1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 152 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 153 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 154 155 /* 156 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 157 * stable. 158 */ 159 #define PROC_VMSPACE_LOCK(p) do { } while (0) 160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 161 162 /* 163 * VM_MAP_RANGE_CHECK: [ internal use only ] 164 * 165 * Asserts that the starting and ending region 166 * addresses fall within the valid range of the map. 167 */ 168 #define VM_MAP_RANGE_CHECK(map, start, end) \ 169 { \ 170 if (start < vm_map_min(map)) \ 171 start = vm_map_min(map); \ 172 if (end > vm_map_max(map)) \ 173 end = vm_map_max(map); \ 174 if (start > end) \ 175 start = end; \ 176 } 177 178 /* 179 * vm_map_startup: 180 * 181 * Initialize the vm_map module. Must be called before 182 * any other vm_map routines. 183 * 184 * Map and entry structures are allocated from the general 185 * purpose memory pool with some exceptions: 186 * 187 * - The kernel map and kmem submap are allocated statically. 188 * - Kernel map entries are allocated out of a static pool. 189 * 190 * These restrictions are necessary since malloc() uses the 191 * maps and requires map entries. 192 */ 193 194 void 195 vm_map_startup(void) 196 { 197 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 198 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 200 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 204 #ifdef INVARIANTS 205 vmspace_zdtor, 206 #else 207 NULL, 208 #endif 209 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 210 } 211 212 static int 213 vmspace_zinit(void *mem, int size, int flags) 214 { 215 struct vmspace *vm; 216 vm_map_t map; 217 218 vm = (struct vmspace *)mem; 219 map = &vm->vm_map; 220 221 memset(map, 0, sizeof(*map)); 222 mtx_init(&map->system_mtx, "vm map (system)", NULL, 223 MTX_DEF | MTX_DUPOK); 224 sx_init(&map->lock, "vm map (user)"); 225 PMAP_LOCK_INIT(vmspace_pmap(vm)); 226 return (0); 227 } 228 229 #ifdef INVARIANTS 230 static void 231 vmspace_zdtor(void *mem, int size, void *arg) 232 { 233 struct vmspace *vm; 234 235 vm = (struct vmspace *)mem; 236 KASSERT(vm->vm_map.nentries == 0, 237 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 238 KASSERT(vm->vm_map.size == 0, 239 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 240 } 241 #endif /* INVARIANTS */ 242 243 /* 244 * Allocate a vmspace structure, including a vm_map and pmap, 245 * and initialize those structures. The refcnt is set to 1. 246 */ 247 struct vmspace * 248 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 249 { 250 struct vmspace *vm; 251 252 vm = uma_zalloc(vmspace_zone, M_WAITOK); 253 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 254 if (!pinit(vmspace_pmap(vm))) { 255 uma_zfree(vmspace_zone, vm); 256 return (NULL); 257 } 258 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 259 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 260 vm->vm_refcnt = 1; 261 vm->vm_shm = NULL; 262 vm->vm_swrss = 0; 263 vm->vm_tsize = 0; 264 vm->vm_dsize = 0; 265 vm->vm_ssize = 0; 266 vm->vm_taddr = 0; 267 vm->vm_daddr = 0; 268 vm->vm_maxsaddr = 0; 269 return (vm); 270 } 271 272 #ifdef RACCT 273 static void 274 vmspace_container_reset(struct proc *p) 275 { 276 277 PROC_LOCK(p); 278 racct_set(p, RACCT_DATA, 0); 279 racct_set(p, RACCT_STACK, 0); 280 racct_set(p, RACCT_RSS, 0); 281 racct_set(p, RACCT_MEMLOCK, 0); 282 racct_set(p, RACCT_VMEM, 0); 283 PROC_UNLOCK(p); 284 } 285 #endif 286 287 static inline void 288 vmspace_dofree(struct vmspace *vm) 289 { 290 291 CTR1(KTR_VM, "vmspace_free: %p", vm); 292 293 /* 294 * Make sure any SysV shm is freed, it might not have been in 295 * exit1(). 