xref: /freebsd/sys/vm/vm_map.c (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/uma.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a self-adjusting binary search tree of these
107  *	entries is used to speed up lookups.
108  *
109  *	Since portions of maps are specified by start/end addresses,
110  *	which may not align with existing map entries, all
111  *	routines merely "clip" entries to these start/end values.
112  *	[That is, an entry is split into two, bordering at a
113  *	start or end value.]  Note that these clippings may not
114  *	always be necessary (as the two resulting entries are then
115  *	not changed); however, the clipping is done for convenience.
116  *
117  *	As mentioned above, virtual copy operations are performed
118  *	by copying VM object references from one map to
119  *	another, and then marking both regions as copy-on-write.
120  */
121 
122 static struct mtx map_sleep_mtx;
123 static uma_zone_t mapentzone;
124 static uma_zone_t kmapentzone;
125 static uma_zone_t mapzone;
126 static uma_zone_t vmspace_zone;
127 static struct vm_object kmapentobj;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void vmspace_zfini(void *mem, int size);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void vm_map_zfini(void *mem, int size);
132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
133     vm_offset_t max);
134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
136 #ifdef INVARIANTS
137 static void vm_map_zdtor(void *mem, int size, void *arg);
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 
141 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
142     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
143      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
144 
145 /*
146  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
147  * stable.
148  */
149 #define PROC_VMSPACE_LOCK(p) do { } while (0)
150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
151 
152 /*
153  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
154  *
155  *	Asserts that the starting and ending region
156  *	addresses fall within the valid range of the map.
157  */
158 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
159 		{					\
160 		if (start < vm_map_min(map))		\
161 			start = vm_map_min(map);	\
162 		if (end > vm_map_max(map))		\
163 			end = vm_map_max(map);		\
164 		if (start > end)			\
165 			start = end;			\
166 		}
167 
168 /*
169  *	vm_map_startup:
170  *
171  *	Initialize the vm_map module.  Must be called before
172  *	any other vm_map routines.
173  *
174  *	Map and entry structures are allocated from the general
175  *	purpose memory pool with some exceptions:
176  *
177  *	- The kernel map and kmem submap are allocated statically.
178  *	- Kernel map entries are allocated out of a static pool.
179  *
180  *	These restrictions are necessary since malloc() uses the
181  *	maps and requires map entries.
182  */
183 
184 void
185 vm_map_startup(void)
186 {
187 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
188 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
189 #ifdef INVARIANTS
190 	    vm_map_zdtor,
191 #else
192 	    NULL,
193 #endif
194 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 	uma_prealloc(mapzone, MAX_KMAP);
196 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
197 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
198 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
199 	uma_prealloc(kmapentzone, MAX_KMAPENT);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 }
203 
204 static void
205 vmspace_zfini(void *mem, int size)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
211 }
212 
213 static int
214 vmspace_zinit(void *mem, int size, int flags)
215 {
216 	struct vmspace *vm;
217 
218 	vm = (struct vmspace *)mem;
219 
220 	vm->vm_map.pmap = NULL;
221 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
222 	return (0);
223 }
224 
225 static void
226 vm_map_zfini(void *mem, int size)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	mtx_destroy(&map->system_mtx);
232 	sx_destroy(&map->lock);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	map->nentries = 0;
242 	map->size = 0;
243 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "user map");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  */
277 struct vmspace *
278 vmspace_alloc(min, max)
279 	vm_offset_t min, max;
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 void
303 vm_init2(void)
304 {
305 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
306 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 	     maxproc * 2 + maxfiles);
308 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309 #ifdef INVARIANTS
310 	    vmspace_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 }
316 
317 static void
318 vmspace_container_reset(struct proc *p)
319 {
320 
321 #ifdef RACCT
322 	PROC_LOCK(p);
323 	racct_set(p, RACCT_DATA, 0);
324 	racct_set(p, RACCT_STACK, 0);
325 	racct_set(p, RACCT_RSS, 0);
326 	racct_set(p, RACCT_MEMLOCK, 0);
327 	racct_set(p, RACCT_VMEM, 0);
328 	PROC_UNLOCK(p);
329 #endif
330 }
331 
332 static inline void
333 vmspace_dofree(struct vmspace *vm)
334 {
335 
336 	CTR1(KTR_VM, "vmspace_free: %p", vm);
337 
338 	/*
339 	 * Make sure any SysV shm is freed, it might not have been in
340 	 * exit1().
341 	 */
342 	shmexit(vm);
343 
344 	/*
345 	 * Lock the map, to wait out all other references to it.
346 	 * Delete all of the mappings and pages they hold, then call
347 	 * the pmap module to reclaim anything left.
348 	 */
349 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
350 	    vm->vm_map.max_offset);
351 
352 	pmap_release(vmspace_pmap(vm));
353 	vm->vm_map.pmap = NULL;
354 	uma_zfree(vmspace_zone, vm);
355 }
356 
357 void
358 vmspace_free(struct vmspace *vm)
359 {
360 
361 	if (vm->vm_refcnt == 0)
362 		panic("vmspace_free: attempt to free already freed vmspace");
363 
364 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
365 		vmspace_dofree(vm);
366 }
367 
368 void
369 vmspace_exitfree(struct proc *p)
370 {
371 	struct vmspace *vm;
372 
373 	PROC_VMSPACE_LOCK(p);
374 	vm = p->p_vmspace;
375 	p->p_vmspace = NULL;
376 	PROC_VMSPACE_UNLOCK(p);
377 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
378 	vmspace_free(vm);
379 }
380 
381 void
382 vmspace_exit(struct thread *td)
383 {
384 	int refcnt;
385 	struct vmspace *vm;
386 	struct proc *p;
387 
388 	/*
389 	 * Release user portion of address space.
390 	 * This releases references to vnodes,
391 	 * which could cause I/O if the file has been unlinked.
392 	 * Need to do this early enough that we can still sleep.
393 	 *
394 	 * The last exiting process to reach this point releases as
395 	 * much of the environment as it can. vmspace_dofree() is the
396 	 * slower fallback in case another process had a temporary
397 	 * reference to the vmspace.
398 	 */
399 
400 	p = td->td_proc;
401 	vm = p->p_vmspace;
402 	atomic_add_int(&vmspace0.vm_refcnt, 1);
403 	do {
404 		refcnt = vm->vm_refcnt;
405 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
406 			/* Switch now since other proc might free vmspace */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = &vmspace0;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
413 	if (refcnt == 1) {
414 		if (p->p_vmspace != vm) {
415 			/* vmspace not yet freed, switch back */
416 			PROC_VMSPACE_LOCK(p);
417 			p->p_vmspace = vm;
418 			PROC_VMSPACE_UNLOCK(p);
419 			pmap_activate(td);
420 		}
421 		pmap_remove_pages(vmspace_pmap(vm));
422 		/* Switch now since this proc will free vmspace */
423 		PROC_VMSPACE_LOCK(p);
424 		p->p_vmspace = &vmspace0;
425 		PROC_VMSPACE_UNLOCK(p);
426 		pmap_activate(td);
427 		vmspace_dofree(vm);
428 	}
429 	vmspace_container_reset(p);
430 }
431 
432 /* Acquire reference to vmspace owned by another process. */
433 
434 struct vmspace *
435 vmspace_acquire_ref(struct proc *p)
436 {
437 	struct vmspace *vm;
438 	int refcnt;
439 
440 	PROC_VMSPACE_LOCK(p);
441 	vm = p->p_vmspace;
442 	if (vm == NULL) {
443 		PROC_VMSPACE_UNLOCK(p);
444 		return (NULL);
445 	}
446 	do {
447 		refcnt = vm->vm_refcnt;
448 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
449 			PROC_VMSPACE_UNLOCK(p);
450 			return (NULL);
451 		}
452 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
453 	if (vm != p->p_vmspace) {
454 		PROC_VMSPACE_UNLOCK(p);
455 		vmspace_free(vm);
456 		return (NULL);
457 	}
458 	PROC_VMSPACE_UNLOCK(p);
459 	return (vm);
460 }
461 
462 void
463 _vm_map_lock(vm_map_t map, const char *file, int line)
464 {
465 
466 	if (map->system_map)
467 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
468 	else
469 		sx_xlock_(&map->lock, file, line);
470 	map->timestamp++;
471 }
472 
473 static void
474 vm_map_process_deferred(void)
475 {
476 	struct thread *td;
477 	vm_map_entry_t entry;
478 
479 	td = curthread;
480 
481 	while ((entry = td->td_map_def_user) != NULL) {
482 		td->td_map_def_user = entry->next;
483 		vm_map_entry_deallocate(entry, FALSE);
484 	}
485 }
486 
487 void
488 _vm_map_unlock(vm_map_t map, const char *file, int line)
489 {
490 
491 	if (map->system_map)
492 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
493 	else {
494 		sx_xunlock_(&map->lock, file, line);
495 		vm_map_process_deferred();
496 	}
497 }
498 
499 void
500 _vm_map_lock_read(vm_map_t map, const char *file, int line)
501 {
502 
503 	if (map->system_map)
504 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
505 	else
506 		sx_slock_(&map->lock, file, line);
507 }
508 
509 void
510 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
511 {
512 
513 	if (map->system_map)
514 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
515 	else {
516 		sx_sunlock_(&map->lock, file, line);
517 		vm_map_process_deferred();
518 	}
519 }
520 
521 int
522 _vm_map_trylock(vm_map_t map, const char *file, int line)
523 {
524 	int error;
525 
526 	error = map->system_map ?
527 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
528 	    !sx_try_xlock_(&map->lock, file, line);
529 	if (error == 0)
530 		map->timestamp++;
531 	return (error == 0);
532 }
533 
534 int
535 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
536 {
537 	int error;
538 
539 	error = map->system_map ?
540 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
541 	    !sx_try_slock_(&map->lock, file, line);
542 	return (error == 0);
543 }
544 
545 /*
546  *	_vm_map_lock_upgrade:	[ internal use only ]
547  *
548  *	Tries to upgrade a read (shared) lock on the specified map to a write
549  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
550  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
551  *	returned without a read or write lock held.
552  *
553  *	Requires that the map be read locked.
554  */
555 int
556 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
557 {
558 	unsigned int last_timestamp;
559 
560 	if (map->system_map) {
561 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
562 	} else {
563 		if (!sx_try_upgrade_(&map->lock, file, line)) {
564 			last_timestamp = map->timestamp;
565 			sx_sunlock_(&map->lock, file, line);
566 			vm_map_process_deferred();
567 			/*
568 			 * If the map's timestamp does not change while the
569 			 * map is unlocked, then the upgrade succeeds.
570 			 */
571 			sx_xlock_(&map->lock, file, line);
572 			if (last_timestamp != map->timestamp) {
573 				sx_xunlock_(&map->lock, file, line);
574 				return (1);
575 			}
576 		}
577 	}
578 	map->timestamp++;
579 	return (0);
580 }
581 
582 void
583 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
584 {
585 
586 	if (map->system_map) {
587 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
588 	} else
589 		sx_downgrade_(&map->lock, file, line);
590 }
591 
592 /*
593  *	vm_map_locked:
594  *
595  *	Returns a non-zero value if the caller holds a write (exclusive) lock
596  *	on the specified map and the value "0" otherwise.
597  */
598 int
599 vm_map_locked(vm_map_t map)
600 {
601 
602 	if (map->system_map)
603 		return (mtx_owned(&map->system_mtx));
604 	else
605 		return (sx_xlocked(&map->lock));
606 }
607 
608 #ifdef INVARIANTS
609 static void
610 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
611 {
612 
613 	if (map->system_map)
614 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
615 	else
616 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
617 }
618 
619 #define	VM_MAP_ASSERT_LOCKED(map) \
620     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
621 #else
622 #define	VM_MAP_ASSERT_LOCKED(map)
623 #endif
624 
625 /*
626  *	_vm_map_unlock_and_wait:
627  *
628  *	Atomically releases the lock on the specified map and puts the calling
629  *	thread to sleep.  The calling thread will remain asleep until either
630  *	vm_map_wakeup() is performed on the map or the specified timeout is
631  *	exceeded.
632  *
633  *	WARNING!  This function does not perform deferred deallocations of
634  *	objects and map	entries.  Therefore, the calling thread is expected to
635  *	reacquire the map lock after reawakening and later perform an ordinary
636  *	unlock operation, such as vm_map_unlock(), before completing its
637  *	operation on the map.
638  */
639 int
640 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
641 {
642 
643 	mtx_lock(&map_sleep_mtx);
644 	if (map->system_map)
645 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
646 	else
647 		sx_xunlock_(&map->lock, file, line);
648 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
649 	    timo));
650 }
651 
652 /*
653  *	vm_map_wakeup:
654  *
655  *	Awaken any threads that have slept on the map using
656  *	vm_map_unlock_and_wait().
657  */
658 void
659 vm_map_wakeup(vm_map_t map)
660 {
661 
662 	/*
663 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
664 	 * from being performed (and lost) between the map unlock
665 	 * and the msleep() in _vm_map_unlock_and_wait().
666 	 */
667 	mtx_lock(&map_sleep_mtx);
668 	mtx_unlock(&map_sleep_mtx);
669 	wakeup(&map->root);
670 }
671 
672 void
673 vm_map_busy(vm_map_t map)
674 {
675 
676 	VM_MAP_ASSERT_LOCKED(map);
677 	map->busy++;
678 }
679 
680 void
681 vm_map_unbusy(vm_map_t map)
682 {
683 
684 	VM_MAP_ASSERT_LOCKED(map);
685 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
686 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
687 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
688 		wakeup(&map->busy);
689 	}
690 }
691 
692 void
693 vm_map_wait_busy(vm_map_t map)
694 {
695 
696 	VM_MAP_ASSERT_LOCKED(map);
697 	while (map->busy) {
698 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
699 		if (map->system_map)
700 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
701 		else
702 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
703 	}
704 	map->timestamp++;
705 }
706 
707 long
708 vmspace_resident_count(struct vmspace *vmspace)
709 {
710 	return pmap_resident_count(vmspace_pmap(vmspace));
711 }
712 
713 long
714 vmspace_wired_count(struct vmspace *vmspace)
715 {
716 	return pmap_wired_count(vmspace_pmap(vmspace));
717 }
718 
719 /*
720  *	vm_map_create:
721  *
722  *	Creates and returns a new empty VM map with
723  *	the given physical map structure, and having
724  *	the given lower and upper address bounds.
725  */
726 vm_map_t
727 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
728 {
729 	vm_map_t result;
730 
731 	result = uma_zalloc(mapzone, M_WAITOK);
732 	CTR1(KTR_VM, "vm_map_create: %p", result);
733 	_vm_map_init(result, pmap, min, max);
734 	return (result);
735 }
736 
737 /*
738  * Initialize an existing vm_map structure
739  * such as that in the vmspace structure.
740  */
741 static void
742 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
743 {
744 
745 	map->header.next = map->header.prev = &map->header;
746 	map->needs_wakeup = FALSE;
747 	map->system_map = 0;
748 	map->pmap = pmap;
749 	map->min_offset = min;
750 	map->max_offset = max;
751 	map->flags = 0;
752 	map->root = NULL;
753 	map->timestamp = 0;
754 	map->busy = 0;
755 }
756 
757 void
758 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
759 {
760 
761 	_vm_map_init(map, pmap, min, max);
762 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
763 	sx_init(&map->lock, "user map");
764 }
765 
766 /*
767  *	vm_map_entry_dispose:	[ internal use only ]
768  *
769  *	Inverse of vm_map_entry_create.
