1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/uma.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a self-adjusting binary search tree of these 107 * entries is used to speed up lookups. 108 * 109 * Since portions of maps are specified by start/end addresses, 110 * which may not align with existing map entries, all 111 * routines merely "clip" entries to these start/end values. 112 * [That is, an entry is split into two, bordering at a 113 * start or end value.] Note that these clippings may not 114 * always be necessary (as the two resulting entries are then 115 * not changed); however, the clipping is done for convenience. 116 * 117 * As mentioned above, virtual copy operations are performed 118 * by copying VM object references from one map to 119 * another, and then marking both regions as copy-on-write. 120 */ 121 122 static struct mtx map_sleep_mtx; 123 static uma_zone_t mapentzone; 124 static uma_zone_t kmapentzone; 125 static uma_zone_t mapzone; 126 static uma_zone_t vmspace_zone; 127 static struct vm_object kmapentobj; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void vmspace_zfini(void *mem, int size); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void vm_map_zfini(void *mem, int size); 132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 133 vm_offset_t max); 134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 136 #ifdef INVARIANTS 137 static void vm_map_zdtor(void *mem, int size, void *arg); 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 141 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 142 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 143 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 144 145 /* 146 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 147 * stable. 148 */ 149 #define PROC_VMSPACE_LOCK(p) do { } while (0) 150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 151 152 /* 153 * VM_MAP_RANGE_CHECK: [ internal use only ] 154 * 155 * Asserts that the starting and ending region 156 * addresses fall within the valid range of the map. 157 */ 158 #define VM_MAP_RANGE_CHECK(map, start, end) \ 159 { \ 160 if (start < vm_map_min(map)) \ 161 start = vm_map_min(map); \ 162 if (end > vm_map_max(map)) \ 163 end = vm_map_max(map); \ 164 if (start > end) \ 165 start = end; \ 166 } 167 168 /* 169 * vm_map_startup: 170 * 171 * Initialize the vm_map module. Must be called before 172 * any other vm_map routines. 173 * 174 * Map and entry structures are allocated from the general 175 * purpose memory pool with some exceptions: 176 * 177 * - The kernel map and kmem submap are allocated statically. 178 * - Kernel map entries are allocated out of a static pool. 179 * 180 * These restrictions are necessary since malloc() uses the 181 * maps and requires map entries. 182 */ 183 184 void 185 vm_map_startup(void) 186 { 187 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 188 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 189 #ifdef INVARIANTS 190 vm_map_zdtor, 191 #else 192 NULL, 193 #endif 194 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 195 uma_prealloc(mapzone, MAX_KMAP); 196 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 198 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 199 uma_prealloc(kmapentzone, MAX_KMAPENT); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 } 203 204 static void 205 vmspace_zfini(void *mem, int size) 206 { 207 struct vmspace *vm; 208 209 vm = (struct vmspace *)mem; 210 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 211 } 212 213 static int 214 vmspace_zinit(void *mem, int size, int flags) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm->vm_map.pmap = NULL; 221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 222 return (0); 223 } 224 225 static void 226 vm_map_zfini(void *mem, int size) 227 { 228 vm_map_t map; 229 230 map = (vm_map_t)mem; 231 mtx_destroy(&map->system_mtx); 232 sx_destroy(&map->lock); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 map->nentries = 0; 242 map->size = 0; 243 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "user map"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 */ 277 struct vmspace * 278 vmspace_alloc(min, max) 279 vm_offset_t min, max; 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 285 uma_zfree(vmspace_zone, vm); 286 return (NULL); 287 } 288 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 290 vm->vm_refcnt = 1; 291 vm->vm_shm = NULL; 292 vm->vm_swrss = 0; 293 vm->vm_tsize = 0; 294 vm->vm_dsize = 0; 295 vm->vm_ssize = 0; 296 vm->vm_taddr = 0; 297 vm->vm_daddr = 0; 298 vm->vm_maxsaddr = 0; 299 return (vm); 300 } 301 302 void 303 vm_init2(void) 304 { 305 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 306 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 307 maxproc * 2 + maxfiles); 308 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 309 #ifdef INVARIANTS 310 vmspace_zdtor, 311 #else 312 NULL, 313 #endif 314 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 } 316 317 static void 318 vmspace_container_reset(struct proc *p) 319 { 320 321 #ifdef RACCT 322 PROC_LOCK(p); 323 racct_set(p, RACCT_DATA, 0); 324 racct_set(p, RACCT_STACK, 0); 325 racct_set(p, RACCT_RSS, 0); 326 racct_set(p, RACCT_MEMLOCK, 0); 327 racct_set(p, RACCT_VMEM, 0); 328 PROC_UNLOCK(p); 329 #endif 330 } 331 332 static inline void 333 vmspace_dofree(struct vmspace *vm) 334 { 335 336 CTR1(KTR_VM, "vmspace_free: %p", vm); 337 338 /* 339 * Make sure any SysV shm is freed, it might not have been in 340 * exit1(). 341 */ 342 shmexit(vm); 343 344 /* 345 * Lock the map, to wait out all other references to it. 346 * Delete all of the mappings and pages they hold, then call 347 * the pmap module to reclaim anything left. 348 */ 349 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 350 vm->vm_map.max_offset); 351 352 pmap_release(vmspace_pmap(vm)); 353 vm->vm_map.pmap = NULL; 354 uma_zfree(vmspace_zone, vm); 355 } 356 357 void 358 vmspace_free(struct vmspace *vm) 359 { 360 361 if (vm->vm_refcnt == 0) 362 panic("vmspace_free: attempt to free already freed vmspace"); 363 364 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 365 vmspace_dofree(vm); 366 } 367 368 void 369 vmspace_exitfree(struct proc *p) 370 { 371 struct vmspace *vm; 372 373 PROC_VMSPACE_LOCK(p); 374 vm = p->p_vmspace; 375 p->p_vmspace = NULL; 376 PROC_VMSPACE_UNLOCK(p); 377 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 378 vmspace_free(vm); 379 } 380 381 void 382 vmspace_exit(struct thread *td) 383 { 384 int refcnt; 385 struct vmspace *vm; 386 struct proc *p; 387 388 /* 389 * Release user portion of address space. 390 * This releases references to vnodes, 391 * which could cause I/O if the file has been unlinked. 392 * Need to do this early enough that we can still sleep. 393 * 394 * The last exiting process to reach this point releases as 395 * much of the environment as it can. vmspace_dofree() is the 396 * slower fallback in case another process had a temporary 397 * reference to the vmspace. 398 */ 399 400 p = td->td_proc; 401 vm = p->p_vmspace; 402 atomic_add_int(&vmspace0.vm_refcnt, 1); 403 do { 404 refcnt = vm->vm_refcnt; 405 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 406 /* Switch now since other proc might free vmspace */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = &vmspace0; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 413 if (refcnt == 1) { 414 if (p->p_vmspace != vm) { 415 /* vmspace not yet freed, switch back */ 416 PROC_VMSPACE_LOCK(p); 417 p->p_vmspace = vm; 418 PROC_VMSPACE_UNLOCK(p); 419 pmap_activate(td); 420 } 421 pmap_remove_pages(vmspace_pmap(vm)); 422 /* Switch now since this proc will free vmspace */ 423 PROC_VMSPACE_LOCK(p); 424 p->p_vmspace = &vmspace0; 425 PROC_VMSPACE_UNLOCK(p); 426 pmap_activate(td); 427 vmspace_dofree(vm); 428 } 429 vmspace_container_reset(p); 430 } 431 432 /* Acquire reference to vmspace owned by another process. */ 433 434 struct vmspace * 435 vmspace_acquire_ref(struct proc *p) 436 { 437 struct vmspace *vm; 438 int refcnt; 439 440 PROC_VMSPACE_LOCK(p); 441 vm = p->p_vmspace; 442 if (vm == NULL) { 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 do { 447 refcnt = vm->vm_refcnt; 448 if (refcnt <= 0) { /* Avoid 0->1 transition */ 449 PROC_VMSPACE_UNLOCK(p); 450 return (NULL); 451 } 452 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 453 if (vm != p->p_vmspace) { 454 PROC_VMSPACE_UNLOCK(p); 455 vmspace_free(vm); 456 return (NULL); 457 } 458 PROC_VMSPACE_UNLOCK(p); 459 return (vm); 460 } 461 462 void 463 _vm_map_lock(vm_map_t map, const char *file, int line) 464 { 465 466 if (map->system_map) 467 mtx_lock_flags_(&map->system_mtx, 0, file, line); 468 else 469 sx_xlock_(&map->lock, file, line); 470 map->timestamp++; 471 } 472 473 static void 474 vm_map_process_deferred(void) 475 { 476 struct thread *td; 477 vm_map_entry_t entry; 478 479 td = curthread; 480 481 while ((entry = td->td_map_def_user) != NULL) { 482 td->td_map_def_user = entry->next; 483 vm_map_entry_deallocate(entry, FALSE); 484 } 485 } 486 487 void 488 _vm_map_unlock(vm_map_t map, const char *file, int line) 489 { 490 491 if (map->system_map) 492 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 493 else { 494 sx_xunlock_(&map->lock, file, line); 495 vm_map_process_deferred(); 496 } 497 } 498 499 void 500 _vm_map_lock_read(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 mtx_lock_flags_(&map->system_mtx, 0, file, line); 505 else 506 sx_slock_(&map->lock, file, line); 507 } 508 509 void 510 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 511 { 512 513 if (map->system_map) 514 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 515 else { 516 sx_sunlock_(&map->lock, file, line); 517 vm_map_process_deferred(); 518 } 519 } 520 521 int 522 _vm_map_trylock(vm_map_t map, const char *file, int line) 523 { 524 int error; 525 526 error = map->system_map ? 527 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 528 !sx_try_xlock_(&map->lock, file, line); 529 if (error == 0) 530 map->timestamp++; 531 return (error == 0); 532 } 533 534 int 535 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 536 { 537 int error; 538 539 error = map->system_map ? 540 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 541 !sx_try_slock_(&map->lock, file, line); 542 return (error == 0); 543 } 544 545 /* 546 * _vm_map_lock_upgrade: [ internal use only ] 547 * 548 * Tries to upgrade a read (shared) lock on the specified map to a write 549 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 550 * non-zero value if the upgrade fails. If the upgrade fails, the map is 551 * returned without a read or write lock held. 552 * 553 * Requires that the map be read locked. 554 */ 555 int 556 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 557 { 558 unsigned int last_timestamp; 559 560 if (map->system_map) { 561 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 562 } else { 563 if (!sx_try_upgrade_(&map->lock, file, line)) { 564 last_timestamp = map->timestamp; 565 sx_sunlock_(&map->lock, file, line); 566 vm_map_process_deferred(); 567 /* 568 * If the map's timestamp does not change while the 569 * map is unlocked, then the upgrade succeeds. 570 */ 571 sx_xlock_(&map->lock, file, line); 572 if (last_timestamp != map->timestamp) { 573 sx_xunlock_(&map->lock, file, line); 574 return (1); 575 } 576 } 577 } 578 map->timestamp++; 579 return (0); 580 } 581 582 void 583 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 584 { 585 586 if (map->system_map) { 587 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 588 } else 589 sx_downgrade_(&map->lock, file, line); 590 } 591 592 /* 593 * vm_map_locked: 594 * 595 * Returns a non-zero value if the caller holds a write (exclusive) lock 596 * on the specified map and the value "0" otherwise. 597 */ 598 int 599 vm_map_locked(vm_map_t map) 600 { 601 602 if (map->system_map) 603 return (mtx_owned(&map->system_mtx)); 604 else 605 return (sx_xlocked(&map->lock)); 606 } 607 608 #ifdef INVARIANTS 609 static void 610 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 611 { 612 613 if (map->system_map) 614 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 615 else 616 sx_assert_(&map->lock, SA_XLOCKED, file, line); 617 } 618 619 #define VM_MAP_ASSERT_LOCKED(map) \ 620 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 621 #else 622 #define VM_MAP_ASSERT_LOCKED(map) 623 #endif 624 625 /* 626 * _vm_map_unlock_and_wait: 627 * 628 * Atomically releases the lock on the specified map and puts the calling 629 * thread to sleep. The calling thread will remain asleep until either 630 * vm_map_wakeup() is performed on the map or the specified timeout is 631 * exceeded. 632 * 633 * WARNING! This function does not perform deferred deallocations of 634 * objects and map entries. Therefore, the calling thread is expected to 635 * reacquire the map lock after reawakening and later perform an ordinary 636 * unlock operation, such as vm_map_unlock(), before completing its 637 * operation on the map. 638 */ 639 int 640 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 641 { 642 643 mtx_lock(&map_sleep_mtx); 644 if (map->system_map) 645 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 646 else 647 sx_xunlock_(&map->lock, file, line); 648 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 649 timo)); 650 } 651 652 /* 653 * vm_map_wakeup: 654 * 655 * Awaken any threads that have slept on the map using 656 * vm_map_unlock_and_wait(). 657 */ 658 void 659 vm_map_wakeup(vm_map_t map) 660 { 661 662 /* 663 * Acquire and release map_sleep_mtx to prevent a wakeup() 664 * from being performed (and lost) between the map unlock 665 * and the msleep() in _vm_map_unlock_and_wait(). 