_(&map->lock, file, line)) {
615 			last_timestamp = map->timestamp;
616 			sx_sunlock_(&map->lock, file, line);
617 			vm_map_process_deferred();
618 			/*
619 			 * If the map's timestamp does not change while the
620 			 * map is unlocked, then the upgrade succeeds.
621 			 */
622 			sx_xlock_(&map->lock, file, line);
623 			if (last_timestamp != map->timestamp) {
624 				sx_xunlock_(&map->lock, file, line);
625 				return (1);
626 			}
627 		}
628 	}
629 	map->timestamp++;
630 	return (0);
631 }
632 
633 void
634 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
635 {
636 
637 	if (map->system_map) {
638 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
639 	} else
640 		sx_downgrade_(&map->lock, file, line);
641 }
642 
643 /*
644  *	vm_map_locked:
645  *
646  *	Returns a non-zero value if the caller holds a write (exclusive) lock
647  *	on the specified map and the value "0" otherwise.
648  */
649 int
650 vm_map_locked(vm_map_t map)
651 {
652 
653 	if (map->system_map)
654 		return (mtx_owned(&map->system_mtx));
655 	else
656 		return (sx_xlocked(&map->lock));
657 }
658 
659 #ifdef INVARIANTS
660 static void
661 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
662 {
663 
664 	if (map->system_map)
665 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
666 	else
667 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
668 }
669 
670 #define	VM_MAP_ASSERT_LOCKED(map) \
671     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
672 
673 #ifdef DIAGNOSTIC
674 static int enable_vmmap_check = 1;
675 #else
676 static int enable_vmmap_check = 0;
677 #endif
678 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
679     &enable_vmmap_check, 0, "Enable vm map consistency checking");
680 
681 static void
682 _vm_map_assert_consistent(vm_map_t map)
683 {
684 	vm_map_entry_t entry;
685 	vm_map_entry_t child;
686 	vm_size_t max_left, max_right;
687 
688 	if (!enable_vmmap_check)
689 		return;
690 
691 	for (entry = map->header.next; entry != &map->header;
692 	    entry = entry->next) {
693 		KASSERT(entry->prev->end <= entry->start,
694 		    ("map %p prev->end = %jx, start = %jx", map,
695 		    (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
696 		KASSERT(entry->start < entry->end,
697 		    ("map %p start = %jx, end = %jx", map,
698 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
699 		KASSERT(entry->end <= entry->next->start,
700 		    ("map %p end = %jx, next->start = %jx", map,
701 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
702 		KASSERT(entry->left == NULL ||
703 		    entry->left->start < entry->start,
704 		    ("map %p left->start = %jx, start = %jx", map,
705 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
706 		KASSERT(entry->right == NULL ||
707 		    entry->start < entry->right->start,
708 		    ("map %p start = %jx, right->start = %jx", map,
709 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
710 		child = entry->left;
711 		max_left = (child != NULL) ? child->max_free :
712 			entry->start - entry->prev->end;
713 		child = entry->right;
714 		max_right = (child != NULL) ? child->max_free :
715 			entry->next->start - entry->end;
716 		KASSERT(entry->max_free == MAX(max_left, max_right),
717 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
718 		     (uintmax_t)entry->max_free,
719 		     (uintmax_t)max_left, (uintmax_t)max_right));
720 	}
721 }
722 
723 #define VM_MAP_ASSERT_CONSISTENT(map) \
724     _vm_map_assert_consistent(map)
725 #else
726 #define	VM_MAP_ASSERT_LOCKED(map)
727 #define VM_MAP_ASSERT_CONSISTENT(map)
728 #endif /* INVARIANTS */
729 
730 /*
731  *	_vm_map_unlock_and_wait:
732  *
733  *	Atomically releases the lock on the specified map and puts the calling
734  *	thread to sleep.  The calling thread will remain asleep until either
735  *	vm_map_wakeup() is performed on the map or the specified timeout is
736  *	exceeded.
737  *
738  *	WARNING!  This function does not perform deferred deallocations of
739  *	objects and map	entries.  Therefore, the calling thread is expected to
740  *	reacquire the map lock after reawakening and later perform an ordinary
741  *	unlock operation, such as vm_map_unlock(), before completing its
742  *	operation on the map.
743  */
744 int
745 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
746 {
747 
748 	mtx_lock(&map_sleep_mtx);
749 	if (map->system_map)
750 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
751 	else
752 		sx_xunlock_(&map->lock, file, line);
753 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
754 	    timo));
755 }
756 
757 /*
758  *	vm_map_wakeup:
759  *
760  *	Awaken any threads that have slept on the map using
761  *	vm_map_unlock_and_wait().
762  */
763 void
764 vm_map_wakeup(vm_map_t map)
765 {
766 
767 	/*
768 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
769 	 * from being performed (and lost) between the map unlock
770 	 * and the msleep() in _vm_map_unlock_and_wait().
771 	 */
772 	mtx_lock(&map_sleep_mtx);
773 	mtx_unlock(&map_sleep_mtx);
774 	wakeup(&map->root);
775 }
776 
777 void
778 vm_map_busy(vm_map_t map)
779 {
780 
781 	VM_MAP_ASSERT_LOCKED(map);
782 	map->busy++;
783 }
784 
785 void
786 vm_map_unbusy(vm_map_t map)
787 {
788 
789 	VM_MAP_ASSERT_LOCKED(map);
790 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
791 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
792 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
793 		wakeup(&map->busy);
794 	}
795 }
796 
797 void
798 vm_map_wait_busy(vm_map_t map)
799 {
800 
801 	VM_MAP_ASSERT_LOCKED(map);
802 	while (map->busy) {
803 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
804 		if (map->system_map)
805 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
806 		else
807 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
808 	}
809 	map->timestamp++;
810 }
811 
812 long
813 vmspace_resident_count(struct vmspace *vmspace)
814 {
815 	return pmap_resident_count(vmspace_pmap(vmspace));
816 }
817 
818 /*
819  *	vm_map_create:
820  *
821  *	Creates and returns a new empty VM map with
822  *	the given physical map structure, and having
823  *	the given lower and upper address bounds.
824  */
825 vm_map_t
826 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
827 {
828 	vm_map_t result;
829 
830 	result = uma_zalloc(mapzone, M_WAITOK);
831 	CTR1(KTR_VM, "vm_map_create: %p", result);
832 	_vm_map_init(result, pmap, min, max);
833 	return (result);
834 }
835 
836 /*
837  * Initialize an existing vm_map structure
838  * such as that in the vmspace structure.
839  */
840 static void
841 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
842 {
843 
844 	map->header.next = map->header.prev = &map->header;
845 	map->header.eflags = MAP_ENTRY_HEADER;
846 	map->needs_wakeup = FALSE;
847 	map->system_map = 0;
848 	map->pmap = pmap;
849 	map->header.end = min;
850 	map->header.start = max;
851 	map->flags = 0;
852 	map->root = NULL;
853 	map->timestamp = 0;
854 	map->busy = 0;
855 	map->anon_loc = 0;
856 }
857 
858 void
859 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
860 {
861 
862 	_vm_map_init(map, pmap, min, max);
863 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
864 	sx_init(&map->lock, "user map");
865 }
866 
867 /*
868  *	vm_map_entry_dispose:	[ internal use only ]
869  *
870  *	Inverse of vm_map_entry_create.
871  */
872 static void
873 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
874 {
875 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
876 }
877 
878 /*
879  *	vm_map_entry_create:	[ internal use only ]
880  *
881  *	Allocates a VM map entry for insertion.
882  *	No entry fields are filled in.
883  */
884 static vm_map_entry_t
885 vm_map_entry_create(vm_map_t map)
886 {
887 	vm_map_entry_t new_entry;
888 
889 	if (map->system_map)
890 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
891 	else
892 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
893 	if (new_entry == NULL)
894 		panic("vm_map_entry_create: kernel resources exhausted");
895 	return (new_entry);
896 }
897 
898 /*
899  *	vm_map_entry_set_behavior:
900  *
901  *	Set the expected access behavior, either normal, random, or
902  *	sequential.
903  */
904 static inline void
905 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
906 {
907 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
908 	    (behavior & MAP_ENTRY_BEHAV_MASK);
909 }
910 
911 /*
912  *	vm_map_entry_set_max_free:
913  *
914  *	Set the max_free field in a vm_map_entry.
915  */
916 static inline void
917 vm_map_entry_set_max_free(vm_map_entry_t entry)
918 {
919 	vm_map_entry_t child;
920 	vm_size_t max_left, max_right;
921 
922 	child = entry->left;
923 	max_left = (child != NULL) ? child->max_free :
924 	    entry->start - entry->prev->end;
925 	child = entry->right;
926 	max_right = (child != NULL) ? child->max_free :
927 	    entry->next->start - entry->end;
928 	entry->max_free = MAX(max_left, max_right);
929 }
930 
931 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {	\
932 	y = root->left;					\
933 	if (y != NULL && (test)) {			\
934 		/* Rotate right and make y root. */	\
935 		root->left = y->right;			\
936 		y->right = root;			\
937 		vm_map_entry_set_max_free(root);	\
938 		root = y;				\
939 		y = root->left;				\
940 	}						\
941 	/* Put root on rlist. */			\
942 	root->left = rlist;				\
943 	rlist = root;					\
944 	root = y;					\
945 } while (0)
946 
947 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {	\
948 	y = root->right;				\
949 	if (y != NULL && (test)) {			\
950 		/* Rotate left and make y root. */	\
951 		root->right = y->left;			\
952 		y->left = root;				\
953 		vm_map_entry_set_max_free(root);	\
954 		root = y;				\
955 		y = root->right;			\
956 	}						\
957 	/* Put root on llist. */			\
958 	root->right = llist;				\
959 	llist = root;					\
960 	root = y;					\
961 } while (0)
962 
963 /*
964  * Walk down the tree until we find addr or a NULL pointer where addr would go,
965  * breaking off left and right subtrees of nodes less than, or greater than
966  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
967  * llist and rlist are the two sides in reverse order (bottom-up), with llist
968  * linked by the right pointer and rlist linked by the left pointer in the
969  * vm_map_entry.
970  */
971 static vm_map_entry_t
972 vm_map_splay_split(vm_offset_t addr, vm_size_t length,
973     vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
974 {
975 	vm_map_entry_t llist, rlist;
976 	vm_map_entry_t y;
977 
978 	llist = NULL;
979 	rlist = NULL;
980 	while (root != NULL && root->max_free >= length) {
981 		if (addr < root->start) {
982 			SPLAY_LEFT_STEP(root, y, rlist,
983 			    y->max_free >= length && addr < y->start);
984 		} else if (addr >= root->end) {
985 			SPLAY_RIGHT_STEP(root, y, llist,
986 			    y->max_free >= length && addr >= y->end);
987 		} else
988 			break;
989 	}
990 	*out_llist = llist;
991 	*out_rlist = rlist;
992 	return (root);
993 }
994 
995 static void
996 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
997 {
998 	vm_map_entry_t rlist, y;
999 
1000 	root = root->right;
1001 	rlist = *iolist;
1002 	while (root != NULL)
1003 		SPLAY_LEFT_STEP(root, y, rlist, true);
1004 	*iolist = rlist;
1005 }
1006 
1007 static void
1008 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1009 {
1010 	vm_map_entry_t llist, y;
1011 
1012 	root = root->left;
1013 	llist = *iolist;
1014 	while (root != NULL)
1015 		SPLAY_RIGHT_STEP(root, y, llist, true);
1016 	*iolist = llist;
1017 }
1018 
1019 /*
1020  * Walk back up the two spines, flip the pointers and set max_free.  The
1021  * subtrees of the root go at the bottom of llist and rlist.
1022  */
1023 static vm_map_entry_t
1024 vm_map_splay_merge(vm_map_entry_t root,
1025     vm_map_entry_t llist, vm_map_entry_t rlist,
1026     vm_map_entry_t ltree, vm_map_entry_t rtree)
1027 {
1028 	vm_map_entry_t y;
1029 
1030 	while (llist != NULL) {
1031 		y = llist->right;
1032 		llist->right = ltree;
1033 		vm_map_entry_set_max_free(llist);
1034 		ltree = llist;
1035 		llist = y;
1036 	}
1037 	while (rlist != NULL) {
1038 		y = rlist->left;
1039 		rlist->left = rtree;
1040 		vm_map_entry_set_max_free(rlist);
1041 		rtree = rlist;
1042 		rlist = y;
1043 	}
1044 
1045 	/*
1046 	 * Final assembly: add ltree and rtree as subtrees of root.
1047 	 */
1048 	root->left = ltree;
1049 	root->right = rtree;
1050 	vm_map_entry_set_max_free(root);
1051 
1052 	return (root);
1053 }
1054 
1055 /*
1056  *	vm_map_entry_splay:
1057  *
1058  *	The Sleator and Tarjan top-down splay algorithm with the
1059  *	following variation.  Max_free must be computed bottom-up, so
1060  *	on the downward pass, maintain the left and right spines in
1061  *	reverse order.  Then, make a second pass up each side to fix
1062  *	the pointers and compute max_free.  The time bound is O(log n)
1063  *	amortized.
1064  *
1065  *	The new root is the vm_map_entry containing "addr", or else an
1066  *	adjacent entry (lower if possible) if addr is not in the tree.
1067  *
1068  *	The map must be locked, and leaves it so.
1069  *
1070  *	Returns: the new root.
1071  */
1072 static vm_map_entry_t
1073 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
1074 {
1075 	vm_map_entry_t llist, rlist;
1076 
1077 	root = vm_map_splay_split(addr, 0, root, &llist, &rlist);
1078 	if (root != NULL) {
1079 		/* do nothing */
1080 	} else if (llist != NULL) {
1081 		/*
1082 		 * Recover the greatest node in the left
1083 		 * subtree and make it the root.
1084 		 */
1085 		root = llist;
1086 		llist = root->right;
1087 		root->right = NULL;
1088 	} else if (rlist != NULL) {
1089 		/*
1090 		 * Recover the least node in the right
1091 		 * subtree and make it the root.
1092 		 */
1093 		root = rlist;
1094 		rlist = root->left;
1095 		root->left = NULL;
1096 	} else {
1097 		/* There is no root. */
1098 		return (NULL);
1099 	}
1100 	return (vm_map_splay_merge(root, llist, rlist,
1101 	    root->left, root->right));
1102 }
1103 
1104 /*
1105  *	vm_map_entry_{un,}link:
1106  *
1107  *	Insert/remove entries from maps.
1108  */
1109 static void
1110 vm_map_entry_link(vm_map_t map,
1111 		  vm_map_entry_t entry)
1112 {
1113 	vm_map_entry_t llist, rlist, root;
1114 
1115 	CTR3(KTR_VM,
1116 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1117 	    map->nentries, entry);
1118 	VM_MAP_ASSERT_LOCKED(map);
1119 	map->nentries++;
1120 	root = map->root;
1121 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1122 	KASSERT(root == NULL,
1123 	    ("vm_map_entry_link: link object already mapped"));
1124 	entry->prev = (llist == NULL) ? &map->header : llist;
1125 	entry->next = (rlist == NULL) ? &map->header : rlist;
1126 	entry->prev->next = entry->next->prev = entry;
1127 	root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL);
1128 	map->root = entry;
1129 	VM_MAP_ASSERT_CONSISTENT(map);
1130 }
1131 
1132 enum unlink_merge_type {
1133 	UNLINK_MERGE_PREV,
1134 	UNLINK_MERGE_NONE,
1135 	UNLINK_MERGE_NEXT
1136 };
1137 
1138 static void
1139 vm_map_entry_unlink(vm_map_t map,
1140 		    vm_map_entry_t entry,
1141 		    enum unlink_merge_type op)
1142 {
1143 	vm_map_entry_t llist, rlist, root, y;
1144 
1145 	VM_MAP_ASSERT_LOCKED(map);
1146 	llist = entry->prev;
1147 	rlist = entry->next;
1148 	llist->next = rlist;
1149 	rlist->prev = llist;
1150 	root = map->root;
1151 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1152 	KASSERT(root != NULL,
1153 	    ("vm_map_entry_unlink: unlink object not mapped"));
1154 
1155 	switch (op) {
1156 	case UNLINK_MERGE_PREV:
1157 		vm_map_splay_findprev(root, &llist);
1158 		llist->end = root->end;
1159 		y = root->right;
1160 		root = llist;
1161 		llist = root->right;
1162 		root->right = y;
1163 		break;
1164 	case UNLINK_MERGE_NEXT:
1165 		vm_map_splay_findnext(root, &rlist);
1166 		rlist->start = root->start;
1167 		rlist->offset = root->offset;
1168 		y = root->left;
1169 		root = rlist;
1170 		rlist = root->left;
1171 		root->left = y;
1172 		break;
1173 	case UNLINK_MERGE_NONE:
1174 		vm_map_splay_findprev(root, &llist);
1175 		vm_map_splay_findnext(root, &rlist);
1176 		if (llist != NULL) {
1177 			root = llist;
1178 			llist = root->right;
1179 			root->right = NULL;
1180 		} else if (rlist != NULL) {
1181 			root = rlist;
1182 			rlist = root->left;
1183 			root->left = NULL;
1184 		} else
1185 			root = NULL;
1186 		break;
1187 	}
1188 	if (root != NULL)
1189 		root = vm_map_splay_merge(root, llist, rlist,
1190 		    root->left, root->right);
1191 	map->root = root;
1192 	VM_MAP_ASSERT_CONSISTENT(map);
1193 	map->nentries--;
1194 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1195 	    map->nentries, entry);
1196 }
1197 
1198 /*
1199  *	vm_map_entry_resize_free:
1200  *
1201  *	Recompute the amount of free space following a modified vm_map_entry
1202  *	and propagate those values up the tree.  Call this function after
1203  *	resizing a map entry in-place by changing the end value, without a
1204  *	call to vm_map_entry_link() or _unlink().