770  */
771 static void
772 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
773 {
774 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
775 }
776 
777 /*
778  *	vm_map_entry_create:	[ internal use only ]
779  *
780  *	Allocates a VM map entry for insertion.
781  *	No entry fields are filled in.
782  */
783 static vm_map_entry_t
784 vm_map_entry_create(vm_map_t map)
785 {
786 	vm_map_entry_t new_entry;
787 
788 	if (map->system_map)
789 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
790 	else
791 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
792 	if (new_entry == NULL)
793 		panic("vm_map_entry_create: kernel resources exhausted");
794 	return (new_entry);
795 }
796 
797 /*
798  *	vm_map_entry_set_behavior:
799  *
800  *	Set the expected access behavior, either normal, random, or
801  *	sequential.
802  */
803 static inline void
804 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
805 {
806 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
807 	    (behavior & MAP_ENTRY_BEHAV_MASK);
808 }
809 
810 /*
811  *	vm_map_entry_set_max_free:
812  *
813  *	Set the max_free field in a vm_map_entry.
814  */
815 static inline void
816 vm_map_entry_set_max_free(vm_map_entry_t entry)
817 {
818 
819 	entry->max_free = entry->adj_free;
820 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
821 		entry->max_free = entry->left->max_free;
822 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
823 		entry->max_free = entry->right->max_free;
824 }
825 
826 /*
827  *	vm_map_entry_splay:
828  *
829  *	The Sleator and Tarjan top-down splay algorithm with the
830  *	following variation.  Max_free must be computed bottom-up, so
831  *	on the downward pass, maintain the left and right spines in
832  *	reverse order.  Then, make a second pass up each side to fix
833  *	the pointers and compute max_free.  The time bound is O(log n)
834  *	amortized.
835  *
836  *	The new root is the vm_map_entry containing "addr", or else an
837  *	adjacent entry (lower or higher) if addr is not in the tree.
838  *
839  *	The map must be locked, and leaves it so.
840  *
841  *	Returns: the new root.
842  */
843 static vm_map_entry_t
844 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
845 {
846 	vm_map_entry_t llist, rlist;
847 	vm_map_entry_t ltree, rtree;
848 	vm_map_entry_t y;
849 
850 	/* Special case of empty tree. */
851 	if (root == NULL)
852 		return (root);
853 
854 	/*
855 	 * Pass One: Splay down the tree until we find addr or a NULL
856 	 * pointer where addr would go.  llist and rlist are the two
857 	 * sides in reverse order (bottom-up), with llist linked by
858 	 * the right pointer and rlist linked by the left pointer in
859 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
860 	 * the two spines.
861 	 */
862 	llist = NULL;
863 	rlist = NULL;
864 	for (;;) {
865 		/* root is never NULL in here. */
866 		if (addr < root->start) {
867 			y = root->left;
868 			if (y == NULL)
869 				break;
870 			if (addr < y->start && y->left != NULL) {
871 				/* Rotate right and put y on rlist. */
872 				root->left = y->right;
873 				y->right = root;
874 				vm_map_entry_set_max_free(root);
875 				root = y->left;
876 				y->left = rlist;
877 				rlist = y;
878 			} else {
879 				/* Put root on rlist. */
880 				root->left = rlist;
881 				rlist = root;
882 				root = y;
883 			}
884 		} else if (addr >= root->end) {
885 			y = root->right;
886 			if (y == NULL)
887 				break;
888 			if (addr >= y->end && y->right != NULL) {
889 				/* Rotate left and put y on llist. */
890 				root->right = y->left;
891 				y->left = root;
892 				vm_map_entry_set_max_free(root);
893 				root = y->right;
894 				y->right = llist;
895 				llist = y;
896 			} else {
897 				/* Put root on llist. */
898 				root->right = llist;
899 				llist = root;
900 				root = y;
901 			}
902 		} else
903 			break;
904 	}
905 
906 	/*
907 	 * Pass Two: Walk back up the two spines, flip the pointers
908 	 * and set max_free.  The subtrees of the root go at the
909 	 * bottom of llist and rlist.
910 	 */
911 	ltree = root->left;
912 	while (llist != NULL) {
913 		y = llist->right;
914 		llist->right = ltree;
915 		vm_map_entry_set_max_free(llist);
916 		ltree = llist;
917 		llist = y;
918 	}
919 	rtree = root->right;
920 	while (rlist != NULL) {
921 		y = rlist->left;
922 		rlist->left = rtree;
923 		vm_map_entry_set_max_free(rlist);
924 		rtree = rlist;
925 		rlist = y;
926 	}
927 
928 	/*
929 	 * Final assembly: add ltree and rtree as subtrees of root.
930 	 */
931 	root->left = ltree;
932 	root->right = rtree;
933 	vm_map_entry_set_max_free(root);
934 
935 	return (root);
936 }
937 
938 /*
939  *	vm_map_entry_{un,}link:
940  *
941  *	Insert/remove entries from maps.
942  */
943 static void
944 vm_map_entry_link(vm_map_t map,
945 		  vm_map_entry_t after_where,
946 		  vm_map_entry_t entry)
947 {
948 
949 	CTR4(KTR_VM,
950 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
951 	    map->nentries, entry, after_where);
952 	VM_MAP_ASSERT_LOCKED(map);
953 	map->nentries++;
954 	entry->prev = after_where;
955 	entry->next = after_where->next;
956 	entry->next->prev = entry;
957 	after_where->next = entry;
958 
959 	if (after_where != &map->header) {
960 		if (after_where != map->root)
961 			vm_map_entry_splay(after_where->start, map->root);
962 		entry->right = after_where->right;
963 		entry->left = after_where;
964 		after_where->right = NULL;
965 		after_where->adj_free = entry->start - after_where->end;
966 		vm_map_entry_set_max_free(after_where);
967 	} else {
968 		entry->right = map->root;
969 		entry->left = NULL;
970 	}
971 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
972 	    entry->next->start) - entry->end;
973 	vm_map_entry_set_max_free(entry);
974 	map->root = entry;
975 }
976 
977 static void
978 vm_map_entry_unlink(vm_map_t map,
979 		    vm_map_entry_t entry)
980 {
981 	vm_map_entry_t next, prev, root;
982 
983 	VM_MAP_ASSERT_LOCKED(map);
984 	if (entry != map->root)
985 		vm_map_entry_splay(entry->start, map->root);
986 	if (entry->left == NULL)
987 		root = entry->right;
988 	else {
989 		root = vm_map_entry_splay(entry->start, entry->left);
990 		root->right = entry->right;
991 		root->adj_free = (entry->next == &map->header ? map->max_offset :
992 		    entry->next->start) - root->end;
993 		vm_map_entry_set_max_free(root);
994 	}
995 	map->root = root;
996 
997 	prev = entry->prev;
998 	next = entry->next;
999 	next->prev = prev;
1000 	prev->next = next;
1001 	map->nentries--;
1002 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1003 	    map->nentries, entry);
1004 }
1005 
1006 /*
1007  *	vm_map_entry_resize_free:
1008  *
1009  *	Recompute the amount of free space following a vm_map_entry
1010  *	and propagate that value up the tree.  Call this function after
1011  *	resizing a map entry in-place, that is, without a call to
1012  *	vm_map_entry_link() or _unlink().
1013  *
1014  *	The map must be locked, and leaves it so.
1015  */
1016 static void
1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1018 {
1019 
1020 	/*
1021 	 * Using splay trees without parent pointers, propagating
1022 	 * max_free up the tree is done by moving the entry to the
1023 	 * root and making the change there.
1024 	 */
1025 	if (entry != map->root)
1026 		map->root = vm_map_entry_splay(entry->start, map->root);
1027 
1028 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1029 	    entry->next->start) - entry->end;
1030 	vm_map_entry_set_max_free(entry);
1031 }
1032 
1033 /*
1034  *	vm_map_lookup_entry:	[ internal use only ]
1035  *
1036  *	Finds the map entry containing (or
1037  *	immediately preceding) the specified address
1038  *	in the given map; the entry is returned
1039  *	in the "entry" parameter.  The boolean
1040  *	result indicates whether the address is
1041  *	actually contained in the map.
1042  */
1043 boolean_t
1044 vm_map_lookup_entry(
1045 	vm_map_t map,
1046 	vm_offset_t address,
1047 	vm_map_entry_t *entry)	/* OUT */
1048 {
1049 	vm_map_entry_t cur;
1050 	boolean_t locked;
1051 
1052 	/*
1053 	 * If the map is empty, then the map entry immediately preceding
1054 	 * "address" is the map's header.
1055 	 */
1056 	cur = map->root;
1057 	if (cur == NULL)
1058 		*entry = &map->header;
1059 	else if (address >= cur->start && cur->end > address) {
1060 		*entry = cur;
1061 		return (TRUE);
1062 	} else if ((locked = vm_map_locked(map)) ||
1063 	    sx_try_upgrade(&map->lock)) {
1064 		/*
1065 		 * Splay requires a write lock on the map.  However, it only
1066 		 * restructures the binary search tree; it does not otherwise
1067 		 * change the map.  Thus, the map's timestamp need not change
1068 		 * on a temporary upgrade.
1069 		 */
1070 		map->root = cur = vm_map_entry_splay(address, cur);
1071 		if (!locked)
1072 			sx_downgrade(&map->lock);
1073 
1074 		/*
1075 		 * If "address" is contained within a map entry, the new root
1076 		 * is that map entry.  Otherwise, the new root is a map entry
1077 		 * immediately before or after "address".
1078 		 */
1079 		if (address >= cur->start) {
1080 			*entry = cur;
1081 			if (cur->end > address)
1082 				return (TRUE);
1083 		} else
1084 			*entry = cur->prev;
1085 	} else
1086 		/*
1087 		 * Since the map is only locked for read access, perform a
1088 		 * standard binary search tree lookup for "address".
1089 		 */
1090 		for (;;) {
1091 			if (address < cur->start) {
1092 				if (cur->left == NULL) {
1093 					*entry = cur->prev;
1094 					break;
1095 				}
1096 				cur = cur->left;
1097 			} else if (cur->end > address) {
1098 				*entry = cur;
1099 				return (TRUE);
1100 			} else {
1101 				if (cur->right == NULL) {
1102 					*entry = cur;
1103 					break;
1104 				}
1105 				cur = cur->right;
1106 			}
1107 		}
1108 	return (FALSE);
1109 }
1110 
1111 /*
1112  *	vm_map_insert:
1113  *
1114  *	Inserts the given whole VM object into the target
1115  *	map at the specified address range.  The object's
1116  *	size should match that of the address range.
1117  *
1118  *	Requires that the map be locked, and leaves it so.
1119  *
1120  *	If object is non-NULL, ref count must be bumped by caller
1121  *	prior to making call to account for the new entry.
1122  */
1123 int
1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1125 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1126 	      int cow)
1127 {
1128 	vm_map_entry_t new_entry;
1129 	vm_map_entry_t prev_entry;
1130 	vm_map_entry_t temp_entry;
1131 	vm_eflags_t protoeflags;
1132 	struct ucred *cred;
1133 	boolean_t charge_prev_obj;
1134 
1135 	VM_MAP_ASSERT_LOCKED(map);
1136 
1137 	/*
1138 	 * Check that the start and end points are not bogus.
1139 	 */
1140 	if ((start < map->min_offset) || (end > map->max_offset) ||
1141 	    (start >= end))
1142 		return (KERN_INVALID_ADDRESS);
1143 
1144 	/*
1145 	 * Find the entry prior to the proposed starting address; if it's part
1146 	 * of an existing entry, this range is bogus.
1147 	 */
1148 	if (vm_map_lookup_entry(map, start, &temp_entry))
1149 		return (KERN_NO_SPACE);
1150 
1151 	prev_entry = temp_entry;
1152 
1153 	/*
1154 	 * Assert that the next entry doesn't overlap the end point.
1155 	 */
1156 	if ((prev_entry->next != &map->header) &&
1157 	    (prev_entry->next->start < end))
1158 		return (KERN_NO_SPACE);
1159 
1160 	protoeflags = 0;
1161 	charge_prev_obj = FALSE;
1162 
1163 	if (cow & MAP_COPY_ON_WRITE)
1164 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1165 
1166 	if (cow & MAP_NOFAULT) {
1167 		protoeflags |= MAP_ENTRY_NOFAULT;
1168 
1169 		KASSERT(object == NULL,
1170 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1171 	}
1172 	if (cow & MAP_DISABLE_SYNCER)
1173 		protoeflags |= MAP_ENTRY_NOSYNC;
1174 	if (cow & MAP_DISABLE_COREDUMP)
1175 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1176 
1177 	cred = NULL;
1178 	KASSERT((object != kmem_object && object != kernel_object) ||
1179 	    ((object == kmem_object || object == kernel_object) &&
1180 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1181 	    ("kmem or kernel object and cow"));
1182 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1183 		goto charged;
1184 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1185 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1186 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1187 			return (KERN_RESOURCE_SHORTAGE);
1188 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1189 		    object->cred == NULL,
1190 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1191 		cred = curthread->td_ucred;
1192 		crhold(cred);
1193 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1194 			charge_prev_obj = TRUE;
1195 	}
1196 
1197 charged:
1198 	/* Expand the kernel pmap, if necessary. */
1199 	if (map == kernel_map && end > kernel_vm_end)
1200 		pmap_growkernel(end);
1201 	if (object != NULL) {
1202 		/*
1203 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1204 		 * is trivially proven to be the only mapping for any
1205 		 * of the object's pages.  (Object granularity
1206 		 * reference counting is insufficient to recognize
1207 		 * aliases with precision.)
1208 		 */
1209 		VM_OBJECT_LOCK(object);
1210 		if (object->ref_count > 1 || object->shadow_count != 0)
1211 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1212 		VM_OBJECT_UNLOCK(object);
1213 	}
1214 	else if ((prev_entry != &map->header) &&
1215 		 (prev_entry->eflags == protoeflags) &&
1216 		 (prev_entry->end == start) &&
1217 		 (prev_entry->wired_count == 0) &&
1218 		 (prev_entry->cred == cred ||
1219 		  (prev_entry->object.vm_object != NULL &&
1220 		   (prev_entry->object.vm_object->cred == cred))) &&
1221 		   vm_object_coalesce(prev_entry->object.vm_object,
1222 		       prev_entry->offset,
1223 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1224 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1225 		/*
1226 		 * We were able to extend the object.  Determine if we
1227 		 * can extend the previous map entry to include the
1228 		 * new range as well.
1229 		 */
1230 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1231 		    (prev_entry->protection == prot) &&
1232 		    (prev_entry->max_protection == max)) {
1233 			map->size += (end - prev_entry->end);
1234 			prev_entry->end = end;
1235 			vm_map_entry_resize_free(map, prev_entry);
1236 			vm_map_simplify_entry(map, prev_entry);
1237 			if (cred != NULL)
1238 				crfree(cred);
1239 			return (KERN_SUCCESS);
1240 		}
1241 
1242 		/*
1243 		 * If we can extend the object but cannot extend the
1244 		 * map entry, we have to create a new map entry.  We
1245 		 * must bump the ref count on the extended object to
1246 		 * account for it.  object may be NULL.