666 */ 667 mtx_lock(&map_sleep_mtx); 668 mtx_unlock(&map_sleep_mtx); 669 wakeup(&map->root); 670 } 671 672 void 673 vm_map_busy(vm_map_t map) 674 { 675 676 VM_MAP_ASSERT_LOCKED(map); 677 map->busy++; 678 } 679 680 void 681 vm_map_unbusy(vm_map_t map) 682 { 683 684 VM_MAP_ASSERT_LOCKED(map); 685 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 686 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 687 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 688 wakeup(&map->busy); 689 } 690 } 691 692 void 693 vm_map_wait_busy(vm_map_t map) 694 { 695 696 VM_MAP_ASSERT_LOCKED(map); 697 while (map->busy) { 698 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 699 if (map->system_map) 700 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 701 else 702 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 703 } 704 map->timestamp++; 705 } 706 707 long 708 vmspace_resident_count(struct vmspace *vmspace) 709 { 710 return pmap_resident_count(vmspace_pmap(vmspace)); 711 } 712 713 long 714 vmspace_wired_count(struct vmspace *vmspace) 715 { 716 return pmap_wired_count(vmspace_pmap(vmspace)); 717 } 718 719 /* 720 * vm_map_create: 721 * 722 * Creates and returns a new empty VM map with 723 * the given physical map structure, and having 724 * the given lower and upper address bounds. 725 */ 726 vm_map_t 727 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 728 { 729 vm_map_t result; 730 731 result = uma_zalloc(mapzone, M_WAITOK); 732 CTR1(KTR_VM, "vm_map_create: %p", result); 733 _vm_map_init(result, pmap, min, max); 734 return (result); 735 } 736 737 /* 738 * Initialize an existing vm_map structure 739 * such as that in the vmspace structure. 740 */ 741 static void 742 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 743 { 744 745 map->header.next = map->header.prev = &map->header; 746 map->needs_wakeup = FALSE; 747 map->system_map = 0; 748 map->pmap = pmap; 749 map->min_offset = min; 750 map->max_offset = max; 751 map->flags = 0; 752 map->root = NULL; 753 map->timestamp = 0; 754 map->busy = 0; 755 } 756 757 void 758 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 759 { 760 761 _vm_map_init(map, pmap, min, max); 762 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 763 sx_init(&map->lock, "user map"); 764 } 765 766 /* 767 * vm_map_entry_dispose: [ internal use only ] 768 * 769 * Inverse of vm_map_entry_create. 770 */ 771 static void 772 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 773 { 774 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 775 } 776 777 /* 778 * vm_map_entry_create: [ internal use only ] 779 * 780 * Allocates a VM map entry for insertion. 781 * No entry fields are filled in. 782 */ 783 static vm_map_entry_t 784 vm_map_entry_create(vm_map_t map) 785 { 786 vm_map_entry_t new_entry; 787 788 if (map->system_map) 789 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 790 else 791 new_entry = uma_zalloc(mapentzone, M_WAITOK); 792 if (new_entry == NULL) 793 panic("vm_map_entry_create: kernel resources exhausted"); 794 return (new_entry); 795 } 796 797 /* 798 * vm_map_entry_set_behavior: 799 * 800 * Set the expected access behavior, either normal, random, or 801 * sequential. 802 */ 803 static inline void 804 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 805 { 806 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 807 (behavior & MAP_ENTRY_BEHAV_MASK); 808 } 809 810 /* 811 * vm_map_entry_set_max_free: 812 * 813 * Set the max_free field in a vm_map_entry. 814 */ 815 static inline void 816 vm_map_entry_set_max_free(vm_map_entry_t entry) 817 { 818 819 entry->max_free = entry->adj_free; 820 if (entry->left != NULL && entry->left->max_free > entry->max_free) 821 entry->max_free = entry->left->max_free; 822 if (entry->right != NULL && entry->right->max_free > entry->max_free) 823 entry->max_free = entry->right->max_free; 824 } 825 826 /* 827 * vm_map_entry_splay: 828 * 829 * The Sleator and Tarjan top-down splay algorithm with the 830 * following variation. Max_free must be computed bottom-up, so 831 * on the downward pass, maintain the left and right spines in 832 * reverse order. Then, make a second pass up each side to fix 833 * the pointers and compute max_free. The time bound is O(log n) 834 * amortized. 835 * 836 * The new root is the vm_map_entry containing "addr", or else an 837 * adjacent entry (lower or higher) if addr is not in the tree. 838 * 839 * The map must be locked, and leaves it so. 840 * 841 * Returns: the new root. 842 */ 843 static vm_map_entry_t 844 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 845 { 846 vm_map_entry_t llist, rlist; 847 vm_map_entry_t ltree, rtree; 848 vm_map_entry_t y; 849 850 /* Special case of empty tree. */ 851 if (root == NULL) 852 return (root); 853 854 /* 855 * Pass One: Splay down the tree until we find addr or a NULL 856 * pointer where addr would go. llist and rlist are the two 857 * sides in reverse order (bottom-up), with llist linked by 858 * the right pointer and rlist linked by the left pointer in 859 * the vm_map_entry. Wait until Pass Two to set max_free on 860 * the two spines. 861 */ 862 llist = NULL; 863 rlist = NULL; 864 for (;;) { 865 /* root is never NULL in here. */ 866 if (addr < root->start) { 867 y = root->left; 868 if (y == NULL) 869 break; 870 if (addr < y->start && y->left != NULL) { 871 /* Rotate right and put y on rlist. */ 872 root->left = y->right; 873 y->right = root; 874 vm_map_entry_set_max_free(root); 875 root = y->left; 876 y->left = rlist; 877 rlist = y; 878 } else { 879 /* Put root on rlist. */ 880 root->left = rlist; 881 rlist = root; 882 root = y; 883 } 884 } else if (addr >= root->end) { 885 y = root->right; 886 if (y == NULL) 887 break; 888 if (addr >= y->end && y->right != NULL) { 889 /* Rotate left and put y on llist. */ 890 root->right = y->left; 891 y->left = root; 892 vm_map_entry_set_max_free(root); 893 root = y->right; 894 y->right = llist; 895 llist = y; 896 } else { 897 /* Put root on llist. */ 898 root->right = llist; 899 llist = root; 900 root = y; 901 } 902 } else 903 break; 904 } 905 906 /* 907 * Pass Two: Walk back up the two spines, flip the pointers 908 * and set max_free. The subtrees of the root go at the 909 * bottom of llist and rlist. 910 */ 911 ltree = root->left; 912 while (llist != NULL) { 913 y = llist->right; 914 llist->right = ltree; 915 vm_map_entry_set_max_free(llist); 916 ltree = llist; 917 llist = y; 918 } 919 rtree = root->right; 920 while (rlist != NULL) { 921 y = rlist->left; 922 rlist->left = rtree; 923 vm_map_entry_set_max_free(rlist); 924 rtree = rlist; 925 rlist = y; 926 } 927 928 /* 929 * Final assembly: add ltree and rtree as subtrees of root. 930 */ 931 root->left = ltree; 932 root->right = rtree; 933 vm_map_entry_set_max_free(root); 934 935 return (root); 936 } 937 938 /* 939 * vm_map_entry_{un,}link: 940 * 941 * Insert/remove entries from maps. 942 */ 943 static void 944 vm_map_entry_link(vm_map_t map, 945 vm_map_entry_t after_where, 946 vm_map_entry_t entry) 947 { 948 949 CTR4(KTR_VM, 950 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 951 map->nentries, entry, after_where); 952 VM_MAP_ASSERT_LOCKED(map); 953 map->nentries++; 954 entry->prev = after_where; 955 entry->next = after_where->next; 956 entry->next->prev = entry; 957 after_where->next = entry; 958 959 if (after_where != &map->header) { 960 if (after_where != map->root) 961 vm_map_entry_splay(after_where->start, map->root); 962 entry->right = after_where->right; 963 entry->left = after_where; 964 after_where->right = NULL; 965 after_where->adj_free = entry->start - after_where->end; 966 vm_map_entry_set_max_free(after_where); 967 } else { 968 entry->right = map->root; 969 entry->left = NULL; 970 } 971 entry->adj_free = (entry->next == &map->header ? map->max_offset : 972 entry->next->start) - entry->end; 973 vm_map_entry_set_max_free(entry); 974 map->root = entry; 975 } 976 977 static void 978 vm_map_entry_unlink(vm_map_t map, 979 vm_map_entry_t entry) 980 { 981 vm_map_entry_t next, prev, root; 982 983 VM_MAP_ASSERT_LOCKED(map); 984 if (entry != map->root) 985 vm_map_entry_splay(entry->start, map->root); 986 if (entry->left == NULL) 987 root = entry->right; 988 else { 989 root = vm_map_entry_splay(entry->start, entry->left); 990 root->right = entry->right; 991 root->adj_free = (entry->next == &map->header ? map->max_offset : 992 entry->next->start) - root->end; 993 vm_map_entry_set_max_free(root); 994 } 995 map->root = root; 996 997 prev = entry->prev; 998 next = entry->next; 999 next->prev = prev; 1000 prev->next = next; 1001 map->nentries--; 1002 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1003 map->nentries, entry); 1004 } 1005 1006 /* 1007 * vm_map_entry_resize_free: 1008 * 1009 * Recompute the amount of free space following a vm_map_entry 1010 * and propagate that value up the tree. Call this function after 1011 * resizing a map entry in-place, that is, without a call to 1012 * vm_map_entry_link() or _unlink(). 1013 * 1014 * The map must be locked, and leaves it so. 1015 */ 1016 static void 1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1018 { 1019 1020 /* 1021 * Using splay trees without parent pointers, propagating 1022 * max_free up the tree is done by moving the entry to the 1023 * root and making the change there. 1024 */ 1025 if (entry != map->root) 1026 map->root = vm_map_entry_splay(entry->start, map->root); 1027 1028 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1029 entry->next->start) - entry->end; 1030 vm_map_entry_set_max_free(entry); 1031 } 1032 1033 /* 1034 * vm_map_lookup_entry: [ internal use only ] 1035 * 1036 * Finds the map entry containing (or 1037 * immediately preceding) the specified address 1038 * in the given map; the entry is returned 1039 * in the "entry" parameter. The boolean 1040 * result indicates whether the address is 1041 * actually contained in the map. 1042 */ 1043 boolean_t 1044 vm_map_lookup_entry( 1045 vm_map_t map, 1046 vm_offset_t address, 1047 vm_map_entry_t *entry) /* OUT */ 1048 { 1049 vm_map_entry_t cur; 1050 boolean_t locked; 1051 1052 /* 1053 * If the map is empty, then the map entry immediately preceding 1054 * "address" is the map's header. 1055 */ 1056 cur = map->root; 1057 if (cur == NULL) 1058 *entry = &map->header; 1059 else if (address >= cur->start && cur->end > address) { 1060 *entry = cur; 1061 return (TRUE); 1062 } else if ((locked = vm_map_locked(map)) || 1063 sx_try_upgrade(&map->lock)) { 1064 /* 1065 * Splay requires a write lock on the map. However, it only 1066 * restructures the binary search tree; it does not otherwise 1067 * change the map. Thus, the map's timestamp need not change 1068 * on a temporary upgrade. 1069 */ 1070 map->root = cur = vm_map_entry_splay(address, cur); 1071 if (!locked) 1072 sx_downgrade(&map->lock); 1073 1074 /* 1075 * If "address" is contained within a map entry, the new root 1076 * is that map entry. Otherwise, the new root is a map entry 1077 * immediately before or after "address". 1078 */ 1079 if (address >= cur->start) { 1080 *entry = cur; 1081 if (cur->end > address) 1082 return (TRUE); 1083 } else 1084 *entry = cur->prev; 1085 } else 1086 /* 1087 * Since the map is only locked for read access, perform a 1088 * standard binary search tree lookup for "address". 1089 */ 1090 for (;;) { 1091 if (address < cur->start) { 1092 if (cur->left == NULL) { 1093 *entry = cur->prev; 1094 break; 1095 } 1096 cur = cur->left; 1097 } else if (cur->end > address) { 1098 *entry = cur; 1099 return (TRUE); 1100 } else { 1101 if (cur->right == NULL) { 1102 *entry = cur; 1103 break; 1104 } 1105 cur = cur->right; 1106 } 1107 } 1108 return (FALSE); 1109 } 1110 1111 /* 1112 * vm_map_insert: 1113 * 1114 * Inserts the given whole VM object into the target 1115 * map at the specified address range. The object's 1116 * size should match that of the address range. 1117 * 1118 * Requires that the map be locked, and leaves it so. 1119 * 1120 * If object is non-NULL, ref count must be bumped by caller 1121 * prior to making call to account for the new entry. 1122 */ 1123 int 1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1125 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1126 int cow) 1127 { 1128 vm_map_entry_t new_entry; 1129 vm_map_entry_t prev_entry; 1130 vm_map_entry_t temp_entry; 1131 vm_eflags_t protoeflags; 1132 struct ucred *cred; 1133 boolean_t charge_prev_obj; 1134 1135 VM_MAP_ASSERT_LOCKED(map); 1136 1137 /* 1138 * Check that the start and end points are not bogus. 1139 */ 1140 if ((start < map->min_offset) || (end > map->max_offset) || 1141 (start >= end)) 1142 return (KERN_INVALID_ADDRESS); 1143 1144 /* 1145 * Find the entry prior to the proposed starting address; if it's part 1146 * of an existing entry, this range is bogus. 1147 */ 1148 if (vm_map_lookup_entry(map, start, &temp_entry)) 1149 return (KERN_NO_SPACE); 1150 1151 prev_entry = temp_entry; 1152 1153 /* 1154 * Assert that the next entry doesn't overlap the end point. 1155 */ 1156 if ((prev_entry->next != &map->header) && 1157 (prev_entry->next->start < end)) 1158 return (KERN_NO_SPACE); 1159 1160 protoeflags = 0; 1161 charge_prev_obj = FALSE; 1162 1163 if (cow & MAP_COPY_ON_WRITE) 1164 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1165 1166 if (cow & MAP_NOFAULT) { 1167 protoeflags |= MAP_ENTRY_NOFAULT; 1168 1169 KASSERT(object == NULL, 1170 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1171 } 1172 if (cow & MAP_DISABLE_SYNCER) 1173 protoeflags |= MAP_ENTRY_NOSYNC; 1174 if (cow & MAP_DISABLE_COREDUMP) 1175 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1176 1177 cred = NULL; 1178 KASSERT((object != kmem_object && object != kernel_object) || 1179 ((object == kmem_object || object == kernel_object) && 1180 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1181 ("kmem or kernel object and cow")); 1182 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1183 goto charged; 1184 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1185 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1186 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1187 return (KERN_RESOURCE_SHORTAGE); 1188 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1189 object->cred == NULL, 1190 ("OVERCOMMIT: vm_map_insert o %p", object)); 1191 cred = curthread->td_ucred; 1192 crhold(cred); 1193 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1194 charge_prev_obj = TRUE; 1195 } 1196 1197 charged: 1198 /* Expand the kernel pmap, if necessary. */ 1199 if (map == kernel_map && end > kernel_vm_end) 1200 pmap_growkernel(end); 1201 if (object != NULL) { 1202 /* 1203 * OBJ_ONEMAPPING must be cleared unless this mapping 1204 * is trivially proven to be the only mapping for any 1205 * of the object's pages. (Object granularity 1206 * reference counting is insufficient to recognize 1207 * aliases with precision.) 