1205  *
1206  *	The map must be locked, and leaves it so.
1207  */
1208 static void
1209 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1210 {
1211 	vm_map_entry_t llist, rlist, root;
1212 
1213 	VM_MAP_ASSERT_LOCKED(map);
1214 	root = map->root;
1215 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1216 	KASSERT(root != NULL,
1217 	    ("vm_map_entry_resize_free: resize_free object not mapped"));
1218 	vm_map_splay_findnext(root, &rlist);
1219 	root->right = NULL;
1220 	map->root = vm_map_splay_merge(root, llist, rlist,
1221 	    root->left, root->right);
1222 	VM_MAP_ASSERT_CONSISTENT(map);
1223 	CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map,
1224 	    map->nentries, entry);
1225 }
1226 
1227 /*
1228  *	vm_map_lookup_entry:	[ internal use only ]
1229  *
1230  *	Finds the map entry containing (or
1231  *	immediately preceding) the specified address
1232  *	in the given map; the entry is returned
1233  *	in the "entry" parameter.  The boolean
1234  *	result indicates whether the address is
1235  *	actually contained in the map.
1236  */
1237 boolean_t
1238 vm_map_lookup_entry(
1239 	vm_map_t map,
1240 	vm_offset_t address,
1241 	vm_map_entry_t *entry)	/* OUT */
1242 {
1243 	vm_map_entry_t cur, lbound;
1244 	boolean_t locked;
1245 
1246 	/*
1247 	 * If the map is empty, then the map entry immediately preceding
1248 	 * "address" is the map's header.
1249 	 */
1250 	cur = map->root;
1251 	if (cur == NULL) {
1252 		*entry = &map->header;
1253 		return (FALSE);
1254 	}
1255 	if (address >= cur->start && cur->end > address) {
1256 		*entry = cur;
1257 		return (TRUE);
1258 	}
1259 	if ((locked = vm_map_locked(map)) ||
1260 	    sx_try_upgrade(&map->lock)) {
1261 		/*
1262 		 * Splay requires a write lock on the map.  However, it only
1263 		 * restructures the binary search tree; it does not otherwise
1264 		 * change the map.  Thus, the map's timestamp need not change
1265 		 * on a temporary upgrade.
1266 		 */
1267 		map->root = cur = vm_map_entry_splay(address, cur);
1268 		VM_MAP_ASSERT_CONSISTENT(map);
1269 		if (!locked)
1270 			sx_downgrade(&map->lock);
1271 
1272 		/*
1273 		 * If "address" is contained within a map entry, the new root
1274 		 * is that map entry.  Otherwise, the new root is a map entry
1275 		 * immediately before or after "address".
1276 		 */
1277 		if (address < cur->start) {
1278 			*entry = &map->header;
1279 			return (FALSE);
1280 		}
1281 		*entry = cur;
1282 		return (address < cur->end);
1283 	}
1284 	/*
1285 	 * Since the map is only locked for read access, perform a
1286 	 * standard binary search tree lookup for "address".
1287 	 */
1288 	lbound = &map->header;
1289 	do {
1290 		if (address < cur->start) {
1291 			cur = cur->left;
1292 		} else if (cur->end <= address) {
1293 			lbound = cur;
1294 			cur = cur->right;
1295 		} else {
1296 			*entry = cur;
1297 			return (TRUE);
1298 		}
1299 	} while (cur != NULL);
1300 	*entry = lbound;
1301 	return (FALSE);
1302 }
1303 
1304 /*
1305  *	vm_map_insert:
1306  *
1307  *	Inserts the given whole VM object into the target
1308  *	map at the specified address range.  The object's
1309  *	size should match that of the address range.
1310  *
1311  *	Requires that the map be locked, and leaves it so.
1312  *
1313  *	If object is non-NULL, ref count must be bumped by caller
1314  *	prior to making call to account for the new entry.
1315  */
1316 int
1317 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1318     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1319 {
1320 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1321 	struct ucred *cred;
1322 	vm_eflags_t protoeflags;
1323 	vm_inherit_t inheritance;
1324 
1325 	VM_MAP_ASSERT_LOCKED(map);
1326 	KASSERT(object != kernel_object ||
1327 	    (cow & MAP_COPY_ON_WRITE) == 0,
1328 	    ("vm_map_insert: kernel object and COW"));
1329 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1330 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1331 	KASSERT((prot & ~max) == 0,
1332 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1333 
1334 	/*
1335 	 * Check that the start and end points are not bogus.
1336 	 */
1337 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1338 	    start >= end)
1339 		return (KERN_INVALID_ADDRESS);
1340 
1341 	/*
1342 	 * Find the entry prior to the proposed starting address; if it's part
1343 	 * of an existing entry, this range is bogus.
1344 	 */
1345 	if (vm_map_lookup_entry(map, start, &temp_entry))
1346 		return (KERN_NO_SPACE);
1347 
1348 	prev_entry = temp_entry;
1349 
1350 	/*
1351 	 * Assert that the next entry doesn't overlap the end point.
1352 	 */
1353 	if (prev_entry->next->start < end)
1354 		return (KERN_NO_SPACE);
1355 
1356 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1357 	    max != VM_PROT_NONE))
1358 		return (KERN_INVALID_ARGUMENT);
1359 
1360 	protoeflags = 0;
1361 	if (cow & MAP_COPY_ON_WRITE)
1362 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1363 	if (cow & MAP_NOFAULT)
1364 		protoeflags |= MAP_ENTRY_NOFAULT;
1365 	if (cow & MAP_DISABLE_SYNCER)
1366 		protoeflags |= MAP_ENTRY_NOSYNC;
1367 	if (cow & MAP_DISABLE_COREDUMP)
1368 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1369 	if (cow & MAP_STACK_GROWS_DOWN)
1370 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1371 	if (cow & MAP_STACK_GROWS_UP)
1372 		protoeflags |= MAP_ENTRY_GROWS_UP;
1373 	if (cow & MAP_VN_WRITECOUNT)
1374 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1375 	if ((cow & MAP_CREATE_GUARD) != 0)
1376 		protoeflags |= MAP_ENTRY_GUARD;
1377 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1378 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1379 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1380 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1381 	if (cow & MAP_INHERIT_SHARE)
1382 		inheritance = VM_INHERIT_SHARE;
1383 	else
1384 		inheritance = VM_INHERIT_DEFAULT;
1385 
1386 	cred = NULL;
1387 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1388 		goto charged;
1389 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1390 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1391 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1392 			return (KERN_RESOURCE_SHORTAGE);
1393 		KASSERT(object == NULL ||
1394 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1395 		    object->cred == NULL,
1396 		    ("overcommit: vm_map_insert o %p", object));
1397 		cred = curthread->td_ucred;
1398 	}
1399 
1400 charged:
1401 	/* Expand the kernel pmap, if necessary. */
1402 	if (map == kernel_map && end > kernel_vm_end)
1403 		pmap_growkernel(end);
1404 	if (object != NULL) {
1405 		/*
1406 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1407 		 * is trivially proven to be the only mapping for any
1408 		 * of the object's pages.  (Object granularity
1409 		 * reference counting is insufficient to recognize
1410 		 * aliases with precision.)
1411 		 */
1412 		VM_OBJECT_WLOCK(object);
1413 		if (object->ref_count > 1 || object->shadow_count != 0)
1414 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1415 		VM_OBJECT_WUNLOCK(object);
1416 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1417 	    protoeflags &&
1418 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1419 	    prev_entry->end == start && (prev_entry->cred == cred ||
1420 	    (prev_entry->object.vm_object != NULL &&
1421 	    prev_entry->object.vm_object->cred == cred)) &&
1422 	    vm_object_coalesce(prev_entry->object.vm_object,
1423 	    prev_entry->offset,
1424 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1425 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1426 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1427 		/*
1428 		 * We were able to extend the object.  Determine if we
1429 		 * can extend the previous map entry to include the
1430 		 * new range as well.
1431 		 */
1432 		if (prev_entry->inheritance == inheritance &&
1433 		    prev_entry->protection == prot &&
1434 		    prev_entry->max_protection == max &&
1435 		    prev_entry->wired_count == 0) {
1436 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1437 			    0, ("prev_entry %p has incoherent wiring",
1438 			    prev_entry));
1439 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1440 				map->size += end - prev_entry->end;
1441 			prev_entry->end = end;
1442 			vm_map_entry_resize_free(map, prev_entry);
1443 			vm_map_simplify_entry(map, prev_entry);
1444 			return (KERN_SUCCESS);
1445 		}
1446 
1447 		/*
1448 		 * If we can extend the object but cannot extend the
1449 		 * map entry, we have to create a new map entry.  We
1450 		 * must bump the ref count on the extended object to
1451 		 * account for it.  object may be NULL.
1452 		 */
1453 		object = prev_entry->object.vm_object;
1454 		offset = prev_entry->offset +
1455 		    (prev_entry->end - prev_entry->start);
1456 		vm_object_reference(object);
1457 		if (cred != NULL && object != NULL && object->cred != NULL &&
1458 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1459 			/* Object already accounts for this uid. */
1460 			cred = NULL;
1461 		}
1462 	}
1463 	if (cred != NULL)
1464 		crhold(cred);
1465 
1466 	/*
1467 	 * Create a new entry
1468 	 */
1469 	new_entry = vm_map_entry_create(map);
1470 	new_entry->start = start;
1471 	new_entry->end = end;
1472 	new_entry->cred = NULL;
1473 
1474 	new_entry->eflags = protoeflags;
1475 	new_entry->object.vm_object = object;
1476 	new_entry->offset = offset;
1477 
1478 	new_entry->inheritance = inheritance;
1479 	new_entry->protection = prot;
1480 	new_entry->max_protection = max;
1481 	new_entry->wired_count = 0;
1482 	new_entry->wiring_thread = NULL;
1483 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1484 	new_entry->next_read = start;
1485 
1486 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1487 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1488 	new_entry->cred = cred;
1489 
1490 	/*
1491 	 * Insert the new entry into the list
1492 	 */
1493 	vm_map_entry_link(map, new_entry);
1494 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1495 		map->size += new_entry->end - new_entry->start;
1496 
1497 	/*
1498 	 * Try to coalesce the new entry with both the previous and next
1499 	 * entries in the list.  Previously, we only attempted to coalesce
1500 	 * with the previous entry when object is NULL.  Here, we handle the
1501 	 * other cases, which are less common.
1502 	 */
1503 	vm_map_simplify_entry(map, new_entry);
1504 
1505 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1506 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1507 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1508 	}
1509 
1510 	return (KERN_SUCCESS);
1511 }
1512 
1513 /*
1514  *	vm_map_findspace:
1515  *
1516  *	Find the first fit (lowest VM address) for "length" free bytes
1517  *	beginning at address >= start in the given map.
1518  *
1519  *	In a vm_map_entry, "max_free" is the maximum amount of
1520  *	contiguous free space between an entry in its subtree and a
1521  *	neighbor of that entry.  This allows finding a free region in
1522  *	one path down the tree, so O(log n) amortized with splay
1523  *	trees.
1524  *
1525  *	The map must be locked, and leaves it so.
1526  *
1527  *	Returns: starting address if sufficient space,
1528  *		 vm_map_max(map)-length+1 if insufficient space.
1529  */
1530 vm_offset_t
1531 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1532 {
1533 	vm_map_entry_t llist, rlist, root, y;
1534 	vm_size_t left_length;
1535 
1536 	/*
1537 	 * Request must fit within min/max VM address and must avoid
1538 	 * address wrap.
1539 	 */
1540 	start = MAX(start, vm_map_min(map));
1541 	if (start + length > vm_map_max(map) || start + length < start)
1542 		return (vm_map_max(map) - length + 1);
1543 
1544 	/* Empty tree means wide open address space. */
1545 	if (map->root == NULL)
1546 		return (start);
1547 
1548 	/*
1549 	 * After splay, if start comes before root node, then there
1550 	 * must be a gap from start to the root.
1551 	 */
1552 	root = vm_map_splay_split(start, length, map->root,
1553 	    &llist, &rlist);
1554 	if (root != NULL)
1555 		start = root->end;
1556 	else if (rlist != NULL) {
1557 		root = rlist;
1558 		rlist = root->left;
1559 		root->left = NULL;
1560 	} else {
1561 		root = llist;
1562 		llist = root->right;
1563 		root->right = NULL;
1564 	}
1565 	map->root = vm_map_splay_merge(root, llist, rlist,
1566 	    root->left, root->right);
1567 	VM_MAP_ASSERT_CONSISTENT(map);
1568 	if (start + length <= root->start)
1569 		return (start);
1570 
1571 	/*
1572 	 * Root is the last node that might begin its gap before
1573 	 * start, and this is the last comparison where address
1574 	 * wrap might be a problem.
1575 	 */
1576 	if (root->right == NULL &&
1577 	    start + length <= vm_map_max(map))
1578 		return (start);
1579 
1580 	/* With max_free, can immediately tell if no solution. */
1581 	if (root->right == NULL || length > root->right->max_free)
1582 		return (vm_map_max(map) - length + 1);
1583 
1584 	/*
1585 	 * Splay for the least large-enough gap in the right subtree.
1586 	 */
1587 	llist = NULL;
1588         rlist = NULL;
1589 	for (left_length = 0; ;
1590 	     left_length = root->left != NULL ?
1591 	     root->left->max_free : root->start - llist->end) {
1592 		if (length <= left_length)
1593 			SPLAY_LEFT_STEP(root, y, rlist,
1594 			    length <= (y->left != NULL ?
1595 			    y->left->max_free : y->start - llist->end));
1596 		else
1597 			SPLAY_RIGHT_STEP(root, y, llist,
1598 			    length > (y->left != NULL ?
1599 			    y->left->max_free : y->start - root->end));
1600 		if (root == NULL)
1601 			break;
1602 	}
1603 	root = llist;
1604 	llist = root->right;
1605 	if ((y = rlist) == NULL)
1606 		root->right = NULL;
1607 	else {
1608 		rlist = y->left;
1609 		y->left = NULL;
1610 		root->right = y->right;
1611 	}
1612 	root = vm_map_splay_merge(root, llist, rlist,
1613 	    root->left, root->right);
1614 	if (y != NULL) {
1615 		y->right = root->right;
1616 		vm_map_entry_set_max_free(y);
1617 		root->right = y;
1618 		vm_map_entry_set_max_free(root);
1619 	}
1620 	map->root = root;
1621 	VM_MAP_ASSERT_CONSISTENT(map);
1622 	return (root->end);
1623 }
1624 
1625 int
1626 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1627     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1628     vm_prot_t max, int cow)
1629 {
1630 	vm_offset_t end;
1631 	int result;
1632 
1633 	end = start + length;
1634 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1635 	    object == NULL,
1636 	    ("vm_map_fixed: non-NULL backing object for stack"));
1637 	vm_map_lock(map);
1638 	VM_MAP_RANGE_CHECK(map, start, end);
1639 	if ((cow & MAP_CHECK_EXCL) == 0)
1640 		vm_map_delete(map, start, end);
1641 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1642 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1643 		    prot, max, cow);
1644 	} else {
1645 		result = vm_map_insert(map, object, offset, start, end,
1646 		    prot, max, cow);
1647 	}
1648 	vm_map_unlock(map);
1649 	return (result);
1650 }
1651 
1652 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1653 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1654 
1655 static int cluster_anon = 1;
1656 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1657     &cluster_anon, 0,
1658     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1659 
1660 static bool
1661 clustering_anon_allowed(vm_offset_t addr)
1662 {
1663 
1664 	switch (cluster_anon) {
1665 	case 0:
1666 		return (false);
1667 	case 1:
1668 		return (addr == 0);
1669 	case 2:
1670 	default:
1671 		return (true);
1672 	}
1673 }
1674 
1675 static long aslr_restarts;
1676 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1677     &aslr_restarts, 0,
1678     "Number of aslr failures");
1679 
1680 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1681 
1682 /*
1683  * Searches for the specified amount of free space in the given map with the
1684  * specified alignment.  Performs an address-ordered, first-fit search from
1685  * the given address "*addr", with an optional upper bound "max_addr".  If the
1686  * parameter "alignment" is zero, then the alignment is computed from the
1687  * given (object, offset) pair so as to enable the greatest possible use of
1688  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1689  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1690  *
1691  * The map must be locked.  Initially, there must be at least "length" bytes
1692  * of free space at the given address.