1247 		 */
1248 		object = prev_entry->object.vm_object;
1249 		offset = prev_entry->offset +
1250 			(prev_entry->end - prev_entry->start);
1251 		vm_object_reference(object);
1252 		if (cred != NULL && object != NULL && object->cred != NULL &&
1253 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1254 			/* Object already accounts for this uid. */
1255 			crfree(cred);
1256 			cred = NULL;
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1262 	 * in things like the buffer map where we manage kva but do not manage
1263 	 * backing objects.
1264 	 */
1265 
1266 	/*
1267 	 * Create a new entry
1268 	 */
1269 	new_entry = vm_map_entry_create(map);
1270 	new_entry->start = start;
1271 	new_entry->end = end;
1272 	new_entry->cred = NULL;
1273 
1274 	new_entry->eflags = protoeflags;
1275 	new_entry->object.vm_object = object;
1276 	new_entry->offset = offset;
1277 	new_entry->avail_ssize = 0;
1278 
1279 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1280 	new_entry->protection = prot;
1281 	new_entry->max_protection = max;
1282 	new_entry->wired_count = 0;
1283 
1284 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1285 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1286 	new_entry->cred = cred;
1287 
1288 	/*
1289 	 * Insert the new entry into the list
1290 	 */
1291 	vm_map_entry_link(map, prev_entry, new_entry);
1292 	map->size += new_entry->end - new_entry->start;
1293 
1294 	/*
1295 	 * It may be possible to merge the new entry with the next and/or
1296 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1297 	 * panic can result from merging such entries.
1298 	 */
1299 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1300 		vm_map_simplify_entry(map, new_entry);
1301 
1302 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1303 		vm_map_pmap_enter(map, start, prot,
1304 				    object, OFF_TO_IDX(offset), end - start,
1305 				    cow & MAP_PREFAULT_PARTIAL);
1306 	}
1307 
1308 	return (KERN_SUCCESS);
1309 }
1310 
1311 /*
1312  *	vm_map_findspace:
1313  *
1314  *	Find the first fit (lowest VM address) for "length" free bytes
1315  *	beginning at address >= start in the given map.
1316  *
1317  *	In a vm_map_entry, "adj_free" is the amount of free space
1318  *	adjacent (higher address) to this entry, and "max_free" is the
1319  *	maximum amount of contiguous free space in its subtree.  This
1320  *	allows finding a free region in one path down the tree, so
1321  *	O(log n) amortized with splay trees.
1322  *
1323  *	The map must be locked, and leaves it so.
1324  *
1325  *	Returns: 0 on success, and starting address in *addr,
1326  *		 1 if insufficient space.
1327  */
1328 int
1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1330     vm_offset_t *addr)	/* OUT */
1331 {
1332 	vm_map_entry_t entry;
1333 	vm_offset_t st;
1334 
1335 	/*
1336 	 * Request must fit within min/max VM address and must avoid
1337 	 * address wrap.
1338 	 */
1339 	if (start < map->min_offset)
1340 		start = map->min_offset;
1341 	if (start + length > map->max_offset || start + length < start)
1342 		return (1);
1343 
1344 	/* Empty tree means wide open address space. */
1345 	if (map->root == NULL) {
1346 		*addr = start;
1347 		return (0);
1348 	}
1349 
1350 	/*
1351 	 * After splay, if start comes before root node, then there
1352 	 * must be a gap from start to the root.
1353 	 */
1354 	map->root = vm_map_entry_splay(start, map->root);
1355 	if (start + length <= map->root->start) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * Root is the last node that might begin its gap before
1362 	 * start, and this is the last comparison where address
1363 	 * wrap might be a problem.
1364 	 */
1365 	st = (start > map->root->end) ? start : map->root->end;
1366 	if (length <= map->root->end + map->root->adj_free - st) {
1367 		*addr = st;
1368 		return (0);
1369 	}
1370 
1371 	/* With max_free, can immediately tell if no solution. */
1372 	entry = map->root->right;
1373 	if (entry == NULL || length > entry->max_free)
1374 		return (1);
1375 
1376 	/*
1377 	 * Search the right subtree in the order: left subtree, root,
1378 	 * right subtree (first fit).  The previous splay implies that
1379 	 * all regions in the right subtree have addresses > start.
1380 	 */
1381 	while (entry != NULL) {
1382 		if (entry->left != NULL && entry->left->max_free >= length)
1383 			entry = entry->left;
1384 		else if (entry->adj_free >= length) {
1385 			*addr = entry->end;
1386 			return (0);
1387 		} else
1388 			entry = entry->right;
1389 	}
1390 
1391 	/* Can't get here, so panic if we do. */
1392 	panic("vm_map_findspace: max_free corrupt");
1393 }
1394 
1395 int
1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1397     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1398     vm_prot_t max, int cow)
1399 {
1400 	vm_offset_t end;
1401 	int result;
1402 
1403 	end = start + length;
1404 	vm_map_lock(map);
1405 	VM_MAP_RANGE_CHECK(map, start, end);
1406 	(void) vm_map_delete(map, start, end);
1407 	result = vm_map_insert(map, object, offset, start, end, prot,
1408 	    max, cow);
1409 	vm_map_unlock(map);
1410 	return (result);
1411 }
1412 
1413 /*
1414  *	vm_map_find finds an unallocated region in the target address
1415  *	map with the given length.  The search is defined to be
1416  *	first-fit from the specified address; the region found is
1417  *	returned in the same parameter.
1418  *
1419  *	If object is non-NULL, ref count must be bumped by caller
1420  *	prior to making call to account for the new entry.
1421  */
1422 int
1423 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1424 	    vm_offset_t *addr,	/* IN/OUT */
1425 	    vm_size_t length, int find_space, vm_prot_t prot,
1426 	    vm_prot_t max, int cow)
1427 {
1428 	vm_offset_t start;
1429 	int result;
1430 
1431 	start = *addr;
1432 	vm_map_lock(map);
1433 	do {
1434 		if (find_space != VMFS_NO_SPACE) {
1435 			if (vm_map_findspace(map, start, length, addr)) {
1436 				vm_map_unlock(map);
1437 				return (KERN_NO_SPACE);
1438 			}
1439 			switch (find_space) {
1440 			case VMFS_ALIGNED_SPACE:
1441 				pmap_align_superpage(object, offset, addr,
1442 				    length);
1443 				break;
1444 #ifdef VMFS_TLB_ALIGNED_SPACE
1445 			case VMFS_TLB_ALIGNED_SPACE:
1446 				pmap_align_tlb(addr);
1447 				break;
1448 #endif
1449 			default:
1450 				break;
1451 			}
1452 
1453 			start = *addr;
1454 		}
1455 		result = vm_map_insert(map, object, offset, start, start +
1456 		    length, prot, max, cow);
1457 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1458 #ifdef VMFS_TLB_ALIGNED_SPACE
1459 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1460 #endif
1461 	    ));
1462 	vm_map_unlock(map);
1463 	return (result);
1464 }
1465 
1466 /*
1467  *	vm_map_simplify_entry:
1468  *
1469  *	Simplify the given map entry by merging with either neighbor.  This
1470  *	routine also has the ability to merge with both neighbors.
1471  *
1472  *	The map must be locked.
1473  *
1474  *	This routine guarentees that the passed entry remains valid (though
1475  *	possibly extended).  When merging, this routine may delete one or
1476  *	both neighbors.
1477  */
1478 void
1479 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1480 {
1481 	vm_map_entry_t next, prev;
1482 	vm_size_t prevsize, esize;
1483 
1484 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1485 		return;
1486 
1487 	prev = entry->prev;
1488 	if (prev != &map->header) {
1489 		prevsize = prev->end - prev->start;
1490 		if ( (prev->end == entry->start) &&
1491 		     (prev->object.vm_object == entry->object.vm_object) &&
1492 		     (!prev->object.vm_object ||
1493 			(prev->offset + prevsize == entry->offset)) &&
1494 		     (prev->eflags == entry->eflags) &&
1495 		     (prev->protection == entry->protection) &&
1496 		     (prev->max_protection == entry->max_protection) &&
1497 		     (prev->inheritance == entry->inheritance) &&
1498 		     (prev->wired_count == entry->wired_count) &&
1499 		     (prev->cred == entry->cred)) {
1500 			vm_map_entry_unlink(map, prev);
1501 			entry->start = prev->start;
1502 			entry->offset = prev->offset;
1503 			if (entry->prev != &map->header)
1504 				vm_map_entry_resize_free(map, entry->prev);
1505 
1506 			/*
1507 			 * If the backing object is a vnode object,
1508 			 * vm_object_deallocate() calls vrele().
1509 			 * However, vrele() does not lock the vnode
1510 			 * because the vnode has additional
1511 			 * references.  Thus, the map lock can be kept
1512 			 * without causing a lock-order reversal with
1513 			 * the vnode lock.
1514 			 */
1515 			if (prev->object.vm_object)
1516 				vm_object_deallocate(prev->object.vm_object);
1517 			if (prev->cred != NULL)
1518 				crfree(prev->cred);
1519 			vm_map_entry_dispose(map, prev);
1520 		}
1521 	}
1522 
1523 	next = entry->next;
1524 	if (next != &map->header) {
1525 		esize = entry->end - entry->start;
1526 		if ((entry->end == next->start) &&
1527 		    (next->object.vm_object == entry->object.vm_object) &&
1528 		     (!entry->object.vm_object ||
1529 			(entry->offset + esize == next->offset)) &&
1530 		    (next->eflags == entry->eflags) &&
1531 		    (next->protection == entry->protection) &&
1532 		    (next->max_protection == entry->max_protection) &&
1533 		    (next->inheritance == entry->inheritance) &&
1534 		    (next->wired_count == entry->wired_count) &&
1535 		    (next->cred == entry->cred)) {
1536 			vm_map_entry_unlink(map, next);
1537 			entry->end = next->end;
1538 			vm_map_entry_resize_free(map, entry);
1539 
1540 			/*
1541 			 * See comment above.
1542 			 */
1543 			if (next->object.vm_object)
1544 				vm_object_deallocate(next->object.vm_object);
1545 			if (next->cred != NULL)
1546 				crfree(next->cred);
1547 			vm_map_entry_dispose(map, next);
1548 		}
1549 	}
1550 }
1551 /*
1552  *	vm_map_clip_start:	[ internal use only ]
1553  *
1554  *	Asserts that the given entry begins at or after
1555  *	the specified address; if necessary,
1556  *	it splits the entry into two.
1557  */
1558 #define vm_map_clip_start(map, entry, startaddr) \
1559 { \
1560 	if (startaddr > entry->start) \
1561 		_vm_map_clip_start(map, entry, startaddr); \
1562 }
1563 
1564 /*
1565  *	This routine is called only when it is known that
1566  *	the entry must be split.
1567  */
1568 static void
1569 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1570 {
1571 	vm_map_entry_t new_entry;
1572 
1573 	VM_MAP_ASSERT_LOCKED(map);
1574 
1575 	/*
1576 	 * Split off the front portion -- note that we must insert the new
1577 	 * entry BEFORE this one, so that this entry has the specified
1578 	 * starting address.
1579 	 */
1580 	vm_map_simplify_entry(map, entry);
1581 
1582 	/*
1583 	 * If there is no object backing this entry, we might as well create
1584 	 * one now.  If we defer it, an object can get created after the map
1585 	 * is clipped, and individual objects will be created for the split-up
1586 	 * map.  This is a bit of a hack, but is also about the best place to
1587 	 * put this improvement.
1588 	 */
1589 	if (entry->object.vm_object == NULL && !map->system_map) {
1590 		vm_object_t object;
1591 		object = vm_object_allocate(OBJT_DEFAULT,
1592 				atop(entry->end - entry->start));
1593 		entry->object.vm_object = object;
1594 		entry->offset = 0;
1595 		if (entry->cred != NULL) {
1596 			object->cred = entry->cred;
1597 			object->charge = entry->end - entry->start;
1598 			entry->cred = NULL;
1599 		}
1600 	} else if (entry->object.vm_object != NULL &&
1601 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1602 		   entry->cred != NULL) {
1603 		VM_OBJECT_LOCK(entry->object.vm_object);
1604 		KASSERT(entry->object.vm_object->cred == NULL,
1605 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1606 		entry->object.vm_object->cred = entry->cred;
1607 		entry->object.vm_object->charge = entry->end - entry->start;
1608 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1609 		entry->cred = NULL;
1610 	}
1611 
1612 	new_entry = vm_map_entry_create(map);
1613 	*new_entry = *entry;
1614 
1615 	new_entry->end = start;
1616 	entry->offset += (start - entry->start);
1617 	entry->start = start;
1618 	if (new_entry->cred != NULL)
1619 		crhold(entry->cred);
1620 
1621 	vm_map_entry_link(map, entry->prev, new_entry);
1622 
1623 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1624 		vm_object_reference(new_entry->object.vm_object);
1625 	}
1626 }
1627 
1628 /*
1629  *	vm_map_clip_end:	[ internal use only ]
1630  *
1631  *	Asserts that the given entry ends at or before
1632  *	the specified address; if necessary,
1633  *	it splits the entry into two.
1634  */
1635 #define vm_map_clip_end(map, entry, endaddr) \
1636 { \
1637 	if ((endaddr) < (entry->end)) \
1638 		_vm_map_clip_end((map), (entry), (endaddr)); \
1639 }
1640 
1641 /*
1642  *	This routine is called only when it is known that
1643  *	the entry must be split.
1644  */
1645 static void
1646 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1647 {
1648 	vm_map_entry_t new_entry;
1649 
1650 	VM_MAP_ASSERT_LOCKED(map);
1651 
1652 	/*
1653 	 * If there is no object backing this entry, we might as well create
1654 	 * one now.  If we defer it, an object can get created after the map
1655 	 * is clipped, and individual objects will be created for the split-up
1656 	 * map.  This is a bit of a hack, but is also about the best place to
1657 	 * put this improvement.
1658 	 */
1659 	if (entry->object.vm_object == NULL && !map->system_map) {
1660 		vm_object_t object;
1661 		object = vm_object_allocate(OBJT_DEFAULT,
1662 				atop(entry->end - entry->start));
1663 		entry->object.vm_object = object;
1664 		entry->offset = 0;
1665 		if (entry->cred != NULL) {
1666 			object->cred = entry->cred;
1667 			object->charge = entry->end - entry->start;
1668 			entry->cred = NULL;
1669 		}
1670 	} else if (entry->object.vm_object != NULL &&
1671 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1672 		   entry->cred != NULL) {
1673 		VM_OBJECT_LOCK(entry->object.vm_object);
1674 		KASSERT(entry->object.vm_object->cred == NULL,
1675 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1676 		entry->object.vm_object->cred = entry->cred;
1677 		entry->object.vm_object->charge = entry->end - entry->start;
1678 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1679 		entry->cred = NULL;
1680 	}
1681 
1682 	/*
1683 	 * Create a new entry and insert it AFTER the specified entry
1684 	 */
1685 	new_entry = vm_map_entry_create(map);
1686 	*new_entry = *entry;
1687 
1688 	new_entry->start = entry->end = end;
1689 	new_entry->offset += (end - entry->start);
1690 	if (new_entry->cred != NULL)
1691 		crhold(entry->cred);
1692 
1693 	vm_map_entry_link(map, entry, new_entry);
1694 
1695 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1696 		vm_object_reference(new_entry->object.vm_object);
1697 	}
1698 }
1699 
1700 /*
1701  *	vm_map_submap:		[ kernel use only ]
1702  *
1703  *	Mark the given range as handled by a subordinate map.