296 */ 297 shmexit(vm); 298 299 /* 300 * Lock the map, to wait out all other references to it. 301 * Delete all of the mappings and pages they hold, then call 302 * the pmap module to reclaim anything left. 303 */ 304 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 305 vm_map_max(&vm->vm_map)); 306 307 pmap_release(vmspace_pmap(vm)); 308 vm->vm_map.pmap = NULL; 309 uma_zfree(vmspace_zone, vm); 310 } 311 312 void 313 vmspace_free(struct vmspace *vm) 314 { 315 316 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 317 "vmspace_free() called"); 318 319 if (vm->vm_refcnt == 0) 320 panic("vmspace_free: attempt to free already freed vmspace"); 321 322 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 323 vmspace_dofree(vm); 324 } 325 326 void 327 vmspace_exitfree(struct proc *p) 328 { 329 struct vmspace *vm; 330 331 PROC_VMSPACE_LOCK(p); 332 vm = p->p_vmspace; 333 p->p_vmspace = NULL; 334 PROC_VMSPACE_UNLOCK(p); 335 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 336 vmspace_free(vm); 337 } 338 339 void 340 vmspace_exit(struct thread *td) 341 { 342 int refcnt; 343 struct vmspace *vm; 344 struct proc *p; 345 346 /* 347 * Release user portion of address space. 348 * This releases references to vnodes, 349 * which could cause I/O if the file has been unlinked. 350 * Need to do this early enough that we can still sleep. 351 * 352 * The last exiting process to reach this point releases as 353 * much of the environment as it can. vmspace_dofree() is the 354 * slower fallback in case another process had a temporary 355 * reference to the vmspace. 356 */ 357 358 p = td->td_proc; 359 vm = p->p_vmspace; 360 atomic_add_int(&vmspace0.vm_refcnt, 1); 361 refcnt = vm->vm_refcnt; 362 do { 363 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 364 /* Switch now since other proc might free vmspace */ 365 PROC_VMSPACE_LOCK(p); 366 p->p_vmspace = &vmspace0; 367 PROC_VMSPACE_UNLOCK(p); 368 pmap_activate(td); 369 } 370 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 371 if (refcnt == 1) { 372 if (p->p_vmspace != vm) { 373 /* vmspace not yet freed, switch back */ 374 PROC_VMSPACE_LOCK(p); 375 p->p_vmspace = vm; 376 PROC_VMSPACE_UNLOCK(p); 377 pmap_activate(td); 378 } 379 pmap_remove_pages(vmspace_pmap(vm)); 380 /* Switch now since this proc will free vmspace */ 381 PROC_VMSPACE_LOCK(p); 382 p->p_vmspace = &vmspace0; 383 PROC_VMSPACE_UNLOCK(p); 384 pmap_activate(td); 385 vmspace_dofree(vm); 386 } 387 #ifdef RACCT 388 if (racct_enable) 389 vmspace_container_reset(p); 390 #endif 391 } 392 393 /* Acquire reference to vmspace owned by another process. */ 394 395 struct vmspace * 396 vmspace_acquire_ref(struct proc *p) 397 { 398 struct vmspace *vm; 399 int refcnt; 400 401 PROC_VMSPACE_LOCK(p); 402 vm = p->p_vmspace; 403 if (vm == NULL) { 404 PROC_VMSPACE_UNLOCK(p); 405 return (NULL); 406 } 407 refcnt = vm->vm_refcnt; 408 do { 409 if (refcnt <= 0) { /* Avoid 0->1 transition */ 410 PROC_VMSPACE_UNLOCK(p); 411 return (NULL); 412 } 413 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 414 if (vm != p->p_vmspace) { 415 PROC_VMSPACE_UNLOCK(p); 416 vmspace_free(vm); 417 return (NULL); 418 } 419 PROC_VMSPACE_UNLOCK(p); 420 return (vm); 421 } 422 423 /* 424 * Switch between vmspaces in an AIO kernel process. 425 * 426 * The new vmspace is either the vmspace of a user process obtained 427 * from an active AIO request or the initial vmspace of the AIO kernel 428 * process (when it is idling). Because user processes will block to 429 * drain any active AIO requests before proceeding in exit() or 430 * execve(), the reference count for vmspaces from AIO requests can 431 * never be 0. Similarly, AIO kernel processes hold an extra 432 * reference on their initial vmspace for the life of the process. As 433 * a result, the 'newvm' vmspace always has a non-zero reference 434 * count. This permits an additional reference on 'newvm' to be 435 * acquired via a simple atomic increment rather than the loop in 436 * vmspace_acquire_ref() above. 