1693  */
1694 static int
1695 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1696     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1697     vm_offset_t alignment)
1698 {
1699 	vm_offset_t aligned_addr, free_addr;
1700 
1701 	VM_MAP_ASSERT_LOCKED(map);
1702 	free_addr = *addr;
1703 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1704 	    ("caller failed to provide space %d at address %p",
1705 	     (int)length, (void*)free_addr));
1706 	for (;;) {
1707 		/*
1708 		 * At the start of every iteration, the free space at address
1709 		 * "*addr" is at least "length" bytes.
1710 		 */
1711 		if (alignment == 0)
1712 			pmap_align_superpage(object, offset, addr, length);
1713 		else if ((*addr & (alignment - 1)) != 0) {
1714 			*addr &= ~(alignment - 1);
1715 			*addr += alignment;
1716 		}
1717 		aligned_addr = *addr;
1718 		if (aligned_addr == free_addr) {
1719 			/*
1720 			 * Alignment did not change "*addr", so "*addr" must
1721 			 * still provide sufficient free space.
1722 			 */
1723 			return (KERN_SUCCESS);
1724 		}
1725 
1726 		/*
1727 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1728 		 * be a valid address, in which case vm_map_findspace() cannot
1729 		 * be relied upon to fail.
1730 		 */
1731 		if (aligned_addr < free_addr)
1732 			return (KERN_NO_SPACE);
1733 		*addr = vm_map_findspace(map, aligned_addr, length);
1734 		if (*addr + length > vm_map_max(map) ||
1735 		    (max_addr != 0 && *addr + length > max_addr))
1736 			return (KERN_NO_SPACE);
1737 		free_addr = *addr;
1738 		if (free_addr == aligned_addr) {
1739 			/*
1740 			 * If a successful call to vm_map_findspace() did not
1741 			 * change "*addr", then "*addr" must still be aligned
1742 			 * and provide sufficient free space.
1743 			 */
1744 			return (KERN_SUCCESS);
1745 		}
1746 	}
1747 }
1748 
1749 /*
1750  *	vm_map_find finds an unallocated region in the target address
1751  *	map with the given length.  The search is defined to be
1752  *	first-fit from the specified address; the region found is
1753  *	returned in the same parameter.
1754  *
1755  *	If object is non-NULL, ref count must be bumped by caller
1756  *	prior to making call to account for the new entry.
1757  */
1758 int
1759 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1760 	    vm_offset_t *addr,	/* IN/OUT */
1761 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1762 	    vm_prot_t prot, vm_prot_t max, int cow)
1763 {
1764 	vm_offset_t alignment, curr_min_addr, min_addr;
1765 	int gap, pidx, rv, try;
1766 	bool cluster, en_aslr, update_anon;
1767 
1768 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1769 	    object == NULL,
1770 	    ("vm_map_find: non-NULL backing object for stack"));
1771 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1772 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1773 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1774 	    (object->flags & OBJ_COLORED) == 0))
1775 		find_space = VMFS_ANY_SPACE;
1776 	if (find_space >> 8 != 0) {
1777 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1778 		alignment = (vm_offset_t)1 << (find_space >> 8);
1779 	} else
1780 		alignment = 0;
1781 	en_aslr = (map->flags & MAP_ASLR) != 0;
1782 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1783 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1784 	    find_space != VMFS_NO_SPACE && object == NULL &&
1785 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1786 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1787 	curr_min_addr = min_addr = *addr;
1788 	if (en_aslr && min_addr == 0 && !cluster &&
1789 	    find_space != VMFS_NO_SPACE &&
1790 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1791 		curr_min_addr = min_addr = vm_map_min(map);
1792 	try = 0;
1793 	vm_map_lock(map);
1794 	if (cluster) {
1795 		curr_min_addr = map->anon_loc;
1796 		if (curr_min_addr == 0)
1797 			cluster = false;
1798 	}
1799 	if (find_space != VMFS_NO_SPACE) {
1800 		KASSERT(find_space == VMFS_ANY_SPACE ||
1801 		    find_space == VMFS_OPTIMAL_SPACE ||
1802 		    find_space == VMFS_SUPER_SPACE ||
1803 		    alignment != 0, ("unexpected VMFS flag"));
1804 again:
1805 		/*
1806 		 * When creating an anonymous mapping, try clustering
1807 		 * with an existing anonymous mapping first.
1808 		 *
1809 		 * We make up to two attempts to find address space
1810 		 * for a given find_space value. The first attempt may
1811 		 * apply randomization or may cluster with an existing
1812 		 * anonymous mapping. If this first attempt fails,
1813 		 * perform a first-fit search of the available address
1814 		 * space.
1815 		 *
1816 		 * If all tries failed, and find_space is
1817 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1818 		 * Again enable clustering and randomization.
1819 		 */
1820 		try++;
1821 		MPASS(try <= 2);
1822 
1823 		if (try == 2) {
1824 			/*
1825 			 * Second try: we failed either to find a
1826 			 * suitable region for randomizing the
1827 			 * allocation, or to cluster with an existing
1828 			 * mapping.  Retry with free run.
1829 			 */
1830 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1831 			    vm_map_min(map) : min_addr;
1832 			atomic_add_long(&aslr_restarts, 1);
1833 		}
1834 
1835 		if (try == 1 && en_aslr && !cluster) {
1836 			/*
1837 			 * Find space for allocation, including
1838 			 * gap needed for later randomization.
1839 			 */
1840 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1841 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1842 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1843 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1844 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1845 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1846 			*addr = vm_map_findspace(map, curr_min_addr,
1847 			    length + gap * pagesizes[pidx]);
1848 			if (*addr + length + gap * pagesizes[pidx] >
1849 			    vm_map_max(map))
1850 				goto again;
1851 			/* And randomize the start address. */
1852 			*addr += (arc4random() % gap) * pagesizes[pidx];
1853 			if (max_addr != 0 && *addr + length > max_addr)
1854 				goto again;
1855 		} else {
1856 			*addr = vm_map_findspace(map, curr_min_addr, length);
1857 			if (*addr + length > vm_map_max(map) ||
1858 			    (max_addr != 0 && *addr + length > max_addr)) {
1859 				if (cluster) {
1860 					cluster = false;
1861 					MPASS(try == 1);
1862 					goto again;
1863 				}
1864 				rv = KERN_NO_SPACE;
1865 				goto done;
1866 			}
1867 		}
1868 
1869 		if (find_space != VMFS_ANY_SPACE &&
1870 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1871 		    max_addr, alignment)) != KERN_SUCCESS) {
1872 			if (find_space == VMFS_OPTIMAL_SPACE) {
1873 				find_space = VMFS_ANY_SPACE;
1874 				curr_min_addr = min_addr;
1875 				cluster = update_anon;
1876 				try = 0;
1877 				goto again;
1878 			}
1879 			goto done;
1880 		}
1881 	} else if ((cow & MAP_REMAP) != 0) {
1882 		if (*addr < vm_map_min(map) ||
1883 		    *addr + length > vm_map_max(map) ||
1884 		    *addr + length <= length) {
1885 			rv = KERN_INVALID_ADDRESS;
1886 			goto done;
1887 		}
1888 		vm_map_delete(map, *addr, *addr + length);
1889 	}
1890 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1891 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1892 		    max, cow);
1893 	} else {
1894 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1895 		    prot, max, cow);
1896 	}
1897 	if (rv == KERN_SUCCESS && update_anon)
1898 		map->anon_loc = *addr + length;
1899 done:
1900 	vm_map_unlock(map);
1901 	return (rv);
1902 }
1903 
1904 /*
1905  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1906  *	additional parameter (min_addr) and treats the given address
1907  *	(*addr) differently.  Specifically, it treats *addr as a hint
1908  *	and not as the minimum address where the mapping is created.
1909  *
1910  *	This function works in two phases.  First, it tries to
1911  *	allocate above the hint.  If that fails and the hint is
1912  *	greater than min_addr, it performs a second pass, replacing
1913  *	the hint with min_addr as the minimum address for the
1914  *	allocation.
1915  */
1916 int
1917 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1918     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1919     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1920     int cow)
1921 {
1922 	vm_offset_t hint;
1923 	int rv;
1924 
1925 	hint = *addr;
1926 	for (;;) {
1927 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1928 		    find_space, prot, max, cow);
1929 		if (rv == KERN_SUCCESS || min_addr >= hint)
1930 			return (rv);
1931 		*addr = hint = min_addr;
1932 	}
1933 }
1934 
1935 /*
1936  * A map entry with any of the following flags set must not be merged with
1937  * another entry.
1938  */
1939 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1940 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1941 
1942 static bool
1943 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1944 {
1945 
1946 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1947 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1948 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1949 	    prev, entry));
1950 	return (prev->end == entry->start &&
1951 	    prev->object.vm_object == entry->object.vm_object &&
1952 	    (prev->object.vm_object == NULL ||
1953 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
1954 	    prev->eflags == entry->eflags &&
1955 	    prev->protection == entry->protection &&
1956 	    prev->max_protection == entry->max_protection &&
1957 	    prev->inheritance == entry->inheritance &&
1958 	    prev->wired_count == entry->wired_count &&
1959 	    prev->cred == entry->cred);
1960 }
1961 
1962 static void
1963 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1964 {
1965 
1966 	/*
1967 	 * If the backing object is a vnode object, vm_object_deallocate()
1968 	 * calls vrele().  However, vrele() does not lock the vnode because
1969 	 * the vnode has additional references.  Thus, the map lock can be
1970 	 * kept without causing a lock-order reversal with the vnode lock.
1971 	 *
1972 	 * Since we count the number of virtual page mappings in
1973 	 * object->un_pager.vnp.writemappings, the writemappings value
1974 	 * should not be adjusted when the entry is disposed of.
1975 	 */
1976 	if (entry->object.vm_object != NULL)
1977 		vm_object_deallocate(entry->object.vm_object);
1978 	if (entry->cred != NULL)
1979 		crfree(entry->cred);
1980 	vm_map_entry_dispose(map, entry);
1981 }
1982 
1983 /*
1984  *	vm_map_simplify_entry:
1985  *
1986  *	Simplify the given map entry by merging with either neighbor.  This
1987  *	routine also has the ability to merge with both neighbors.
1988  *
1989  *	The map must be locked.
1990  *
1991  *	This routine guarantees that the passed entry remains valid (though
1992  *	possibly extended).  When merging, this routine may delete one or
1993  *	both neighbors.
1994  */
1995 void
1996 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1997 {
1998 	vm_map_entry_t next, prev;
1999 
2000 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2001 		return;
2002 	prev = entry->prev;
2003 	if (vm_map_mergeable_neighbors(prev, entry)) {
2004 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2005 		vm_map_merged_neighbor_dispose(map, prev);
2006 	}
2007 	next = entry->next;
2008 	if (vm_map_mergeable_neighbors(entry, next)) {
2009 		vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2010 		vm_map_merged_neighbor_dispose(map, next);
2011 	}
2012 }
2013 
2014 /*
2015  *	vm_map_clip_start:	[ internal use only ]
2016  *
2017  *	Asserts that the given entry begins at or after
2018  *	the specified address; if necessary,
2019  *	it splits the entry into two.
2020  */
2021 #define vm_map_clip_start(map, entry, startaddr) \
2022 { \
2023 	if (startaddr > entry->start) \
2024 		_vm_map_clip_start(map, entry, startaddr); \
2025 }
2026 
2027 /*
2028  *	This routine is called only when it is known that
2029  *	the entry must be split.
2030  */
2031 static void
2032 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2033 {
2034 	vm_map_entry_t new_entry;
2035 
2036 	VM_MAP_ASSERT_LOCKED(map);
2037 	KASSERT(entry->end > start && entry->start < start,
2038 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2039 
2040 	/*
2041 	 * Split off the front portion -- note that we must insert the new
2042 	 * entry BEFORE this one, so that this entry has the specified
2043 	 * starting address.
2044 	 */
2045 	vm_map_simplify_entry(map, entry);
2046 
2047 	/*
2048 	 * If there is no object backing this entry, we might as well create
2049 	 * one now.  If we defer it, an object can get created after the map
2050 	 * is clipped, and individual objects will be created for the split-up
2051 	 * map.  This is a bit of a hack, but is also about the best place to
2052 	 * put this improvement.
2053 	 */
2054 	if (entry->object.vm_object == NULL && !map->system_map &&
2055 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2056 		vm_object_t object;
2057 		object = vm_object_allocate(OBJT_DEFAULT,
2058 				atop(entry->end - entry->start));
2059 		entry->object.vm_object = object;
2060 		entry->offset = 0;
2061 		if (entry->cred != NULL) {
2062 			object->cred = entry->cred;
2063 			object->charge = entry->end - entry->start;
2064 			entry->cred = NULL;
2065 		}
2066 	} else if (entry->object.vm_object != NULL &&
2067 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2068 		   entry->cred != NULL) {
2069 		VM_OBJECT_WLOCK(entry->object.vm_object);
2070 		KASSERT(entry->object.vm_object->cred == NULL,
2071 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2072 		entry->object.vm_object->cred = entry->cred;
2073 		entry->object.vm_object->charge = entry->end - entry->start;
2074 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2075 		entry->cred = NULL;
2076 	}
2077 
2078 	new_entry = vm_map_entry_create(map);
2079 	*new_entry = *entry;
2080 
2081 	new_entry->end = start;
2082 	entry->offset += (start - entry->start);
2083 	entry->start = start;
2084 	if (new_entry->cred != NULL)
2085 		crhold(entry->cred);
2086 
2087 	vm_map_entry_link(map, new_entry);
2088 
2089 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2090 		vm_object_reference(new_entry->object.vm_object);
2091 		/*
2092 		 * The object->un_pager.vnp.writemappings for the
2093 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2094 		 * kept as is here.  The virtual pages are
2095 		 * re-distributed among the clipped entries, so the sum is
2096 		 * left the same.
2097 		 */
2098 	}
2099 }
2100 
2101 /*
2102  *	vm_map_clip_end:	[ internal use only ]
2103  *
2104  *	Asserts that the given entry ends at or before
2105  *	the specified address; if necessary,
2106  *	it splits the entry into two.
2107  */
2108 #define vm_map_clip_end(map, entry, endaddr) \
2109 { \
2110 	if ((endaddr) < (entry->end)) \
2111 		_vm_map_clip_end((map), (entry), (endaddr)); \
2112 }
2113 
2114 /*
2115  *	This routine is called only when it is known that
2116  *	the entry must be split.
2117  */
2118 static void
2119 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2120 {
2121 	vm_map_entry_t new_entry;
2122 
2123 	VM_MAP_ASSERT_LOCKED(map);
2124 	KASSERT(entry->start < end && entry->end > end,
2125 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2126 
2127 	/*
2128 	 * If there is no object backing this entry, we might as well create
2129 	 * one now.  If we defer it, an object can get created after the map
2130 	 * is clipped, and individual objects will be created for the split-up
2131 	 * map.  This is a bit of a hack, but is also about the best place to
2132 	 * put this improvement.
2133 	 */
2134 	if (entry->object.vm_object == NULL && !map->system_map &&
2135 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2136 		vm_object_t object;
2137 		object = vm_object_allocate(OBJT_DEFAULT,
2138 				atop(entry->end - entry->start));
2139 		entry->object.vm_object = object;
2140 		entry->offset = 0;
2141 		if (entry->cred != NULL) {
2142 			object->cred = entry->cred;
2143 			object->charge = entry->end - entry->start;
2144 			entry->cred = NULL;
2145 		}
2146 	} else if (entry->object.vm_object != NULL &&
2147 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2148 		   entry->cred != NULL) {
2149 		VM_OBJECT_WLOCK(entry->object.vm_object);
2150 		KASSERT(entry->object.vm_object->cred == NULL,
2151 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2152 		entry->object.vm_object->cred = entry->cred;
2153 		entry->object.vm_object->charge = entry->end - entry->start;
2154 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2155 		entry->cred = NULL;
2156 	}
2157 
2158 	/*
2159 	 * Create a new entry and insert it AFTER the specified entry
2160 	 */
2161 	new_entry = vm_map_entry_create(map);
2162 	*new_entry = *entry;
2163 
2164 	new_entry->start = entry->end = end;
2165 	new_entry->offset += (end - entry->start);
2166 	if (new_entry->cred != NULL)
2167 		crhold(entry->cred);
2168 
2169 	vm_map_entry_link(map, new_entry);
2170 
2171 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2172 		vm_object_reference(new_entry->object.vm_object);
2173 	}
2174 }
2175 
2176 /*
2177  *	vm_map_submap:		[ kernel use only ]
2178  *
2179  *	Mark the given range as handled by a subordinate map.