1208 */ 1209 VM_OBJECT_LOCK(object); 1210 if (object->ref_count > 1 || object->shadow_count != 0) 1211 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1212 VM_OBJECT_UNLOCK(object); 1213 } 1214 else if ((prev_entry != &map->header) && 1215 (prev_entry->eflags == protoeflags) && 1216 (prev_entry->end == start) && 1217 (prev_entry->wired_count == 0) && 1218 (prev_entry->cred == cred || 1219 (prev_entry->object.vm_object != NULL && 1220 (prev_entry->object.vm_object->cred == cred))) && 1221 vm_object_coalesce(prev_entry->object.vm_object, 1222 prev_entry->offset, 1223 (vm_size_t)(prev_entry->end - prev_entry->start), 1224 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1225 /* 1226 * We were able to extend the object. Determine if we 1227 * can extend the previous map entry to include the 1228 * new range as well. 1229 */ 1230 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1231 (prev_entry->protection == prot) && 1232 (prev_entry->max_protection == max)) { 1233 map->size += (end - prev_entry->end); 1234 prev_entry->end = end; 1235 vm_map_entry_resize_free(map, prev_entry); 1236 vm_map_simplify_entry(map, prev_entry); 1237 if (cred != NULL) 1238 crfree(cred); 1239 return (KERN_SUCCESS); 1240 } 1241 1242 /* 1243 * If we can extend the object but cannot extend the 1244 * map entry, we have to create a new map entry. We 1245 * must bump the ref count on the extended object to 1246 * account for it. object may be NULL. 1247 */ 1248 object = prev_entry->object.vm_object; 1249 offset = prev_entry->offset + 1250 (prev_entry->end - prev_entry->start); 1251 vm_object_reference(object); 1252 if (cred != NULL && object != NULL && object->cred != NULL && 1253 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1254 /* Object already accounts for this uid. */ 1255 crfree(cred); 1256 cred = NULL; 1257 } 1258 } 1259 1260 /* 1261 * NOTE: if conditionals fail, object can be NULL here. This occurs 1262 * in things like the buffer map where we manage kva but do not manage 1263 * backing objects. 1264 */ 1265 1266 /* 1267 * Create a new entry 1268 */ 1269 new_entry = vm_map_entry_create(map); 1270 new_entry->start = start; 1271 new_entry->end = end; 1272 new_entry->cred = NULL; 1273 1274 new_entry->eflags = protoeflags; 1275 new_entry->object.vm_object = object; 1276 new_entry->offset = offset; 1277 new_entry->avail_ssize = 0; 1278 1279 new_entry->inheritance = VM_INHERIT_DEFAULT; 1280 new_entry->protection = prot; 1281 new_entry->max_protection = max; 1282 new_entry->wired_count = 0; 1283 1284 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1285 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1286 new_entry->cred = cred; 1287 1288 /* 1289 * Insert the new entry into the list 1290 */ 1291 vm_map_entry_link(map, prev_entry, new_entry); 1292 map->size += new_entry->end - new_entry->start; 1293 1294 /* 1295 * It may be possible to merge the new entry with the next and/or 1296 * previous entries. However, due to MAP_STACK_* being a hack, a 1297 * panic can result from merging such entries. 1298 */ 1299 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1300 vm_map_simplify_entry(map, new_entry); 1301 1302 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1303 vm_map_pmap_enter(map, start, prot, 1304 object, OFF_TO_IDX(offset), end - start, 1305 cow & MAP_PREFAULT_PARTIAL); 1306 } 1307 1308 return (KERN_SUCCESS); 1309 } 1310 1311 /* 1312 * vm_map_findspace: 1313 * 1314 * Find the first fit (lowest VM address) for "length" free bytes 1315 * beginning at address >= start in the given map. 1316 * 1317 * In a vm_map_entry, "adj_free" is the amount of free space 1318 * adjacent (higher address) to this entry, and "max_free" is the 1319 * maximum amount of contiguous free space in its subtree. This 1320 * allows finding a free region in one path down the tree, so 1321 * O(log n) amortized with splay trees. 1322 * 1323 * The map must be locked, and leaves it so. 1324 * 1325 * Returns: 0 on success, and starting address in *addr, 1326 * 1 if insufficient space. 1327 */ 1328 int 1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1330 vm_offset_t *addr) /* OUT */ 1331 { 1332 vm_map_entry_t entry; 1333 vm_offset_t st; 1334 1335 /* 1336 * Request must fit within min/max VM address and must avoid 1337 * address wrap. 1338 */ 1339 if (start < map->min_offset) 1340 start = map->min_offset; 1341 if (start + length > map->max_offset || start + length < start) 1342 return (1); 1343 1344 /* Empty tree means wide open address space. */ 1345 if (map->root == NULL) { 1346 *addr = start; 1347 return (0); 1348 } 1349 1350 /* 1351 * After splay, if start comes before root node, then there 1352 * must be a gap from start to the root. 1353 */ 1354 map->root = vm_map_entry_splay(start, map->root); 1355 if (start + length <= map->root->start) { 1356 *addr = start; 1357 return (0); 1358 } 1359 1360 /* 1361 * Root is the last node that might begin its gap before 1362 * start, and this is the last comparison where address 1363 * wrap might be a problem. 1364 */ 1365 st = (start > map->root->end) ? start : map->root->end; 1366 if (length <= map->root->end + map->root->adj_free - st) { 1367 *addr = st; 1368 return (0); 1369 } 1370 1371 /* With max_free, can immediately tell if no solution. */ 1372 entry = map->root->right; 1373 if (entry == NULL || length > entry->max_free) 1374 return (1); 1375 1376 /* 1377 * Search the right subtree in the order: left subtree, root, 1378 * right subtree (first fit). The previous splay implies that 1379 * all regions in the right subtree have addresses > start. 1380 */ 1381 while (entry != NULL) { 1382 if (entry->left != NULL && entry->left->max_free >= length) 1383 entry = entry->left; 1384 else if (entry->adj_free >= length) { 1385 *addr = entry->end; 1386 return (0); 1387 } else 1388 entry = entry->right; 1389 } 1390 1391 /* Can't get here, so panic if we do. */ 1392 panic("vm_map_findspace: max_free corrupt"); 1393 } 1394 1395 int 1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1397 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1398 vm_prot_t max, int cow) 1399 { 1400 vm_offset_t end; 1401 int result; 1402 1403 end = start + length; 1404 vm_map_lock(map); 1405 VM_MAP_RANGE_CHECK(map, start, end); 1406 (void) vm_map_delete(map, start, end); 1407 result = vm_map_insert(map, object, offset, start, end, prot, 1408 max, cow); 1409 vm_map_unlock(map); 1410 return (result); 1411 } 1412 1413 /* 1414 * vm_map_find finds an unallocated region in the target address 1415 * map with the given length. The search is defined to be 1416 * first-fit from the specified address; the region found is 1417 * returned in the same parameter. 1418 * 1419 * If object is non-NULL, ref count must be bumped by caller 1420 * prior to making call to account for the new entry. 1421 */ 1422 int 1423 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1424 vm_offset_t *addr, /* IN/OUT */ 1425 vm_size_t length, int find_space, vm_prot_t prot, 1426 vm_prot_t max, int cow) 1427 { 1428 vm_offset_t start; 1429 int result; 1430 1431 start = *addr; 1432 vm_map_lock(map); 1433 do { 1434 if (find_space != VMFS_NO_SPACE) { 1435 if (vm_map_findspace(map, start, length, addr)) { 1436 vm_map_unlock(map); 1437 return (KERN_NO_SPACE); 1438 } 1439 switch (find_space) { 1440 case VMFS_ALIGNED_SPACE: 1441 pmap_align_superpage(object, offset, addr, 1442 length); 1443 break; 1444 #ifdef VMFS_TLB_ALIGNED_SPACE 1445 case VMFS_TLB_ALIGNED_SPACE: 1446 pmap_align_tlb(addr); 1447 break; 1448 #endif 1449 default: 1450 break; 1451 } 1452 1453 start = *addr; 1454 } 1455 result = vm_map_insert(map, object, offset, start, start + 1456 length, prot, max, cow); 1457 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1458 #ifdef VMFS_TLB_ALIGNED_SPACE 1459 || find_space == VMFS_TLB_ALIGNED_SPACE 1460 #endif 1461 )); 1462 vm_map_unlock(map); 1463 return (result); 1464 } 1465 1466 /* 1467 * vm_map_simplify_entry: 1468 * 1469 * Simplify the given map entry by merging with either neighbor. This 1470 * routine also has the ability to merge with both neighbors. 1471 * 1472 * The map must be locked. 1473 * 1474 * This routine guarentees that the passed entry remains valid (though 1475 * possibly extended). When merging, this routine may delete one or 1476 * both neighbors. 1477 */ 1478 void 1479 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1480 { 1481 vm_map_entry_t next, prev; 1482 vm_size_t prevsize, esize; 1483 1484 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1485 return; 1486 1487 prev = entry->prev; 1488 if (prev != &map->header) { 1489 prevsize = prev->end - prev->start; 1490 if ( (prev->end == entry->start) && 1491 (prev->object.vm_object == entry->object.vm_object) && 1492 (!prev->object.vm_object || 1493 (prev->offset + prevsize == entry->offset)) && 1494 (prev->eflags == entry->eflags) && 1495 (prev->protection == entry->protection) && 1496 (prev->max_protection == entry->max_protection) && 1497 (prev->inheritance == entry->inheritance) && 1498 (prev->wired_count == entry->wired_count) && 1499 (prev->cred == entry->cred)) { 1500 vm_map_entry_unlink(map, prev); 1501 entry->start = prev->start; 1502 entry->offset = prev->offset; 1503 if (entry->prev != &map->header) 1504 vm_map_entry_resize_free(map, entry->prev); 1505 1506 /* 1507 * If the backing object is a vnode object, 1508 * vm_object_deallocate() calls vrele(). 1509 * However, vrele() does not lock the vnode 1510 * because the vnode has additional 1511 * references. Thus, the map lock can be kept 1512 * without causing a lock-order reversal with 1513 * the vnode lock. 1514 */ 1515 if (prev->object.vm_object) 1516 vm_object_deallocate(prev->object.vm_object); 1517 if (prev->cred != NULL) 1518 crfree(prev->cred); 1519 vm_map_entry_dispose(map, prev); 1520 } 1521 } 1522 1523 next = entry->next; 1524 if (next != &map->header) { 1525 esize = entry->end - entry->start; 1526 if ((entry->end == next->start) && 1527 (next->object.vm_object == entry->object.vm_object) && 1528 (!entry->object.vm_object || 1529 (entry->offset + esize == next->offset)) && 1530 (next->eflags == entry->eflags) && 1531 (next->protection == entry->protection) && 1532 (next->max_protection == entry->max_protection) && 1533 (next->inheritance == entry->inheritance) && 1534 (next->wired_count == entry->wired_count) && 1535 (next->cred == entry->cred)) { 1536 vm_map_entry_unlink(map, next); 1537 entry->end = next->end; 1538 vm_map_entry_resize_free(map, entry); 1539 1540 /* 1541 * See comment above. 1542 */ 1543 if (next->object.vm_object) 1544 vm_object_deallocate(next->object.vm_object); 1545 if (next->cred != NULL) 1546 crfree(next->cred); 1547 vm_map_entry_dispose(map, next); 1548 } 1549 } 1550 } 1551 /* 1552 * vm_map_clip_start: [ internal use only ] 1553 * 1554 * Asserts that the given entry begins at or after 1555 * the specified address; if necessary, 1556 * it splits the entry into two. 1557 */ 1558 #define vm_map_clip_start(map, entry, startaddr) \ 1559 { \ 1560 if (startaddr > entry->start) \ 1561 _vm_map_clip_start(map, entry, startaddr); \ 1562 } 1563 1564 /* 1565 * This routine is called only when it is known that 1566 * the entry must be split. 1567 */ 1568 static void 1569 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1570 { 1571 vm_map_entry_t new_entry; 1572 1573 VM_MAP_ASSERT_LOCKED(map); 1574 1575 /* 1576 * Split off the front portion -- note that we must insert the new 1577 * entry BEFORE this one, so that this entry has the specified 1578 * starting address. 1579 */ 1580 vm_map_simplify_entry(map, entry); 1581 1582 /* 1583 * If there is no object backing this entry, we might as well create 1584 * one now. If we defer it, an object can get created after the map 1585 * is clipped, and individual objects will be created for the split-up 1586 * map. This is a bit of a hack, but is also about the best place to 1587 * put this improvement. 1588 */ 1589 if (entry->object.vm_object == NULL && !map->system_map) { 1590 vm_object_t object; 1591 object = vm_object_allocate(OBJT_DEFAULT, 1592 atop(entry->end - entry->start)); 1593 entry->object.vm_object = object; 1594 entry->offset = 0; 1595 if (entry->cred != NULL) { 1596 object->cred = entry->cred; 1597 object->charge = entry->end - entry->start; 1598 entry->cred = NULL; 1599 } 1600 } else if (entry->object.vm_object != NULL && 1601 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1602 entry->cred != NULL) { 1603 VM_OBJECT_LOCK(entry->object.vm_object); 1604 KASSERT(entry->object.vm_object->cred == NULL, 1605 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1606 entry->object.vm_object->cred = entry->cred; 1607 entry->object.vm_object->charge = entry->end - entry->start; 1608 VM_OBJECT_UNLOCK(entry->object.vm_object); 1609 entry->cred = NULL; 1610 } 1611 1612 new_entry = vm_map_entry_create(map); 1613 *new_entry = *entry; 1614 1615 new_entry->end = start; 1616 entry->offset += (start - entry->start); 1617 entry->start = start; 1618 if (new_entry->cred != NULL) 1619 crhold(entry->cred); 1620 1621 vm_map_entry_link(map, entry->prev, new_entry); 1622 1623 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1624 vm_object_reference(new_entry->object.vm_object); 1625 } 1626 } 1627 1628 /* 1629 * vm_map_clip_end: [ internal use only ] 1630 * 1631 * Asserts that the given entry ends at or before 1632 * the specified address; if necessary, 1633 * it splits the entry into two. 1634 */ 1635 #define vm_map_clip_end(map, entry, endaddr) \ 1636 { \ 1637 if ((endaddr) < (entry->end)) \ 1638 _vm_map_clip_end((map), (entry), (endaddr)); \ 1639 } 1640 1641 /* 1642 * This routine is called only when it is known that 1643 * the entry must be split. 