437 */ 438 void 439 vmspace_switch_aio(struct vmspace *newvm) 440 { 441 struct vmspace *oldvm; 442 443 /* XXX: Need some way to assert that this is an aio daemon. */ 444 445 KASSERT(newvm->vm_refcnt > 0, 446 ("vmspace_switch_aio: newvm unreferenced")); 447 448 oldvm = curproc->p_vmspace; 449 if (oldvm == newvm) 450 return; 451 452 /* 453 * Point to the new address space and refer to it. 454 */ 455 curproc->p_vmspace = newvm; 456 atomic_add_int(&newvm->vm_refcnt, 1); 457 458 /* Activate the new mapping. */ 459 pmap_activate(curthread); 460 461 vmspace_free(oldvm); 462 } 463 464 void 465 _vm_map_lock(vm_map_t map, const char *file, int line) 466 { 467 468 if (map->system_map) 469 mtx_lock_flags_(&map->system_mtx, 0, file, line); 470 else 471 sx_xlock_(&map->lock, file, line); 472 map->timestamp++; 473 } 474 475 void 476 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 477 { 478 vm_object_t object; 479 struct vnode *vp; 480 bool vp_held; 481 482 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 483 return; 484 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 485 ("Submap with execs")); 486 object = entry->object.vm_object; 487 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 488 if ((object->flags & OBJ_ANON) != 0) 489 object = object->handle; 490 else 491 KASSERT(object->backing_object == NULL, 492 ("non-anon object %p shadows", object)); 493 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 494 entry, entry->object.vm_object)); 495 496 /* 497 * Mostly, we do not lock the backing object. It is 498 * referenced by the entry we are processing, so it cannot go 499 * away. 500 */ 501 vp = NULL; 502 vp_held = false; 503 if (object->type == OBJT_DEAD) { 504 /* 505 * For OBJT_DEAD objects, v_writecount was handled in 506 * vnode_pager_dealloc(). 507 */ 508 } else if (object->type == OBJT_VNODE) { 509 vp = object->handle; 510 } else if (object->type == OBJT_SWAP) { 511 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 512 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 513 "entry %p, object %p, add %d", entry, object, add)); 514 /* 515 * Tmpfs VREG node, which was reclaimed, has 516 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 517 * this case there is no v_writecount to adjust. 518 */ 519 VM_OBJECT_RLOCK(object); 520 if ((object->flags & OBJ_TMPFS) != 0) { 521 vp = object->un_pager.swp.swp_tmpfs; 522 if (vp != NULL) { 523 vhold(vp); 524 vp_held = true; 525 } 526 } 527 VM_OBJECT_RUNLOCK(object); 528 } else { 529 KASSERT(0, 530 ("vm_map_entry_set_vnode_text: wrong object type, " 531 "entry %p, object %p, add %d", entry, object, add)); 532 } 533 if (vp != NULL) { 534 if (add) { 535 VOP_SET_TEXT_CHECKED(vp); 536 } else { 537 vn_lock(vp, LK_SHARED | LK_RETRY); 538 VOP_UNSET_TEXT_CHECKED(vp); 539 VOP_UNLOCK(vp); 540 } 541 if (vp_held) 542 vdrop(vp); 543 } 544 } 545 546 /* 547 * Use a different name for this vm_map_entry field when it's use 548 * is not consistent with its use as part of an ordered search tree. 549 */ 550 #define defer_next right 551 552 static void 553 vm_map_process_deferred(void) 554 { 555 struct thread *td; 556 vm_map_entry_t entry, next; 557 vm_object_t object; 558 559 td = curthread; 560 entry = td->td_map_def_user; 561 td->td_map_def_user = NULL; 562 while (entry != NULL) { 563 next = entry->defer_next; 564 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 565 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 566 MAP_ENTRY_VN_EXEC)); 567 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 568 /* 569 * Decrement the object's writemappings and 570 * possibly the vnode's v_writecount. 