2180  *
2181  *	This range must have been created with vm_map_find,
2182  *	and no other operations may have been performed on this
2183  *	range prior to calling vm_map_submap.
2184  *
2185  *	Only a limited number of operations can be performed
2186  *	within this rage after calling vm_map_submap:
2187  *		vm_fault
2188  *	[Don't try vm_map_copy!]
2189  *
2190  *	To remove a submapping, one must first remove the
2191  *	range from the superior map, and then destroy the
2192  *	submap (if desired).  [Better yet, don't try it.]
2193  */
2194 int
2195 vm_map_submap(
2196 	vm_map_t map,
2197 	vm_offset_t start,
2198 	vm_offset_t end,
2199 	vm_map_t submap)
2200 {
2201 	vm_map_entry_t entry;
2202 	int result;
2203 
2204 	result = KERN_INVALID_ARGUMENT;
2205 
2206 	vm_map_lock(submap);
2207 	submap->flags |= MAP_IS_SUB_MAP;
2208 	vm_map_unlock(submap);
2209 
2210 	vm_map_lock(map);
2211 
2212 	VM_MAP_RANGE_CHECK(map, start, end);
2213 
2214 	if (vm_map_lookup_entry(map, start, &entry)) {
2215 		vm_map_clip_start(map, entry, start);
2216 	} else
2217 		entry = entry->next;
2218 
2219 	vm_map_clip_end(map, entry, end);
2220 
2221 	if ((entry->start == start) && (entry->end == end) &&
2222 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2223 	    (entry->object.vm_object == NULL)) {
2224 		entry->object.sub_map = submap;
2225 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2226 		result = KERN_SUCCESS;
2227 	}
2228 	vm_map_unlock(map);
2229 
2230 	if (result != KERN_SUCCESS) {
2231 		vm_map_lock(submap);
2232 		submap->flags &= ~MAP_IS_SUB_MAP;
2233 		vm_map_unlock(submap);
2234 	}
2235 	return (result);
2236 }
2237 
2238 /*
2239  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2240  */
2241 #define	MAX_INIT_PT	96
2242 
2243 /*
2244  *	vm_map_pmap_enter:
2245  *
2246  *	Preload the specified map's pmap with mappings to the specified
2247  *	object's memory-resident pages.  No further physical pages are
2248  *	allocated, and no further virtual pages are retrieved from secondary
2249  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2250  *	limited number of page mappings are created at the low-end of the
2251  *	specified address range.  (For this purpose, a superpage mapping
2252  *	counts as one page mapping.)  Otherwise, all resident pages within
2253  *	the specified address range are mapped.
2254  */
2255 static void
2256 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2257     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2258 {
2259 	vm_offset_t start;
2260 	vm_page_t p, p_start;
2261 	vm_pindex_t mask, psize, threshold, tmpidx;
2262 
2263 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2264 		return;
2265 	VM_OBJECT_RLOCK(object);
2266 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2267 		VM_OBJECT_RUNLOCK(object);
2268 		VM_OBJECT_WLOCK(object);
2269 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2270 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2271 			    size);
2272 			VM_OBJECT_WUNLOCK(object);
2273 			return;
2274 		}
2275 		VM_OBJECT_LOCK_DOWNGRADE(object);
2276 	}
2277 
2278 	psize = atop(size);
2279 	if (psize + pindex > object->size) {
2280 		if (object->size < pindex) {
2281 			VM_OBJECT_RUNLOCK(object);
2282 			return;
2283 		}
2284 		psize = object->size - pindex;
2285 	}
2286 
2287 	start = 0;
2288 	p_start = NULL;
2289 	threshold = MAX_INIT_PT;
2290 
2291 	p = vm_page_find_least(object, pindex);
2292 	/*
2293 	 * Assert: the variable p is either (1) the page with the
2294 	 * least pindex greater than or equal to the parameter pindex
2295 	 * or (2) NULL.
2296 	 */
2297 	for (;
2298 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2299 	     p = TAILQ_NEXT(p, listq)) {
2300 		/*
2301 		 * don't allow an madvise to blow away our really
2302 		 * free pages allocating pv entries.
2303 		 */
2304 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2305 		    vm_page_count_severe()) ||
2306 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2307 		    tmpidx >= threshold)) {
2308 			psize = tmpidx;
2309 			break;
2310 		}
2311 		if (p->valid == VM_PAGE_BITS_ALL) {
2312 			if (p_start == NULL) {
2313 				start = addr + ptoa(tmpidx);
2314 				p_start = p;
2315 			}
2316 			/* Jump ahead if a superpage mapping is possible. */
2317 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2318 			    (pagesizes[p->psind] - 1)) == 0) {
2319 				mask = atop(pagesizes[p->psind]) - 1;
2320 				if (tmpidx + mask < psize &&
2321 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2322 					p += mask;
2323 					threshold += mask;
2324 				}
2325 			}
2326 		} else if (p_start != NULL) {
2327 			pmap_enter_object(map->pmap, start, addr +
2328 			    ptoa(tmpidx), p_start, prot);
2329 			p_start = NULL;
2330 		}
2331 	}
2332 	if (p_start != NULL)
2333 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2334 		    p_start, prot);
2335 	VM_OBJECT_RUNLOCK(object);
2336 }
2337 
2338 /*
2339  *	vm_map_protect:
2340  *
2341  *	Sets the protection of the specified address
2342  *	region in the target map.  If "set_max" is
2343  *	specified, the maximum protection is to be set;
2344  *	otherwise, only the current protection is affected.
2345  */
2346 int
2347 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2348 	       vm_prot_t new_prot, boolean_t set_max)
2349 {
2350 	vm_map_entry_t current, entry, in_tran;
2351 	vm_object_t obj;
2352 	struct ucred *cred;
2353 	vm_prot_t old_prot;
2354 
2355 	if (start == end)
2356 		return (KERN_SUCCESS);
2357 
2358 again:
2359 	in_tran = NULL;
2360 	vm_map_lock(map);
2361 
2362 	/*
2363 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2364 	 * need to fault pages into the map and will drop the map lock while
2365 	 * doing so, and the VM object may end up in an inconsistent state if we
2366 	 * update the protection on the map entry in between faults.
2367 	 */
2368 	vm_map_wait_busy(map);
2369 
2370 	VM_MAP_RANGE_CHECK(map, start, end);
2371 
2372 	if (vm_map_lookup_entry(map, start, &entry)) {
2373 		vm_map_clip_start(map, entry, start);
2374 	} else {
2375 		entry = entry->next;
2376 	}
2377 
2378 	/*
2379 	 * Make a first pass to check for protection violations.
2380 	 */
2381 	for (current = entry; current->start < end; current = current->next) {
2382 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2383 			continue;
2384 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2385 			vm_map_unlock(map);
2386 			return (KERN_INVALID_ARGUMENT);
2387 		}
2388 		if ((new_prot & current->max_protection) != new_prot) {
2389 			vm_map_unlock(map);
2390 			return (KERN_PROTECTION_FAILURE);
2391 		}
2392 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2393 			in_tran = entry;
2394 	}
2395 
2396 	/*
2397 	 * Postpone the operation until all in transition map entries
2398 	 * are stabilized.  In-transition entry might already have its
2399 	 * pages wired and wired_count incremented, but
2400 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2401 	 * threads because the map lock is dropped.  In this case we
2402 	 * would miss our call to vm_fault_copy_entry().
2403 	 */
2404 	if (in_tran != NULL) {
2405 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2406 		vm_map_unlock_and_wait(map, 0);
2407 		goto again;
2408 	}
2409 
2410 	/*
2411 	 * Do an accounting pass for private read-only mappings that
2412 	 * now will do cow due to allowed write (e.g. debugger sets
2413 	 * breakpoint on text segment)
2414 	 */
2415 	for (current = entry; current->start < end; current = current->next) {
2416 
2417 		vm_map_clip_end(map, current, end);
2418 
2419 		if (set_max ||
2420 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2421 		    ENTRY_CHARGED(current) ||
2422 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2423 			continue;
2424 		}
2425 
2426 		cred = curthread->td_ucred;
2427 		obj = current->object.vm_object;
2428 
2429 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2430 			if (!swap_reserve(current->end - current->start)) {
2431 				vm_map_unlock(map);
2432 				return (KERN_RESOURCE_SHORTAGE);
2433 			}
2434 			crhold(cred);
2435 			current->cred = cred;
2436 			continue;
2437 		}
2438 
2439 		VM_OBJECT_WLOCK(obj);
2440 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2441 			VM_OBJECT_WUNLOCK(obj);
2442 			continue;
2443 		}
2444 
2445 		/*
2446 		 * Charge for the whole object allocation now, since
2447 		 * we cannot distinguish between non-charged and
2448 		 * charged clipped mapping of the same object later.
2449 		 */
2450 		KASSERT(obj->charge == 0,
2451 		    ("vm_map_protect: object %p overcharged (entry %p)",
2452 		    obj, current));
2453 		if (!swap_reserve(ptoa(obj->size))) {
2454 			VM_OBJECT_WUNLOCK(obj);
2455 			vm_map_unlock(map);
2456 			return (KERN_RESOURCE_SHORTAGE);
2457 		}
2458 
2459 		crhold(cred);
2460 		obj->cred = cred;
2461 		obj->charge = ptoa(obj->size);
2462 		VM_OBJECT_WUNLOCK(obj);
2463 	}
2464 
2465 	/*
2466 	 * Go back and fix up protections. [Note that clipping is not
2467 	 * necessary the second time.]
2468 	 */
2469 	for (current = entry; current->start < end; current = current->next) {
2470 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2471 			continue;
2472 
2473 		old_prot = current->protection;
2474 
2475 		if (set_max)
2476 			current->protection =
2477 			    (current->max_protection = new_prot) &
2478 			    old_prot;
2479 		else
2480 			current->protection = new_prot;
2481 
2482 		/*
2483 		 * For user wired map entries, the normal lazy evaluation of
2484 		 * write access upgrades through soft page faults is
2485 		 * undesirable.  Instead, immediately copy any pages that are
2486 		 * copy-on-write and enable write access in the physical map.
2487 		 */
2488 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2489 		    (current->protection & VM_PROT_WRITE) != 0 &&
2490 		    (old_prot & VM_PROT_WRITE) == 0)
2491 			vm_fault_copy_entry(map, map, current, current, NULL);
2492 
2493 		/*
2494 		 * When restricting access, update the physical map.  Worry
2495 		 * about copy-on-write here.
2496 		 */
2497 		if ((old_prot & ~current->protection) != 0) {
2498 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2499 							VM_PROT_ALL)
2500 			pmap_protect(map->pmap, current->start,
2501 			    current->end,
2502 			    current->protection & MASK(current));
2503 #undef	MASK
2504 		}
2505 		vm_map_simplify_entry(map, current);
2506 	}
2507 	vm_map_unlock(map);
2508 	return (KERN_SUCCESS);
2509 }
2510 
2511 /*
2512  *	vm_map_madvise:
2513  *
2514  *	This routine traverses a processes map handling the madvise
2515  *	system call.  Advisories are classified as either those effecting
2516  *	the vm_map_entry structure, or those effecting the underlying
2517  *	objects.
2518  */
2519 int
2520 vm_map_madvise(
2521 	vm_map_t map,
2522 	vm_offset_t start,
2523 	vm_offset_t end,
2524 	int behav)
2525 {
2526 	vm_map_entry_t current, entry;
2527 	bool modify_map;
2528 
2529 	/*
2530 	 * Some madvise calls directly modify the vm_map_entry, in which case
2531 	 * we need to use an exclusive lock on the map and we need to perform
2532 	 * various clipping operations.  Otherwise we only need a read-lock
2533 	 * on the map.
2534 	 */
2535 	switch(behav) {
2536 	case MADV_NORMAL:
2537 	case MADV_SEQUENTIAL:
2538 	case MADV_RANDOM:
2539 	case MADV_NOSYNC:
2540 	case MADV_AUTOSYNC:
2541 	case MADV_NOCORE:
2542 	case MADV_CORE:
2543 		if (start == end)
2544 			return (0);
2545 		modify_map = true;
2546 		vm_map_lock(map);
2547 		break;
2548 	case MADV_WILLNEED:
2549 	case MADV_DONTNEED:
2550 	case MADV_FREE:
2551 		if (start == end)
2552 			return (0);
2553 		modify_map = false;
2554 		vm_map_lock_read(map);
2555 		break;
2556 	default:
2557 		return (EINVAL);
2558 	}
2559 
2560 	/*
2561 	 * Locate starting entry and clip if necessary.
2562 	 */
2563 	VM_MAP_RANGE_CHECK(map, start, end);
2564 
2565 	if (vm_map_lookup_entry(map, start, &entry)) {
2566 		if (modify_map)
2567 			vm_map_clip_start(map, entry, start);
2568 	} else {
2569 		entry = entry->next;
2570 	}
2571 
2572 	if (modify_map) {
2573 		/*
2574 		 * madvise behaviors that are implemented in the vm_map_entry.
2575 		 *
2576 		 * We clip the vm_map_entry so that behavioral changes are
2577 		 * limited to the specified address range.
2578 		 */
2579 		for (current = entry; current->start < end;
2580 		    current = current->next) {
2581 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2582 				continue;
2583 
2584 			vm_map_clip_end(map, current, end);
2585 
2586 			switch (behav) {
2587 			case MADV_NORMAL:
2588 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2589 				break;
2590 			case MADV_SEQUENTIAL:
2591 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2592 				break;
2593 			case MADV_RANDOM:
2594 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2595 				break;
2596 			case MADV_NOSYNC:
2597 				current->eflags |= MAP_ENTRY_NOSYNC;
2598 				break;
2599 			case MADV_AUTOSYNC:
2600 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2601 				break;
2602 			case MADV_NOCORE:
2603 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2604 				break;
2605 			case MADV_CORE:
2606 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2607 				break;
2608 			default:
2609 				break;
2610 			}
2611 			vm_map_simplify_entry(map, current);
2612 		}
2613 		vm_map_unlock(map);
2614 	} else {
2615 		vm_pindex_t pstart, pend;
2616 
2617 		/*
2618 		 * madvise behaviors that are implemented in the underlying
2619 		 * vm_object.
2620 		 *
2621 		 * Since we don't clip the vm_map_entry, we have to clip
2622 		 * the vm_object pindex and count.
2623 		 */
2624 		for (current = entry; current->start < end;
2625 		    current = current->next) {
2626 			vm_offset_t useEnd, useStart;
2627 
2628 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2629 				continue;
2630 
2631 			pstart = OFF_TO_IDX(current->offset);
2632 			pend = pstart + atop(current->end - current->start);
2633 			useStart = current->start;
2634 			useEnd = current->end;
2635 
2636 			if (current->start < start) {
2637 				pstart += atop(start - current->start);
2638 				useStart = start;
2639 			}
2640 			if (current->end > end) {
2641 				pend -= atop(current->end - end);
2642 				useEnd = end;
2643 			}
2644 
2645 			if (pstart >= pend)
2646 				continue;
2647 
2648 			/*
2649 			 * Perform the pmap_advise() before clearing
2650 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2651 			 * concurrent pmap operation, such as pmap_remove(),
2652 			 * could clear a reference in the pmap and set
2653 			 * PGA_REFERENCED on the page before the pmap_advise()
2654 			 * had completed.  Consequently, the page would appear
2655 			 * referenced based upon an old reference that
2656 			 * occurred before this pmap_advise() ran.
2657 			 */
2658 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2659 				pmap_advise(map->pmap, useStart, useEnd,
2660 				    behav);
2661 
2662 			vm_object_madvise(current->object.vm_object, pstart,
2663 			    pend, behav);
2664 
2665 			/*
2666 			 * Pre-populate paging structures in the
2667 			 * WILLNEED case.  For wired entries, the
2668 			 * paging structures are already populated.
2669 			 */
2670 			if (behav == MADV_WILLNEED &&
2671 			    current->wired_count == 0) {
2672 				vm_map_pmap_enter(map,
2673 				    useStart,
2674 				    current->protection,
2675 				    current->object.vm_object,
2676 				    pstart,
2677 				    ptoa(pend - pstart),
2678 				    MAP_PREFAULT_MADVISE
2679 				);
2680 			}
2681 		}
2682 		vm_map_unlock_read(map);
2683 	}
2684 	return (0);
2685 }
2686 
2687 
2688 /*
2689  *	vm_map_inherit:
2690  *
2691  *	Sets the inheritance of the specified address
2692  *	range in the target map.  Inheritance
2693  *	affects how the map will be shared with
2694  *	child maps at the time of vmspace_fork.