1644 */ 1645 static void 1646 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1647 { 1648 vm_map_entry_t new_entry; 1649 1650 VM_MAP_ASSERT_LOCKED(map); 1651 1652 /* 1653 * If there is no object backing this entry, we might as well create 1654 * one now. If we defer it, an object can get created after the map 1655 * is clipped, and individual objects will be created for the split-up 1656 * map. This is a bit of a hack, but is also about the best place to 1657 * put this improvement. 1658 */ 1659 if (entry->object.vm_object == NULL && !map->system_map) { 1660 vm_object_t object; 1661 object = vm_object_allocate(OBJT_DEFAULT, 1662 atop(entry->end - entry->start)); 1663 entry->object.vm_object = object; 1664 entry->offset = 0; 1665 if (entry->cred != NULL) { 1666 object->cred = entry->cred; 1667 object->charge = entry->end - entry->start; 1668 entry->cred = NULL; 1669 } 1670 } else if (entry->object.vm_object != NULL && 1671 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1672 entry->cred != NULL) { 1673 VM_OBJECT_LOCK(entry->object.vm_object); 1674 KASSERT(entry->object.vm_object->cred == NULL, 1675 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1676 entry->object.vm_object->cred = entry->cred; 1677 entry->object.vm_object->charge = entry->end - entry->start; 1678 VM_OBJECT_UNLOCK(entry->object.vm_object); 1679 entry->cred = NULL; 1680 } 1681 1682 /* 1683 * Create a new entry and insert it AFTER the specified entry 1684 */ 1685 new_entry = vm_map_entry_create(map); 1686 *new_entry = *entry; 1687 1688 new_entry->start = entry->end = end; 1689 new_entry->offset += (end - entry->start); 1690 if (new_entry->cred != NULL) 1691 crhold(entry->cred); 1692 1693 vm_map_entry_link(map, entry, new_entry); 1694 1695 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1696 vm_object_reference(new_entry->object.vm_object); 1697 } 1698 } 1699 1700 /* 1701 * vm_map_submap: [ kernel use only ] 1702 * 1703 * Mark the given range as handled by a subordinate map. 1704 * 1705 * This range must have been created with vm_map_find, 1706 * and no other operations may have been performed on this 1707 * range prior to calling vm_map_submap. 1708 * 1709 * Only a limited number of operations can be performed 1710 * within this rage after calling vm_map_submap: 1711 * vm_fault 1712 * [Don't try vm_map_copy!] 1713 * 1714 * To remove a submapping, one must first remove the 1715 * range from the superior map, and then destroy the 1716 * submap (if desired). [Better yet, don't try it.] 1717 */ 1718 int 1719 vm_map_submap( 1720 vm_map_t map, 1721 vm_offset_t start, 1722 vm_offset_t end, 1723 vm_map_t submap) 1724 { 1725 vm_map_entry_t entry; 1726 int result = KERN_INVALID_ARGUMENT; 1727 1728 vm_map_lock(map); 1729 1730 VM_MAP_RANGE_CHECK(map, start, end); 1731 1732 if (vm_map_lookup_entry(map, start, &entry)) { 1733 vm_map_clip_start(map, entry, start); 1734 } else 1735 entry = entry->next; 1736 1737 vm_map_clip_end(map, entry, end); 1738 1739 if ((entry->start == start) && (entry->end == end) && 1740 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1741 (entry->object.vm_object == NULL)) { 1742 entry->object.sub_map = submap; 1743 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1744 result = KERN_SUCCESS; 1745 } 1746 vm_map_unlock(map); 1747 1748 return (result); 1749 } 1750 1751 /* 1752 * The maximum number of pages to map 1753 */ 1754 #define MAX_INIT_PT 96 1755 1756 /* 1757 * vm_map_pmap_enter: 1758 * 1759 * Preload read-only mappings for the given object's resident pages into 1760 * the given map. This eliminates the soft faults on process startup and 1761 * immediately after an mmap(2). Because these are speculative mappings, 1762 * cached pages are not reactivated and mapped. 1763 */ 1764 void 1765 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1766 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1767 { 1768 vm_offset_t start; 1769 vm_page_t p, p_start; 1770 vm_pindex_t psize, tmpidx; 1771 1772 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1773 return; 1774 VM_OBJECT_LOCK(object); 1775 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1776 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1777 goto unlock_return; 1778 } 1779 1780 psize = atop(size); 1781 1782 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1783 object->resident_page_count > MAX_INIT_PT) 1784 goto unlock_return; 1785 1786 if (psize + pindex > object->size) { 1787 if (object->size < pindex) 1788 goto unlock_return; 1789 psize = object->size - pindex; 1790 } 1791 1792 start = 0; 1793 p_start = NULL; 1794 1795 p = vm_page_find_least(object, pindex); 1796 /* 1797 * Assert: the variable p is either (1) the page with the 1798 * least pindex greater than or equal to the parameter pindex 1799 * or (2) NULL. 1800 */ 1801 for (; 1802 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1803 p = TAILQ_NEXT(p, listq)) { 1804 /* 1805 * don't allow an madvise to blow away our really 1806 * free pages allocating pv entries. 1807 */ 1808 if ((flags & MAP_PREFAULT_MADVISE) && 1809 cnt.v_free_count < cnt.v_free_reserved) { 1810 psize = tmpidx; 1811 break; 1812 } 1813 if (p->valid == VM_PAGE_BITS_ALL) { 1814 if (p_start == NULL) { 1815 start = addr + ptoa(tmpidx); 1816 p_start = p; 1817 } 1818 } else if (p_start != NULL) { 1819 pmap_enter_object(map->pmap, start, addr + 1820 ptoa(tmpidx), p_start, prot); 1821 p_start = NULL; 1822 } 1823 } 1824 if (p_start != NULL) 1825 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1826 p_start, prot); 1827 unlock_return: 1828 VM_OBJECT_UNLOCK(object); 1829 } 1830 1831 /* 1832 * vm_map_protect: 1833 * 1834 * Sets the protection of the specified address 1835 * region in the target map. If "set_max" is 1836 * specified, the maximum protection is to be set; 1837 * otherwise, only the current protection is affected. 1838 */ 1839 int 1840 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1841 vm_prot_t new_prot, boolean_t set_max) 1842 { 1843 vm_map_entry_t current, entry; 1844 vm_object_t obj; 1845 struct ucred *cred; 1846 vm_prot_t old_prot; 1847 1848 vm_map_lock(map); 1849 1850 VM_MAP_RANGE_CHECK(map, start, end); 1851 1852 if (vm_map_lookup_entry(map, start, &entry)) { 1853 vm_map_clip_start(map, entry, start); 1854 } else { 1855 entry = entry->next; 1856 } 1857 1858 /* 1859 * Make a first pass to check for protection violations. 1860 */ 1861 current = entry; 1862 while ((current != &map->header) && (current->start < end)) { 1863 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1864 vm_map_unlock(map); 1865 return (KERN_INVALID_ARGUMENT); 1866 } 1867 if ((new_prot & current->max_protection) != new_prot) { 1868 vm_map_unlock(map); 1869 return (KERN_PROTECTION_FAILURE); 1870 } 1871 current = current->next; 1872 } 1873 1874 1875 /* 1876 * Do an accounting pass for private read-only mappings that 1877 * now will do cow due to allowed write (e.g. debugger sets 1878 * breakpoint on text segment) 1879 */ 1880 for (current = entry; (current != &map->header) && 1881 (current->start < end); current = current->next) { 1882 1883 vm_map_clip_end(map, current, end); 1884 1885 if (set_max || 1886 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1887 ENTRY_CHARGED(current)) { 1888 continue; 1889 } 1890 1891 cred = curthread->td_ucred; 1892 obj = current->object.vm_object; 1893 1894 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1895 if (!swap_reserve(current->end - current->start)) { 1896 vm_map_unlock(map); 1897 return (KERN_RESOURCE_SHORTAGE); 1898 } 1899 crhold(cred); 1900 current->cred = cred; 1901 continue; 1902 } 1903 1904 VM_OBJECT_LOCK(obj); 1905 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1906 VM_OBJECT_UNLOCK(obj); 1907 continue; 1908 } 1909 1910 /* 1911 * Charge for the whole object allocation now, since 1912 * we cannot distinguish between non-charged and 1913 * charged clipped mapping of the same object later. 1914 */ 1915 KASSERT(obj->charge == 0, 1916 ("vm_map_protect: object %p overcharged\n", obj)); 1917 if (!swap_reserve(ptoa(obj->size))) { 1918 VM_OBJECT_UNLOCK(obj); 1919 vm_map_unlock(map); 1920 return (KERN_RESOURCE_SHORTAGE); 1921 } 1922 1923 crhold(cred); 1924 obj->cred = cred; 1925 obj->charge = ptoa(obj->size); 1926 VM_OBJECT_UNLOCK(obj); 1927 } 1928 1929 /* 1930 * Go back and fix up protections. [Note that clipping is not 1931 * necessary the second time.] 1932 */ 1933 current = entry; 1934 while ((current != &map->header) && (current->start < end)) { 1935 old_prot = current->protection; 1936 1937 if (set_max) 1938 current->protection = 1939 (current->max_protection = new_prot) & 1940 old_prot; 1941 else 1942 current->protection = new_prot; 1943 1944 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1945 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1946 (current->protection & VM_PROT_WRITE) != 0 && 1947 (old_prot & VM_PROT_WRITE) == 0) { 1948 vm_fault_copy_entry(map, map, current, current, NULL); 1949 } 1950 1951 /* 1952 * When restricting access, update the physical map. Worry 1953 * about copy-on-write here. 1954 */ 1955 if ((old_prot & ~current->protection) != 0) { 1956 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1957 VM_PROT_ALL) 1958 pmap_protect(map->pmap, current->start, 1959 current->end, 1960 current->protection & MASK(current)); 1961 #undef MASK 1962 } 1963 vm_map_simplify_entry(map, current); 1964 current = current->next; 1965 } 1966 vm_map_unlock(map); 1967 return (KERN_SUCCESS); 1968 } 1969 1970 /* 1971 * vm_map_madvise: 1972 * 1973 * This routine traverses a processes map handling the madvise 1974 * system call. Advisories are classified as either those effecting 1975 * the vm_map_entry structure, or those effecting the underlying 1976 * objects. 1977 */ 1978 int 1979 vm_map_madvise( 1980 vm_map_t map, 1981 vm_offset_t start, 1982 vm_offset_t end, 1983 int behav) 1984 { 1985 vm_map_entry_t current, entry; 1986 int modify_map = 0; 1987 1988 /* 1989 * Some madvise calls directly modify the vm_map_entry, in which case 1990 * we need to use an exclusive lock on the map and we need to perform 1991 * various clipping operations. Otherwise we only need a read-lock 1992 * on the map. 1993 */ 1994 switch(behav) { 1995 case MADV_NORMAL: 1996 case MADV_SEQUENTIAL: 1997 case MADV_RANDOM: 1998 case MADV_NOSYNC: 1999 case MADV_AUTOSYNC: 2000 case MADV_NOCORE: 2001 case MADV_CORE: 2002 modify_map = 1; 2003 vm_map_lock(map); 2004 break; 2005 case MADV_WILLNEED: 2006 case MADV_DONTNEED: 2007 case MADV_FREE: 2008 vm_map_lock_read(map); 2009 break; 2010 default: 2011 return (KERN_INVALID_ARGUMENT); 2012 } 2013 2014 /* 2015 * Locate starting entry and clip if necessary. 2016 */ 2017 VM_MAP_RANGE_CHECK(map, start, end); 2018 2019 if (vm_map_lookup_entry(map, start, &entry)) { 2020 if (modify_map) 2021 vm_map_clip_start(map, entry, start); 2022 } else { 2023 entry = entry->next; 2024 } 2025 2026 if (modify_map) { 2027 /* 2028 * madvise behaviors that are implemented in the vm_map_entry. 2029 * 2030 * We clip the vm_map_entry so that behavioral changes are 2031 * limited to the specified address range. 2032 */ 2033 for (current = entry; 2034 (current != &map->header) && (current->start < end); 2035 current = current->next 2036 ) { 2037 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2038 continue; 2039 2040 vm_map_clip_end(map, current, end); 2041 2042 switch (behav) { 2043 case MADV_NORMAL: 2044 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2045 break; 2046 case MADV_SEQUENTIAL: 2047 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2048 break; 2049 case MADV_RANDOM: 2050 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2051 break; 2052 case MADV_NOSYNC: 2053 current->eflags |= MAP_ENTRY_NOSYNC; 2054 break; 2055 case MADV_AUTOSYNC: 2056 current->eflags &= ~MAP_ENTRY_NOSYNC; 2057 break; 2058 case MADV_NOCORE: 2059 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2060 break; 2061 case MADV_CORE: 2062 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2063 break; 2064 default: 2065 break; 2066 } 2067 vm_map_simplify_entry(map, current); 2068 } 2069 vm_map_unlock(map); 2070 } else { 2071 vm_pindex_t pindex; 2072 int count; 2073 2074 /* 2075 * madvise behaviors that are implemented in the underlying 2076 * vm_object. 2077 * 2078 * Since we don't clip the vm_map_entry, we have to clip 2079 * the vm_object pindex and count. 2080 */ 2081 for (current = entry; 2082 (current != &map->header) && (current->start < end); 2083 current = current->next 2084 ) { 2085 vm_offset_t useStart; 2086 2087 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2088 continue; 2089 2090 pindex = OFF_TO_IDX(current->offset); 2091 count = atop(current->end - current->start); 2092 useStart = current->start; 2093 2094 if (current->start < start) { 2095 pindex += atop(start - current->start); 2096 count -= atop(start - current->start); 2097 useStart = start; 2098 } 2099 if (current->end > end) 2100 count -= atop(current->end - end); 2101 2102 if (count <= 0) 2103 continue; 2104 2105 vm_object_madvise(current->object.vm_object, 2106 pindex, count, behav); 2107 if (behav == MADV_WILLNEED) { 2108 vm_map_pmap_enter(map, 2109 useStart, 2110 current->protection, 2111 current->object.vm_object, 2112 pindex, 2113 (count << PAGE_SHIFT), 2114 MAP_PREFAULT_MADVISE 2115 ); 2116 } 2117 } 2118 vm_map_unlock_read(map); 2119 } 2120 return (0); 2121 } 2122 2123 2124 /* 2125 * vm_map_inherit: 2126 * 2127 * Sets the inheritance of the specified address 2128 * range in the target map. Inheritance 2129 * affects how the map will be shared with 2130 * child maps at the time of vmspace_fork. 2131 */ 2132 int 2133 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2134 vm_inherit_t new_inheritance) 2135 { 2136 vm_map_entry_t entry; 2137 vm_map_entry_t temp_entry; 2138 2139 switch (new_inheritance) { 2140 case VM_INHERIT_NONE: 2141 case VM_INHERIT_COPY: 2142 case VM_INHERIT_SHARE: 2143 break; 2144 default: 2145 return (KERN_INVALID_ARGUMENT); 2146 } 2147 vm_map_lock(map); 2148 VM_MAP_RANGE_CHECK(map, start, end); 2149 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2150 entry = temp_entry; 2151 vm_map_clip_start(map, entry, start); 2152 } else 2153 entry = temp_entry->next; 2154 while ((entry != &map->header) && (entry->start < end)) { 2155 vm_map_clip_end(map, entry, end); 2156 entry->inheritance = new_inheritance; 2157 vm_map_simplify_entry(map, entry); 2158 entry = entry->next; 2159 } 2160 vm_map_unlock(map); 2161 return (KERN_SUCCESS); 2162 } 2163 2164 /* 2165 * vm_map_unwire: 2166 * 2167 * Implements both kernel and user unwiring. 