571 */ 572 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 573 ("Submap with writecount")); 574 object = entry->object.vm_object; 575 KASSERT(object != NULL, ("No object for writecount")); 576 vm_pager_release_writecount(object, entry->start, 577 entry->end); 578 } 579 vm_map_entry_set_vnode_text(entry, false); 580 vm_map_entry_deallocate(entry, FALSE); 581 entry = next; 582 } 583 } 584 585 #ifdef INVARIANTS 586 static void 587 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 588 { 589 590 if (map->system_map) 591 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 592 else 593 sx_assert_(&map->lock, SA_XLOCKED, file, line); 594 } 595 596 #define VM_MAP_ASSERT_LOCKED(map) \ 597 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 598 599 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 600 #ifdef DIAGNOSTIC 601 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 602 #else 603 static int enable_vmmap_check = VMMAP_CHECK_NONE; 604 #endif 605 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 606 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 607 608 static void _vm_map_assert_consistent(vm_map_t map, int check); 609 610 #define VM_MAP_ASSERT_CONSISTENT(map) \ 611 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 612 #ifdef DIAGNOSTIC 613 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 614 if (map->nupdates > map->nentries) { \ 615 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 616 map->nupdates = 0; \ 617 } \ 618 } while (0) 619 #else 620 #define VM_MAP_UNLOCK_CONSISTENT(map) 621 #endif 622 #else 623 #define VM_MAP_ASSERT_LOCKED(map) 624 #define VM_MAP_ASSERT_CONSISTENT(map) 625 #define VM_MAP_UNLOCK_CONSISTENT(map) 626 #endif /* INVARIANTS */ 627 628 void 629 _vm_map_unlock(vm_map_t map, const char *file, int line) 630 { 631 632 VM_MAP_UNLOCK_CONSISTENT(map); 633 if (map->system_map) 634 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 635 else { 636 sx_xunlock_(&map->lock, file, line); 637 vm_map_process_deferred(); 638 } 639 } 640 641 void 642 _vm_map_lock_read(vm_map_t map, const char *file, int line) 643 { 644 645 if (map->system_map) 646 mtx_lock_flags_(&map->system_mtx, 0, file, line); 647 else 648 sx_slock_(&map->lock, file, line); 649 } 650 651 void 652 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 653 { 654 655 if (map->system_map) 656 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 657 else { 658 sx_sunlock_(&map->lock, file, line); 659 vm_map_process_deferred(); 660 } 661 } 662 663 int 664 _vm_map_trylock(vm_map_t map, const char *file, int line) 665 { 666 int error; 667 668 error = map->system_map ? 669 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 670 !sx_try_xlock_(&map->lock, file, line); 671 if (error == 0) 672 map->timestamp++; 673 return (error == 0); 674 } 675 676 int 677 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 678 { 679 int error; 680 681 error = map->system_map ? 682 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 683 !sx_try_slock_(&map->lock, file, line); 684 return (error == 0); 685 } 686 687 /* 688 * _vm_map_lock_upgrade: [ internal use only ] 689 * 690 * Tries to upgrade a read (shared) lock on the specified map to a write 691 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 692 * non-zero value if the upgrade fails. If the upgrade fails, the map is 693 * returned without a read or write lock held. 694 * 695 * Requires that the map be read locked. 696 */ 697 int 698 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 699 { 700 unsigned int last_timestamp; 701 702 if (map->system_map) { 703 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 704 } else { 705 if (!sx_try_upgrade_(&map->lock, file, line)) { 706 last_timestamp = map->timestamp; 707 sx_sunlock_(&map->lock, file, line); 708 vm_map_process_deferred(); 709 /* 710 * If the map's timestamp does not change while the 711 * map is unlocked, then the upgrade succeeds. 