2695  */
2696 int
2697 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2698 	       vm_inherit_t new_inheritance)
2699 {
2700 	vm_map_entry_t entry;
2701 	vm_map_entry_t temp_entry;
2702 
2703 	switch (new_inheritance) {
2704 	case VM_INHERIT_NONE:
2705 	case VM_INHERIT_COPY:
2706 	case VM_INHERIT_SHARE:
2707 	case VM_INHERIT_ZERO:
2708 		break;
2709 	default:
2710 		return (KERN_INVALID_ARGUMENT);
2711 	}
2712 	if (start == end)
2713 		return (KERN_SUCCESS);
2714 	vm_map_lock(map);
2715 	VM_MAP_RANGE_CHECK(map, start, end);
2716 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2717 		entry = temp_entry;
2718 		vm_map_clip_start(map, entry, start);
2719 	} else
2720 		entry = temp_entry->next;
2721 	while (entry->start < end) {
2722 		vm_map_clip_end(map, entry, end);
2723 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2724 		    new_inheritance != VM_INHERIT_ZERO)
2725 			entry->inheritance = new_inheritance;
2726 		vm_map_simplify_entry(map, entry);
2727 		entry = entry->next;
2728 	}
2729 	vm_map_unlock(map);
2730 	return (KERN_SUCCESS);
2731 }
2732 
2733 /*
2734  *	vm_map_unwire:
2735  *
2736  *	Implements both kernel and user unwiring.
2737  */
2738 int
2739 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2740     int flags)
2741 {
2742 	vm_map_entry_t entry, first_entry, tmp_entry;
2743 	vm_offset_t saved_start;
2744 	unsigned int last_timestamp;
2745 	int rv;
2746 	boolean_t need_wakeup, result, user_unwire;
2747 
2748 	if (start == end)
2749 		return (KERN_SUCCESS);
2750 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2751 	vm_map_lock(map);
2752 	VM_MAP_RANGE_CHECK(map, start, end);
2753 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2754 		if (flags & VM_MAP_WIRE_HOLESOK)
2755 			first_entry = first_entry->next;
2756 		else {
2757 			vm_map_unlock(map);
2758 			return (KERN_INVALID_ADDRESS);
2759 		}
2760 	}
2761 	last_timestamp = map->timestamp;
2762 	entry = first_entry;
2763 	while (entry->start < end) {
2764 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2765 			/*
2766 			 * We have not yet clipped the entry.
2767 			 */
2768 			saved_start = (start >= entry->start) ? start :
2769 			    entry->start;
2770 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2771 			if (vm_map_unlock_and_wait(map, 0)) {
2772 				/*
2773 				 * Allow interruption of user unwiring?
2774 				 */
2775 			}
2776 			vm_map_lock(map);
2777 			if (last_timestamp+1 != map->timestamp) {
2778 				/*
2779 				 * Look again for the entry because the map was
2780 				 * modified while it was unlocked.
2781 				 * Specifically, the entry may have been
2782 				 * clipped, merged, or deleted.
2783 				 */
2784 				if (!vm_map_lookup_entry(map, saved_start,
2785 				    &tmp_entry)) {
2786 					if (flags & VM_MAP_WIRE_HOLESOK)
2787 						tmp_entry = tmp_entry->next;
2788 					else {
2789 						if (saved_start == start) {
2790 							/*
2791 							 * First_entry has been deleted.
2792 							 */
2793 							vm_map_unlock(map);
2794 							return (KERN_INVALID_ADDRESS);
2795 						}
2796 						end = saved_start;
2797 						rv = KERN_INVALID_ADDRESS;
2798 						goto done;
2799 					}
2800 				}
2801 				if (entry == first_entry)
2802 					first_entry = tmp_entry;
2803 				else
2804 					first_entry = NULL;
2805 				entry = tmp_entry;
2806 			}
2807 			last_timestamp = map->timestamp;
2808 			continue;
2809 		}
2810 		vm_map_clip_start(map, entry, start);
2811 		vm_map_clip_end(map, entry, end);
2812 		/*
2813 		 * Mark the entry in case the map lock is released.  (See
2814 		 * above.)
2815 		 */
2816 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2817 		    entry->wiring_thread == NULL,
2818 		    ("owned map entry %p", entry));
2819 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2820 		entry->wiring_thread = curthread;
2821 		/*
2822 		 * Check the map for holes in the specified region.
2823 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2824 		 */
2825 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2826 		    (entry->end < end && entry->next->start > entry->end)) {
2827 			end = entry->end;
2828 			rv = KERN_INVALID_ADDRESS;
2829 			goto done;
2830 		}
2831 		/*
2832 		 * If system unwiring, require that the entry is system wired.
2833 		 */
2834 		if (!user_unwire &&
2835 		    vm_map_entry_system_wired_count(entry) == 0) {
2836 			end = entry->end;
2837 			rv = KERN_INVALID_ARGUMENT;
2838 			goto done;
2839 		}
2840 		entry = entry->next;
2841 	}
2842 	rv = KERN_SUCCESS;
2843 done:
2844 	need_wakeup = FALSE;
2845 	if (first_entry == NULL) {
2846 		result = vm_map_lookup_entry(map, start, &first_entry);
2847 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2848 			first_entry = first_entry->next;
2849 		else
2850 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2851 	}
2852 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2853 		/*
2854 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2855 		 * space in the unwired region could have been mapped
2856 		 * while the map lock was dropped for draining
2857 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2858 		 * could be simultaneously wiring this new mapping
2859 		 * entry.  Detect these cases and skip any entries
2860 		 * marked as in transition by us.
2861 		 */
2862 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2863 		    entry->wiring_thread != curthread) {
2864 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2865 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2866 			continue;
2867 		}
2868 
2869 		if (rv == KERN_SUCCESS && (!user_unwire ||
2870 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2871 			if (user_unwire)
2872 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2873 			if (entry->wired_count == 1)
2874 				vm_map_entry_unwire(map, entry);
2875 			else
2876 				entry->wired_count--;
2877 		}
2878 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2879 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2880 		KASSERT(entry->wiring_thread == curthread,
2881 		    ("vm_map_unwire: alien wire %p", entry));
2882 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2883 		entry->wiring_thread = NULL;
2884 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2885 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2886 			need_wakeup = TRUE;
2887 		}
2888 		vm_map_simplify_entry(map, entry);
2889 	}
2890 	vm_map_unlock(map);
2891 	if (need_wakeup)
2892 		vm_map_wakeup(map);
2893 	return (rv);
2894 }
2895 
2896 /*
2897  *	vm_map_wire_entry_failure:
2898  *
2899  *	Handle a wiring failure on the given entry.
2900  *
2901  *	The map should be locked.
2902  */
2903 static void
2904 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2905     vm_offset_t failed_addr)
2906 {
2907 
2908 	VM_MAP_ASSERT_LOCKED(map);
2909 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2910 	    entry->wired_count == 1,
2911 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2912 	KASSERT(failed_addr < entry->end,
2913 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2914 
2915 	/*
2916 	 * If any pages at the start of this entry were successfully wired,
2917 	 * then unwire them.
2918 	 */
2919 	if (failed_addr > entry->start) {
2920 		pmap_unwire(map->pmap, entry->start, failed_addr);
2921 		vm_object_unwire(entry->object.vm_object, entry->offset,
2922 		    failed_addr - entry->start, PQ_ACTIVE);
2923 	}
2924 
2925 	/*
2926 	 * Assign an out-of-range value to represent the failure to wire this
2927 	 * entry.
2928 	 */
2929 	entry->wired_count = -1;
2930 }
2931 
2932 /*
2933  *	vm_map_wire:
2934  *
2935  *	Implements both kernel and user wiring.
2936  */
2937 int
2938 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2939     int flags)
2940 {
2941 	vm_map_entry_t entry, first_entry, tmp_entry;
2942 	vm_offset_t faddr, saved_end, saved_start;
2943 	unsigned int last_timestamp;
2944 	int rv;
2945 	boolean_t need_wakeup, result, user_wire;
2946 	vm_prot_t prot;
2947 
2948 	if (start == end)
2949 		return (KERN_SUCCESS);
2950 	prot = 0;
2951 	if (flags & VM_MAP_WIRE_WRITE)
2952 		prot |= VM_PROT_WRITE;
2953 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2954 	vm_map_lock(map);
2955 	VM_MAP_RANGE_CHECK(map, start, end);
2956 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2957 		if (flags & VM_MAP_WIRE_HOLESOK)
2958 			first_entry = first_entry->next;
2959 		else {
2960 			vm_map_unlock(map);
2961 			return (KERN_INVALID_ADDRESS);
2962 		}
2963 	}
2964 	last_timestamp = map->timestamp;
2965 	entry = first_entry;
2966 	while (entry->start < end) {
2967 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2968 			/*
2969 			 * We have not yet clipped the entry.
2970 			 */
2971 			saved_start = (start >= entry->start) ? start :
2972 			    entry->start;
2973 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2974 			if (vm_map_unlock_and_wait(map, 0)) {
2975 				/*
2976 				 * Allow interruption of user wiring?
2977 				 */
2978 			}
2979 			vm_map_lock(map);
2980 			if (last_timestamp + 1 != map->timestamp) {
2981 				/*
2982 				 * Look again for the entry because the map was
2983 				 * modified while it was unlocked.
2984 				 * Specifically, the entry may have been
2985 				 * clipped, merged, or deleted.
2986 				 */
2987 				if (!vm_map_lookup_entry(map, saved_start,
2988 				    &tmp_entry)) {
2989 					if (flags & VM_MAP_WIRE_HOLESOK)
2990 						tmp_entry = tmp_entry->next;
2991 					else {
2992 						if (saved_start == start) {
2993 							/*
2994 							 * first_entry has been deleted.
2995 							 */
2996 							vm_map_unlock(map);
2997 							return (KERN_INVALID_ADDRESS);
2998 						}
2999 						end = saved_start;
3000 						rv = KERN_INVALID_ADDRESS;
3001 						goto done;
3002 					}
3003 				}
3004 				if (entry == first_entry)
3005 					first_entry = tmp_entry;
3006 				else
3007 					first_entry = NULL;
3008 				entry = tmp_entry;
3009 			}
3010 			last_timestamp = map->timestamp;
3011 			continue;
3012 		}
3013 		vm_map_clip_start(map, entry, start);
3014 		vm_map_clip_end(map, entry, end);
3015 		/*
3016 		 * Mark the entry in case the map lock is released.  (See
3017 		 * above.)
3018 		 */
3019 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3020 		    entry->wiring_thread == NULL,
3021 		    ("owned map entry %p", entry));
3022 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3023 		entry->wiring_thread = curthread;
3024 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3025 		    || (entry->protection & prot) != prot) {
3026 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3027 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3028 				end = entry->end;
3029 				rv = KERN_INVALID_ADDRESS;
3030 				goto done;
3031 			}
3032 			goto next_entry;
3033 		}
3034 		if (entry->wired_count == 0) {
3035 			entry->wired_count++;
3036 			saved_start = entry->start;
3037 			saved_end = entry->end;
3038 
3039 			/*
3040 			 * Release the map lock, relying on the in-transition
3041 			 * mark.  Mark the map busy for fork.
3042 			 */
3043 			vm_map_busy(map);
3044 			vm_map_unlock(map);
3045 
3046 			faddr = saved_start;
3047 			do {
3048 				/*
3049 				 * Simulate a fault to get the page and enter
3050 				 * it into the physical map.
3051 				 */
3052 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3053 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
3054 					break;
3055 			} while ((faddr += PAGE_SIZE) < saved_end);
3056 			vm_map_lock(map);
3057 			vm_map_unbusy(map);
3058 			if (last_timestamp + 1 != map->timestamp) {
3059 				/*
3060 				 * Look again for the entry because the map was
3061 				 * modified while it was unlocked.  The entry
3062 				 * may have been clipped, but NOT merged or
3063 				 * deleted.
3064 				 */
3065 				result = vm_map_lookup_entry(map, saved_start,
3066 				    &tmp_entry);
3067 				KASSERT(result, ("vm_map_wire: lookup failed"));
3068 				if (entry == first_entry)
3069 					first_entry = tmp_entry;
3070 				else
3071 					first_entry = NULL;
3072 				entry = tmp_entry;
3073 				while (entry->end < saved_end) {
3074 					/*
3075 					 * In case of failure, handle entries
3076 					 * that were not fully wired here;
3077 					 * fully wired entries are handled
3078 					 * later.
3079 					 */
3080 					if (rv != KERN_SUCCESS &&
3081 					    faddr < entry->end)
3082 						vm_map_wire_entry_failure(map,
3083 						    entry, faddr);
3084 					entry = entry->next;
3085 				}
3086 			}
3087 			last_timestamp = map->timestamp;
3088 			if (rv != KERN_SUCCESS) {
3089 				vm_map_wire_entry_failure(map, entry, faddr);
3090 				end = entry->end;
3091 				goto done;
3092 			}
3093 		} else if (!user_wire ||
3094 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3095 			entry->wired_count++;
3096 		}
3097 		/*
3098 		 * Check the map for holes in the specified region.
3099 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3100 		 */
3101 	next_entry:
3102 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3103 		    entry->end < end && entry->next->start > entry->end) {
3104 			end = entry->end;
3105 			rv = KERN_INVALID_ADDRESS;
3106 			goto done;
3107 		}
3108 		entry = entry->next;
3109 	}
3110 	rv = KERN_SUCCESS;
3111 done:
3112 	need_wakeup = FALSE;
3113 	if (first_entry == NULL) {
3114 		result = vm_map_lookup_entry(map, start, &first_entry);
3115 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3116 			first_entry = first_entry->next;
3117 		else
3118 			KASSERT(result, ("vm_map_wire: lookup failed"));
3119 	}
3120 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3121 		/*
3122 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
3123 		 * space in the unwired region could have been mapped
3124 		 * while the map lock was dropped for faulting in the
3125 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3126 		 * Moreover, another thread could be simultaneously
3127 		 * wiring this new mapping entry.  Detect these cases
3128 		 * and skip any entries marked as in transition not by us.
3129 		 */
3130 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3131 		    entry->wiring_thread != curthread) {
3132 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3133 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3134 			continue;
3135 		}
3136 
3137 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3138 			goto next_entry_done;
3139 
3140 		if (rv == KERN_SUCCESS) {
3141 			if (user_wire)
3142 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3143 		} else if (entry->wired_count == -1) {
3144 			/*
3145 			 * Wiring failed on this entry.  Thus, unwiring is
3146 			 * unnecessary.
3147 			 */
3148 			entry->wired_count = 0;
3149 		} else if (!user_wire ||
3150 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3151 			/*
3152 			 * Undo the wiring.  Wiring succeeded on this entry
3153 			 * but failed on a later entry.
3154 			 */
3155 			if (entry->wired_count == 1)
3156 				vm_map_entry_unwire(map, entry);
3157 			else
3158 				entry->wired_count--;
3159 		}
3160 	next_entry_done:
3161 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3162 		    ("vm_map_wire: in-transition flag missing %p", entry));
3163 		KASSERT(entry->wiring_thread == curthread,
3164 		    ("vm_map_wire: alien wire %p", entry));
3165 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3166 		    MAP_ENTRY_WIRE_SKIPPED);
3167 		entry->wiring_thread = NULL;
3168 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3169 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3170 			need_wakeup = TRUE;
3171 		}
3172 		vm_map_simplify_entry(map, entry);
3173 	}
3174 	vm_map_unlock(map);
3175 	if (need_wakeup)
3176 		vm_map_wakeup(map);
3177 	return (rv);
3178 }
3179 
3180 /*
3181  * vm_map_sync
3182  *
3183  * Push any dirty cached pages in the address range to their pager.
3184  * If syncio is TRUE, dirty pages are written synchronously.
3185  * If invalidate is TRUE, any cached pages are freed as well.
3186  *
3187  * If the size of the region from start to end is zero, we are
3188  * supposed to flush all modified pages within the region containing
3189  * start.  Unfortunately, a region can be split or coalesced with
3190  * neighboring regions, making it difficult to determine what the
3191  * original region was.  Therefore, we approximate this requirement by
3192  * flushing the current region containing start.
3193  *
3194  * Returns an error if any part of the specified range is not mapped.
3195  */
3196 int
3197 vm_map_sync(
3198 	vm_map_t map,
3199 	vm_offset_t start,
3200 	vm_offset_t end,
3201 	boolean_t syncio,
3202 	boolean_t invalidate)
3203 {
3204 	vm_map_entry_t current;
3205 	vm_map_entry_t entry;
3206 	vm_size_t size;
3207 	vm_object_t object;
3208 	vm_ooffset_t offset;
3209 	unsigned int last_timestamp;
3210 	boolean_t failed;
3211 
3212 	vm_map_lock_read(map);
3213 	VM_MAP_RANGE_CHECK(map, start, end);
3214 	if (!vm_map_lookup_entry(map, start, &entry)) {
3215 		vm_map_unlock_read(map);
3216 		return (KERN_INVALID_ADDRESS);
3217 	} else if (start == end) {
3218 		start = entry->start;
3219 		end = entry->end;
3220 	}
3221 	/*
3222 	 * Make a first pass to check for user-wired memory and holes.