1704  *
1705  *	This range must have been created with vm_map_find,
1706  *	and no other operations may have been performed on this
1707  *	range prior to calling vm_map_submap.
1708  *
1709  *	Only a limited number of operations can be performed
1710  *	within this rage after calling vm_map_submap:
1711  *		vm_fault
1712  *	[Don't try vm_map_copy!]
1713  *
1714  *	To remove a submapping, one must first remove the
1715  *	range from the superior map, and then destroy the
1716  *	submap (if desired).  [Better yet, don't try it.]
1717  */
1718 int
1719 vm_map_submap(
1720 	vm_map_t map,
1721 	vm_offset_t start,
1722 	vm_offset_t end,
1723 	vm_map_t submap)
1724 {
1725 	vm_map_entry_t entry;
1726 	int result = KERN_INVALID_ARGUMENT;
1727 
1728 	vm_map_lock(map);
1729 
1730 	VM_MAP_RANGE_CHECK(map, start, end);
1731 
1732 	if (vm_map_lookup_entry(map, start, &entry)) {
1733 		vm_map_clip_start(map, entry, start);
1734 	} else
1735 		entry = entry->next;
1736 
1737 	vm_map_clip_end(map, entry, end);
1738 
1739 	if ((entry->start == start) && (entry->end == end) &&
1740 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1741 	    (entry->object.vm_object == NULL)) {
1742 		entry->object.sub_map = submap;
1743 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1744 		result = KERN_SUCCESS;
1745 	}
1746 	vm_map_unlock(map);
1747 
1748 	return (result);
1749 }
1750 
1751 /*
1752  * The maximum number of pages to map
1753  */
1754 #define	MAX_INIT_PT	96
1755 
1756 /*
1757  *	vm_map_pmap_enter:
1758  *
1759  *	Preload read-only mappings for the given object's resident pages into
1760  *	the given map.  This eliminates the soft faults on process startup and
1761  *	immediately after an mmap(2).  Because these are speculative mappings,
1762  *	cached pages are not reactivated and mapped.
1763  */
1764 void
1765 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1766     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1767 {
1768 	vm_offset_t start;
1769 	vm_page_t p, p_start;
1770 	vm_pindex_t psize, tmpidx;
1771 
1772 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1773 		return;
1774 	VM_OBJECT_LOCK(object);
1775 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1776 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1777 		goto unlock_return;
1778 	}
1779 
1780 	psize = atop(size);
1781 
1782 	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1783 	    object->resident_page_count > MAX_INIT_PT)
1784 		goto unlock_return;
1785 
1786 	if (psize + pindex > object->size) {
1787 		if (object->size < pindex)
1788 			goto unlock_return;
1789 		psize = object->size - pindex;
1790 	}
1791 
1792 	start = 0;
1793 	p_start = NULL;
1794 
1795 	p = vm_page_find_least(object, pindex);
1796 	/*
1797 	 * Assert: the variable p is either (1) the page with the
1798 	 * least pindex greater than or equal to the parameter pindex
1799 	 * or (2) NULL.
1800 	 */
1801 	for (;
1802 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1803 	     p = TAILQ_NEXT(p, listq)) {
1804 		/*
1805 		 * don't allow an madvise to blow away our really
1806 		 * free pages allocating pv entries.
1807 		 */
1808 		if ((flags & MAP_PREFAULT_MADVISE) &&
1809 		    cnt.v_free_count < cnt.v_free_reserved) {
1810 			psize = tmpidx;
1811 			break;
1812 		}
1813 		if (p->valid == VM_PAGE_BITS_ALL) {
1814 			if (p_start == NULL) {
1815 				start = addr + ptoa(tmpidx);
1816 				p_start = p;
1817 			}
1818 		} else if (p_start != NULL) {
1819 			pmap_enter_object(map->pmap, start, addr +
1820 			    ptoa(tmpidx), p_start, prot);
1821 			p_start = NULL;
1822 		}
1823 	}
1824 	if (p_start != NULL)
1825 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1826 		    p_start, prot);
1827 unlock_return:
1828 	VM_OBJECT_UNLOCK(object);
1829 }
1830 
1831 /*
1832  *	vm_map_protect:
1833  *
1834  *	Sets the protection of the specified address
1835  *	region in the target map.  If "set_max" is
1836  *	specified, the maximum protection is to be set;
1837  *	otherwise, only the current protection is affected.
1838  */
1839 int
1840 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1841 	       vm_prot_t new_prot, boolean_t set_max)
1842 {
1843 	vm_map_entry_t current, entry;
1844 	vm_object_t obj;
1845 	struct ucred *cred;
1846 	vm_prot_t old_prot;
1847 
1848 	vm_map_lock(map);
1849 
1850 	VM_MAP_RANGE_CHECK(map, start, end);
1851 
1852 	if (vm_map_lookup_entry(map, start, &entry)) {
1853 		vm_map_clip_start(map, entry, start);
1854 	} else {
1855 		entry = entry->next;
1856 	}
1857 
1858 	/*
1859 	 * Make a first pass to check for protection violations.
1860 	 */
1861 	current = entry;
1862 	while ((current != &map->header) && (current->start < end)) {
1863 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1864 			vm_map_unlock(map);
1865 			return (KERN_INVALID_ARGUMENT);
1866 		}
1867 		if ((new_prot & current->max_protection) != new_prot) {
1868 			vm_map_unlock(map);
1869 			return (KERN_PROTECTION_FAILURE);
1870 		}
1871 		current = current->next;
1872 	}
1873 
1874 
1875 	/*
1876 	 * Do an accounting pass for private read-only mappings that
1877 	 * now will do cow due to allowed write (e.g. debugger sets
1878 	 * breakpoint on text segment)
1879 	 */
1880 	for (current = entry; (current != &map->header) &&
1881 	     (current->start < end); current = current->next) {
1882 
1883 		vm_map_clip_end(map, current, end);
1884 
1885 		if (set_max ||
1886 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1887 		    ENTRY_CHARGED(current)) {
1888 			continue;
1889 		}
1890 
1891 		cred = curthread->td_ucred;
1892 		obj = current->object.vm_object;
1893 
1894 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1895 			if (!swap_reserve(current->end - current->start)) {
1896 				vm_map_unlock(map);
1897 				return (KERN_RESOURCE_SHORTAGE);
1898 			}
1899 			crhold(cred);
1900 			current->cred = cred;
1901 			continue;
1902 		}
1903 
1904 		VM_OBJECT_LOCK(obj);
1905 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1906 			VM_OBJECT_UNLOCK(obj);
1907 			continue;
1908 		}
1909 
1910 		/*
1911 		 * Charge for the whole object allocation now, since
1912 		 * we cannot distinguish between non-charged and
1913 		 * charged clipped mapping of the same object later.
1914 		 */
1915 		KASSERT(obj->charge == 0,
1916 		    ("vm_map_protect: object %p overcharged\n", obj));
1917 		if (!swap_reserve(ptoa(obj->size))) {
1918 			VM_OBJECT_UNLOCK(obj);
1919 			vm_map_unlock(map);
1920 			return (KERN_RESOURCE_SHORTAGE);
1921 		}
1922 
1923 		crhold(cred);
1924 		obj->cred = cred;
1925 		obj->charge = ptoa(obj->size);
1926 		VM_OBJECT_UNLOCK(obj);
1927 	}
1928 
1929 	/*
1930 	 * Go back and fix up protections. [Note that clipping is not
1931 	 * necessary the second time.]
1932 	 */
1933 	current = entry;
1934 	while ((current != &map->header) && (current->start < end)) {
1935 		old_prot = current->protection;
1936 
1937 		if (set_max)
1938 			current->protection =
1939 			    (current->max_protection = new_prot) &
1940 			    old_prot;
1941 		else
1942 			current->protection = new_prot;
1943 
1944 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1945 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1946 		    (current->protection & VM_PROT_WRITE) != 0 &&
1947 		    (old_prot & VM_PROT_WRITE) == 0) {
1948 			vm_fault_copy_entry(map, map, current, current, NULL);
1949 		}
1950 
1951 		/*
1952 		 * When restricting access, update the physical map.  Worry
1953 		 * about copy-on-write here.
1954 		 */
1955 		if ((old_prot & ~current->protection) != 0) {
1956 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1957 							VM_PROT_ALL)
1958 			pmap_protect(map->pmap, current->start,
1959 			    current->end,
1960 			    current->protection & MASK(current));
1961 #undef	MASK
1962 		}
1963 		vm_map_simplify_entry(map, current);
1964 		current = current->next;
1965 	}
1966 	vm_map_unlock(map);
1967 	return (KERN_SUCCESS);
1968 }
1969 
1970 /*
1971  *	vm_map_madvise:
1972  *
1973  *	This routine traverses a processes map handling the madvise
1974  *	system call.  Advisories are classified as either those effecting
1975  *	the vm_map_entry structure, or those effecting the underlying
1976  *	objects.
1977  */
1978 int
1979 vm_map_madvise(
1980 	vm_map_t map,
1981 	vm_offset_t start,
1982 	vm_offset_t end,
1983 	int behav)
1984 {
1985 	vm_map_entry_t current, entry;
1986 	int modify_map = 0;
1987 
1988 	/*
1989 	 * Some madvise calls directly modify the vm_map_entry, in which case
1990 	 * we need to use an exclusive lock on the map and we need to perform
1991 	 * various clipping operations.  Otherwise we only need a read-lock
1992 	 * on the map.
1993 	 */
1994 	switch(behav) {
1995 	case MADV_NORMAL:
1996 	case MADV_SEQUENTIAL:
1997 	case MADV_RANDOM:
1998 	case MADV_NOSYNC:
1999 	case MADV_AUTOSYNC:
2000 	case MADV_NOCORE:
2001 	case MADV_CORE:
2002 		modify_map = 1;
2003 		vm_map_lock(map);
2004 		break;
2005 	case MADV_WILLNEED:
2006 	case MADV_DONTNEED:
2007 	case MADV_FREE:
2008 		vm_map_lock_read(map);
2009 		break;
2010 	default:
2011 		return (KERN_INVALID_ARGUMENT);
2012 	}
2013 
2014 	/*
2015 	 * Locate starting entry and clip if necessary.
2016 	 */
2017 	VM_MAP_RANGE_CHECK(map, start, end);
2018 
2019 	if (vm_map_lookup_entry(map, start, &entry)) {
2020 		if (modify_map)
2021 			vm_map_clip_start(map, entry, start);
2022 	} else {
2023 		entry = entry->next;
2024 	}
2025 
2026 	if (modify_map) {
2027 		/*
2028 		 * madvise behaviors that are implemented in the vm_map_entry.
2029 		 *
2030 		 * We clip the vm_map_entry so that behavioral changes are
2031 		 * limited to the specified address range.
2032 		 */
2033 		for (current = entry;
2034 		     (current != &map->header) && (current->start < end);
2035 		     current = current->next
2036 		) {
2037 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2038 				continue;
2039 
2040 			vm_map_clip_end(map, current, end);
2041 
2042 			switch (behav) {
2043 			case MADV_NORMAL:
2044 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2045 				break;
2046 			case MADV_SEQUENTIAL:
2047 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2048 				break;
2049 			case MADV_RANDOM:
2050 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2051 				break;
2052 			case MADV_NOSYNC:
2053 				current->eflags |= MAP_ENTRY_NOSYNC;
2054 				break;
2055 			case MADV_AUTOSYNC:
2056 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2057 				break;
2058 			case MADV_NOCORE:
2059 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2060 				break;
2061 			case MADV_CORE:
2062 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2063 				break;
2064 			default:
2065 				break;
2066 			}
2067 			vm_map_simplify_entry(map, current);
2068 		}
2069 		vm_map_unlock(map);
2070 	} else {
2071 		vm_pindex_t pindex;
2072 		int count;
2073 
2074 		/*
2075 		 * madvise behaviors that are implemented in the underlying
2076 		 * vm_object.
2077 		 *
2078 		 * Since we don't clip the vm_map_entry, we have to clip
2079 		 * the vm_object pindex and count.
2080 		 */
2081 		for (current = entry;
2082 		     (current != &map->header) && (current->start < end);
2083 		     current = current->next
2084 		) {
2085 			vm_offset_t useStart;
2086 
2087 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2088 				continue;
2089 
2090 			pindex = OFF_TO_IDX(current->offset);
2091 			count = atop(current->end - current->start);
2092 			useStart = current->start;
2093 
2094 			if (current->start < start) {
2095 				pindex += atop(start - current->start);
2096 				count -= atop(start - current->start);
2097 				useStart = start;
2098 			}
2099 			if (current->end > end)
2100 				count -= atop(current->end - end);
2101 
2102 			if (count <= 0)
2103 				continue;
2104 
2105 			vm_object_madvise(current->object.vm_object,
2106 					  pindex, count, behav);
2107 			if (behav == MADV_WILLNEED) {
2108 				vm_map_pmap_enter(map,
2109 				    useStart,
2110 				    current->protection,
2111 				    current->object.vm_object,
2112 				    pindex,
2113 				    (count << PAGE_SHIFT),
2114 				    MAP_PREFAULT_MADVISE
2115 				);
2116 			}
2117 		}
2118 		vm_map_unlock_read(map);
2119 	}
2120 	return (0);
2121 }
2122 
2123 
2124 /*
2125  *	vm_map_inherit:
2126  *
2127  *	Sets the inheritance of the specified address
2128  *	range in the target map.  Inheritance
2129  *	affects how the map will be shared with
2130  *	child maps at the time of vmspace_fork.
2131  */
2132 int
2133 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2134 	       vm_inherit_t new_inheritance)
2135 {
2136 	vm_map_entry_t entry;
2137 	vm_map_entry_t temp_entry;
2138 
2139 	switch (new_inheritance) {
2140 	case VM_INHERIT_NONE:
2141 	case VM_INHERIT_COPY:
2142 	case VM_INHERIT_SHARE:
2143 		break;
2144 	default:
2145 		return (KERN_INVALID_ARGUMENT);
2146 	}
2147 	vm_map_lock(map);
2148 	VM_MAP_RANGE_CHECK(map, start, end);
2149 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2150 		entry = temp_entry;
2151 		vm_map_clip_start(map, entry, start);
2152 	} else
2153 		entry = temp_entry->next;
2154 	while ((entry != &map->header) && (entry->start < end)) {
2155 		vm_map_clip_end(map, entry, end);
2156 		entry->inheritance = new_inheritance;
2157 		vm_map_simplify_entry(map, entry);
2158 		entry = entry->next;
2159 	}
2160 	vm_map_unlock(map);
2161 	return (KERN_SUCCESS);
2162 }
2163 
2164 /*
2165  *	vm_map_unwire:
2166  *
2167  *	Implements both kernel and user unwiring.