712 */ 713 sx_xlock_(&map->lock, file, line); 714 if (last_timestamp != map->timestamp) { 715 sx_xunlock_(&map->lock, file, line); 716 return (1); 717 } 718 } 719 } 720 map->timestamp++; 721 return (0); 722 } 723 724 void 725 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 726 { 727 728 if (map->system_map) { 729 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 730 } else { 731 VM_MAP_UNLOCK_CONSISTENT(map); 732 sx_downgrade_(&map->lock, file, line); 733 } 734 } 735 736 /* 737 * vm_map_locked: 738 * 739 * Returns a non-zero value if the caller holds a write (exclusive) lock 740 * on the specified map and the value "0" otherwise. 741 */ 742 int 743 vm_map_locked(vm_map_t map) 744 { 745 746 if (map->system_map) 747 return (mtx_owned(&map->system_mtx)); 748 else 749 return (sx_xlocked(&map->lock)); 750 } 751 752 /* 753 * _vm_map_unlock_and_wait: 754 * 755 * Atomically releases the lock on the specified map and puts the calling 756 * thread to sleep. The calling thread will remain asleep until either 757 * vm_map_wakeup() is performed on the map or the specified timeout is 758 * exceeded. 759 * 760 * WARNING! This function does not perform deferred deallocations of 761 * objects and map entries. Therefore, the calling thread is expected to 762 * reacquire the map lock after reawakening and later perform an ordinary 763 * unlock operation, such as vm_map_unlock(), before completing its 764 * operation on the map. 765 */ 766 int 767 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 768 { 769 770 VM_MAP_UNLOCK_CONSISTENT(map); 771 mtx_lock(&map_sleep_mtx); 772 if (map->system_map) 773 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 774 else 775 sx_xunlock_(&map->lock, file, line); 776 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 777 timo)); 778 } 779 780 /* 781 * vm_map_wakeup: 782 * 783 * Awaken any threads that have slept on the map using 784 * vm_map_unlock_and_wait(). 785 */ 786 void 787 vm_map_wakeup(vm_map_t map) 788 { 789 790 /* 791 * Acquire and release map_sleep_mtx to prevent a wakeup() 792 * from being performed (and lost) between the map unlock 793 * and the msleep() in _vm_map_unlock_and_wait(). 794 */ 795 mtx_lock(&map_sleep_mtx); 796 mtx_unlock(&map_sleep_mtx); 797 wakeup(&map->root); 798 } 799 800 void 801 vm_map_busy(vm_map_t map) 802 { 803 804 VM_MAP_ASSERT_LOCKED(map); 805 map->busy++; 806 } 807 808 void 809 vm_map_unbusy(vm_map_t map) 810 { 811 812 VM_MAP_ASSERT_LOCKED(map); 813 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 814 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 815 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 816 wakeup(&map->busy); 817 } 818 } 819 820 void 821 vm_map_wait_busy(vm_map_t map) 822 { 823 824 VM_MAP_ASSERT_LOCKED(map); 825 while (map->busy) { 826 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 827 if (map->system_map) 828 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 829 else 830 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 831 } 832 map->timestamp++; 833 } 834 835 long 836 vmspace_resident_count(struct vmspace *vmspace) 837 { 838 return pmap_resident_count(vmspace_pmap(vmspace)); 839 } 840 841 /* 842 * Initialize an existing vm_map structure 843 * such as that in the vmspace structure. 844 */ 845 static void 846 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 847 { 848 849 map->header.eflags = MAP_ENTRY_HEADER; 850 map->needs_wakeup = FALSE; 851 map->system_map = 0; 852 map->pmap = pmap; 853 map->header.end = min; 854 map->header.start = max; 855 map->flags = 0; 856 map->header.left = map->header.right = &map->header; 857 map->root = NULL; 858 map->timestamp = 0; 859 map->busy = 0; 860 map->anon_loc = 0; 861 #ifdef DIAGNOSTIC 862 map->nupdates = 0; 863 #endif 864 } 865 866 void 867 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 868 { 869 870 _vm_map_init(map, pmap, min, max); 871 mtx_init(&map->system_mtx, "vm map (system)", NULL, 872 MTX_DEF | MTX_DUPOK); 873 sx_init(&map->lock, "vm map (user)"); 874 } 875 876 /* 877 * vm_map_entry_dispose: [ internal use only ] 878 * 879 * Inverse of vm_map_entry_create. 