3223 	 */
3224 	for (current = entry; current->start < end; current = current->next) {
3225 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3226 			vm_map_unlock_read(map);
3227 			return (KERN_INVALID_ARGUMENT);
3228 		}
3229 		if (end > current->end &&
3230 		    current->end != current->next->start) {
3231 			vm_map_unlock_read(map);
3232 			return (KERN_INVALID_ADDRESS);
3233 		}
3234 	}
3235 
3236 	if (invalidate)
3237 		pmap_remove(map->pmap, start, end);
3238 	failed = FALSE;
3239 
3240 	/*
3241 	 * Make a second pass, cleaning/uncaching pages from the indicated
3242 	 * objects as we go.
3243 	 */
3244 	for (current = entry; current->start < end;) {
3245 		offset = current->offset + (start - current->start);
3246 		size = (end <= current->end ? end : current->end) - start;
3247 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3248 			vm_map_t smap;
3249 			vm_map_entry_t tentry;
3250 			vm_size_t tsize;
3251 
3252 			smap = current->object.sub_map;
3253 			vm_map_lock_read(smap);
3254 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3255 			tsize = tentry->end - offset;
3256 			if (tsize < size)
3257 				size = tsize;
3258 			object = tentry->object.vm_object;
3259 			offset = tentry->offset + (offset - tentry->start);
3260 			vm_map_unlock_read(smap);
3261 		} else {
3262 			object = current->object.vm_object;
3263 		}
3264 		vm_object_reference(object);
3265 		last_timestamp = map->timestamp;
3266 		vm_map_unlock_read(map);
3267 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3268 			failed = TRUE;
3269 		start += size;
3270 		vm_object_deallocate(object);
3271 		vm_map_lock_read(map);
3272 		if (last_timestamp == map->timestamp ||
3273 		    !vm_map_lookup_entry(map, start, &current))
3274 			current = current->next;
3275 	}
3276 
3277 	vm_map_unlock_read(map);
3278 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3279 }
3280 
3281 /*
3282  *	vm_map_entry_unwire:	[ internal use only ]
3283  *
3284  *	Make the region specified by this entry pageable.
3285  *
3286  *	The map in question should be locked.
3287  *	[This is the reason for this routine's existence.]
3288  */
3289 static void
3290 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3291 {
3292 
3293 	VM_MAP_ASSERT_LOCKED(map);
3294 	KASSERT(entry->wired_count > 0,
3295 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3296 	pmap_unwire(map->pmap, entry->start, entry->end);
3297 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3298 	    entry->start, PQ_ACTIVE);
3299 	entry->wired_count = 0;
3300 }
3301 
3302 static void
3303 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3304 {
3305 
3306 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3307 		vm_object_deallocate(entry->object.vm_object);
3308 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3309 }
3310 
3311 /*
3312  *	vm_map_entry_delete:	[ internal use only ]
3313  *
3314  *	Deallocate the given entry from the target map.
3315  */
3316 static void
3317 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3318 {
3319 	vm_object_t object;
3320 	vm_pindex_t offidxstart, offidxend, count, size1;
3321 	vm_size_t size;
3322 
3323 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3324 	object = entry->object.vm_object;
3325 
3326 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3327 		MPASS(entry->cred == NULL);
3328 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3329 		MPASS(object == NULL);
3330 		vm_map_entry_deallocate(entry, map->system_map);
3331 		return;
3332 	}
3333 
3334 	size = entry->end - entry->start;
3335 	map->size -= size;
3336 
3337 	if (entry->cred != NULL) {
3338 		swap_release_by_cred(size, entry->cred);
3339 		crfree(entry->cred);
3340 	}
3341 
3342 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3343 	    (object != NULL)) {
3344 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3345 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3346 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3347 		count = atop(size);
3348 		offidxstart = OFF_TO_IDX(entry->offset);
3349 		offidxend = offidxstart + count;
3350 		VM_OBJECT_WLOCK(object);
3351 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3352 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3353 		    object == kernel_object)) {
3354 			vm_object_collapse(object);
3355 
3356 			/*
3357 			 * The option OBJPR_NOTMAPPED can be passed here
3358 			 * because vm_map_delete() already performed
3359 			 * pmap_remove() on the only mapping to this range
3360 			 * of pages.
3361 			 */
3362 			vm_object_page_remove(object, offidxstart, offidxend,
3363 			    OBJPR_NOTMAPPED);
3364 			if (object->type == OBJT_SWAP)
3365 				swap_pager_freespace(object, offidxstart,
3366 				    count);
3367 			if (offidxend >= object->size &&
3368 			    offidxstart < object->size) {
3369 				size1 = object->size;
3370 				object->size = offidxstart;
3371 				if (object->cred != NULL) {
3372 					size1 -= object->size;
3373 					KASSERT(object->charge >= ptoa(size1),
3374 					    ("object %p charge < 0", object));
3375 					swap_release_by_cred(ptoa(size1),
3376 					    object->cred);
3377 					object->charge -= ptoa(size1);
3378 				}
3379 			}
3380 		}
3381 		VM_OBJECT_WUNLOCK(object);
3382 	} else
3383 		entry->object.vm_object = NULL;
3384 	if (map->system_map)
3385 		vm_map_entry_deallocate(entry, TRUE);
3386 	else {
3387 		entry->next = curthread->td_map_def_user;
3388 		curthread->td_map_def_user = entry;
3389 	}
3390 }
3391 
3392 /*
3393  *	vm_map_delete:	[ internal use only ]
3394  *
3395  *	Deallocates the given address range from the target
3396  *	map.
3397  */
3398 int
3399 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3400 {
3401 	vm_map_entry_t entry;
3402 	vm_map_entry_t first_entry;
3403 
3404 	VM_MAP_ASSERT_LOCKED(map);
3405 	if (start == end)
3406 		return (KERN_SUCCESS);
3407 
3408 	/*
3409 	 * Find the start of the region, and clip it
3410 	 */
3411 	if (!vm_map_lookup_entry(map, start, &first_entry))
3412 		entry = first_entry->next;
3413 	else {
3414 		entry = first_entry;
3415 		vm_map_clip_start(map, entry, start);
3416 	}
3417 
3418 	/*
3419 	 * Step through all entries in this region
3420 	 */
3421 	while (entry->start < end) {
3422 		vm_map_entry_t next;
3423 
3424 		/*
3425 		 * Wait for wiring or unwiring of an entry to complete.
3426 		 * Also wait for any system wirings to disappear on
3427 		 * user maps.
3428 		 */
3429 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3430 		    (vm_map_pmap(map) != kernel_pmap &&
3431 		    vm_map_entry_system_wired_count(entry) != 0)) {
3432 			unsigned int last_timestamp;
3433 			vm_offset_t saved_start;
3434 			vm_map_entry_t tmp_entry;
3435 
3436 			saved_start = entry->start;
3437 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3438 			last_timestamp = map->timestamp;
3439 			(void) vm_map_unlock_and_wait(map, 0);
3440 			vm_map_lock(map);
3441 			if (last_timestamp + 1 != map->timestamp) {
3442 				/*
3443 				 * Look again for the entry because the map was
3444 				 * modified while it was unlocked.
3445 				 * Specifically, the entry may have been
3446 				 * clipped, merged, or deleted.
3447 				 */
3448 				if (!vm_map_lookup_entry(map, saved_start,
3449 							 &tmp_entry))
3450 					entry = tmp_entry->next;
3451 				else {
3452 					entry = tmp_entry;
3453 					vm_map_clip_start(map, entry,
3454 							  saved_start);
3455 				}
3456 			}
3457 			continue;
3458 		}
3459 		vm_map_clip_end(map, entry, end);
3460 
3461 		next = entry->next;
3462 
3463 		/*
3464 		 * Unwire before removing addresses from the pmap; otherwise,
3465 		 * unwiring will put the entries back in the pmap.
3466 		 */
3467 		if (entry->wired_count != 0)
3468 			vm_map_entry_unwire(map, entry);
3469 
3470 		/*
3471 		 * Remove mappings for the pages, but only if the
3472 		 * mappings could exist.  For instance, it does not
3473 		 * make sense to call pmap_remove() for guard entries.
3474 		 */
3475 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3476 		    entry->object.vm_object != NULL)
3477 			pmap_remove(map->pmap, entry->start, entry->end);
3478 
3479 		if (entry->end == map->anon_loc)
3480 			map->anon_loc = entry->start;
3481 
3482 		/*
3483 		 * Delete the entry only after removing all pmap
3484 		 * entries pointing to its pages.  (Otherwise, its
3485 		 * page frames may be reallocated, and any modify bits
3486 		 * will be set in the wrong object!)
3487 		 */
3488 		vm_map_entry_delete(map, entry);
3489 		entry = next;
3490 	}
3491 	return (KERN_SUCCESS);
3492 }
3493 
3494 /*
3495  *	vm_map_remove:
3496  *
3497  *	Remove the given address range from the target map.
3498  *	This is the exported form of vm_map_delete.
3499  */
3500 int
3501 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3502 {
3503 	int result;
3504 
3505 	vm_map_lock(map);
3506 	VM_MAP_RANGE_CHECK(map, start, end);
3507 	result = vm_map_delete(map, start, end);
3508 	vm_map_unlock(map);
3509 	return (result);
3510 }
3511 
3512 /*
3513  *	vm_map_check_protection:
3514  *
3515  *	Assert that the target map allows the specified privilege on the
3516  *	entire address region given.  The entire region must be allocated.
3517  *
3518  *	WARNING!  This code does not and should not check whether the
3519  *	contents of the region is accessible.  For example a smaller file
3520  *	might be mapped into a larger address space.
3521  *
3522  *	NOTE!  This code is also called by munmap().
3523  *
3524  *	The map must be locked.  A read lock is sufficient.
3525  */
3526 boolean_t
3527 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3528 			vm_prot_t protection)
3529 {
3530 	vm_map_entry_t entry;
3531 	vm_map_entry_t tmp_entry;
3532 
3533 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3534 		return (FALSE);
3535 	entry = tmp_entry;
3536 
3537 	while (start < end) {
3538 		/*
3539 		 * No holes allowed!
3540 		 */
3541 		if (start < entry->start)
3542 			return (FALSE);
3543 		/*
3544 		 * Check protection associated with entry.
3545 		 */
3546 		if ((entry->protection & protection) != protection)
3547 			return (FALSE);
3548 		/* go to next entry */
3549 		start = entry->end;
3550 		entry = entry->next;
3551 	}
3552 	return (TRUE);
3553 }
3554 
3555 /*
3556  *	vm_map_copy_entry:
3557  *
3558  *	Copies the contents of the source entry to the destination
3559  *	entry.  The entries *must* be aligned properly.
3560  */
3561 static void
3562 vm_map_copy_entry(
3563 	vm_map_t src_map,
3564 	vm_map_t dst_map,
3565 	vm_map_entry_t src_entry,
3566 	vm_map_entry_t dst_entry,
3567 	vm_ooffset_t *fork_charge)
3568 {
3569 	vm_object_t src_object;
3570 	vm_map_entry_t fake_entry;
3571 	vm_offset_t size;
3572 	struct ucred *cred;
3573 	int charged;
3574 
3575 	VM_MAP_ASSERT_LOCKED(dst_map);
3576 
3577 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3578 		return;
3579 
3580 	if (src_entry->wired_count == 0 ||
3581 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3582 		/*
3583 		 * If the source entry is marked needs_copy, it is already
3584 		 * write-protected.
3585 		 */
3586 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3587 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3588 			pmap_protect(src_map->pmap,
3589 			    src_entry->start,
3590 			    src_entry->end,
3591 			    src_entry->protection & ~VM_PROT_WRITE);
3592 		}
3593 
3594 		/*
3595 		 * Make a copy of the object.
3596 		 */
3597 		size = src_entry->end - src_entry->start;
3598 		if ((src_object = src_entry->object.vm_object) != NULL) {
3599 			VM_OBJECT_WLOCK(src_object);
3600 			charged = ENTRY_CHARGED(src_entry);
3601 			if (src_object->handle == NULL &&
3602 			    (src_object->type == OBJT_DEFAULT ||
3603 			    src_object->type == OBJT_SWAP)) {
3604 				vm_object_collapse(src_object);
3605 				if ((src_object->flags & (OBJ_NOSPLIT |
3606 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3607 					vm_object_split(src_entry);
3608 					src_object =
3609 					    src_entry->object.vm_object;
3610 				}
3611 			}
3612 			vm_object_reference_locked(src_object);
3613 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3614 			if (src_entry->cred != NULL &&
3615 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3616 				KASSERT(src_object->cred == NULL,
3617 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3618 				     src_object));
3619 				src_object->cred = src_entry->cred;
3620 				src_object->charge = size;
3621 			}
3622 			VM_OBJECT_WUNLOCK(src_object);
3623 			dst_entry->object.vm_object = src_object;
3624 			if (charged) {
3625 				cred = curthread->td_ucred;
3626 				crhold(cred);
3627 				dst_entry->cred = cred;
3628 				*fork_charge += size;
3629 				if (!(src_entry->eflags &
3630 				      MAP_ENTRY_NEEDS_COPY)) {
3631 					crhold(cred);
3632 					src_entry->cred = cred;
3633 					*fork_charge += size;
3634 				}
3635 			}
3636 			src_entry->eflags |= MAP_ENTRY_COW |
3637 			    MAP_ENTRY_NEEDS_COPY;
3638 			dst_entry->eflags |= MAP_ENTRY_COW |
3639 			    MAP_ENTRY_NEEDS_COPY;
3640 			dst_entry->offset = src_entry->offset;
3641 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3642 				/*
3643 				 * MAP_ENTRY_VN_WRITECNT cannot
3644 				 * indicate write reference from
3645 				 * src_entry, since the entry is
3646 				 * marked as needs copy.  Allocate a
3647 				 * fake entry that is used to
3648 				 * decrement object->un_pager.vnp.writecount
3649 				 * at the appropriate time.  Attach
3650 				 * fake_entry to the deferred list.
3651 				 */
3652 				fake_entry = vm_map_entry_create(dst_map);
3653 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3654 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3655 				vm_object_reference(src_object);
3656 				fake_entry->object.vm_object = src_object;
3657 				fake_entry->start = src_entry->start;
3658 				fake_entry->end = src_entry->end;
3659 				fake_entry->next = curthread->td_map_def_user;
3660 				curthread->td_map_def_user = fake_entry;
3661 			}
3662 
3663 			pmap_copy(dst_map->pmap, src_map->pmap,
3664 			    dst_entry->start, dst_entry->end - dst_entry->start,
3665 			    src_entry->start);
3666 		} else {
3667 			dst_entry->object.vm_object = NULL;
3668 			dst_entry->offset = 0;
3669 			if (src_entry->cred != NULL) {
3670 				dst_entry->cred = curthread->td_ucred;
3671 				crhold(dst_entry->cred);
3672 				*fork_charge += size;
3673 			}
3674 		}
3675 	} else {
3676 		/*
3677 		 * We don't want to make writeable wired pages copy-on-write.
3678 		 * Immediately copy these pages into the new map by simulating
3679 		 * page faults.  The new pages are pageable.
3680 		 */
3681 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3682 		    fork_charge);
3683 	}
3684 }
3685 
3686 /*
3687  * vmspace_map_entry_forked:
3688  * Update the newly-forked vmspace each time a map entry is inherited
3689  * or copied.  The values for vm_dsize and vm_tsize are approximate
3690  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3691  */
3692 static void
3693 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3694     vm_map_entry_t entry)
3695 {
3696 	vm_size_t entrysize;
3697 	vm_offset_t newend;
3698 
3699 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3700 		return;
3701 	entrysize = entry->end - entry->start;
3702 	vm2->vm_map.size += entrysize;
3703 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3704 		vm2->vm_ssize += btoc(entrysize);
3705 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3706 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3707 		newend = MIN(entry->end,
3708 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3709 		vm2->vm_dsize += btoc(newend - entry->start);
3710 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3711 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3712 		newend = MIN(entry->end,
3713 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3714 		vm2->vm_tsize += btoc(newend - entry->start);
3715 	}
3716 }
3717 
3718 /*
3719  * vmspace_fork:
3720  * Create a new process vmspace structure and vm_map
3721  * based on those of an existing process.  The new map
3722  * is based on the old map, according to the inheritance
3723  * values on the regions in that map.
3724  *
3725  * XXX It might be worth coalescing the entries added to the new vmspace.
3726  *
3727  * The source map must not be locked.