2168 */ 2169 int 2170 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2171 int flags) 2172 { 2173 vm_map_entry_t entry, first_entry, tmp_entry; 2174 vm_offset_t saved_start; 2175 unsigned int last_timestamp; 2176 int rv; 2177 boolean_t need_wakeup, result, user_unwire; 2178 2179 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2180 vm_map_lock(map); 2181 VM_MAP_RANGE_CHECK(map, start, end); 2182 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2183 if (flags & VM_MAP_WIRE_HOLESOK) 2184 first_entry = first_entry->next; 2185 else { 2186 vm_map_unlock(map); 2187 return (KERN_INVALID_ADDRESS); 2188 } 2189 } 2190 last_timestamp = map->timestamp; 2191 entry = first_entry; 2192 while (entry != &map->header && entry->start < end) { 2193 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2194 /* 2195 * We have not yet clipped the entry. 2196 */ 2197 saved_start = (start >= entry->start) ? start : 2198 entry->start; 2199 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2200 if (vm_map_unlock_and_wait(map, 0)) { 2201 /* 2202 * Allow interruption of user unwiring? 2203 */ 2204 } 2205 vm_map_lock(map); 2206 if (last_timestamp+1 != map->timestamp) { 2207 /* 2208 * Look again for the entry because the map was 2209 * modified while it was unlocked. 2210 * Specifically, the entry may have been 2211 * clipped, merged, or deleted. 2212 */ 2213 if (!vm_map_lookup_entry(map, saved_start, 2214 &tmp_entry)) { 2215 if (flags & VM_MAP_WIRE_HOLESOK) 2216 tmp_entry = tmp_entry->next; 2217 else { 2218 if (saved_start == start) { 2219 /* 2220 * First_entry has been deleted. 2221 */ 2222 vm_map_unlock(map); 2223 return (KERN_INVALID_ADDRESS); 2224 } 2225 end = saved_start; 2226 rv = KERN_INVALID_ADDRESS; 2227 goto done; 2228 } 2229 } 2230 if (entry == first_entry) 2231 first_entry = tmp_entry; 2232 else 2233 first_entry = NULL; 2234 entry = tmp_entry; 2235 } 2236 last_timestamp = map->timestamp; 2237 continue; 2238 } 2239 vm_map_clip_start(map, entry, start); 2240 vm_map_clip_end(map, entry, end); 2241 /* 2242 * Mark the entry in case the map lock is released. (See 2243 * above.) 2244 */ 2245 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2246 /* 2247 * Check the map for holes in the specified region. 2248 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2249 */ 2250 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2251 (entry->end < end && (entry->next == &map->header || 2252 entry->next->start > entry->end))) { 2253 end = entry->end; 2254 rv = KERN_INVALID_ADDRESS; 2255 goto done; 2256 } 2257 /* 2258 * If system unwiring, require that the entry is system wired. 2259 */ 2260 if (!user_unwire && 2261 vm_map_entry_system_wired_count(entry) == 0) { 2262 end = entry->end; 2263 rv = KERN_INVALID_ARGUMENT; 2264 goto done; 2265 } 2266 entry = entry->next; 2267 } 2268 rv = KERN_SUCCESS; 2269 done: 2270 need_wakeup = FALSE; 2271 if (first_entry == NULL) { 2272 result = vm_map_lookup_entry(map, start, &first_entry); 2273 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2274 first_entry = first_entry->next; 2275 else 2276 KASSERT(result, ("vm_map_unwire: lookup failed")); 2277 } 2278 entry = first_entry; 2279 while (entry != &map->header && entry->start < end) { 2280 if (rv == KERN_SUCCESS && (!user_unwire || 2281 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2282 if (user_unwire) 2283 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2284 entry->wired_count--; 2285 if (entry->wired_count == 0) { 2286 /* 2287 * Retain the map lock. 2288 */ 2289 vm_fault_unwire(map, entry->start, entry->end, 2290 entry->object.vm_object != NULL && 2291 (entry->object.vm_object->type == OBJT_DEVICE || 2292 entry->object.vm_object->type == OBJT_SG)); 2293 } 2294 } 2295 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2296 ("vm_map_unwire: in-transition flag missing")); 2297 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2298 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2299 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2300 need_wakeup = TRUE; 2301 } 2302 vm_map_simplify_entry(map, entry); 2303 entry = entry->next; 2304 } 2305 vm_map_unlock(map); 2306 if (need_wakeup) 2307 vm_map_wakeup(map); 2308 return (rv); 2309 } 2310 2311 /* 2312 * vm_map_wire: 2313 * 2314 * Implements both kernel and user wiring. 2315 */ 2316 int 2317 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2318 int flags) 2319 { 2320 vm_map_entry_t entry, first_entry, tmp_entry; 2321 vm_offset_t saved_end, saved_start; 2322 unsigned int last_timestamp; 2323 int rv; 2324 boolean_t fictitious, need_wakeup, result, user_wire; 2325 vm_prot_t prot; 2326 2327 prot = 0; 2328 if (flags & VM_MAP_WIRE_WRITE) 2329 prot |= VM_PROT_WRITE; 2330 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2331 vm_map_lock(map); 2332 VM_MAP_RANGE_CHECK(map, start, end); 2333 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2334 if (flags & VM_MAP_WIRE_HOLESOK) 2335 first_entry = first_entry->next; 2336 else { 2337 vm_map_unlock(map); 2338 return (KERN_INVALID_ADDRESS); 2339 } 2340 } 2341 last_timestamp = map->timestamp; 2342 entry = first_entry; 2343 while (entry != &map->header && entry->start < end) { 2344 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2345 /* 2346 * We have not yet clipped the entry. 2347 */ 2348 saved_start = (start >= entry->start) ? start : 2349 entry->start; 2350 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2351 if (vm_map_unlock_and_wait(map, 0)) { 2352 /* 2353 * Allow interruption of user wiring? 2354 */ 2355 } 2356 vm_map_lock(map); 2357 if (last_timestamp + 1 != map->timestamp) { 2358 /* 2359 * Look again for the entry because the map was 2360 * modified while it was unlocked. 2361 * Specifically, the entry may have been 2362 * clipped, merged, or deleted. 2363 */ 2364 if (!vm_map_lookup_entry(map, saved_start, 2365 &tmp_entry)) { 2366 if (flags & VM_MAP_WIRE_HOLESOK) 2367 tmp_entry = tmp_entry->next; 2368 else { 2369 if (saved_start == start) { 2370 /* 2371 * first_entry has been deleted. 2372 */ 2373 vm_map_unlock(map); 2374 return (KERN_INVALID_ADDRESS); 2375 } 2376 end = saved_start; 2377 rv = KERN_INVALID_ADDRESS; 2378 goto done; 2379 } 2380 } 2381 if (entry == first_entry) 2382 first_entry = tmp_entry; 2383 else 2384 first_entry = NULL; 2385 entry = tmp_entry; 2386 } 2387 last_timestamp = map->timestamp; 2388 continue; 2389 } 2390 vm_map_clip_start(map, entry, start); 2391 vm_map_clip_end(map, entry, end); 2392 /* 2393 * Mark the entry in case the map lock is released. (See 2394 * above.) 2395 */ 2396 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2397 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2398 || (entry->protection & prot) != prot) { 2399 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2400 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2401 end = entry->end; 2402 rv = KERN_INVALID_ADDRESS; 2403 goto done; 2404 } 2405 goto next_entry; 2406 } 2407 if (entry->wired_count == 0) { 2408 entry->wired_count++; 2409 saved_start = entry->start; 2410 saved_end = entry->end; 2411 fictitious = entry->object.vm_object != NULL && 2412 (entry->object.vm_object->type == OBJT_DEVICE || 2413 entry->object.vm_object->type == OBJT_SG); 2414 /* 2415 * Release the map lock, relying on the in-transition 2416 * mark. Mark the map busy for fork. 2417 */ 2418 vm_map_busy(map); 2419 vm_map_unlock(map); 2420 rv = vm_fault_wire(map, saved_start, saved_end, 2421 fictitious); 2422 vm_map_lock(map); 2423 vm_map_unbusy(map); 2424 if (last_timestamp + 1 != map->timestamp) { 2425 /* 2426 * Look again for the entry because the map was 2427 * modified while it was unlocked. The entry 2428 * may have been clipped, but NOT merged or 2429 * deleted. 2430 */ 2431 result = vm_map_lookup_entry(map, saved_start, 2432 &tmp_entry); 2433 KASSERT(result, ("vm_map_wire: lookup failed")); 2434 if (entry == first_entry) 2435 first_entry = tmp_entry; 2436 else 2437 first_entry = NULL; 2438 entry = tmp_entry; 2439 while (entry->end < saved_end) { 2440 if (rv != KERN_SUCCESS) { 2441 KASSERT(entry->wired_count == 1, 2442 ("vm_map_wire: bad count")); 2443 entry->wired_count = -1; 2444 } 2445 entry = entry->next; 2446 } 2447 } 2448 last_timestamp = map->timestamp; 2449 if (rv != KERN_SUCCESS) { 2450 KASSERT(entry->wired_count == 1, 2451 ("vm_map_wire: bad count")); 2452 /* 2453 * Assign an out-of-range value to represent 2454 * the failure to wire this entry. 2455 */ 2456 entry->wired_count = -1; 2457 end = entry->end; 2458 goto done; 2459 } 2460 } else if (!user_wire || 2461 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2462 entry->wired_count++; 2463 } 2464 /* 2465 * Check the map for holes in the specified region. 2466 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2467 */ 2468 next_entry: 2469 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2470 (entry->end < end && (entry->next == &map->header || 2471 entry->next->start > entry->end))) { 2472 end = entry->end; 2473 rv = KERN_INVALID_ADDRESS; 2474 goto done; 2475 } 2476 entry = entry->next; 2477 } 2478 rv = KERN_SUCCESS; 2479 done: 2480 need_wakeup = FALSE; 2481 if (first_entry == NULL) { 2482 result = vm_map_lookup_entry(map, start, &first_entry); 2483 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2484 first_entry = first_entry->next; 2485 else 2486 KASSERT(result, ("vm_map_wire: lookup failed")); 2487 } 2488 entry = first_entry; 2489 while (entry != &map->header && entry->start < end) { 2490 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2491 goto next_entry_done; 2492 if (rv == KERN_SUCCESS) { 2493 if (user_wire) 2494 entry->eflags |= MAP_ENTRY_USER_WIRED; 2495 } else if (entry->wired_count == -1) { 2496 /* 2497 * Wiring failed on this entry. Thus, unwiring is 2498 * unnecessary. 2499 */ 2500 entry->wired_count = 0; 2501 } else { 2502 if (!user_wire || 2503 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2504 entry->wired_count--; 2505 if (entry->wired_count == 0) { 2506 /* 2507 * Retain the map lock. 2508 */ 2509 vm_fault_unwire(map, entry->start, entry->end, 2510 entry->object.vm_object != NULL && 2511 (entry->object.vm_object->type == OBJT_DEVICE || 2512 entry->object.vm_object->type == OBJT_SG)); 2513 } 2514 } 2515 next_entry_done: 2516 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2517 ("vm_map_wire: in-transition flag missing")); 2518 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2519 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2520 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2521 need_wakeup = TRUE; 2522 } 2523 vm_map_simplify_entry(map, entry); 2524 entry = entry->next; 2525 } 2526 vm_map_unlock(map); 2527 if (need_wakeup) 2528 vm_map_wakeup(map); 2529 return (rv); 2530 } 2531 2532 /* 2533 * vm_map_sync 2534 * 2535 * Push any dirty cached pages in the address range to their pager. 2536 * If syncio is TRUE, dirty pages are written synchronously. 2537 * If invalidate is TRUE, any cached pages are freed as well. 2538 * 2539 * If the size of the region from start to end is zero, we are 2540 * supposed to flush all modified pages within the region containing 2541 * start. Unfortunately, a region can be split or coalesced with 2542 * neighboring regions, making it difficult to determine what the 2543 * original region was. Therefore, we approximate this requirement by 2544 * flushing the current region containing start. 2545 * 2546 * Returns an error if any part of the specified range is not mapped. 2547 */ 2548 int 2549 vm_map_sync( 2550 vm_map_t map, 2551 vm_offset_t start, 2552 vm_offset_t end, 2553 boolean_t syncio, 2554 boolean_t invalidate) 2555 { 2556 vm_map_entry_t current; 2557 vm_map_entry_t entry; 2558 vm_size_t size; 2559 vm_object_t object; 2560 vm_ooffset_t offset; 2561 unsigned int last_timestamp; 2562 2563 vm_map_lock_read(map); 2564 VM_MAP_RANGE_CHECK(map, start, end); 2565 if (!vm_map_lookup_entry(map, start, &entry)) { 2566 vm_map_unlock_read(map); 2567 return (KERN_INVALID_ADDRESS); 2568 } else if (start == end) { 2569 start = entry->start; 2570 end = entry->end; 2571 } 2572 /* 2573 * Make a first pass to check for user-wired memory and holes. 