880 */ 881 static void 882 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 883 { 884 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 885 } 886 887 /* 888 * vm_map_entry_create: [ internal use only ] 889 * 890 * Allocates a VM map entry for insertion. 891 * No entry fields are filled in. 892 */ 893 static vm_map_entry_t 894 vm_map_entry_create(vm_map_t map) 895 { 896 vm_map_entry_t new_entry; 897 898 if (map->system_map) 899 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 900 else 901 new_entry = uma_zalloc(mapentzone, M_WAITOK); 902 if (new_entry == NULL) 903 panic("vm_map_entry_create: kernel resources exhausted"); 904 return (new_entry); 905 } 906 907 /* 908 * vm_map_entry_set_behavior: 909 * 910 * Set the expected access behavior, either normal, random, or 911 * sequential. 912 */ 913 static inline void 914 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 915 { 916 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 917 (behavior & MAP_ENTRY_BEHAV_MASK); 918 } 919 920 /* 921 * vm_map_entry_max_free_{left,right}: 922 * 923 * Compute the size of the largest free gap between two entries, 924 * one the root of a tree and the other the ancestor of that root 925 * that is the least or greatest ancestor found on the search path. 926 */ 927 static inline vm_size_t 928 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 929 { 930 931 return (root->left != left_ancestor ? 932 root->left->max_free : root->start - left_ancestor->end); 933 } 934 935 static inline vm_size_t 936 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 937 { 938 939 return (root->right != right_ancestor ? 940 root->right->max_free : right_ancestor->start - root->end); 941 } 942 943 /* 944 * vm_map_entry_{pred,succ}: 945 * 946 * Find the {predecessor, successor} of the entry by taking one step 947 * in the appropriate direction and backtracking as much as necessary. 948 * vm_map_entry_succ is defined in vm_map.h. 949 */ 950 static inline vm_map_entry_t 951 vm_map_entry_pred(vm_map_entry_t entry) 952 { 953 vm_map_entry_t prior; 954 955 prior = entry->left; 956 if (prior->right->start < entry->start) { 957 do 958 prior = prior->right; 959 while (prior->right != entry); 960 } 961 return (prior); 962 } 963 964 static inline vm_size_t 965 vm_size_max(vm_size_t a, vm_size_t b) 966 { 967 968 return (a > b ? a : b); 969 } 970 971 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 972 vm_map_entry_t z; \ 973 vm_size_t max_free; \ 974 \ 975 /* \ 976 * Infer root->right->max_free == root->max_free when \ 977 * y->max_free < root->max_free || root->max_free == 0. \ 978 * Otherwise, look right to find it. \ 979 */ \ 980 y = root->left; \ 981 max_free = root->max_free; \ 982 KASSERT(max_free == vm_size_max( \ 983 vm_map_entry_max_free_left(root, llist), \ 984 vm_map_entry_max_free_right(root, rlist)), \ 985 ("%s: max_free invariant fails", __func__)); \ 986 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 987 max_free = vm_map_entry_max_free_right(root, rlist); \ 988 if (y != llist && (test)) { \ 989 /* Rotate right and make y root. */ \ 990 z = y->right; \ 991 if (z != root) { \ 992 root->left = z; \ 993 y->right = root; \ 994 if (max_free < y->max_free) \ 995 root->max_free = max_free = \ 996 vm_size_max(max_free, z->max_free); \ 997 } else if (max_free < y->max_free) \ 998 root->max_free = max_free = \ 999 vm_size_max(max_free, root->start - y->end);\ 1000 root = y; \ 1001 y = root->left; \ 1002 } \ 1003 /* Copy right->max_free. Put root on rlist. */ \ 1004 root->max_free = max_free; \ 1005 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1006 ("%s: max_free not copied from right", __func__)); \ 1007 root->left = rlist; \ 1008 rlist = root; \ 1009 root = y != llist ? y : NULL; \ 1010 } while (0) 1011 1012 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1013 vm_map_entry_t z; \ 1014 vm_size_t max_free; \ 1015 \ 1016 /* \ 1017 * Infer root->left->max_free == root->max_free when \ 1018 * y->max_free < root->max_free || root->max_free == 0. \ 1019 * Otherwise, look left to find it. \ 1020 */ \ 1021 y = root->right; \ 1022 max_free = root->max_free; \ 1023 KASSERT(max_free == vm_size_max( \ 1024 vm_map_entry_max_free_left(root, llist), \ 1025 vm_map_entry_max_free_right(root, rlist)), \ 1026 ("%s: max_free invariant fails", __func__)); \ 1027 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1028 max_free = vm_map_entry_max_free_left(root, llist); \ 1029 if (y != rlist && (test)) { \ 1030 /* Rotate left and make y root. */ \ 1031 z = y->left; \ 1032 if (z != root) { \ 1033 root->right = z; \ 1034 y->left = root; \ 1035 if (max_free < y->max_free) \ 1036 root->max_free = max_free = \ 1037 vm_size_max(max_free, z->max_free); \ 1038 } else if (max_free < y->max_free) \ 1039 root->max_free = max_free = \ 1040 vm_size_max(max_free, y->start - root->end);\ 1041 root = y; \ 1042 y = root->right; \ 1043 } \ 1044 /* Copy left->max_free. Put root on llist. */ \ 1045 root->max_free = max_free; \ 1046 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1047 ("%s: max_free not copied from left", __func__)); \ 1048 root->right = llist; \ 1049 llist = root; \ 1050 root = y != rlist ? y : NULL; \ 1051 } while (0) 1052 1053 /* 1054 * Walk down the tree until we find addr or a gap where addr would go, breaking 1055 * off left and right subtrees of nodes less than, or greater than addr. Treat 1056 * subtrees with root->max_free < length as empty trees. llist and rlist are 1057 * the two sides in reverse order (bottom-up), with llist linked by the right 1058 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1059 * lists terminated by &map->header. This function, and the subsequent call to 1060 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1061 * values in &map->header. 1062 */ 1063 static __always_inline vm_map_entry_t 1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1065 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1066 { 1067 vm_map_entry_t left, right, root, y; 1068 1069 left = right = &map->header; 1070 root = map->root; 1071 while (root != NULL && root->max_free >= length) { 1072 KASSERT(left->end <= root->start && 1073 root->end <= right->start, 1074 ("%s: root not within tree bounds", __func__)); 1075 if (addr < root->start) { 1076 SPLAY_LEFT_STEP(root, y, left, right, 1077 y->max_free >= length && addr < y->start); 1078 } else if (addr >= root->end) { 1079 SPLAY_RIGHT_STEP(root, y, left, right, 1080 y->max_free >= length && addr >= y->end); 1081 } else 1082 break; 1083 } 1084 *llist = left; 1085 *rlist = right; 1086 return (root); 1087 } 1088 1089 static __always_inline void 1090 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1091 { 1092 vm_map_entry_t hi, right, y; 1093 1094 right = *rlist; 1095 hi = root->right == right ? NULL : root->right; 1096 if (hi == NULL) 1097 return; 1098 do 1099 SPLAY_LEFT_STEP(hi, y, root, right, true); 1100 while (hi != NULL); 1101 *rlist = right; 1102 } 1103 1104 static __always_inline void 1105 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1106 { 1107 vm_map_entry_t left, lo, y; 1108 1109 left = *llist; 1110 lo = root->left == left ? NULL : root->left; 1111 if (lo == NULL) 1112 return; 1113 do 1114 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1115 while (lo != NULL); 1116 *llist = left; 1117 } 1118 1119 static inline void 1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1121 { 1122 vm_map_entry_t tmp; 1123 1124 tmp = *b; 1125 *b = *a; 1126 *a = tmp; 1127 } 1128 1129 /* 1130 * Walk back up the two spines, flip the pointers and set max_free. The 1131 * subtrees of the root go at the bottom of llist and rlist. 