2168  */
2169 int
2170 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2171     int flags)
2172 {
2173 	vm_map_entry_t entry, first_entry, tmp_entry;
2174 	vm_offset_t saved_start;
2175 	unsigned int last_timestamp;
2176 	int rv;
2177 	boolean_t need_wakeup, result, user_unwire;
2178 
2179 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2180 	vm_map_lock(map);
2181 	VM_MAP_RANGE_CHECK(map, start, end);
2182 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2183 		if (flags & VM_MAP_WIRE_HOLESOK)
2184 			first_entry = first_entry->next;
2185 		else {
2186 			vm_map_unlock(map);
2187 			return (KERN_INVALID_ADDRESS);
2188 		}
2189 	}
2190 	last_timestamp = map->timestamp;
2191 	entry = first_entry;
2192 	while (entry != &map->header && entry->start < end) {
2193 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2194 			/*
2195 			 * We have not yet clipped the entry.
2196 			 */
2197 			saved_start = (start >= entry->start) ? start :
2198 			    entry->start;
2199 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2200 			if (vm_map_unlock_and_wait(map, 0)) {
2201 				/*
2202 				 * Allow interruption of user unwiring?
2203 				 */
2204 			}
2205 			vm_map_lock(map);
2206 			if (last_timestamp+1 != map->timestamp) {
2207 				/*
2208 				 * Look again for the entry because the map was
2209 				 * modified while it was unlocked.
2210 				 * Specifically, the entry may have been
2211 				 * clipped, merged, or deleted.
2212 				 */
2213 				if (!vm_map_lookup_entry(map, saved_start,
2214 				    &tmp_entry)) {
2215 					if (flags & VM_MAP_WIRE_HOLESOK)
2216 						tmp_entry = tmp_entry->next;
2217 					else {
2218 						if (saved_start == start) {
2219 							/*
2220 							 * First_entry has been deleted.
2221 							 */
2222 							vm_map_unlock(map);
2223 							return (KERN_INVALID_ADDRESS);
2224 						}
2225 						end = saved_start;
2226 						rv = KERN_INVALID_ADDRESS;
2227 						goto done;
2228 					}
2229 				}
2230 				if (entry == first_entry)
2231 					first_entry = tmp_entry;
2232 				else
2233 					first_entry = NULL;
2234 				entry = tmp_entry;
2235 			}
2236 			last_timestamp = map->timestamp;
2237 			continue;
2238 		}
2239 		vm_map_clip_start(map, entry, start);
2240 		vm_map_clip_end(map, entry, end);
2241 		/*
2242 		 * Mark the entry in case the map lock is released.  (See
2243 		 * above.)
2244 		 */
2245 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2246 		/*
2247 		 * Check the map for holes in the specified region.
2248 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2249 		 */
2250 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2251 		    (entry->end < end && (entry->next == &map->header ||
2252 		    entry->next->start > entry->end))) {
2253 			end = entry->end;
2254 			rv = KERN_INVALID_ADDRESS;
2255 			goto done;
2256 		}
2257 		/*
2258 		 * If system unwiring, require that the entry is system wired.
2259 		 */
2260 		if (!user_unwire &&
2261 		    vm_map_entry_system_wired_count(entry) == 0) {
2262 			end = entry->end;
2263 			rv = KERN_INVALID_ARGUMENT;
2264 			goto done;
2265 		}
2266 		entry = entry->next;
2267 	}
2268 	rv = KERN_SUCCESS;
2269 done:
2270 	need_wakeup = FALSE;
2271 	if (first_entry == NULL) {
2272 		result = vm_map_lookup_entry(map, start, &first_entry);
2273 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2274 			first_entry = first_entry->next;
2275 		else
2276 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2277 	}
2278 	entry = first_entry;
2279 	while (entry != &map->header && entry->start < end) {
2280 		if (rv == KERN_SUCCESS && (!user_unwire ||
2281 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2282 			if (user_unwire)
2283 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2284 			entry->wired_count--;
2285 			if (entry->wired_count == 0) {
2286 				/*
2287 				 * Retain the map lock.
2288 				 */
2289 				vm_fault_unwire(map, entry->start, entry->end,
2290 				    entry->object.vm_object != NULL &&
2291 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2292 				    entry->object.vm_object->type == OBJT_SG));
2293 			}
2294 		}
2295 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2296 			("vm_map_unwire: in-transition flag missing"));
2297 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2298 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2299 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2300 			need_wakeup = TRUE;
2301 		}
2302 		vm_map_simplify_entry(map, entry);
2303 		entry = entry->next;
2304 	}
2305 	vm_map_unlock(map);
2306 	if (need_wakeup)
2307 		vm_map_wakeup(map);
2308 	return (rv);
2309 }
2310 
2311 /*
2312  *	vm_map_wire:
2313  *
2314  *	Implements both kernel and user wiring.
2315  */
2316 int
2317 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2318     int flags)
2319 {
2320 	vm_map_entry_t entry, first_entry, tmp_entry;
2321 	vm_offset_t saved_end, saved_start;
2322 	unsigned int last_timestamp;
2323 	int rv;
2324 	boolean_t fictitious, need_wakeup, result, user_wire;
2325 	vm_prot_t prot;
2326 
2327 	prot = 0;
2328 	if (flags & VM_MAP_WIRE_WRITE)
2329 		prot |= VM_PROT_WRITE;
2330 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2331 	vm_map_lock(map);
2332 	VM_MAP_RANGE_CHECK(map, start, end);
2333 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2334 		if (flags & VM_MAP_WIRE_HOLESOK)
2335 			first_entry = first_entry->next;
2336 		else {
2337 			vm_map_unlock(map);
2338 			return (KERN_INVALID_ADDRESS);
2339 		}
2340 	}
2341 	last_timestamp = map->timestamp;
2342 	entry = first_entry;
2343 	while (entry != &map->header && entry->start < end) {
2344 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2345 			/*
2346 			 * We have not yet clipped the entry.
2347 			 */
2348 			saved_start = (start >= entry->start) ? start :
2349 			    entry->start;
2350 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2351 			if (vm_map_unlock_and_wait(map, 0)) {
2352 				/*
2353 				 * Allow interruption of user wiring?
2354 				 */
2355 			}
2356 			vm_map_lock(map);
2357 			if (last_timestamp + 1 != map->timestamp) {
2358 				/*
2359 				 * Look again for the entry because the map was
2360 				 * modified while it was unlocked.
2361 				 * Specifically, the entry may have been
2362 				 * clipped, merged, or deleted.
2363 				 */
2364 				if (!vm_map_lookup_entry(map, saved_start,
2365 				    &tmp_entry)) {
2366 					if (flags & VM_MAP_WIRE_HOLESOK)
2367 						tmp_entry = tmp_entry->next;
2368 					else {
2369 						if (saved_start == start) {
2370 							/*
2371 							 * first_entry has been deleted.
2372 							 */
2373 							vm_map_unlock(map);
2374 							return (KERN_INVALID_ADDRESS);
2375 						}
2376 						end = saved_start;
2377 						rv = KERN_INVALID_ADDRESS;
2378 						goto done;
2379 					}
2380 				}
2381 				if (entry == first_entry)
2382 					first_entry = tmp_entry;
2383 				else
2384 					first_entry = NULL;
2385 				entry = tmp_entry;
2386 			}
2387 			last_timestamp = map->timestamp;
2388 			continue;
2389 		}
2390 		vm_map_clip_start(map, entry, start);
2391 		vm_map_clip_end(map, entry, end);
2392 		/*
2393 		 * Mark the entry in case the map lock is released.  (See
2394 		 * above.)
2395 		 */
2396 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2397 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2398 		    || (entry->protection & prot) != prot) {
2399 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2400 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2401 				end = entry->end;
2402 				rv = KERN_INVALID_ADDRESS;
2403 				goto done;
2404 			}
2405 			goto next_entry;
2406 		}
2407 		if (entry->wired_count == 0) {
2408 			entry->wired_count++;
2409 			saved_start = entry->start;
2410 			saved_end = entry->end;
2411 			fictitious = entry->object.vm_object != NULL &&
2412 			    (entry->object.vm_object->type == OBJT_DEVICE ||
2413 			    entry->object.vm_object->type == OBJT_SG);
2414 			/*
2415 			 * Release the map lock, relying on the in-transition
2416 			 * mark.  Mark the map busy for fork.
2417 			 */
2418 			vm_map_busy(map);
2419 			vm_map_unlock(map);
2420 			rv = vm_fault_wire(map, saved_start, saved_end,
2421 			    fictitious);
2422 			vm_map_lock(map);
2423 			vm_map_unbusy(map);
2424 			if (last_timestamp + 1 != map->timestamp) {
2425 				/*
2426 				 * Look again for the entry because the map was
2427 				 * modified while it was unlocked.  The entry
2428 				 * may have been clipped, but NOT merged or
2429 				 * deleted.
2430 				 */
2431 				result = vm_map_lookup_entry(map, saved_start,
2432 				    &tmp_entry);
2433 				KASSERT(result, ("vm_map_wire: lookup failed"));
2434 				if (entry == first_entry)
2435 					first_entry = tmp_entry;
2436 				else
2437 					first_entry = NULL;
2438 				entry = tmp_entry;
2439 				while (entry->end < saved_end) {
2440 					if (rv != KERN_SUCCESS) {
2441 						KASSERT(entry->wired_count == 1,
2442 						    ("vm_map_wire: bad count"));
2443 						entry->wired_count = -1;
2444 					}
2445 					entry = entry->next;
2446 				}
2447 			}
2448 			last_timestamp = map->timestamp;
2449 			if (rv != KERN_SUCCESS) {
2450 				KASSERT(entry->wired_count == 1,
2451 				    ("vm_map_wire: bad count"));
2452 				/*
2453 				 * Assign an out-of-range value to represent
2454 				 * the failure to wire this entry.
2455 				 */
2456 				entry->wired_count = -1;
2457 				end = entry->end;
2458 				goto done;
2459 			}
2460 		} else if (!user_wire ||
2461 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2462 			entry->wired_count++;
2463 		}
2464 		/*
2465 		 * Check the map for holes in the specified region.
2466 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2467 		 */
2468 	next_entry:
2469 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2470 		    (entry->end < end && (entry->next == &map->header ||
2471 		    entry->next->start > entry->end))) {
2472 			end = entry->end;
2473 			rv = KERN_INVALID_ADDRESS;
2474 			goto done;
2475 		}
2476 		entry = entry->next;
2477 	}
2478 	rv = KERN_SUCCESS;
2479 done:
2480 	need_wakeup = FALSE;
2481 	if (first_entry == NULL) {
2482 		result = vm_map_lookup_entry(map, start, &first_entry);
2483 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2484 			first_entry = first_entry->next;
2485 		else
2486 			KASSERT(result, ("vm_map_wire: lookup failed"));
2487 	}
2488 	entry = first_entry;
2489 	while (entry != &map->header && entry->start < end) {
2490 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2491 			goto next_entry_done;
2492 		if (rv == KERN_SUCCESS) {
2493 			if (user_wire)
2494 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2495 		} else if (entry->wired_count == -1) {
2496 			/*
2497 			 * Wiring failed on this entry.  Thus, unwiring is
2498 			 * unnecessary.
2499 			 */
2500 			entry->wired_count = 0;
2501 		} else {
2502 			if (!user_wire ||
2503 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2504 				entry->wired_count--;
2505 			if (entry->wired_count == 0) {
2506 				/*
2507 				 * Retain the map lock.
2508 				 */
2509 				vm_fault_unwire(map, entry->start, entry->end,
2510 				    entry->object.vm_object != NULL &&
2511 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2512 				    entry->object.vm_object->type == OBJT_SG));
2513 			}
2514 		}
2515 	next_entry_done:
2516 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2517 			("vm_map_wire: in-transition flag missing"));
2518 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2519 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2520 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2521 			need_wakeup = TRUE;
2522 		}
2523 		vm_map_simplify_entry(map, entry);
2524 		entry = entry->next;
2525 	}
2526 	vm_map_unlock(map);
2527 	if (need_wakeup)
2528 		vm_map_wakeup(map);
2529 	return (rv);
2530 }
2531 
2532 /*
2533  * vm_map_sync
2534  *
2535  * Push any dirty cached pages in the address range to their pager.
2536  * If syncio is TRUE, dirty pages are written synchronously.
2537  * If invalidate is TRUE, any cached pages are freed as well.
2538  *
2539  * If the size of the region from start to end is zero, we are
2540  * supposed to flush all modified pages within the region containing
2541  * start.  Unfortunately, a region can be split or coalesced with
2542  * neighboring regions, making it difficult to determine what the
2543  * original region was.  Therefore, we approximate this requirement by
2544  * flushing the current region containing start.
2545  *
2546  * Returns an error if any part of the specified range is not mapped.
2547  */
2548 int
2549 vm_map_sync(
2550 	vm_map_t map,
2551 	vm_offset_t start,
2552 	vm_offset_t end,
2553 	boolean_t syncio,
2554 	boolean_t invalidate)
2555 {
2556 	vm_map_entry_t current;
2557 	vm_map_entry_t entry;
2558 	vm_size_t size;
2559 	vm_object_t object;
2560 	vm_ooffset_t offset;
2561 	unsigned int last_timestamp;
2562 
2563 	vm_map_lock_read(map);
2564 	VM_MAP_RANGE_CHECK(map, start, end);
2565 	if (!vm_map_lookup_entry(map, start, &entry)) {
2566 		vm_map_unlock_read(map);
2567 		return (KERN_INVALID_ADDRESS);
2568 	} else if (start == end) {
2569 		start = entry->start;
2570 		end = entry->end;
2571 	}
2572 	/*
2573 	 * Make a first pass to check for user-wired memory and holes.
2574 	 */
2575 	for (current = entry; current != &map->header && current->start < end;
2576 	    current = current->next) {
2577 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2578 			vm_map_unlock_read(map);
2579 			return (KERN_INVALID_ARGUMENT);
2580 		}
2581 		if (end > current->end &&
2582 		    (current->next == &map->header ||
2583 			current->end != current->next->start)) {
2584 			vm_map_unlock_read(map);
2585 			return (KERN_INVALID_ADDRESS);
2586 		}
2587 	}
2588 
2589 	if (invalidate)
2590 		pmap_remove(map->pmap, start, end);
2591 
2592 	/*
2593 	 * Make a second pass, cleaning/uncaching pages from the indicated
2594 	 * objects as we go.
2595 	 */
2596 	for (current = entry; current != &map->header && current->start < end;) {
2597 		offset = current->offset + (start - current->start);
2598 		size = (end <= current->end ? end : current->end) - start;
2599 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2600 			vm_map_t smap;
2601 			vm_map_entry_t tentry;
2602 			vm_size_t tsize;
2603 
2604 			smap = current->object.sub_map;
2605 			vm_map_lock_read(smap);
2606 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2607 			tsize = tentry->end - offset;
2608 			if (tsize < size)
2609 				size = tsize;
2610 			object = tentry->object.vm_object;
2611 			offset = tentry->offset + (offset - tentry->start);
2612 			vm_map_unlock_read(smap);
2613 		} else {
2614 			object = current->object.vm_object;
2615 		}
2616 		vm_object_reference(object);
2617 		last_timestamp = map->timestamp;
2618 		vm_map_unlock_read(map);
2619 		vm_object_sync(object, offset, size, syncio, invalidate);
2620 		start += size;
2621 		vm_object_deallocate(object);
2622 		vm_map_lock_read(map);
2623 		if (last_timestamp == map->timestamp ||
2624 		    !vm_map_lookup_entry(map, start, &current))
2625 			current = current->next;
2626 	}
2627 
2628 	vm_map_unlock_read(map);
2629 	return (KERN_SUCCESS);
2630 }
2631 
2632 /*
2633  *	vm_map_entry_unwire:	[ internal use only ]
2634  *
2635  *	Make the region specified by this entry pageable.