2574 */ 2575 for (current = entry; current != &map->header && current->start < end; 2576 current = current->next) { 2577 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2578 vm_map_unlock_read(map); 2579 return (KERN_INVALID_ARGUMENT); 2580 } 2581 if (end > current->end && 2582 (current->next == &map->header || 2583 current->end != current->next->start)) { 2584 vm_map_unlock_read(map); 2585 return (KERN_INVALID_ADDRESS); 2586 } 2587 } 2588 2589 if (invalidate) 2590 pmap_remove(map->pmap, start, end); 2591 2592 /* 2593 * Make a second pass, cleaning/uncaching pages from the indicated 2594 * objects as we go. 2595 */ 2596 for (current = entry; current != &map->header && current->start < end;) { 2597 offset = current->offset + (start - current->start); 2598 size = (end <= current->end ? end : current->end) - start; 2599 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2600 vm_map_t smap; 2601 vm_map_entry_t tentry; 2602 vm_size_t tsize; 2603 2604 smap = current->object.sub_map; 2605 vm_map_lock_read(smap); 2606 (void) vm_map_lookup_entry(smap, offset, &tentry); 2607 tsize = tentry->end - offset; 2608 if (tsize < size) 2609 size = tsize; 2610 object = tentry->object.vm_object; 2611 offset = tentry->offset + (offset - tentry->start); 2612 vm_map_unlock_read(smap); 2613 } else { 2614 object = current->object.vm_object; 2615 } 2616 vm_object_reference(object); 2617 last_timestamp = map->timestamp; 2618 vm_map_unlock_read(map); 2619 vm_object_sync(object, offset, size, syncio, invalidate); 2620 start += size; 2621 vm_object_deallocate(object); 2622 vm_map_lock_read(map); 2623 if (last_timestamp == map->timestamp || 2624 !vm_map_lookup_entry(map, start, ¤t)) 2625 current = current->next; 2626 } 2627 2628 vm_map_unlock_read(map); 2629 return (KERN_SUCCESS); 2630 } 2631 2632 /* 2633 * vm_map_entry_unwire: [ internal use only ] 2634 * 2635 * Make the region specified by this entry pageable. 2636 * 2637 * The map in question should be locked. 2638 * [This is the reason for this routine's existence.] 2639 */ 2640 static void 2641 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2642 { 2643 vm_fault_unwire(map, entry->start, entry->end, 2644 entry->object.vm_object != NULL && 2645 (entry->object.vm_object->type == OBJT_DEVICE || 2646 entry->object.vm_object->type == OBJT_SG)); 2647 entry->wired_count = 0; 2648 } 2649 2650 static void 2651 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2652 { 2653 2654 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2655 vm_object_deallocate(entry->object.vm_object); 2656 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2657 } 2658 2659 /* 2660 * vm_map_entry_delete: [ internal use only ] 2661 * 2662 * Deallocate the given entry from the target map. 2663 */ 2664 static void 2665 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2666 { 2667 vm_object_t object; 2668 vm_pindex_t offidxstart, offidxend, count, size1; 2669 vm_ooffset_t size; 2670 2671 vm_map_entry_unlink(map, entry); 2672 object = entry->object.vm_object; 2673 size = entry->end - entry->start; 2674 map->size -= size; 2675 2676 if (entry->cred != NULL) { 2677 swap_release_by_cred(size, entry->cred); 2678 crfree(entry->cred); 2679 } 2680 2681 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2682 (object != NULL)) { 2683 KASSERT(entry->cred == NULL || object->cred == NULL || 2684 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2685 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2686 count = OFF_TO_IDX(size); 2687 offidxstart = OFF_TO_IDX(entry->offset); 2688 offidxend = offidxstart + count; 2689 VM_OBJECT_LOCK(object); 2690 if (object->ref_count != 1 && 2691 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2692 object == kernel_object || object == kmem_object)) { 2693 vm_object_collapse(object); 2694 2695 /* 2696 * The option OBJPR_NOTMAPPED can be passed here 2697 * because vm_map_delete() already performed 2698 * pmap_remove() on the only mapping to this range 2699 * of pages. 2700 */ 2701 vm_object_page_remove(object, offidxstart, offidxend, 2702 OBJPR_NOTMAPPED); 2703 if (object->type == OBJT_SWAP) 2704 swap_pager_freespace(object, offidxstart, count); 2705 if (offidxend >= object->size && 2706 offidxstart < object->size) { 2707 size1 = object->size; 2708 object->size = offidxstart; 2709 if (object->cred != NULL) { 2710 size1 -= object->size; 2711 KASSERT(object->charge >= ptoa(size1), 2712 ("vm_map_entry_delete: object->charge < 0")); 2713 swap_release_by_cred(ptoa(size1), object->cred); 2714 object->charge -= ptoa(size1); 2715 } 2716 } 2717 } 2718 VM_OBJECT_UNLOCK(object); 2719 } else 2720 entry->object.vm_object = NULL; 2721 if (map->system_map) 2722 vm_map_entry_deallocate(entry, TRUE); 2723 else { 2724 entry->next = curthread->td_map_def_user; 2725 curthread->td_map_def_user = entry; 2726 } 2727 } 2728 2729 /* 2730 * vm_map_delete: [ internal use only ] 2731 * 2732 * Deallocates the given address range from the target 2733 * map. 2734 */ 2735 int 2736 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2737 { 2738 vm_map_entry_t entry; 2739 vm_map_entry_t first_entry; 2740 2741 VM_MAP_ASSERT_LOCKED(map); 2742 2743 /* 2744 * Find the start of the region, and clip it 2745 */ 2746 if (!vm_map_lookup_entry(map, start, &first_entry)) 2747 entry = first_entry->next; 2748 else { 2749 entry = first_entry; 2750 vm_map_clip_start(map, entry, start); 2751 } 2752 2753 /* 2754 * Step through all entries in this region 2755 */ 2756 while ((entry != &map->header) && (entry->start < end)) { 2757 vm_map_entry_t next; 2758 2759 /* 2760 * Wait for wiring or unwiring of an entry to complete. 2761 * Also wait for any system wirings to disappear on 2762 * user maps. 2763 */ 2764 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2765 (vm_map_pmap(map) != kernel_pmap && 2766 vm_map_entry_system_wired_count(entry) != 0)) { 2767 unsigned int last_timestamp; 2768 vm_offset_t saved_start; 2769 vm_map_entry_t tmp_entry; 2770 2771 saved_start = entry->start; 2772 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2773 last_timestamp = map->timestamp; 2774 (void) vm_map_unlock_and_wait(map, 0); 2775 vm_map_lock(map); 2776 if (last_timestamp + 1 != map->timestamp) { 2777 /* 2778 * Look again for the entry because the map was 2779 * modified while it was unlocked. 2780 * Specifically, the entry may have been 2781 * clipped, merged, or deleted. 2782 */ 2783 if (!vm_map_lookup_entry(map, saved_start, 2784 &tmp_entry)) 2785 entry = tmp_entry->next; 2786 else { 2787 entry = tmp_entry; 2788 vm_map_clip_start(map, entry, 2789 saved_start); 2790 } 2791 } 2792 continue; 2793 } 2794 vm_map_clip_end(map, entry, end); 2795 2796 next = entry->next; 2797 2798 /* 2799 * Unwire before removing addresses from the pmap; otherwise, 2800 * unwiring will put the entries back in the pmap. 2801 */ 2802 if (entry->wired_count != 0) { 2803 vm_map_entry_unwire(map, entry); 2804 } 2805 2806 pmap_remove(map->pmap, entry->start, entry->end); 2807 2808 /* 2809 * Delete the entry only after removing all pmap 2810 * entries pointing to its pages. (Otherwise, its 2811 * page frames may be reallocated, and any modify bits 2812 * will be set in the wrong object!) 2813 */ 2814 vm_map_entry_delete(map, entry); 2815 entry = next; 2816 } 2817 return (KERN_SUCCESS); 2818 } 2819 2820 /* 2821 * vm_map_remove: 2822 * 2823 * Remove the given address range from the target map. 2824 * This is the exported form of vm_map_delete. 2825 */ 2826 int 2827 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2828 { 2829 int result; 2830 2831 vm_map_lock(map); 2832 VM_MAP_RANGE_CHECK(map, start, end); 2833 result = vm_map_delete(map, start, end); 2834 vm_map_unlock(map); 2835 return (result); 2836 } 2837 2838 /* 2839 * vm_map_check_protection: 2840 * 2841 * Assert that the target map allows the specified privilege on the 2842 * entire address region given. The entire region must be allocated. 2843 * 2844 * WARNING! This code does not and should not check whether the 2845 * contents of the region is accessible. For example a smaller file 2846 * might be mapped into a larger address space. 2847 * 2848 * NOTE! This code is also called by munmap(). 2849 * 2850 * The map must be locked. A read lock is sufficient. 2851 */ 2852 boolean_t 2853 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2854 vm_prot_t protection) 2855 { 2856 vm_map_entry_t entry; 2857 vm_map_entry_t tmp_entry; 2858 2859 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2860 return (FALSE); 2861 entry = tmp_entry; 2862 2863 while (start < end) { 2864 if (entry == &map->header) 2865 return (FALSE); 2866 /* 2867 * No holes allowed! 2868 */ 2869 if (start < entry->start) 2870 return (FALSE); 2871 /* 2872 * Check protection associated with entry. 2873 */ 2874 if ((entry->protection & protection) != protection) 2875 return (FALSE); 2876 /* go to next entry */ 2877 start = entry->end; 2878 entry = entry->next; 2879 } 2880 return (TRUE); 2881 } 2882 2883 /* 2884 * vm_map_copy_entry: 2885 * 2886 * Copies the contents of the source entry to the destination 2887 * entry. The entries *must* be aligned properly. 2888 */ 2889 static void 2890 vm_map_copy_entry( 2891 vm_map_t src_map, 2892 vm_map_t dst_map, 2893 vm_map_entry_t src_entry, 2894 vm_map_entry_t dst_entry, 2895 vm_ooffset_t *fork_charge) 2896 { 2897 vm_object_t src_object; 2898 vm_offset_t size; 2899 struct ucred *cred; 2900 int charged; 2901 2902 VM_MAP_ASSERT_LOCKED(dst_map); 2903 2904 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2905 return; 2906 2907 if (src_entry->wired_count == 0) { 2908 2909 /* 2910 * If the source entry is marked needs_copy, it is already 2911 * write-protected. 2912 */ 2913 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2914 pmap_protect(src_map->pmap, 2915 src_entry->start, 2916 src_entry->end, 2917 src_entry->protection & ~VM_PROT_WRITE); 2918 } 2919 2920 /* 2921 * Make a copy of the object. 2922 */ 2923 size = src_entry->end - src_entry->start; 2924 if ((src_object = src_entry->object.vm_object) != NULL) { 2925 VM_OBJECT_LOCK(src_object); 2926 charged = ENTRY_CHARGED(src_entry); 2927 if ((src_object->handle == NULL) && 2928 (src_object->type == OBJT_DEFAULT || 2929 src_object->type == OBJT_SWAP)) { 2930 vm_object_collapse(src_object); 2931 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2932 vm_object_split(src_entry); 2933 src_object = src_entry->object.vm_object; 2934 } 2935 } 2936 vm_object_reference_locked(src_object); 2937 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2938 if (src_entry->cred != NULL && 2939 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2940 KASSERT(src_object->cred == NULL, 2941 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2942 src_object)); 2943 src_object->cred = src_entry->cred; 2944 src_object->charge = size; 2945 } 2946 VM_OBJECT_UNLOCK(src_object); 2947 dst_entry->object.vm_object = src_object; 2948 if (charged) { 2949 cred = curthread->td_ucred; 2950 crhold(cred); 2951 dst_entry->cred = cred; 2952 *fork_charge += size; 2953 if (!(src_entry->eflags & 2954 MAP_ENTRY_NEEDS_COPY)) { 2955 crhold(cred); 2956 src_entry->cred = cred; 2957 *fork_charge += size; 2958 } 2959 } 2960 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2961 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2962 dst_entry->offset = src_entry->offset; 2963 } else { 2964 dst_entry->object.vm_object = NULL; 2965 dst_entry->offset = 0; 2966 if (src_entry->cred != NULL) { 2967 dst_entry->cred = curthread->td_ucred; 2968 crhold(dst_entry->cred); 2969 *fork_charge += size; 2970 } 2971 } 2972 2973 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2974 dst_entry->end - dst_entry->start, src_entry->start); 2975 } else { 2976 /* 2977 * Of course, wired down pages can't be set copy-on-write. 2978 * Cause wired pages to be copied into the new map by 2979 * simulating faults (the new pages are pageable) 2980 */ 2981 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2982 fork_charge); 2983 } 2984 } 2985 2986 /* 2987 * vmspace_map_entry_forked: 2988 * Update the newly-forked vmspace each time a map entry is inherited 2989 * or copied. The values for vm_dsize and vm_tsize are approximate 2990 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 2991 */ 2992 static void 2993 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 2994 vm_map_entry_t entry) 2995 { 2996 vm_size_t entrysize; 2997 vm_offset_t newend; 2998 2999 entrysize = entry->end - entry->start; 3000 vm2->vm_map.size += entrysize; 3001 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3002 vm2->vm_ssize += btoc(entrysize); 3003 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3004 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3005 newend = MIN(entry->end, 3006 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3007 vm2->vm_dsize += btoc(newend - entry->start); 3008 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3009 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3010 newend = MIN(entry->end, 3011 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3012 vm2->vm_tsize += btoc(newend - entry->start); 3013 } 3014 } 3015 3016 /* 3017 * vmspace_fork: 3018 * Create a new process vmspace structure and vm_map 3019 * based on those of an existing process. The new map 3020 * is based on the old map, according to the inheritance 3021 * values on the regions in that map. 3022 * 3023 * XXX It might be worth coalescing the entries added to the new vmspace. 3024 * 3025 * The source map must not be locked. 3026 */ 3027 struct vmspace * 3028 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3029 { 3030 struct vmspace *vm2; 3031 vm_map_t old_map = &vm1->vm_map; 3032 vm_map_t new_map; 3033 vm_map_entry_t old_entry; 3034 vm_map_entry_t new_entry; 3035 vm_object_t object; 3036 int locked; 3037 3038 vm_map_lock(old_map); 3039 if (old_map->busy) 3040 vm_map_wait_busy(old_map); 3041 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3042 if (vm2 == NULL) 3043 goto unlock_and_return; 3044 vm2->vm_taddr = vm1->vm_taddr; 3045 vm2->vm_daddr = vm1->vm_daddr; 3046 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3047 new_map = &vm2->vm_map; /* XXX */ 3048 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3049 KASSERT(locked, ("vmspace_fork: lock failed")); 3050 new_map->timestamp = 1; 3051 3052 old_entry = old_map->header.next; 3053 3054 while (old_entry != &old_map->header) { 3055 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3056 panic("vm_map_fork: encountered a submap"); 3057 3058 switch (old_entry->inheritance) { 3059 case VM_INHERIT_NONE: 3060 break; 3061 3062 case VM_INHERIT_SHARE: 3063 /* 3064 * Clone the entry, creating the shared object if necessary. 