3728  */
3729 struct vmspace *
3730 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3731 {
3732 	struct vmspace *vm2;
3733 	vm_map_t new_map, old_map;
3734 	vm_map_entry_t new_entry, old_entry;
3735 	vm_object_t object;
3736 	int error, locked;
3737 	vm_inherit_t inh;
3738 
3739 	old_map = &vm1->vm_map;
3740 	/* Copy immutable fields of vm1 to vm2. */
3741 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3742 	    pmap_pinit);
3743 	if (vm2 == NULL)
3744 		return (NULL);
3745 
3746 	vm2->vm_taddr = vm1->vm_taddr;
3747 	vm2->vm_daddr = vm1->vm_daddr;
3748 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3749 	vm_map_lock(old_map);
3750 	if (old_map->busy)
3751 		vm_map_wait_busy(old_map);
3752 	new_map = &vm2->vm_map;
3753 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3754 	KASSERT(locked, ("vmspace_fork: lock failed"));
3755 
3756 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3757 	if (error != 0) {
3758 		sx_xunlock(&old_map->lock);
3759 		sx_xunlock(&new_map->lock);
3760 		vm_map_process_deferred();
3761 		vmspace_free(vm2);
3762 		return (NULL);
3763 	}
3764 
3765 	new_map->anon_loc = old_map->anon_loc;
3766 
3767 	old_entry = old_map->header.next;
3768 
3769 	while (old_entry != &old_map->header) {
3770 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3771 			panic("vm_map_fork: encountered a submap");
3772 
3773 		inh = old_entry->inheritance;
3774 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3775 		    inh != VM_INHERIT_NONE)
3776 			inh = VM_INHERIT_COPY;
3777 
3778 		switch (inh) {
3779 		case VM_INHERIT_NONE:
3780 			break;
3781 
3782 		case VM_INHERIT_SHARE:
3783 			/*
3784 			 * Clone the entry, creating the shared object if necessary.
3785 			 */
3786 			object = old_entry->object.vm_object;
3787 			if (object == NULL) {
3788 				object = vm_object_allocate(OBJT_DEFAULT,
3789 					atop(old_entry->end - old_entry->start));
3790 				old_entry->object.vm_object = object;
3791 				old_entry->offset = 0;
3792 				if (old_entry->cred != NULL) {
3793 					object->cred = old_entry->cred;
3794 					object->charge = old_entry->end -
3795 					    old_entry->start;
3796 					old_entry->cred = NULL;
3797 				}
3798 			}
3799 
3800 			/*
3801 			 * Add the reference before calling vm_object_shadow
3802 			 * to insure that a shadow object is created.
3803 			 */
3804 			vm_object_reference(object);
3805 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3806 				vm_object_shadow(&old_entry->object.vm_object,
3807 				    &old_entry->offset,
3808 				    old_entry->end - old_entry->start);
3809 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3810 				/* Transfer the second reference too. */
3811 				vm_object_reference(
3812 				    old_entry->object.vm_object);
3813 
3814 				/*
3815 				 * As in vm_map_simplify_entry(), the
3816 				 * vnode lock will not be acquired in
3817 				 * this call to vm_object_deallocate().
3818 				 */
3819 				vm_object_deallocate(object);
3820 				object = old_entry->object.vm_object;
3821 			}
3822 			VM_OBJECT_WLOCK(object);
3823 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3824 			if (old_entry->cred != NULL) {
3825 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3826 				object->cred = old_entry->cred;
3827 				object->charge = old_entry->end - old_entry->start;
3828 				old_entry->cred = NULL;
3829 			}
3830 
3831 			/*
3832 			 * Assert the correct state of the vnode
3833 			 * v_writecount while the object is locked, to
3834 			 * not relock it later for the assertion
3835 			 * correctness.
3836 			 */
3837 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3838 			    object->type == OBJT_VNODE) {
3839 				KASSERT(((struct vnode *)object->handle)->
3840 				    v_writecount > 0,
3841 				    ("vmspace_fork: v_writecount %p", object));
3842 				KASSERT(object->un_pager.vnp.writemappings > 0,
3843 				    ("vmspace_fork: vnp.writecount %p",
3844 				    object));
3845 			}
3846 			VM_OBJECT_WUNLOCK(object);
3847 
3848 			/*
3849 			 * Clone the entry, referencing the shared object.
3850 			 */
3851 			new_entry = vm_map_entry_create(new_map);
3852 			*new_entry = *old_entry;
3853 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3854 			    MAP_ENTRY_IN_TRANSITION);
3855 			new_entry->wiring_thread = NULL;
3856 			new_entry->wired_count = 0;
3857 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3858 				vnode_pager_update_writecount(object,
3859 				    new_entry->start, new_entry->end);
3860 			}
3861 
3862 			/*
3863 			 * Insert the entry into the new map -- we know we're
3864 			 * inserting at the end of the new map.
3865 			 */
3866 			vm_map_entry_link(new_map, new_entry);
3867 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3868 
3869 			/*
3870 			 * Update the physical map
3871 			 */
3872 			pmap_copy(new_map->pmap, old_map->pmap,
3873 			    new_entry->start,
3874 			    (old_entry->end - old_entry->start),
3875 			    old_entry->start);
3876 			break;
3877 
3878 		case VM_INHERIT_COPY:
3879 			/*
3880 			 * Clone the entry and link into the map.
3881 			 */
3882 			new_entry = vm_map_entry_create(new_map);
3883 			*new_entry = *old_entry;
3884 			/*
3885 			 * Copied entry is COW over the old object.
3886 			 */
3887 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3888 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3889 			new_entry->wiring_thread = NULL;
3890 			new_entry->wired_count = 0;
3891 			new_entry->object.vm_object = NULL;
3892 			new_entry->cred = NULL;
3893 			vm_map_entry_link(new_map, new_entry);
3894 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3895 			vm_map_copy_entry(old_map, new_map, old_entry,
3896 			    new_entry, fork_charge);
3897 			break;
3898 
3899 		case VM_INHERIT_ZERO:
3900 			/*
3901 			 * Create a new anonymous mapping entry modelled from
3902 			 * the old one.
3903 			 */
3904 			new_entry = vm_map_entry_create(new_map);
3905 			memset(new_entry, 0, sizeof(*new_entry));
3906 
3907 			new_entry->start = old_entry->start;
3908 			new_entry->end = old_entry->end;
3909 			new_entry->eflags = old_entry->eflags &
3910 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3911 			    MAP_ENTRY_VN_WRITECNT);
3912 			new_entry->protection = old_entry->protection;
3913 			new_entry->max_protection = old_entry->max_protection;
3914 			new_entry->inheritance = VM_INHERIT_ZERO;
3915 
3916 			vm_map_entry_link(new_map, new_entry);
3917 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3918 
3919 			new_entry->cred = curthread->td_ucred;
3920 			crhold(new_entry->cred);
3921 			*fork_charge += (new_entry->end - new_entry->start);
3922 
3923 			break;
3924 		}
3925 		old_entry = old_entry->next;
3926 	}
3927 	/*
3928 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3929 	 * map entries, which cannot be done until both old_map and
3930 	 * new_map locks are released.
3931 	 */
3932 	sx_xunlock(&old_map->lock);
3933 	sx_xunlock(&new_map->lock);
3934 	vm_map_process_deferred();
3935 
3936 	return (vm2);
3937 }
3938 
3939 /*
3940  * Create a process's stack for exec_new_vmspace().  This function is never
3941  * asked to wire the newly created stack.
3942  */
3943 int
3944 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3945     vm_prot_t prot, vm_prot_t max, int cow)
3946 {
3947 	vm_size_t growsize, init_ssize;
3948 	rlim_t vmemlim;
3949 	int rv;
3950 
3951 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3952 	growsize = sgrowsiz;
3953 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3954 	vm_map_lock(map);
3955 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3956 	/* If we would blow our VMEM resource limit, no go */
3957 	if (map->size + init_ssize > vmemlim) {
3958 		rv = KERN_NO_SPACE;
3959 		goto out;
3960 	}
3961 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3962 	    max, cow);
3963 out:
3964 	vm_map_unlock(map);
3965 	return (rv);
3966 }
3967 
3968 static int stack_guard_page = 1;
3969 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3970     &stack_guard_page, 0,
3971     "Specifies the number of guard pages for a stack that grows");
3972 
3973 static int
3974 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3975     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3976 {
3977 	vm_map_entry_t new_entry, prev_entry;
3978 	vm_offset_t bot, gap_bot, gap_top, top;
3979 	vm_size_t init_ssize, sgp;
3980 	int orient, rv;
3981 
3982 	/*
3983 	 * The stack orientation is piggybacked with the cow argument.
3984 	 * Extract it into orient and mask the cow argument so that we
3985 	 * don't pass it around further.
3986 	 */
3987 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3988 	KASSERT(orient != 0, ("No stack grow direction"));
3989 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3990 	    ("bi-dir stack"));
3991 
3992 	if (addrbos < vm_map_min(map) ||
3993 	    addrbos + max_ssize > vm_map_max(map) ||
3994 	    addrbos + max_ssize <= addrbos)
3995 		return (KERN_INVALID_ADDRESS);
3996 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3997 	if (sgp >= max_ssize)
3998 		return (KERN_INVALID_ARGUMENT);
3999 
4000 	init_ssize = growsize;
4001 	if (max_ssize < init_ssize + sgp)
4002 		init_ssize = max_ssize - sgp;
4003 
4004 	/* If addr is already mapped, no go */
4005 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4006 		return (KERN_NO_SPACE);
4007 
4008 	/*
4009 	 * If we can't accommodate max_ssize in the current mapping, no go.
4010 	 */
4011 	if (prev_entry->next->start < addrbos + max_ssize)
4012 		return (KERN_NO_SPACE);
4013 
4014 	/*
4015 	 * We initially map a stack of only init_ssize.  We will grow as
4016 	 * needed later.  Depending on the orientation of the stack (i.e.
4017 	 * the grow direction) we either map at the top of the range, the
4018 	 * bottom of the range or in the middle.
4019 	 *
4020 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4021 	 * and cow to be 0.  Possibly we should eliminate these as input
4022 	 * parameters, and just pass these values here in the insert call.
4023 	 */
4024 	if (orient == MAP_STACK_GROWS_DOWN) {
4025 		bot = addrbos + max_ssize - init_ssize;
4026 		top = bot + init_ssize;
4027 		gap_bot = addrbos;
4028 		gap_top = bot;
4029 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4030 		bot = addrbos;
4031 		top = bot + init_ssize;
4032 		gap_bot = top;
4033 		gap_top = addrbos + max_ssize;
4034 	}
4035 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4036 	if (rv != KERN_SUCCESS)
4037 		return (rv);
4038 	new_entry = prev_entry->next;
4039 	KASSERT(new_entry->end == top || new_entry->start == bot,
4040 	    ("Bad entry start/end for new stack entry"));
4041 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4042 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4043 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4044 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4045 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4046 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4047 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4048 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4049 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4050 	if (rv != KERN_SUCCESS)
4051 		(void)vm_map_delete(map, bot, top);
4052 	return (rv);
4053 }
4054 
4055 /*
4056  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4057  * successfully grow the stack.
4058  */
4059 static int
4060 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4061 {
4062 	vm_map_entry_t stack_entry;
4063 	struct proc *p;
4064 	struct vmspace *vm;
4065 	struct ucred *cred;
4066 	vm_offset_t gap_end, gap_start, grow_start;
4067 	size_t grow_amount, guard, max_grow;
4068 	rlim_t lmemlim, stacklim, vmemlim;
4069 	int rv, rv1;
4070 	bool gap_deleted, grow_down, is_procstack;
4071 #ifdef notyet
4072 	uint64_t limit;
4073 #endif
4074 #ifdef RACCT
4075 	int error;
4076 #endif
4077 
4078 	p = curproc;
4079 	vm = p->p_vmspace;
4080 
4081 	/*
4082 	 * Disallow stack growth when the access is performed by a
4083 	 * debugger or AIO daemon.  The reason is that the wrong
4084 	 * resource limits are applied.
4085 	 */
4086 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4087 		return (KERN_FAILURE);
4088 
4089 	MPASS(!map->system_map);
4090 
4091 	guard = stack_guard_page * PAGE_SIZE;
4092 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4093 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4094 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4095 retry:
4096 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4097 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4098 		return (KERN_FAILURE);
4099 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4100 		return (KERN_SUCCESS);
4101 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4102 		stack_entry = gap_entry->next;
4103 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4104 		    stack_entry->start != gap_entry->end)
4105 			return (KERN_FAILURE);
4106 		grow_amount = round_page(stack_entry->start - addr);
4107 		grow_down = true;
4108 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4109 		stack_entry = gap_entry->prev;
4110 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4111 		    stack_entry->end != gap_entry->start)
4112 			return (KERN_FAILURE);
4113 		grow_amount = round_page(addr + 1 - stack_entry->end);
4114 		grow_down = false;
4115 	} else {
4116 		return (KERN_FAILURE);
4117 	}
4118 	max_grow = gap_entry->end - gap_entry->start;
4119 	if (guard > max_grow)
4120 		return (KERN_NO_SPACE);
4121 	max_grow -= guard;
4122 	if (grow_amount > max_grow)
4123 		return (KERN_NO_SPACE);
4124 
4125 	/*
4126 	 * If this is the main process stack, see if we're over the stack
4127 	 * limit.
4128 	 */
4129 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4130 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4131 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4132 		return (KERN_NO_SPACE);
4133 
4134 #ifdef RACCT
4135 	if (racct_enable) {
4136 		PROC_LOCK(p);
4137 		if (is_procstack && racct_set(p, RACCT_STACK,
4138 		    ctob(vm->vm_ssize) + grow_amount)) {
4139 			PROC_UNLOCK(p);
4140 			return (KERN_NO_SPACE);
4141 		}
4142 		PROC_UNLOCK(p);
4143 	}
4144 #endif
4145 
4146 	grow_amount = roundup(grow_amount, sgrowsiz);
4147 	if (grow_amount > max_grow)
4148 		grow_amount = max_grow;
4149 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4150 		grow_amount = trunc_page((vm_size_t)stacklim) -
4151 		    ctob(vm->vm_ssize);
4152 	}
4153 
4154 #ifdef notyet
4155 	PROC_LOCK(p);
4156 	limit = racct_get_available(p, RACCT_STACK);
4157 	PROC_UNLOCK(p);
4158 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4159 		grow_amount = limit - ctob(vm->vm_ssize);
4160 #endif
4161 
4162 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4163 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4164 			rv = KERN_NO_SPACE;
4165 			goto out;
4166 		}
4167 #ifdef RACCT
4168 		if (racct_enable) {
4169 			PROC_LOCK(p);
4170 			if (racct_set(p, RACCT_MEMLOCK,
4171 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4172 				PROC_UNLOCK(p);
4173 				rv = KERN_NO_SPACE;
4174 				goto out;
4175 			}
4176 			PROC_UNLOCK(p);
4177 		}
4178 #endif
4179 	}
4180 
4181 	/* If we would blow our VMEM resource limit, no go */
4182 	if (map->size + grow_amount > vmemlim) {
4183 		rv = KERN_NO_SPACE;
4184 		goto out;
4185 	}
4186 #ifdef RACCT
4187 	if (racct_enable) {
4188 		PROC_LOCK(p);
4189 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4190 			PROC_UNLOCK(p);
4191 			rv = KERN_NO_SPACE;
4192 			goto out;
4193 		}
4194 		PROC_UNLOCK(p);
4195 	}
4196 #endif
4197 
4198 	if (vm_map_lock_upgrade(map)) {
4199 		gap_entry = NULL;
4200 		vm_map_lock_read(map);
4201 		goto retry;
4202 	}
4203 
4204 	if (grow_down) {
4205 		grow_start = gap_entry->end - grow_amount;
4206 		if (gap_entry->start + grow_amount == gap_entry->end) {
4207 			gap_start = gap_entry->start;
4208 			gap_end = gap_entry->end;
4209 			vm_map_entry_delete(map, gap_entry);
4210 			gap_deleted = true;
4211 		} else {
4212 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4213 			gap_entry->end -= grow_amount;
4214 			vm_map_entry_resize_free(map, gap_entry);
4215 			gap_deleted = false;
4216 		}
4217 		rv = vm_map_insert(map, NULL, 0, grow_start,
4218 		    grow_start + grow_amount,
4219 		    stack_entry->protection, stack_entry->max_protection,
4220 		    MAP_STACK_GROWS_DOWN);
4221 		if (rv != KERN_SUCCESS) {
4222 			if (gap_deleted) {
4223 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4224 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4225 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4226 				MPASS(rv1 == KERN_SUCCESS);
4227 			} else {
4228 				gap_entry->end += grow_amount;
4229 				vm_map_entry_resize_free(map, gap_entry);
4230 			}
4231 		}
4232 	} else {
4233 		grow_start = stack_entry->end;
4234 		cred = stack_entry->cred;
4235 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4236 			cred = stack_entry->object.vm_object->cred;
4237 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4238 			rv = KERN_NO_SPACE;
4239 		/* Grow the underlying object if applicable. */
4240 		else if (stack_entry->object.vm_object == NULL ||
4241 		    vm_object_coalesce(stack_entry->object.vm_object,
4242 		    stack_entry->offset,
4243 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4244 		    (vm_size_t)grow_amount, cred != NULL)) {
4245 			if (gap_entry->start + grow_amount == gap_entry->end)
4246 				vm_map_entry_delete(map, gap_entry);
4247 			else
4248 				gap_entry->start += grow_amount;
4249 			stack_entry->end += grow_amount;
4250 			map->size += grow_amount;
4251 			vm_map_entry_resize_free(map, stack_entry);
4252 			rv = KERN_SUCCESS;
4253 		} else
4254 			rv = KERN_FAILURE;
4255 	}
4256 	if (rv == KERN_SUCCESS && is_procstack)
4257 		vm->vm_ssize += btoc(grow_amount);
4258 
4259 	/*
4260 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4261 	 */
4262 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4263 		vm_map_unlock(map);
4264 		vm_map_wire(map, grow_start, grow_start + grow_amount,
4265 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4266 		vm_map_lock_read(map);
4267 	} else
4268 		vm_map_lock_downgrade(map);
4269 
4270 out:
4271 #ifdef RACCT
4272 	if (racct_enable && rv != KERN_SUCCESS) {
4273 		PROC_LOCK(p);
4274 		error = racct_set(p, RACCT_VMEM, map->size);
4275 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4276 		if (!old_mlock) {
4277 			error = racct_set(p, RACCT_MEMLOCK,
4278 			    ptoa(pmap_wired_count(map->pmap)));
4279 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4280 		}
4281 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4282 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4283 		PROC_UNLOCK(p);
4284 	}
4285 #endif
4286 
4287 	return (rv);
4288 }
4289 
4290 /*
4291  * Unshare the specified VM space for exec.  If other processes are
4292  * mapped to it, then create a new one.  The new vmspace is null.