2636  *
2637  *	The map in question should be locked.
2638  *	[This is the reason for this routine's existence.]
2639  */
2640 static void
2641 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2642 {
2643 	vm_fault_unwire(map, entry->start, entry->end,
2644 	    entry->object.vm_object != NULL &&
2645 	    (entry->object.vm_object->type == OBJT_DEVICE ||
2646 	    entry->object.vm_object->type == OBJT_SG));
2647 	entry->wired_count = 0;
2648 }
2649 
2650 static void
2651 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2652 {
2653 
2654 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2655 		vm_object_deallocate(entry->object.vm_object);
2656 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2657 }
2658 
2659 /*
2660  *	vm_map_entry_delete:	[ internal use only ]
2661  *
2662  *	Deallocate the given entry from the target map.
2663  */
2664 static void
2665 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2666 {
2667 	vm_object_t object;
2668 	vm_pindex_t offidxstart, offidxend, count, size1;
2669 	vm_ooffset_t size;
2670 
2671 	vm_map_entry_unlink(map, entry);
2672 	object = entry->object.vm_object;
2673 	size = entry->end - entry->start;
2674 	map->size -= size;
2675 
2676 	if (entry->cred != NULL) {
2677 		swap_release_by_cred(size, entry->cred);
2678 		crfree(entry->cred);
2679 	}
2680 
2681 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2682 	    (object != NULL)) {
2683 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2684 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2685 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2686 		count = OFF_TO_IDX(size);
2687 		offidxstart = OFF_TO_IDX(entry->offset);
2688 		offidxend = offidxstart + count;
2689 		VM_OBJECT_LOCK(object);
2690 		if (object->ref_count != 1 &&
2691 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2692 		    object == kernel_object || object == kmem_object)) {
2693 			vm_object_collapse(object);
2694 
2695 			/*
2696 			 * The option OBJPR_NOTMAPPED can be passed here
2697 			 * because vm_map_delete() already performed
2698 			 * pmap_remove() on the only mapping to this range
2699 			 * of pages.
2700 			 */
2701 			vm_object_page_remove(object, offidxstart, offidxend,
2702 			    OBJPR_NOTMAPPED);
2703 			if (object->type == OBJT_SWAP)
2704 				swap_pager_freespace(object, offidxstart, count);
2705 			if (offidxend >= object->size &&
2706 			    offidxstart < object->size) {
2707 				size1 = object->size;
2708 				object->size = offidxstart;
2709 				if (object->cred != NULL) {
2710 					size1 -= object->size;
2711 					KASSERT(object->charge >= ptoa(size1),
2712 					    ("vm_map_entry_delete: object->charge < 0"));
2713 					swap_release_by_cred(ptoa(size1), object->cred);
2714 					object->charge -= ptoa(size1);
2715 				}
2716 			}
2717 		}
2718 		VM_OBJECT_UNLOCK(object);
2719 	} else
2720 		entry->object.vm_object = NULL;
2721 	if (map->system_map)
2722 		vm_map_entry_deallocate(entry, TRUE);
2723 	else {
2724 		entry->next = curthread->td_map_def_user;
2725 		curthread->td_map_def_user = entry;
2726 	}
2727 }
2728 
2729 /*
2730  *	vm_map_delete:	[ internal use only ]
2731  *
2732  *	Deallocates the given address range from the target
2733  *	map.
2734  */
2735 int
2736 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2737 {
2738 	vm_map_entry_t entry;
2739 	vm_map_entry_t first_entry;
2740 
2741 	VM_MAP_ASSERT_LOCKED(map);
2742 
2743 	/*
2744 	 * Find the start of the region, and clip it
2745 	 */
2746 	if (!vm_map_lookup_entry(map, start, &first_entry))
2747 		entry = first_entry->next;
2748 	else {
2749 		entry = first_entry;
2750 		vm_map_clip_start(map, entry, start);
2751 	}
2752 
2753 	/*
2754 	 * Step through all entries in this region
2755 	 */
2756 	while ((entry != &map->header) && (entry->start < end)) {
2757 		vm_map_entry_t next;
2758 
2759 		/*
2760 		 * Wait for wiring or unwiring of an entry to complete.
2761 		 * Also wait for any system wirings to disappear on
2762 		 * user maps.
2763 		 */
2764 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2765 		    (vm_map_pmap(map) != kernel_pmap &&
2766 		    vm_map_entry_system_wired_count(entry) != 0)) {
2767 			unsigned int last_timestamp;
2768 			vm_offset_t saved_start;
2769 			vm_map_entry_t tmp_entry;
2770 
2771 			saved_start = entry->start;
2772 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2773 			last_timestamp = map->timestamp;
2774 			(void) vm_map_unlock_and_wait(map, 0);
2775 			vm_map_lock(map);
2776 			if (last_timestamp + 1 != map->timestamp) {
2777 				/*
2778 				 * Look again for the entry because the map was
2779 				 * modified while it was unlocked.
2780 				 * Specifically, the entry may have been
2781 				 * clipped, merged, or deleted.
2782 				 */
2783 				if (!vm_map_lookup_entry(map, saved_start,
2784 							 &tmp_entry))
2785 					entry = tmp_entry->next;
2786 				else {
2787 					entry = tmp_entry;
2788 					vm_map_clip_start(map, entry,
2789 							  saved_start);
2790 				}
2791 			}
2792 			continue;
2793 		}
2794 		vm_map_clip_end(map, entry, end);
2795 
2796 		next = entry->next;
2797 
2798 		/*
2799 		 * Unwire before removing addresses from the pmap; otherwise,
2800 		 * unwiring will put the entries back in the pmap.
2801 		 */
2802 		if (entry->wired_count != 0) {
2803 			vm_map_entry_unwire(map, entry);
2804 		}
2805 
2806 		pmap_remove(map->pmap, entry->start, entry->end);
2807 
2808 		/*
2809 		 * Delete the entry only after removing all pmap
2810 		 * entries pointing to its pages.  (Otherwise, its
2811 		 * page frames may be reallocated, and any modify bits
2812 		 * will be set in the wrong object!)
2813 		 */
2814 		vm_map_entry_delete(map, entry);
2815 		entry = next;
2816 	}
2817 	return (KERN_SUCCESS);
2818 }
2819 
2820 /*
2821  *	vm_map_remove:
2822  *
2823  *	Remove the given address range from the target map.
2824  *	This is the exported form of vm_map_delete.
2825  */
2826 int
2827 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2828 {
2829 	int result;
2830 
2831 	vm_map_lock(map);
2832 	VM_MAP_RANGE_CHECK(map, start, end);
2833 	result = vm_map_delete(map, start, end);
2834 	vm_map_unlock(map);
2835 	return (result);
2836 }
2837 
2838 /*
2839  *	vm_map_check_protection:
2840  *
2841  *	Assert that the target map allows the specified privilege on the
2842  *	entire address region given.  The entire region must be allocated.
2843  *
2844  *	WARNING!  This code does not and should not check whether the
2845  *	contents of the region is accessible.  For example a smaller file
2846  *	might be mapped into a larger address space.
2847  *
2848  *	NOTE!  This code is also called by munmap().
2849  *
2850  *	The map must be locked.  A read lock is sufficient.
2851  */
2852 boolean_t
2853 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2854 			vm_prot_t protection)
2855 {
2856 	vm_map_entry_t entry;
2857 	vm_map_entry_t tmp_entry;
2858 
2859 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2860 		return (FALSE);
2861 	entry = tmp_entry;
2862 
2863 	while (start < end) {
2864 		if (entry == &map->header)
2865 			return (FALSE);
2866 		/*
2867 		 * No holes allowed!
2868 		 */
2869 		if (start < entry->start)
2870 			return (FALSE);
2871 		/*
2872 		 * Check protection associated with entry.
2873 		 */
2874 		if ((entry->protection & protection) != protection)
2875 			return (FALSE);
2876 		/* go to next entry */
2877 		start = entry->end;
2878 		entry = entry->next;
2879 	}
2880 	return (TRUE);
2881 }
2882 
2883 /*
2884  *	vm_map_copy_entry:
2885  *
2886  *	Copies the contents of the source entry to the destination
2887  *	entry.  The entries *must* be aligned properly.
2888  */
2889 static void
2890 vm_map_copy_entry(
2891 	vm_map_t src_map,
2892 	vm_map_t dst_map,
2893 	vm_map_entry_t src_entry,
2894 	vm_map_entry_t dst_entry,
2895 	vm_ooffset_t *fork_charge)
2896 {
2897 	vm_object_t src_object;
2898 	vm_offset_t size;
2899 	struct ucred *cred;
2900 	int charged;
2901 
2902 	VM_MAP_ASSERT_LOCKED(dst_map);
2903 
2904 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2905 		return;
2906 
2907 	if (src_entry->wired_count == 0) {
2908 
2909 		/*
2910 		 * If the source entry is marked needs_copy, it is already
2911 		 * write-protected.
2912 		 */
2913 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2914 			pmap_protect(src_map->pmap,
2915 			    src_entry->start,
2916 			    src_entry->end,
2917 			    src_entry->protection & ~VM_PROT_WRITE);
2918 		}
2919 
2920 		/*
2921 		 * Make a copy of the object.
2922 		 */
2923 		size = src_entry->end - src_entry->start;
2924 		if ((src_object = src_entry->object.vm_object) != NULL) {
2925 			VM_OBJECT_LOCK(src_object);
2926 			charged = ENTRY_CHARGED(src_entry);
2927 			if ((src_object->handle == NULL) &&
2928 				(src_object->type == OBJT_DEFAULT ||
2929 				 src_object->type == OBJT_SWAP)) {
2930 				vm_object_collapse(src_object);
2931 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2932 					vm_object_split(src_entry);
2933 					src_object = src_entry->object.vm_object;
2934 				}
2935 			}
2936 			vm_object_reference_locked(src_object);
2937 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2938 			if (src_entry->cred != NULL &&
2939 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2940 				KASSERT(src_object->cred == NULL,
2941 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2942 				     src_object));
2943 				src_object->cred = src_entry->cred;
2944 				src_object->charge = size;
2945 			}
2946 			VM_OBJECT_UNLOCK(src_object);
2947 			dst_entry->object.vm_object = src_object;
2948 			if (charged) {
2949 				cred = curthread->td_ucred;
2950 				crhold(cred);
2951 				dst_entry->cred = cred;
2952 				*fork_charge += size;
2953 				if (!(src_entry->eflags &
2954 				      MAP_ENTRY_NEEDS_COPY)) {
2955 					crhold(cred);
2956 					src_entry->cred = cred;
2957 					*fork_charge += size;
2958 				}
2959 			}
2960 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2961 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2962 			dst_entry->offset = src_entry->offset;
2963 		} else {
2964 			dst_entry->object.vm_object = NULL;
2965 			dst_entry->offset = 0;
2966 			if (src_entry->cred != NULL) {
2967 				dst_entry->cred = curthread->td_ucred;
2968 				crhold(dst_entry->cred);
2969 				*fork_charge += size;
2970 			}
2971 		}
2972 
2973 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2974 		    dst_entry->end - dst_entry->start, src_entry->start);
2975 	} else {
2976 		/*
2977 		 * Of course, wired down pages can't be set copy-on-write.
2978 		 * Cause wired pages to be copied into the new map by
2979 		 * simulating faults (the new pages are pageable)
2980 		 */
2981 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
2982 		    fork_charge);
2983 	}
2984 }
2985 
2986 /*
2987  * vmspace_map_entry_forked:
2988  * Update the newly-forked vmspace each time a map entry is inherited
2989  * or copied.  The values for vm_dsize and vm_tsize are approximate
2990  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2991  */
2992 static void
2993 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2994     vm_map_entry_t entry)
2995 {
2996 	vm_size_t entrysize;
2997 	vm_offset_t newend;
2998 
2999 	entrysize = entry->end - entry->start;
3000 	vm2->vm_map.size += entrysize;
3001 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3002 		vm2->vm_ssize += btoc(entrysize);
3003 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3004 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3005 		newend = MIN(entry->end,
3006 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3007 		vm2->vm_dsize += btoc(newend - entry->start);
3008 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3009 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3010 		newend = MIN(entry->end,
3011 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3012 		vm2->vm_tsize += btoc(newend - entry->start);
3013 	}
3014 }
3015 
3016 /*
3017  * vmspace_fork:
3018  * Create a new process vmspace structure and vm_map
3019  * based on those of an existing process.  The new map
3020  * is based on the old map, according to the inheritance
3021  * values on the regions in that map.
3022  *
3023  * XXX It might be worth coalescing the entries added to the new vmspace.
3024  *
3025  * The source map must not be locked.
3026  */
3027 struct vmspace *
3028 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3029 {
3030 	struct vmspace *vm2;
3031 	vm_map_t old_map = &vm1->vm_map;
3032 	vm_map_t new_map;
3033 	vm_map_entry_t old_entry;
3034 	vm_map_entry_t new_entry;
3035 	vm_object_t object;
3036 	int locked;
3037 
3038 	vm_map_lock(old_map);
3039 	if (old_map->busy)
3040 		vm_map_wait_busy(old_map);
3041 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3042 	if (vm2 == NULL)
3043 		goto unlock_and_return;
3044 	vm2->vm_taddr = vm1->vm_taddr;
3045 	vm2->vm_daddr = vm1->vm_daddr;
3046 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3047 	new_map = &vm2->vm_map;	/* XXX */
3048 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3049 	KASSERT(locked, ("vmspace_fork: lock failed"));
3050 	new_map->timestamp = 1;
3051 
3052 	old_entry = old_map->header.next;
3053 
3054 	while (old_entry != &old_map->header) {
3055 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3056 			panic("vm_map_fork: encountered a submap");
3057 
3058 		switch (old_entry->inheritance) {
3059 		case VM_INHERIT_NONE:
3060 			break;
3061 
3062 		case VM_INHERIT_SHARE:
3063 			/*
3064 			 * Clone the entry, creating the shared object if necessary.
3065 			 */
3066 			object = old_entry->object.vm_object;
3067 			if (object == NULL) {
3068 				object = vm_object_allocate(OBJT_DEFAULT,
3069 					atop(old_entry->end - old_entry->start));
3070 				old_entry->object.vm_object = object;
3071 				old_entry->offset = 0;
3072 				if (old_entry->cred != NULL) {
3073 					object->cred = old_entry->cred;
3074 					object->charge = old_entry->end -
3075 					    old_entry->start;
3076 					old_entry->cred = NULL;
3077 				}
3078 			}
3079 
3080 			/*
3081 			 * Add the reference before calling vm_object_shadow
3082 			 * to insure that a shadow object is created.
3083 			 */
3084 			vm_object_reference(object);
3085 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3086 				vm_object_shadow(&old_entry->object.vm_object,
3087 				    &old_entry->offset,
3088 				    old_entry->end - old_entry->start);
3089 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3090 				/* Transfer the second reference too. */
3091 				vm_object_reference(
3092 				    old_entry->object.vm_object);
3093 
3094 				/*
3095 				 * As in vm_map_simplify_entry(), the
3096 				 * vnode lock will not be acquired in
3097 				 * this call to vm_object_deallocate().