3065 */ 3066 object = old_entry->object.vm_object; 3067 if (object == NULL) { 3068 object = vm_object_allocate(OBJT_DEFAULT, 3069 atop(old_entry->end - old_entry->start)); 3070 old_entry->object.vm_object = object; 3071 old_entry->offset = 0; 3072 if (old_entry->cred != NULL) { 3073 object->cred = old_entry->cred; 3074 object->charge = old_entry->end - 3075 old_entry->start; 3076 old_entry->cred = NULL; 3077 } 3078 } 3079 3080 /* 3081 * Add the reference before calling vm_object_shadow 3082 * to insure that a shadow object is created. 3083 */ 3084 vm_object_reference(object); 3085 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3086 vm_object_shadow(&old_entry->object.vm_object, 3087 &old_entry->offset, 3088 old_entry->end - old_entry->start); 3089 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3090 /* Transfer the second reference too. */ 3091 vm_object_reference( 3092 old_entry->object.vm_object); 3093 3094 /* 3095 * As in vm_map_simplify_entry(), the 3096 * vnode lock will not be acquired in 3097 * this call to vm_object_deallocate(). 3098 */ 3099 vm_object_deallocate(object); 3100 object = old_entry->object.vm_object; 3101 } 3102 VM_OBJECT_LOCK(object); 3103 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3104 if (old_entry->cred != NULL) { 3105 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3106 object->cred = old_entry->cred; 3107 object->charge = old_entry->end - old_entry->start; 3108 old_entry->cred = NULL; 3109 } 3110 VM_OBJECT_UNLOCK(object); 3111 3112 /* 3113 * Clone the entry, referencing the shared object. 3114 */ 3115 new_entry = vm_map_entry_create(new_map); 3116 *new_entry = *old_entry; 3117 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3118 MAP_ENTRY_IN_TRANSITION); 3119 new_entry->wired_count = 0; 3120 3121 /* 3122 * Insert the entry into the new map -- we know we're 3123 * inserting at the end of the new map. 3124 */ 3125 vm_map_entry_link(new_map, new_map->header.prev, 3126 new_entry); 3127 vmspace_map_entry_forked(vm1, vm2, new_entry); 3128 3129 /* 3130 * Update the physical map 3131 */ 3132 pmap_copy(new_map->pmap, old_map->pmap, 3133 new_entry->start, 3134 (old_entry->end - old_entry->start), 3135 old_entry->start); 3136 break; 3137 3138 case VM_INHERIT_COPY: 3139 /* 3140 * Clone the entry and link into the map. 3141 */ 3142 new_entry = vm_map_entry_create(new_map); 3143 *new_entry = *old_entry; 3144 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3145 MAP_ENTRY_IN_TRANSITION); 3146 new_entry->wired_count = 0; 3147 new_entry->object.vm_object = NULL; 3148 new_entry->cred = NULL; 3149 vm_map_entry_link(new_map, new_map->header.prev, 3150 new_entry); 3151 vmspace_map_entry_forked(vm1, vm2, new_entry); 3152 vm_map_copy_entry(old_map, new_map, old_entry, 3153 new_entry, fork_charge); 3154 break; 3155 } 3156 old_entry = old_entry->next; 3157 } 3158 unlock_and_return: 3159 vm_map_unlock(old_map); 3160 if (vm2 != NULL) 3161 vm_map_unlock(new_map); 3162 3163 return (vm2); 3164 } 3165 3166 int 3167 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3168 vm_prot_t prot, vm_prot_t max, int cow) 3169 { 3170 vm_map_entry_t new_entry, prev_entry; 3171 vm_offset_t bot, top; 3172 vm_size_t init_ssize; 3173 int orient, rv; 3174 rlim_t vmemlim; 3175 3176 /* 3177 * The stack orientation is piggybacked with the cow argument. 3178 * Extract it into orient and mask the cow argument so that we 3179 * don't pass it around further. 3180 * NOTE: We explicitly allow bi-directional stacks. 3181 */ 3182 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3183 cow &= ~orient; 3184 KASSERT(orient != 0, ("No stack grow direction")); 3185 3186 if (addrbos < vm_map_min(map) || 3187 addrbos > vm_map_max(map) || 3188 addrbos + max_ssize < addrbos) 3189 return (KERN_NO_SPACE); 3190 3191 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3192 3193 PROC_LOCK(curthread->td_proc); 3194 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3195 PROC_UNLOCK(curthread->td_proc); 3196 3197 vm_map_lock(map); 3198 3199 /* If addr is already mapped, no go */ 3200 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3201 vm_map_unlock(map); 3202 return (KERN_NO_SPACE); 3203 } 3204 3205 /* If we would blow our VMEM resource limit, no go */ 3206 if (map->size + init_ssize > vmemlim) { 3207 vm_map_unlock(map); 3208 return (KERN_NO_SPACE); 3209 } 3210 3211 /* 3212 * If we can't accomodate max_ssize in the current mapping, no go. 3213 * However, we need to be aware that subsequent user mappings might 3214 * map into the space we have reserved for stack, and currently this 3215 * space is not protected. 3216 * 3217 * Hopefully we will at least detect this condition when we try to 3218 * grow the stack. 3219 */ 3220 if ((prev_entry->next != &map->header) && 3221 (prev_entry->next->start < addrbos + max_ssize)) { 3222 vm_map_unlock(map); 3223 return (KERN_NO_SPACE); 3224 } 3225 3226 /* 3227 * We initially map a stack of only init_ssize. We will grow as 3228 * needed later. Depending on the orientation of the stack (i.e. 3229 * the grow direction) we either map at the top of the range, the 3230 * bottom of the range or in the middle. 3231 * 3232 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3233 * and cow to be 0. Possibly we should eliminate these as input 3234 * parameters, and just pass these values here in the insert call. 3235 */ 3236 if (orient == MAP_STACK_GROWS_DOWN) 3237 bot = addrbos + max_ssize - init_ssize; 3238 else if (orient == MAP_STACK_GROWS_UP) 3239 bot = addrbos; 3240 else 3241 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3242 top = bot + init_ssize; 3243 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3244 3245 /* Now set the avail_ssize amount. */ 3246 if (rv == KERN_SUCCESS) { 3247 if (prev_entry != &map->header) 3248 vm_map_clip_end(map, prev_entry, bot); 3249 new_entry = prev_entry->next; 3250 if (new_entry->end != top || new_entry->start != bot) 3251 panic("Bad entry start/end for new stack entry"); 3252 3253 new_entry->avail_ssize = max_ssize - init_ssize; 3254 if (orient & MAP_STACK_GROWS_DOWN) 3255 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3256 if (orient & MAP_STACK_GROWS_UP) 3257 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3258 } 3259 3260 vm_map_unlock(map); 3261 return (rv); 3262 } 3263 3264 static int stack_guard_page = 0; 3265 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3266 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3267 &stack_guard_page, 0, 3268 "Insert stack guard page ahead of the growable segments."); 3269 3270 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3271 * desired address is already mapped, or if we successfully grow 3272 * the stack. Also returns KERN_SUCCESS if addr is outside the 3273 * stack range (this is strange, but preserves compatibility with 3274 * the grow function in vm_machdep.c). 3275 */ 3276 int 3277 vm_map_growstack(struct proc *p, vm_offset_t addr) 3278 { 3279 vm_map_entry_t next_entry, prev_entry; 3280 vm_map_entry_t new_entry, stack_entry; 3281 struct vmspace *vm = p->p_vmspace; 3282 vm_map_t map = &vm->vm_map; 3283 vm_offset_t end; 3284 size_t grow_amount, max_grow; 3285 rlim_t stacklim, vmemlim; 3286 int is_procstack, rv; 3287 struct ucred *cred; 3288 #ifdef notyet 3289 uint64_t limit; 3290 #endif 3291 #ifdef RACCT 3292 int error; 3293 #endif 3294 3295 Retry: 3296 PROC_LOCK(p); 3297 stacklim = lim_cur(p, RLIMIT_STACK); 3298 vmemlim = lim_cur(p, RLIMIT_VMEM); 3299 PROC_UNLOCK(p); 3300 3301 vm_map_lock_read(map); 3302 3303 /* If addr is already in the entry range, no need to grow.*/ 3304 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3305 vm_map_unlock_read(map); 3306 return (KERN_SUCCESS); 3307 } 3308 3309 next_entry = prev_entry->next; 3310 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3311 /* 3312 * This entry does not grow upwards. Since the address lies 3313 * beyond this entry, the next entry (if one exists) has to 3314 * be a downward growable entry. The entry list header is 3315 * never a growable entry, so it suffices to check the flags. 3316 */ 3317 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3318 vm_map_unlock_read(map); 3319 return (KERN_SUCCESS); 3320 } 3321 stack_entry = next_entry; 3322 } else { 3323 /* 3324 * This entry grows upward. If the next entry does not at 3325 * least grow downwards, this is the entry we need to grow. 3326 * otherwise we have two possible choices and we have to 3327 * select one. 3328 */ 3329 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3330 /* 3331 * We have two choices; grow the entry closest to 3332 * the address to minimize the amount of growth. 3333 */ 3334 if (addr - prev_entry->end <= next_entry->start - addr) 3335 stack_entry = prev_entry; 3336 else 3337 stack_entry = next_entry; 3338 } else 3339 stack_entry = prev_entry; 3340 } 3341 3342 if (stack_entry == next_entry) { 3343 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3344 KASSERT(addr < stack_entry->start, ("foo")); 3345 end = (prev_entry != &map->header) ? prev_entry->end : 3346 stack_entry->start - stack_entry->avail_ssize; 3347 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3348 max_grow = stack_entry->start - end; 3349 } else { 3350 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3351 KASSERT(addr >= stack_entry->end, ("foo")); 3352 end = (next_entry != &map->header) ? next_entry->start : 3353 stack_entry->end + stack_entry->avail_ssize; 3354 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3355 max_grow = end - stack_entry->end; 3356 } 3357 3358 if (grow_amount > stack_entry->avail_ssize) { 3359 vm_map_unlock_read(map); 3360 return (KERN_NO_SPACE); 3361 } 3362 3363 /* 3364 * If there is no longer enough space between the entries nogo, and 3365 * adjust the available space. Note: this should only happen if the 3366 * user has mapped into the stack area after the stack was created, 3367 * and is probably an error. 3368 * 3369 * This also effectively destroys any guard page the user might have 3370 * intended by limiting the stack size. 3371 */ 3372 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3373 if (vm_map_lock_upgrade(map)) 3374 goto Retry; 3375 3376 stack_entry->avail_ssize = max_grow; 3377 3378 vm_map_unlock(map); 3379 return (KERN_NO_SPACE); 3380 } 3381 3382 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3383 3384 /* 3385 * If this is the main process stack, see if we're over the stack 3386 * limit. 3387 */ 3388 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3389 vm_map_unlock_read(map); 3390 return (KERN_NO_SPACE); 3391 } 3392 #ifdef RACCT 3393 PROC_LOCK(p); 3394 if (is_procstack && 3395 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3396 PROC_UNLOCK(p); 3397 vm_map_unlock_read(map); 3398 return (KERN_NO_SPACE); 3399 } 3400 PROC_UNLOCK(p); 3401 #endif 3402 3403 /* Round up the grow amount modulo SGROWSIZ */ 3404 grow_amount = roundup (grow_amount, sgrowsiz); 3405 if (grow_amount > stack_entry->avail_ssize) 3406 grow_amount = stack_entry->avail_ssize; 3407 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3408 grow_amount = trunc_page((vm_size_t)stacklim) - 3409 ctob(vm->vm_ssize); 3410 } 3411 #ifdef notyet 3412 PROC_LOCK(p); 3413 limit = racct_get_available(p, RACCT_STACK); 3414 PROC_UNLOCK(p); 3415 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3416 grow_amount = limit - ctob(vm->vm_ssize); 3417 #endif 3418 3419 /* If we would blow our VMEM resource limit, no go */ 3420 if (map->size + grow_amount > vmemlim) { 3421 vm_map_unlock_read(map); 3422 rv = KERN_NO_SPACE; 3423 goto out; 3424 } 3425 #ifdef RACCT 3426 PROC_LOCK(p); 3427 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3428 PROC_UNLOCK(p); 3429 vm_map_unlock_read(map); 3430 rv = KERN_NO_SPACE; 3431 goto out; 3432 } 3433 PROC_UNLOCK(p); 3434 #endif 3435 3436 if (vm_map_lock_upgrade(map)) 3437 goto Retry; 3438 3439 if (stack_entry == next_entry) { 3440 /* 3441 * Growing downward. 3442 */ 3443 /* Get the preliminary new entry start value */ 3444 addr = stack_entry->start - grow_amount; 3445 3446 /* 3447 * If this puts us into the previous entry, cut back our 3448 * growth to the available space. Also, see the note above. 3449 */ 3450 if (addr < end) { 3451 stack_entry->avail_ssize = max_grow; 3452 addr = end; 3453 if (stack_guard_page) 3454 addr += PAGE_SIZE; 3455 } 3456 3457 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3458 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3459 3460 /* Adjust the available stack space by the amount we grew. */ 3461 if (rv == KERN_SUCCESS) { 3462 if (prev_entry != &map->header) 3463 vm_map_clip_end(map, prev_entry, addr); 3464 new_entry = prev_entry->next; 3465 KASSERT(new_entry == stack_entry->prev, ("foo")); 3466 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3467 KASSERT(new_entry->start == addr, ("foo")); 3468 grow_amount = new_entry->end - new_entry->start; 3469 new_entry->avail_ssize = stack_entry->avail_ssize - 3470 grow_amount; 3471 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3472 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3473 } 3474 } else { 3475 /* 3476 * Growing upward. 3477 */ 3478 addr = stack_entry->end + grow_amount; 3479 3480 /* 3481 * If this puts us into the next entry, cut back our growth 3482 * to the available space. Also, see the note above. 