4293  */
4294 int
4295 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4296 {
4297 	struct vmspace *oldvmspace = p->p_vmspace;
4298 	struct vmspace *newvmspace;
4299 
4300 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4301 	    ("vmspace_exec recursed"));
4302 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4303 	if (newvmspace == NULL)
4304 		return (ENOMEM);
4305 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4306 	/*
4307 	 * This code is written like this for prototype purposes.  The
4308 	 * goal is to avoid running down the vmspace here, but let the
4309 	 * other process's that are still using the vmspace to finally
4310 	 * run it down.  Even though there is little or no chance of blocking
4311 	 * here, it is a good idea to keep this form for future mods.
4312 	 */
4313 	PROC_VMSPACE_LOCK(p);
4314 	p->p_vmspace = newvmspace;
4315 	PROC_VMSPACE_UNLOCK(p);
4316 	if (p == curthread->td_proc)
4317 		pmap_activate(curthread);
4318 	curthread->td_pflags |= TDP_EXECVMSPC;
4319 	return (0);
4320 }
4321 
4322 /*
4323  * Unshare the specified VM space for forcing COW.  This
4324  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4325  */
4326 int
4327 vmspace_unshare(struct proc *p)
4328 {
4329 	struct vmspace *oldvmspace = p->p_vmspace;
4330 	struct vmspace *newvmspace;
4331 	vm_ooffset_t fork_charge;
4332 
4333 	if (oldvmspace->vm_refcnt == 1)
4334 		return (0);
4335 	fork_charge = 0;
4336 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4337 	if (newvmspace == NULL)
4338 		return (ENOMEM);
4339 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4340 		vmspace_free(newvmspace);
4341 		return (ENOMEM);
4342 	}
4343 	PROC_VMSPACE_LOCK(p);
4344 	p->p_vmspace = newvmspace;
4345 	PROC_VMSPACE_UNLOCK(p);
4346 	if (p == curthread->td_proc)
4347 		pmap_activate(curthread);
4348 	vmspace_free(oldvmspace);
4349 	return (0);
4350 }
4351 
4352 /*
4353  *	vm_map_lookup:
4354  *
4355  *	Finds the VM object, offset, and
4356  *	protection for a given virtual address in the
4357  *	specified map, assuming a page fault of the
4358  *	type specified.
4359  *
4360  *	Leaves the map in question locked for read; return
4361  *	values are guaranteed until a vm_map_lookup_done
4362  *	call is performed.  Note that the map argument
4363  *	is in/out; the returned map must be used in
4364  *	the call to vm_map_lookup_done.
4365  *
4366  *	A handle (out_entry) is returned for use in
4367  *	vm_map_lookup_done, to make that fast.
4368  *
4369  *	If a lookup is requested with "write protection"
4370  *	specified, the map may be changed to perform virtual
4371  *	copying operations, although the data referenced will
4372  *	remain the same.
4373  */
4374 int
4375 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4376 	      vm_offset_t vaddr,
4377 	      vm_prot_t fault_typea,
4378 	      vm_map_entry_t *out_entry,	/* OUT */
4379 	      vm_object_t *object,		/* OUT */
4380 	      vm_pindex_t *pindex,		/* OUT */
4381 	      vm_prot_t *out_prot,		/* OUT */
4382 	      boolean_t *wired)			/* OUT */
4383 {
4384 	vm_map_entry_t entry;
4385 	vm_map_t map = *var_map;
4386 	vm_prot_t prot;
4387 	vm_prot_t fault_type = fault_typea;
4388 	vm_object_t eobject;
4389 	vm_size_t size;
4390 	struct ucred *cred;
4391 
4392 RetryLookup:
4393 
4394 	vm_map_lock_read(map);
4395 
4396 RetryLookupLocked:
4397 	/*
4398 	 * Lookup the faulting address.
4399 	 */
4400 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4401 		vm_map_unlock_read(map);
4402 		return (KERN_INVALID_ADDRESS);
4403 	}
4404 
4405 	entry = *out_entry;
4406 
4407 	/*
4408 	 * Handle submaps.
4409 	 */
4410 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4411 		vm_map_t old_map = map;
4412 
4413 		*var_map = map = entry->object.sub_map;
4414 		vm_map_unlock_read(old_map);
4415 		goto RetryLookup;
4416 	}
4417 
4418 	/*
4419 	 * Check whether this task is allowed to have this page.
4420 	 */
4421 	prot = entry->protection;
4422 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4423 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4424 		if (prot == VM_PROT_NONE && map != kernel_map &&
4425 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4426 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4427 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4428 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4429 			goto RetryLookupLocked;
4430 	}
4431 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4432 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4433 		vm_map_unlock_read(map);
4434 		return (KERN_PROTECTION_FAILURE);
4435 	}
4436 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4437 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4438 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4439 	    ("entry %p flags %x", entry, entry->eflags));
4440 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4441 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4442 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4443 		vm_map_unlock_read(map);
4444 		return (KERN_PROTECTION_FAILURE);
4445 	}
4446 
4447 	/*
4448 	 * If this page is not pageable, we have to get it for all possible
4449 	 * accesses.
4450 	 */
4451 	*wired = (entry->wired_count != 0);
4452 	if (*wired)
4453 		fault_type = entry->protection;
4454 	size = entry->end - entry->start;
4455 	/*
4456 	 * If the entry was copy-on-write, we either ...
4457 	 */
4458 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4459 		/*
4460 		 * If we want to write the page, we may as well handle that
4461 		 * now since we've got the map locked.
4462 		 *
4463 		 * If we don't need to write the page, we just demote the
4464 		 * permissions allowed.
4465 		 */
4466 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4467 		    (fault_typea & VM_PROT_COPY) != 0) {
4468 			/*
4469 			 * Make a new object, and place it in the object
4470 			 * chain.  Note that no new references have appeared
4471 			 * -- one just moved from the map to the new
4472 			 * object.
4473 			 */
4474 			if (vm_map_lock_upgrade(map))
4475 				goto RetryLookup;
4476 
4477 			if (entry->cred == NULL) {
4478 				/*
4479 				 * The debugger owner is charged for
4480 				 * the memory.
4481 				 */
4482 				cred = curthread->td_ucred;
4483 				crhold(cred);
4484 				if (!swap_reserve_by_cred(size, cred)) {
4485 					crfree(cred);
4486 					vm_map_unlock(map);
4487 					return (KERN_RESOURCE_SHORTAGE);
4488 				}
4489 				entry->cred = cred;
4490 			}
4491 			vm_object_shadow(&entry->object.vm_object,
4492 			    &entry->offset, size);
4493 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4494 			eobject = entry->object.vm_object;
4495 			if (eobject->cred != NULL) {
4496 				/*
4497 				 * The object was not shadowed.
4498 				 */
4499 				swap_release_by_cred(size, entry->cred);
4500 				crfree(entry->cred);
4501 				entry->cred = NULL;
4502 			} else if (entry->cred != NULL) {
4503 				VM_OBJECT_WLOCK(eobject);
4504 				eobject->cred = entry->cred;
4505 				eobject->charge = size;
4506 				VM_OBJECT_WUNLOCK(eobject);
4507 				entry->cred = NULL;
4508 			}
4509 
4510 			vm_map_lock_downgrade(map);
4511 		} else {
4512 			/*
4513 			 * We're attempting to read a copy-on-write page --
4514 			 * don't allow writes.
4515 			 */
4516 			prot &= ~VM_PROT_WRITE;
4517 		}
4518 	}
4519 
4520 	/*
4521 	 * Create an object if necessary.
4522 	 */
4523 	if (entry->object.vm_object == NULL &&
4524 	    !map->system_map) {
4525 		if (vm_map_lock_upgrade(map))
4526 			goto RetryLookup;
4527 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4528 		    atop(size));
4529 		entry->offset = 0;
4530 		if (entry->cred != NULL) {
4531 			VM_OBJECT_WLOCK(entry->object.vm_object);
4532 			entry->object.vm_object->cred = entry->cred;
4533 			entry->object.vm_object->charge = size;
4534 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4535 			entry->cred = NULL;
4536 		}
4537 		vm_map_lock_downgrade(map);
4538 	}
4539 
4540 	/*
4541 	 * Return the object/offset from this entry.  If the entry was
4542 	 * copy-on-write or empty, it has been fixed up.
4543 	 */
4544 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4545 	*object = entry->object.vm_object;
4546 
4547 	*out_prot = prot;
4548 	return (KERN_SUCCESS);
4549 }
4550 
4551 /*
4552  *	vm_map_lookup_locked:
4553  *
4554  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4555  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4556  */
4557 int
4558 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4559 		     vm_offset_t vaddr,
4560 		     vm_prot_t fault_typea,
4561 		     vm_map_entry_t *out_entry,	/* OUT */
4562 		     vm_object_t *object,	/* OUT */
4563 		     vm_pindex_t *pindex,	/* OUT */
4564 		     vm_prot_t *out_prot,	/* OUT */
4565 		     boolean_t *wired)		/* OUT */
4566 {
4567 	vm_map_entry_t entry;
4568 	vm_map_t map = *var_map;
4569 	vm_prot_t prot;
4570 	vm_prot_t fault_type = fault_typea;
4571 
4572 	/*
4573 	 * Lookup the faulting address.
4574 	 */
4575 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4576 		return (KERN_INVALID_ADDRESS);
4577 
4578 	entry = *out_entry;
4579 
4580 	/*
4581 	 * Fail if the entry refers to a submap.
4582 	 */
4583 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4584 		return (KERN_FAILURE);
4585 
4586 	/*
4587 	 * Check whether this task is allowed to have this page.
4588 	 */
4589 	prot = entry->protection;
4590 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4591 	if ((fault_type & prot) != fault_type)
4592 		return (KERN_PROTECTION_FAILURE);
4593 
4594 	/*
4595 	 * If this page is not pageable, we have to get it for all possible
4596 	 * accesses.
4597 	 */
4598 	*wired = (entry->wired_count != 0);
4599 	if (*wired)
4600 		fault_type = entry->protection;
4601 
4602 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4603 		/*
4604 		 * Fail if the entry was copy-on-write for a write fault.
4605 		 */
4606 		if (fault_type & VM_PROT_WRITE)
4607 			return (KERN_FAILURE);
4608 		/*
4609 		 * We're attempting to read a copy-on-write page --
4610 		 * don't allow writes.
4611 		 */
4612 		prot &= ~VM_PROT_WRITE;
4613 	}
4614 
4615 	/*
4616 	 * Fail if an object should be created.
4617 	 */
4618 	if (entry->object.vm_object == NULL && !map->system_map)
4619 		return (KERN_FAILURE);
4620 
4621 	/*
4622 	 * Return the object/offset from this entry.  If the entry was
4623 	 * copy-on-write or empty, it has been fixed up.
4624 	 */
4625 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4626 	*object = entry->object.vm_object;
4627 
4628 	*out_prot = prot;
4629 	return (KERN_SUCCESS);
4630 }
4631 
4632 /*
4633  *	vm_map_lookup_done:
4634  *
4635  *	Releases locks acquired by a vm_map_lookup
4636  *	(according to the handle returned by that lookup).
4637  */
4638 void
4639 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4640 {
4641 	/*
4642 	 * Unlock the main-level map
4643 	 */
4644 	vm_map_unlock_read(map);
4645 }
4646 
4647 vm_offset_t
4648 vm_map_max_KBI(const struct vm_map *map)
4649 {
4650 
4651 	return (vm_map_max(map));
4652 }
4653 
4654 vm_offset_t
4655 vm_map_min_KBI(const struct vm_map *map)
4656 {
4657 
4658 	return (vm_map_min(map));
4659 }
4660 
4661 pmap_t
4662 vm_map_pmap_KBI(vm_map_t map)
4663 {
4664 
4665 	return (map->pmap);
4666 }
4667 
4668 #include "opt_ddb.h"
4669 #ifdef DDB
4670 #include <sys/kernel.h>
4671 
4672 #include <ddb/ddb.h>
4673 
4674 static void
4675 vm_map_print(vm_map_t map)
4676 {
4677 	vm_map_entry_t entry;
4678 
4679 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4680 	    (void *)map,
4681 	    (void *)map->pmap, map->nentries, map->timestamp);
4682 
4683 	db_indent += 2;
4684 	for (entry = map->header.next; entry != &map->header;
4685 	    entry = entry->next) {
4686 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4687 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4688 		    entry->eflags);
4689 		{
4690 			static char *inheritance_name[4] =
4691 			{"share", "copy", "none", "donate_copy"};
4692 
4693 			db_iprintf(" prot=%x/%x/%s",
4694 			    entry->protection,
4695 			    entry->max_protection,
4696 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4697 			if (entry->wired_count != 0)
4698 				db_printf(", wired");
4699 		}
4700 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4701 			db_printf(", share=%p, offset=0x%jx\n",
4702 			    (void *)entry->object.sub_map,
4703 			    (uintmax_t)entry->offset);
4704 			if ((entry->prev == &map->header) ||
4705 			    (entry->prev->object.sub_map !=
4706 				entry->object.sub_map)) {
4707 				db_indent += 2;
4708 				vm_map_print((vm_map_t)entry->object.sub_map);
4709 				db_indent -= 2;
4710 			}
4711 		} else {
4712 			if (entry->cred != NULL)
4713 				db_printf(", ruid %d", entry->cred->cr_ruid);
4714 			db_printf(", object=%p, offset=0x%jx",
4715 			    (void *)entry->object.vm_object,
4716 			    (uintmax_t)entry->offset);
4717 			if (entry->object.vm_object && entry->object.vm_object->cred)
4718 				db_printf(", obj ruid %d charge %jx",
4719 				    entry->object.vm_object->cred->cr_ruid,
4720 				    (uintmax_t)entry->object.vm_object->charge);
4721 			if (entry->eflags & MAP_ENTRY_COW)
4722 				db_printf(", copy (%s)",
4723 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4724 			db_printf("\n");
4725 
4726 			if ((entry->prev == &map->header) ||
4727 			    (entry->prev->object.vm_object !=
4728 				entry->object.vm_object)) {
4729 				db_indent += 2;
4730 				vm_object_print((db_expr_t)(intptr_t)
4731 						entry->object.vm_object,
4732 						0, 0, (char *)0);
4733 				db_indent -= 2;
4734 			}
4735 		}
4736 	}
4737 	db_indent -= 2;
4738 }
4739 
4740 DB_SHOW_COMMAND(map, map)
4741 {
4742 
4743 	if (!have_addr) {
4744 		db_printf("usage: show map <addr>\n");
4745 		return;
4746 	}
4747 	vm_map_print((vm_map_t)addr);
4748 }
4749 
4750 DB_SHOW_COMMAND(procvm, procvm)
4751 {
4752 	struct proc *p;
4753 
4754 	if (have_addr) {
4755 		p = db_lookup_proc(addr);
4756 	} else {
4757 		p = curproc;
4758 	}
4759 
4760 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4761 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4762 	    (void *)vmspace_pmap(p->p_vmspace));
4763 
4764 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4765 }
4766 
4767 #endif /* DDB */
4768