3098 				 */
3099 				vm_object_deallocate(object);
3100 				object = old_entry->object.vm_object;
3101 			}
3102 			VM_OBJECT_LOCK(object);
3103 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3104 			if (old_entry->cred != NULL) {
3105 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3106 				object->cred = old_entry->cred;
3107 				object->charge = old_entry->end - old_entry->start;
3108 				old_entry->cred = NULL;
3109 			}
3110 			VM_OBJECT_UNLOCK(object);
3111 
3112 			/*
3113 			 * Clone the entry, referencing the shared object.
3114 			 */
3115 			new_entry = vm_map_entry_create(new_map);
3116 			*new_entry = *old_entry;
3117 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3118 			    MAP_ENTRY_IN_TRANSITION);
3119 			new_entry->wired_count = 0;
3120 
3121 			/*
3122 			 * Insert the entry into the new map -- we know we're
3123 			 * inserting at the end of the new map.
3124 			 */
3125 			vm_map_entry_link(new_map, new_map->header.prev,
3126 			    new_entry);
3127 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3128 
3129 			/*
3130 			 * Update the physical map
3131 			 */
3132 			pmap_copy(new_map->pmap, old_map->pmap,
3133 			    new_entry->start,
3134 			    (old_entry->end - old_entry->start),
3135 			    old_entry->start);
3136 			break;
3137 
3138 		case VM_INHERIT_COPY:
3139 			/*
3140 			 * Clone the entry and link into the map.
3141 			 */
3142 			new_entry = vm_map_entry_create(new_map);
3143 			*new_entry = *old_entry;
3144 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3145 			    MAP_ENTRY_IN_TRANSITION);
3146 			new_entry->wired_count = 0;
3147 			new_entry->object.vm_object = NULL;
3148 			new_entry->cred = NULL;
3149 			vm_map_entry_link(new_map, new_map->header.prev,
3150 			    new_entry);
3151 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3152 			vm_map_copy_entry(old_map, new_map, old_entry,
3153 			    new_entry, fork_charge);
3154 			break;
3155 		}
3156 		old_entry = old_entry->next;
3157 	}
3158 unlock_and_return:
3159 	vm_map_unlock(old_map);
3160 	if (vm2 != NULL)
3161 		vm_map_unlock(new_map);
3162 
3163 	return (vm2);
3164 }
3165 
3166 int
3167 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3168     vm_prot_t prot, vm_prot_t max, int cow)
3169 {
3170 	vm_map_entry_t new_entry, prev_entry;
3171 	vm_offset_t bot, top;
3172 	vm_size_t init_ssize;
3173 	int orient, rv;
3174 	rlim_t vmemlim;
3175 
3176 	/*
3177 	 * The stack orientation is piggybacked with the cow argument.
3178 	 * Extract it into orient and mask the cow argument so that we
3179 	 * don't pass it around further.
3180 	 * NOTE: We explicitly allow bi-directional stacks.
3181 	 */
3182 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3183 	cow &= ~orient;
3184 	KASSERT(orient != 0, ("No stack grow direction"));
3185 
3186 	if (addrbos < vm_map_min(map) ||
3187 	    addrbos > vm_map_max(map) ||
3188 	    addrbos + max_ssize < addrbos)
3189 		return (KERN_NO_SPACE);
3190 
3191 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
3192 
3193 	PROC_LOCK(curthread->td_proc);
3194 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3195 	PROC_UNLOCK(curthread->td_proc);
3196 
3197 	vm_map_lock(map);
3198 
3199 	/* If addr is already mapped, no go */
3200 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3201 		vm_map_unlock(map);
3202 		return (KERN_NO_SPACE);
3203 	}
3204 
3205 	/* If we would blow our VMEM resource limit, no go */
3206 	if (map->size + init_ssize > vmemlim) {
3207 		vm_map_unlock(map);
3208 		return (KERN_NO_SPACE);
3209 	}
3210 
3211 	/*
3212 	 * If we can't accomodate max_ssize in the current mapping, no go.
3213 	 * However, we need to be aware that subsequent user mappings might
3214 	 * map into the space we have reserved for stack, and currently this
3215 	 * space is not protected.
3216 	 *
3217 	 * Hopefully we will at least detect this condition when we try to
3218 	 * grow the stack.
3219 	 */
3220 	if ((prev_entry->next != &map->header) &&
3221 	    (prev_entry->next->start < addrbos + max_ssize)) {
3222 		vm_map_unlock(map);
3223 		return (KERN_NO_SPACE);
3224 	}
3225 
3226 	/*
3227 	 * We initially map a stack of only init_ssize.  We will grow as
3228 	 * needed later.  Depending on the orientation of the stack (i.e.
3229 	 * the grow direction) we either map at the top of the range, the
3230 	 * bottom of the range or in the middle.
3231 	 *
3232 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3233 	 * and cow to be 0.  Possibly we should eliminate these as input
3234 	 * parameters, and just pass these values here in the insert call.
3235 	 */
3236 	if (orient == MAP_STACK_GROWS_DOWN)
3237 		bot = addrbos + max_ssize - init_ssize;
3238 	else if (orient == MAP_STACK_GROWS_UP)
3239 		bot = addrbos;
3240 	else
3241 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3242 	top = bot + init_ssize;
3243 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3244 
3245 	/* Now set the avail_ssize amount. */
3246 	if (rv == KERN_SUCCESS) {
3247 		if (prev_entry != &map->header)
3248 			vm_map_clip_end(map, prev_entry, bot);
3249 		new_entry = prev_entry->next;
3250 		if (new_entry->end != top || new_entry->start != bot)
3251 			panic("Bad entry start/end for new stack entry");
3252 
3253 		new_entry->avail_ssize = max_ssize - init_ssize;
3254 		if (orient & MAP_STACK_GROWS_DOWN)
3255 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3256 		if (orient & MAP_STACK_GROWS_UP)
3257 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3258 	}
3259 
3260 	vm_map_unlock(map);
3261 	return (rv);
3262 }
3263 
3264 static int stack_guard_page = 0;
3265 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3266 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3267     &stack_guard_page, 0,
3268     "Insert stack guard page ahead of the growable segments.");
3269 
3270 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3271  * desired address is already mapped, or if we successfully grow
3272  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3273  * stack range (this is strange, but preserves compatibility with
3274  * the grow function in vm_machdep.c).
3275  */
3276 int
3277 vm_map_growstack(struct proc *p, vm_offset_t addr)
3278 {
3279 	vm_map_entry_t next_entry, prev_entry;
3280 	vm_map_entry_t new_entry, stack_entry;
3281 	struct vmspace *vm = p->p_vmspace;
3282 	vm_map_t map = &vm->vm_map;
3283 	vm_offset_t end;
3284 	size_t grow_amount, max_grow;
3285 	rlim_t stacklim, vmemlim;
3286 	int is_procstack, rv;
3287 	struct ucred *cred;
3288 #ifdef notyet
3289 	uint64_t limit;
3290 #endif
3291 #ifdef RACCT
3292 	int error;
3293 #endif
3294 
3295 Retry:
3296 	PROC_LOCK(p);
3297 	stacklim = lim_cur(p, RLIMIT_STACK);
3298 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3299 	PROC_UNLOCK(p);
3300 
3301 	vm_map_lock_read(map);
3302 
3303 	/* If addr is already in the entry range, no need to grow.*/
3304 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3305 		vm_map_unlock_read(map);
3306 		return (KERN_SUCCESS);
3307 	}
3308 
3309 	next_entry = prev_entry->next;
3310 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3311 		/*
3312 		 * This entry does not grow upwards. Since the address lies
3313 		 * beyond this entry, the next entry (if one exists) has to
3314 		 * be a downward growable entry. The entry list header is
3315 		 * never a growable entry, so it suffices to check the flags.
3316 		 */
3317 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3318 			vm_map_unlock_read(map);
3319 			return (KERN_SUCCESS);
3320 		}
3321 		stack_entry = next_entry;
3322 	} else {
3323 		/*
3324 		 * This entry grows upward. If the next entry does not at
3325 		 * least grow downwards, this is the entry we need to grow.
3326 		 * otherwise we have two possible choices and we have to
3327 		 * select one.
3328 		 */
3329 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3330 			/*
3331 			 * We have two choices; grow the entry closest to
3332 			 * the address to minimize the amount of growth.
3333 			 */
3334 			if (addr - prev_entry->end <= next_entry->start - addr)
3335 				stack_entry = prev_entry;
3336 			else
3337 				stack_entry = next_entry;
3338 		} else
3339 			stack_entry = prev_entry;
3340 	}
3341 
3342 	if (stack_entry == next_entry) {
3343 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3344 		KASSERT(addr < stack_entry->start, ("foo"));
3345 		end = (prev_entry != &map->header) ? prev_entry->end :
3346 		    stack_entry->start - stack_entry->avail_ssize;
3347 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3348 		max_grow = stack_entry->start - end;
3349 	} else {
3350 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3351 		KASSERT(addr >= stack_entry->end, ("foo"));
3352 		end = (next_entry != &map->header) ? next_entry->start :
3353 		    stack_entry->end + stack_entry->avail_ssize;
3354 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3355 		max_grow = end - stack_entry->end;
3356 	}
3357 
3358 	if (grow_amount > stack_entry->avail_ssize) {
3359 		vm_map_unlock_read(map);
3360 		return (KERN_NO_SPACE);
3361 	}
3362 
3363 	/*
3364 	 * If there is no longer enough space between the entries nogo, and
3365 	 * adjust the available space.  Note: this  should only happen if the
3366 	 * user has mapped into the stack area after the stack was created,
3367 	 * and is probably an error.
3368 	 *
3369 	 * This also effectively destroys any guard page the user might have
3370 	 * intended by limiting the stack size.
3371 	 */
3372 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3373 		if (vm_map_lock_upgrade(map))
3374 			goto Retry;
3375 
3376 		stack_entry->avail_ssize = max_grow;
3377 
3378 		vm_map_unlock(map);
3379 		return (KERN_NO_SPACE);
3380 	}
3381 
3382 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3383 
3384 	/*
3385 	 * If this is the main process stack, see if we're over the stack
3386 	 * limit.
3387 	 */
3388 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3389 		vm_map_unlock_read(map);
3390 		return (KERN_NO_SPACE);
3391 	}
3392 #ifdef RACCT
3393 	PROC_LOCK(p);
3394 	if (is_procstack &&
3395 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3396 		PROC_UNLOCK(p);
3397 		vm_map_unlock_read(map);
3398 		return (KERN_NO_SPACE);
3399 	}
3400 	PROC_UNLOCK(p);
3401 #endif
3402 
3403 	/* Round up the grow amount modulo SGROWSIZ */
3404 	grow_amount = roundup (grow_amount, sgrowsiz);
3405 	if (grow_amount > stack_entry->avail_ssize)
3406 		grow_amount = stack_entry->avail_ssize;
3407 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3408 		grow_amount = trunc_page((vm_size_t)stacklim) -
3409 		    ctob(vm->vm_ssize);
3410 	}
3411 #ifdef notyet
3412 	PROC_LOCK(p);
3413 	limit = racct_get_available(p, RACCT_STACK);
3414 	PROC_UNLOCK(p);
3415 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3416 		grow_amount = limit - ctob(vm->vm_ssize);
3417 #endif
3418 
3419 	/* If we would blow our VMEM resource limit, no go */
3420 	if (map->size + grow_amount > vmemlim) {
3421 		vm_map_unlock_read(map);
3422 		rv = KERN_NO_SPACE;
3423 		goto out;
3424 	}
3425 #ifdef RACCT
3426 	PROC_LOCK(p);
3427 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3428 		PROC_UNLOCK(p);
3429 		vm_map_unlock_read(map);
3430 		rv = KERN_NO_SPACE;
3431 		goto out;
3432 	}
3433 	PROC_UNLOCK(p);
3434 #endif
3435 
3436 	if (vm_map_lock_upgrade(map))
3437 		goto Retry;
3438 
3439 	if (stack_entry == next_entry) {
3440 		/*
3441 		 * Growing downward.
3442 		 */
3443 		/* Get the preliminary new entry start value */
3444 		addr = stack_entry->start - grow_amount;
3445 
3446 		/*
3447 		 * If this puts us into the previous entry, cut back our
3448 		 * growth to the available space. Also, see the note above.
3449 		 */
3450 		if (addr < end) {
3451 			stack_entry->avail_ssize = max_grow;
3452 			addr = end;
3453 			if (stack_guard_page)
3454 				addr += PAGE_SIZE;
3455 		}
3456 
3457 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3458 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3459 
3460 		/* Adjust the available stack space by the amount we grew. */
3461 		if (rv == KERN_SUCCESS) {
3462 			if (prev_entry != &map->header)
3463 				vm_map_clip_end(map, prev_entry, addr);
3464 			new_entry = prev_entry->next;
3465 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3466 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3467 			KASSERT(new_entry->start == addr, ("foo"));
3468 			grow_amount = new_entry->end - new_entry->start;
3469 			new_entry->avail_ssize = stack_entry->avail_ssize -
3470 			    grow_amount;
3471 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3472 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3473 		}
3474 	} else {
3475 		/*
3476 		 * Growing upward.
3477 		 */
3478 		addr = stack_entry->end + grow_amount;
3479 
3480 		/*
3481 		 * If this puts us into the next entry, cut back our growth
3482 		 * to the available space. Also, see the note above.
3483 		 */
3484 		if (addr > end) {
3485 			stack_entry->avail_ssize = end - stack_entry->end;
3486 			addr = end;
3487 			if (stack_guard_page)
3488 				addr -= PAGE_SIZE;
3489 		}
3490 
3491 		grow_amount = addr - stack_entry->end;
3492 		cred = stack_entry->cred;
3493 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3494 			cred = stack_entry->object.vm_object->cred;
3495 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3496 			rv = KERN_NO_SPACE;
3497 		/* Grow the underlying object if applicable. */
3498 		else if (stack_entry->object.vm_object == NULL ||
3499 			 vm_object_coalesce(stack_entry->object.vm_object,
3500 			 stack_entry->offset,
3501 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3502 			 (vm_size_t)grow_amount, cred != NULL)) {
3503 			map->size += (addr - stack_entry->end);
3504 			/* Update the current entry. */
3505 			stack_entry->end = addr;
3506 			stack_entry->avail_ssize -= grow_amount;
3507 			vm_map_entry_resize_free(map, stack_entry);
3508 			rv = KERN_SUCCESS;
3509 
3510 			if (next_entry != &map->header)
3511 				vm_map_clip_start(map, next_entry, addr);
3512 		} else
3513 			rv = KERN_FAILURE;
3514 	}
3515 
3516 	if (rv == KERN_SUCCESS && is_procstack)
3517 		vm->vm_ssize += btoc(grow_amount);
3518 
3519 	vm_map_unlock(map);
3520 
3521 	/*
3522 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3523 	 */
3524 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3525 		vm_map_wire(map,
3526 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3527 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3528 		    (p->p_flag & P_SYSTEM)
3529 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3530 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3531 	}
3532 
3533 out:
3534 #ifdef RACCT
3535 	if (rv != KERN_SUCCESS) {
3536 		PROC_LOCK(p);
3537 		error = racct_set(p, RACCT_VMEM, map->size);
3538 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3539 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3540 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3541 		PROC_UNLOCK(p);
3542 	}
3543 #endif
3544 
3545 	return (rv);
3546 }
3547 
3548 /*
3549  * Unshare the specified VM space for exec.  If other processes are
3550  * mapped to it, then create a new one.  The new vmspace is null.