3483 */ 3484 if (addr > end) { 3485 stack_entry->avail_ssize = end - stack_entry->end; 3486 addr = end; 3487 if (stack_guard_page) 3488 addr -= PAGE_SIZE; 3489 } 3490 3491 grow_amount = addr - stack_entry->end; 3492 cred = stack_entry->cred; 3493 if (cred == NULL && stack_entry->object.vm_object != NULL) 3494 cred = stack_entry->object.vm_object->cred; 3495 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3496 rv = KERN_NO_SPACE; 3497 /* Grow the underlying object if applicable. */ 3498 else if (stack_entry->object.vm_object == NULL || 3499 vm_object_coalesce(stack_entry->object.vm_object, 3500 stack_entry->offset, 3501 (vm_size_t)(stack_entry->end - stack_entry->start), 3502 (vm_size_t)grow_amount, cred != NULL)) { 3503 map->size += (addr - stack_entry->end); 3504 /* Update the current entry. */ 3505 stack_entry->end = addr; 3506 stack_entry->avail_ssize -= grow_amount; 3507 vm_map_entry_resize_free(map, stack_entry); 3508 rv = KERN_SUCCESS; 3509 3510 if (next_entry != &map->header) 3511 vm_map_clip_start(map, next_entry, addr); 3512 } else 3513 rv = KERN_FAILURE; 3514 } 3515 3516 if (rv == KERN_SUCCESS && is_procstack) 3517 vm->vm_ssize += btoc(grow_amount); 3518 3519 vm_map_unlock(map); 3520 3521 /* 3522 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3523 */ 3524 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3525 vm_map_wire(map, 3526 (stack_entry == next_entry) ? addr : addr - grow_amount, 3527 (stack_entry == next_entry) ? stack_entry->start : addr, 3528 (p->p_flag & P_SYSTEM) 3529 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3530 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3531 } 3532 3533 out: 3534 #ifdef RACCT 3535 if (rv != KERN_SUCCESS) { 3536 PROC_LOCK(p); 3537 error = racct_set(p, RACCT_VMEM, map->size); 3538 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3539 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3540 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3541 PROC_UNLOCK(p); 3542 } 3543 #endif 3544 3545 return (rv); 3546 } 3547 3548 /* 3549 * Unshare the specified VM space for exec. If other processes are 3550 * mapped to it, then create a new one. The new vmspace is null. 3551 */ 3552 int 3553 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3554 { 3555 struct vmspace *oldvmspace = p->p_vmspace; 3556 struct vmspace *newvmspace; 3557 3558 newvmspace = vmspace_alloc(minuser, maxuser); 3559 if (newvmspace == NULL) 3560 return (ENOMEM); 3561 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3562 /* 3563 * This code is written like this for prototype purposes. The 3564 * goal is to avoid running down the vmspace here, but let the 3565 * other process's that are still using the vmspace to finally 3566 * run it down. Even though there is little or no chance of blocking 3567 * here, it is a good idea to keep this form for future mods. 3568 */ 3569 PROC_VMSPACE_LOCK(p); 3570 p->p_vmspace = newvmspace; 3571 PROC_VMSPACE_UNLOCK(p); 3572 if (p == curthread->td_proc) 3573 pmap_activate(curthread); 3574 vmspace_free(oldvmspace); 3575 return (0); 3576 } 3577 3578 /* 3579 * Unshare the specified VM space for forcing COW. This 3580 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3581 */ 3582 int 3583 vmspace_unshare(struct proc *p) 3584 { 3585 struct vmspace *oldvmspace = p->p_vmspace; 3586 struct vmspace *newvmspace; 3587 vm_ooffset_t fork_charge; 3588 3589 if (oldvmspace->vm_refcnt == 1) 3590 return (0); 3591 fork_charge = 0; 3592 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3593 if (newvmspace == NULL) 3594 return (ENOMEM); 3595 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3596 vmspace_free(newvmspace); 3597 return (ENOMEM); 3598 } 3599 PROC_VMSPACE_LOCK(p); 3600 p->p_vmspace = newvmspace; 3601 PROC_VMSPACE_UNLOCK(p); 3602 if (p == curthread->td_proc) 3603 pmap_activate(curthread); 3604 vmspace_free(oldvmspace); 3605 return (0); 3606 } 3607 3608 /* 3609 * vm_map_lookup: 3610 * 3611 * Finds the VM object, offset, and 3612 * protection for a given virtual address in the 3613 * specified map, assuming a page fault of the 3614 * type specified. 3615 * 3616 * Leaves the map in question locked for read; return 3617 * values are guaranteed until a vm_map_lookup_done 3618 * call is performed. Note that the map argument 3619 * is in/out; the returned map must be used in 3620 * the call to vm_map_lookup_done. 3621 * 3622 * A handle (out_entry) is returned for use in 3623 * vm_map_lookup_done, to make that fast. 3624 * 3625 * If a lookup is requested with "write protection" 3626 * specified, the map may be changed to perform virtual 3627 * copying operations, although the data referenced will 3628 * remain the same. 3629 */ 3630 int 3631 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3632 vm_offset_t vaddr, 3633 vm_prot_t fault_typea, 3634 vm_map_entry_t *out_entry, /* OUT */ 3635 vm_object_t *object, /* OUT */ 3636 vm_pindex_t *pindex, /* OUT */ 3637 vm_prot_t *out_prot, /* OUT */ 3638 boolean_t *wired) /* OUT */ 3639 { 3640 vm_map_entry_t entry; 3641 vm_map_t map = *var_map; 3642 vm_prot_t prot; 3643 vm_prot_t fault_type = fault_typea; 3644 vm_object_t eobject; 3645 vm_size_t size; 3646 struct ucred *cred; 3647 3648 RetryLookup:; 3649 3650 vm_map_lock_read(map); 3651 3652 /* 3653 * Lookup the faulting address. 3654 */ 3655 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3656 vm_map_unlock_read(map); 3657 return (KERN_INVALID_ADDRESS); 3658 } 3659 3660 entry = *out_entry; 3661 3662 /* 3663 * Handle submaps. 3664 */ 3665 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3666 vm_map_t old_map = map; 3667 3668 *var_map = map = entry->object.sub_map; 3669 vm_map_unlock_read(old_map); 3670 goto RetryLookup; 3671 } 3672 3673 /* 3674 * Check whether this task is allowed to have this page. 3675 */ 3676 prot = entry->protection; 3677 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3678 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3679 vm_map_unlock_read(map); 3680 return (KERN_PROTECTION_FAILURE); 3681 } 3682 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3683 (entry->eflags & MAP_ENTRY_COW) && 3684 (fault_type & VM_PROT_WRITE)) { 3685 vm_map_unlock_read(map); 3686 return (KERN_PROTECTION_FAILURE); 3687 } 3688 3689 /* 3690 * If this page is not pageable, we have to get it for all possible 3691 * accesses. 3692 */ 3693 *wired = (entry->wired_count != 0); 3694 if (*wired) 3695 fault_type = entry->protection; 3696 size = entry->end - entry->start; 3697 /* 3698 * If the entry was copy-on-write, we either ... 3699 */ 3700 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3701 /* 3702 * If we want to write the page, we may as well handle that 3703 * now since we've got the map locked. 3704 * 3705 * If we don't need to write the page, we just demote the 3706 * permissions allowed. 3707 */ 3708 if ((fault_type & VM_PROT_WRITE) != 0 || 3709 (fault_typea & VM_PROT_COPY) != 0) { 3710 /* 3711 * Make a new object, and place it in the object 3712 * chain. Note that no new references have appeared 3713 * -- one just moved from the map to the new 3714 * object. 3715 */ 3716 if (vm_map_lock_upgrade(map)) 3717 goto RetryLookup; 3718 3719 if (entry->cred == NULL) { 3720 /* 3721 * The debugger owner is charged for 3722 * the memory. 3723 */ 3724 cred = curthread->td_ucred; 3725 crhold(cred); 3726 if (!swap_reserve_by_cred(size, cred)) { 3727 crfree(cred); 3728 vm_map_unlock(map); 3729 return (KERN_RESOURCE_SHORTAGE); 3730 } 3731 entry->cred = cred; 3732 } 3733 vm_object_shadow(&entry->object.vm_object, 3734 &entry->offset, size); 3735 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3736 eobject = entry->object.vm_object; 3737 if (eobject->cred != NULL) { 3738 /* 3739 * The object was not shadowed. 3740 */ 3741 swap_release_by_cred(size, entry->cred); 3742 crfree(entry->cred); 3743 entry->cred = NULL; 3744 } else if (entry->cred != NULL) { 3745 VM_OBJECT_LOCK(eobject); 3746 eobject->cred = entry->cred; 3747 eobject->charge = size; 3748 VM_OBJECT_UNLOCK(eobject); 3749 entry->cred = NULL; 3750 } 3751 3752 vm_map_lock_downgrade(map); 3753 } else { 3754 /* 3755 * We're attempting to read a copy-on-write page -- 3756 * don't allow writes. 3757 */ 3758 prot &= ~VM_PROT_WRITE; 3759 } 3760 } 3761 3762 /* 3763 * Create an object if necessary. 3764 */ 3765 if (entry->object.vm_object == NULL && 3766 !map->system_map) { 3767 if (vm_map_lock_upgrade(map)) 3768 goto RetryLookup; 3769 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3770 atop(size)); 3771 entry->offset = 0; 3772 if (entry->cred != NULL) { 3773 VM_OBJECT_LOCK(entry->object.vm_object); 3774 entry->object.vm_object->cred = entry->cred; 3775 entry->object.vm_object->charge = size; 3776 VM_OBJECT_UNLOCK(entry->object.vm_object); 3777 entry->cred = NULL; 3778 } 3779 vm_map_lock_downgrade(map); 3780 } 3781 3782 /* 3783 * Return the object/offset from this entry. If the entry was 3784 * copy-on-write or empty, it has been fixed up. 3785 */ 3786 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3787 *object = entry->object.vm_object; 3788 3789 *out_prot = prot; 3790 return (KERN_SUCCESS); 3791 } 3792 3793 /* 3794 * vm_map_lookup_locked: 3795 * 3796 * Lookup the faulting address. A version of vm_map_lookup that returns 3797 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3798 */ 3799 int 3800 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3801 vm_offset_t vaddr, 3802 vm_prot_t fault_typea, 3803 vm_map_entry_t *out_entry, /* OUT */ 3804 vm_object_t *object, /* OUT */ 3805 vm_pindex_t *pindex, /* OUT */ 3806 vm_prot_t *out_prot, /* OUT */ 3807 boolean_t *wired) /* OUT */ 3808 { 3809 vm_map_entry_t entry; 3810 vm_map_t map = *var_map; 3811 vm_prot_t prot; 3812 vm_prot_t fault_type = fault_typea; 3813 3814 /* 3815 * Lookup the faulting address. 3816 */ 3817 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3818 return (KERN_INVALID_ADDRESS); 3819 3820 entry = *out_entry; 3821 3822 /* 3823 * Fail if the entry refers to a submap. 3824 */ 3825 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3826 return (KERN_FAILURE); 3827 3828 /* 3829 * Check whether this task is allowed to have this page. 3830 */ 3831 prot = entry->protection; 3832 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3833 if ((fault_type & prot) != fault_type) 3834 return (KERN_PROTECTION_FAILURE); 3835 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3836 (entry->eflags & MAP_ENTRY_COW) && 3837 (fault_type & VM_PROT_WRITE)) 3838 return (KERN_PROTECTION_FAILURE); 3839 3840 /* 3841 * If this page is not pageable, we have to get it for all possible 3842 * accesses. 3843 */ 3844 *wired = (entry->wired_count != 0); 3845 if (*wired) 3846 fault_type = entry->protection; 3847 3848 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3849 /* 3850 * Fail if the entry was copy-on-write for a write fault. 3851 */ 3852 if (fault_type & VM_PROT_WRITE) 3853 return (KERN_FAILURE); 3854 /* 3855 * We're attempting to read a copy-on-write page -- 3856 * don't allow writes. 3857 */ 3858 prot &= ~VM_PROT_WRITE; 3859 } 3860 3861 /* 3862 * Fail if an object should be created. 3863 */ 3864 if (entry->object.vm_object == NULL && !map->system_map) 3865 return (KERN_FAILURE); 3866 3867 /* 3868 * Return the object/offset from this entry. If the entry was 3869 * copy-on-write or empty, it has been fixed up. 3870 */ 3871 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3872 *object = entry->object.vm_object; 3873 3874 *out_prot = prot; 3875 return (KERN_SUCCESS); 3876 } 3877 3878 /* 3879 * vm_map_lookup_done: 3880 * 3881 * Releases locks acquired by a vm_map_lookup 3882 * (according to the handle returned by that lookup). 3883 */ 3884 void 3885 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3886 { 3887 /* 3888 * Unlock the main-level map 3889 */ 3890 vm_map_unlock_read(map); 3891 } 3892 3893 #include "opt_ddb.h" 3894 #ifdef DDB 3895 #include <sys/kernel.h> 3896 3897 #include <ddb/ddb.h> 3898 3899 /* 3900 * vm_map_print: [ debug ] 3901 */ 3902 DB_SHOW_COMMAND(map, vm_map_print) 3903 { 3904 static int nlines; 3905 /* XXX convert args. */ 3906 vm_map_t map = (vm_map_t)addr; 3907 boolean_t full = have_addr; 3908 3909 vm_map_entry_t entry; 3910 3911 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3912 (void *)map, 3913 (void *)map->pmap, map->nentries, map->timestamp); 3914 nlines++; 3915 3916 if (!full && db_indent) 3917 return; 3918 3919 db_indent += 2; 3920 for (entry = map->header.next; entry != &map->header; 3921 entry = entry->next) { 3922 db_iprintf("map entry %p: start=%p, end=%p\n", 3923 (void *)entry, (void *)entry->start, (void *)entry->end); 3924 nlines++; 3925 { 3926 static char *inheritance_name[4] = 3927 {"share", "copy", "none", "donate_copy"}; 3928 3929 db_iprintf(" prot=%x/%x/%s", 3930 entry->protection, 3931 entry->max_protection, 3932 inheritance_name[(int)(unsigned char)entry->inheritance]); 3933 if (entry->wired_count != 0) 3934 db_printf(", wired"); 3935 } 3936 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3937 db_printf(", share=%p, offset=0x%jx\n", 3938 (void *)entry->object.sub_map, 3939 (uintmax_t)entry->offset); 3940 nlines++; 3941 if ((entry->prev == &map->header) || 3942 (entry->prev->object.sub_map != 3943 entry->object.sub_map)) { 3944 db_indent += 2; 3945 vm_map_print((db_expr_t)(intptr_t) 3946 entry->object.sub_map, 3947 full, 0, (char *)0); 3948 db_indent -= 2; 3949 } 3950 } else { 3951 if (entry->cred != NULL) 3952 db_printf(", ruid %d", entry->cred->cr_ruid); 3953 db_printf(", object=%p, offset=0x%jx", 3954 (void *)entry->object.vm_object, 3955 (uintmax_t)entry->offset); 3956 if (entry->object.vm_object && entry->object.vm_object->cred) 3957 db_printf(", obj ruid %d charge %jx", 3958 entry->object.vm_object->cred->cr_ruid, 3959 (uintmax_t)entry->object.vm_object->charge); 3960 if (entry->eflags & MAP_ENTRY_COW) 3961 db_printf(", copy (%s)", 3962 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3963 db_printf("\n"); 3964 nlines++; 3965 3966 if ((entry->prev == &map->header) || 3967 (entry->prev->object.vm_object != 3968 entry->object.vm_object)) { 3969 db_indent += 2; 3970 vm_object_print((db_expr_t)(intptr_t) 3971 entry->object.vm_object, 3972 full, 0, (char *)0); 3973 nlines += 4; 3974 db_indent -= 2; 3975 } 3976 } 3977 } 3978 db_indent -= 2; 3979 if (db_indent == 0) 3980 nlines = 0; 3981 } 3982 3983 3984 DB_SHOW_COMMAND(procvm, procvm) 3985 { 3986 struct proc *p; 3987 3988 if (have_addr) { 3989 p = (struct proc *) addr; 3990 } else { 3991 p = curproc; 3992 } 3993 3994 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3995 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3996 (void *)vmspace_pmap(p->p_vmspace)); 3997 3998 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3999 } 4000 4001 #endif /* DDB */ 4002