3551  */
3552 int
3553 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3554 {
3555 	struct vmspace *oldvmspace = p->p_vmspace;
3556 	struct vmspace *newvmspace;
3557 
3558 	newvmspace = vmspace_alloc(minuser, maxuser);
3559 	if (newvmspace == NULL)
3560 		return (ENOMEM);
3561 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3562 	/*
3563 	 * This code is written like this for prototype purposes.  The
3564 	 * goal is to avoid running down the vmspace here, but let the
3565 	 * other process's that are still using the vmspace to finally
3566 	 * run it down.  Even though there is little or no chance of blocking
3567 	 * here, it is a good idea to keep this form for future mods.
3568 	 */
3569 	PROC_VMSPACE_LOCK(p);
3570 	p->p_vmspace = newvmspace;
3571 	PROC_VMSPACE_UNLOCK(p);
3572 	if (p == curthread->td_proc)
3573 		pmap_activate(curthread);
3574 	vmspace_free(oldvmspace);
3575 	return (0);
3576 }
3577 
3578 /*
3579  * Unshare the specified VM space for forcing COW.  This
3580  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3581  */
3582 int
3583 vmspace_unshare(struct proc *p)
3584 {
3585 	struct vmspace *oldvmspace = p->p_vmspace;
3586 	struct vmspace *newvmspace;
3587 	vm_ooffset_t fork_charge;
3588 
3589 	if (oldvmspace->vm_refcnt == 1)
3590 		return (0);
3591 	fork_charge = 0;
3592 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3593 	if (newvmspace == NULL)
3594 		return (ENOMEM);
3595 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3596 		vmspace_free(newvmspace);
3597 		return (ENOMEM);
3598 	}
3599 	PROC_VMSPACE_LOCK(p);
3600 	p->p_vmspace = newvmspace;
3601 	PROC_VMSPACE_UNLOCK(p);
3602 	if (p == curthread->td_proc)
3603 		pmap_activate(curthread);
3604 	vmspace_free(oldvmspace);
3605 	return (0);
3606 }
3607 
3608 /*
3609  *	vm_map_lookup:
3610  *
3611  *	Finds the VM object, offset, and
3612  *	protection for a given virtual address in the
3613  *	specified map, assuming a page fault of the
3614  *	type specified.
3615  *
3616  *	Leaves the map in question locked for read; return
3617  *	values are guaranteed until a vm_map_lookup_done
3618  *	call is performed.  Note that the map argument
3619  *	is in/out; the returned map must be used in
3620  *	the call to vm_map_lookup_done.
3621  *
3622  *	A handle (out_entry) is returned for use in
3623  *	vm_map_lookup_done, to make that fast.
3624  *
3625  *	If a lookup is requested with "write protection"
3626  *	specified, the map may be changed to perform virtual
3627  *	copying operations, although the data referenced will
3628  *	remain the same.
3629  */
3630 int
3631 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3632 	      vm_offset_t vaddr,
3633 	      vm_prot_t fault_typea,
3634 	      vm_map_entry_t *out_entry,	/* OUT */
3635 	      vm_object_t *object,		/* OUT */
3636 	      vm_pindex_t *pindex,		/* OUT */
3637 	      vm_prot_t *out_prot,		/* OUT */
3638 	      boolean_t *wired)			/* OUT */
3639 {
3640 	vm_map_entry_t entry;
3641 	vm_map_t map = *var_map;
3642 	vm_prot_t prot;
3643 	vm_prot_t fault_type = fault_typea;
3644 	vm_object_t eobject;
3645 	vm_size_t size;
3646 	struct ucred *cred;
3647 
3648 RetryLookup:;
3649 
3650 	vm_map_lock_read(map);
3651 
3652 	/*
3653 	 * Lookup the faulting address.
3654 	 */
3655 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3656 		vm_map_unlock_read(map);
3657 		return (KERN_INVALID_ADDRESS);
3658 	}
3659 
3660 	entry = *out_entry;
3661 
3662 	/*
3663 	 * Handle submaps.
3664 	 */
3665 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3666 		vm_map_t old_map = map;
3667 
3668 		*var_map = map = entry->object.sub_map;
3669 		vm_map_unlock_read(old_map);
3670 		goto RetryLookup;
3671 	}
3672 
3673 	/*
3674 	 * Check whether this task is allowed to have this page.
3675 	 */
3676 	prot = entry->protection;
3677 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3678 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3679 		vm_map_unlock_read(map);
3680 		return (KERN_PROTECTION_FAILURE);
3681 	}
3682 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3683 	    (entry->eflags & MAP_ENTRY_COW) &&
3684 	    (fault_type & VM_PROT_WRITE)) {
3685 		vm_map_unlock_read(map);
3686 		return (KERN_PROTECTION_FAILURE);
3687 	}
3688 
3689 	/*
3690 	 * If this page is not pageable, we have to get it for all possible
3691 	 * accesses.
3692 	 */
3693 	*wired = (entry->wired_count != 0);
3694 	if (*wired)
3695 		fault_type = entry->protection;
3696 	size = entry->end - entry->start;
3697 	/*
3698 	 * If the entry was copy-on-write, we either ...
3699 	 */
3700 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3701 		/*
3702 		 * If we want to write the page, we may as well handle that
3703 		 * now since we've got the map locked.
3704 		 *
3705 		 * If we don't need to write the page, we just demote the
3706 		 * permissions allowed.
3707 		 */
3708 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3709 		    (fault_typea & VM_PROT_COPY) != 0) {
3710 			/*
3711 			 * Make a new object, and place it in the object
3712 			 * chain.  Note that no new references have appeared
3713 			 * -- one just moved from the map to the new
3714 			 * object.
3715 			 */
3716 			if (vm_map_lock_upgrade(map))
3717 				goto RetryLookup;
3718 
3719 			if (entry->cred == NULL) {
3720 				/*
3721 				 * The debugger owner is charged for
3722 				 * the memory.
3723 				 */
3724 				cred = curthread->td_ucred;
3725 				crhold(cred);
3726 				if (!swap_reserve_by_cred(size, cred)) {
3727 					crfree(cred);
3728 					vm_map_unlock(map);
3729 					return (KERN_RESOURCE_SHORTAGE);
3730 				}
3731 				entry->cred = cred;
3732 			}
3733 			vm_object_shadow(&entry->object.vm_object,
3734 			    &entry->offset, size);
3735 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3736 			eobject = entry->object.vm_object;
3737 			if (eobject->cred != NULL) {
3738 				/*
3739 				 * The object was not shadowed.
3740 				 */
3741 				swap_release_by_cred(size, entry->cred);
3742 				crfree(entry->cred);
3743 				entry->cred = NULL;
3744 			} else if (entry->cred != NULL) {
3745 				VM_OBJECT_LOCK(eobject);
3746 				eobject->cred = entry->cred;
3747 				eobject->charge = size;
3748 				VM_OBJECT_UNLOCK(eobject);
3749 				entry->cred = NULL;
3750 			}
3751 
3752 			vm_map_lock_downgrade(map);
3753 		} else {
3754 			/*
3755 			 * We're attempting to read a copy-on-write page --
3756 			 * don't allow writes.
3757 			 */
3758 			prot &= ~VM_PROT_WRITE;
3759 		}
3760 	}
3761 
3762 	/*
3763 	 * Create an object if necessary.
3764 	 */
3765 	if (entry->object.vm_object == NULL &&
3766 	    !map->system_map) {
3767 		if (vm_map_lock_upgrade(map))
3768 			goto RetryLookup;
3769 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3770 		    atop(size));
3771 		entry->offset = 0;
3772 		if (entry->cred != NULL) {
3773 			VM_OBJECT_LOCK(entry->object.vm_object);
3774 			entry->object.vm_object->cred = entry->cred;
3775 			entry->object.vm_object->charge = size;
3776 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3777 			entry->cred = NULL;
3778 		}
3779 		vm_map_lock_downgrade(map);
3780 	}
3781 
3782 	/*
3783 	 * Return the object/offset from this entry.  If the entry was
3784 	 * copy-on-write or empty, it has been fixed up.
3785 	 */
3786 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3787 	*object = entry->object.vm_object;
3788 
3789 	*out_prot = prot;
3790 	return (KERN_SUCCESS);
3791 }
3792 
3793 /*
3794  *	vm_map_lookup_locked:
3795  *
3796  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3797  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3798  */
3799 int
3800 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3801 		     vm_offset_t vaddr,
3802 		     vm_prot_t fault_typea,
3803 		     vm_map_entry_t *out_entry,	/* OUT */
3804 		     vm_object_t *object,	/* OUT */
3805 		     vm_pindex_t *pindex,	/* OUT */
3806 		     vm_prot_t *out_prot,	/* OUT */
3807 		     boolean_t *wired)		/* OUT */
3808 {
3809 	vm_map_entry_t entry;
3810 	vm_map_t map = *var_map;
3811 	vm_prot_t prot;
3812 	vm_prot_t fault_type = fault_typea;
3813 
3814 	/*
3815 	 * Lookup the faulting address.
3816 	 */
3817 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3818 		return (KERN_INVALID_ADDRESS);
3819 
3820 	entry = *out_entry;
3821 
3822 	/*
3823 	 * Fail if the entry refers to a submap.
3824 	 */
3825 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3826 		return (KERN_FAILURE);
3827 
3828 	/*
3829 	 * Check whether this task is allowed to have this page.
3830 	 */
3831 	prot = entry->protection;
3832 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3833 	if ((fault_type & prot) != fault_type)
3834 		return (KERN_PROTECTION_FAILURE);
3835 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3836 	    (entry->eflags & MAP_ENTRY_COW) &&
3837 	    (fault_type & VM_PROT_WRITE))
3838 		return (KERN_PROTECTION_FAILURE);
3839 
3840 	/*
3841 	 * If this page is not pageable, we have to get it for all possible
3842 	 * accesses.
3843 	 */
3844 	*wired = (entry->wired_count != 0);
3845 	if (*wired)
3846 		fault_type = entry->protection;
3847 
3848 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3849 		/*
3850 		 * Fail if the entry was copy-on-write for a write fault.
3851 		 */
3852 		if (fault_type & VM_PROT_WRITE)
3853 			return (KERN_FAILURE);
3854 		/*
3855 		 * We're attempting to read a copy-on-write page --
3856 		 * don't allow writes.
3857 		 */
3858 		prot &= ~VM_PROT_WRITE;
3859 	}
3860 
3861 	/*
3862 	 * Fail if an object should be created.
3863 	 */
3864 	if (entry->object.vm_object == NULL && !map->system_map)
3865 		return (KERN_FAILURE);
3866 
3867 	/*
3868 	 * Return the object/offset from this entry.  If the entry was
3869 	 * copy-on-write or empty, it has been fixed up.
3870 	 */
3871 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3872 	*object = entry->object.vm_object;
3873 
3874 	*out_prot = prot;
3875 	return (KERN_SUCCESS);
3876 }
3877 
3878 /*
3879  *	vm_map_lookup_done:
3880  *
3881  *	Releases locks acquired by a vm_map_lookup
3882  *	(according to the handle returned by that lookup).
3883  */
3884 void
3885 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3886 {
3887 	/*
3888 	 * Unlock the main-level map
3889 	 */
3890 	vm_map_unlock_read(map);
3891 }
3892 
3893 #include "opt_ddb.h"
3894 #ifdef DDB
3895 #include <sys/kernel.h>
3896 
3897 #include <ddb/ddb.h>
3898 
3899 /*
3900  *	vm_map_print:	[ debug ]
3901  */
3902 DB_SHOW_COMMAND(map, vm_map_print)
3903 {
3904 	static int nlines;
3905 	/* XXX convert args. */
3906 	vm_map_t map = (vm_map_t)addr;
3907 	boolean_t full = have_addr;
3908 
3909 	vm_map_entry_t entry;
3910 
3911 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3912 	    (void *)map,
3913 	    (void *)map->pmap, map->nentries, map->timestamp);
3914 	nlines++;
3915 
3916 	if (!full && db_indent)
3917 		return;
3918 
3919 	db_indent += 2;
3920 	for (entry = map->header.next; entry != &map->header;
3921 	    entry = entry->next) {
3922 		db_iprintf("map entry %p: start=%p, end=%p\n",
3923 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3924 		nlines++;
3925 		{
3926 			static char *inheritance_name[4] =
3927 			{"share", "copy", "none", "donate_copy"};
3928 
3929 			db_iprintf(" prot=%x/%x/%s",
3930 			    entry->protection,
3931 			    entry->max_protection,
3932 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3933 			if (entry->wired_count != 0)
3934 				db_printf(", wired");
3935 		}
3936 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3937 			db_printf(", share=%p, offset=0x%jx\n",
3938 			    (void *)entry->object.sub_map,
3939 			    (uintmax_t)entry->offset);
3940 			nlines++;
3941 			if ((entry->prev == &map->header) ||
3942 			    (entry->prev->object.sub_map !=
3943 				entry->object.sub_map)) {
3944 				db_indent += 2;
3945 				vm_map_print((db_expr_t)(intptr_t)
3946 					     entry->object.sub_map,
3947 					     full, 0, (char *)0);
3948 				db_indent -= 2;
3949 			}
3950 		} else {
3951 			if (entry->cred != NULL)
3952 				db_printf(", ruid %d", entry->cred->cr_ruid);
3953 			db_printf(", object=%p, offset=0x%jx",
3954 			    (void *)entry->object.vm_object,
3955 			    (uintmax_t)entry->offset);
3956 			if (entry->object.vm_object && entry->object.vm_object->cred)
3957 				db_printf(", obj ruid %d charge %jx",
3958 				    entry->object.vm_object->cred->cr_ruid,
3959 				    (uintmax_t)entry->object.vm_object->charge);
3960 			if (entry->eflags & MAP_ENTRY_COW)
3961 				db_printf(", copy (%s)",
3962 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3963 			db_printf("\n");
3964 			nlines++;
3965 
3966 			if ((entry->prev == &map->header) ||
3967 			    (entry->prev->object.vm_object !=
3968 				entry->object.vm_object)) {
3969 				db_indent += 2;
3970 				vm_object_print((db_expr_t)(intptr_t)
3971 						entry->object.vm_object,
3972 						full, 0, (char *)0);
3973 				nlines += 4;
3974 				db_indent -= 2;
3975 			}
3976 		}
3977 	}
3978 	db_indent -= 2;
3979 	if (db_indent == 0)
3980 		nlines = 0;
3981 }
3982 
3983 
3984 DB_SHOW_COMMAND(procvm, procvm)
3985 {
3986 	struct proc *p;
3987 
3988 	if (have_addr) {
3989 		p = (struct proc *) addr;
3990 	} else {
3991 		p = curproc;
3992 	}
3993 
3994 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3995 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3996 	    (void *)vmspace_pmap(p->p_vmspace));
3997 
3998 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3999 }
4000 
4001 #endif /* DDB */
4002