1132 */ 1133 static vm_size_t 1134 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1135 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1136 { 1137 do { 1138 /* 1139 * The max_free values of the children of llist are in 1140 * llist->max_free and max_free. Update with the 1141 * max value. 1142 */ 1143 llist->max_free = max_free = 1144 vm_size_max(llist->max_free, max_free); 1145 vm_map_entry_swap(&llist->right, &tail); 1146 vm_map_entry_swap(&tail, &llist); 1147 } while (llist != header); 1148 root->left = tail; 1149 return (max_free); 1150 } 1151 1152 /* 1153 * When llist is known to be the predecessor of root. 1154 */ 1155 static inline vm_size_t 1156 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1157 vm_map_entry_t llist) 1158 { 1159 vm_size_t max_free; 1160 1161 max_free = root->start - llist->end; 1162 if (llist != header) { 1163 max_free = vm_map_splay_merge_left_walk(header, root, 1164 root, max_free, llist); 1165 } else { 1166 root->left = header; 1167 header->right = root; 1168 } 1169 return (max_free); 1170 } 1171 1172 /* 1173 * When llist may or may not be the predecessor of root. 1174 */ 1175 static inline vm_size_t 1176 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1177 vm_map_entry_t llist) 1178 { 1179 vm_size_t max_free; 1180 1181 max_free = vm_map_entry_max_free_left(root, llist); 1182 if (llist != header) { 1183 max_free = vm_map_splay_merge_left_walk(header, root, 1184 root->left == llist ? root : root->left, 1185 max_free, llist); 1186 } 1187 return (max_free); 1188 } 1189 1190 static vm_size_t 1191 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1192 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1193 { 1194 do { 1195 /* 1196 * The max_free values of the children of rlist are in 1197 * rlist->max_free and max_free. Update with the 1198 * max value. 1199 */ 1200 rlist->max_free = max_free = 1201 vm_size_max(rlist->max_free, max_free); 1202 vm_map_entry_swap(&rlist->left, &tail); 1203 vm_map_entry_swap(&tail, &rlist); 1204 } while (rlist != header); 1205 root->right = tail; 1206 return (max_free); 1207 } 1208 1209 /* 1210 * When rlist is known to be the succecessor of root. 1211 */ 1212 static inline vm_size_t 1213 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1214 vm_map_entry_t rlist) 1215 { 1216 vm_size_t max_free; 1217 1218 max_free = rlist->start - root->end; 1219 if (rlist != header) { 1220 max_free = vm_map_splay_merge_right_walk(header, root, 1221 root, max_free, rlist); 1222 } else { 1223 root->right = header; 1224 header->left = root; 1225 } 1226 return (max_free); 1227 } 1228 1229 /* 1230 * When rlist may or may not be the succecessor of root. 1231 */ 1232 static inline vm_size_t 1233 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1234 vm_map_entry_t rlist) 1235 { 1236 vm_size_t max_free; 1237 1238 max_free = vm_map_entry_max_free_right(root, rlist); 1239 if (rlist != header) { 1240 max_free = vm_map_splay_merge_right_walk(header, root, 1241 root->right == rlist ? root : root->right, 1242 max_free, rlist); 1243 } 1244 return (max_free); 1245 } 1246 1247 /* 1248 * vm_map_splay: 1249 * 1250 * The Sleator and Tarjan top-down splay algorithm with the 1251 * following variation. Max_free must be computed bottom-up, so 1252 * on the downward pass, maintain the left and right spines in 1253 * reverse order. Then, make a second pass up each side to fix 1254 * the pointers and compute max_free. The time bound is O(log n) 1255 * amortized. 1256 * 1257 * The tree is threaded, which means that there are no null pointers. 1258 * When a node has no left child, its left pointer points to its 1259 * predecessor, which the last ancestor on the search path from the root 1260 * where the search branched right. Likewise, when a node has no right 1261 * child, its right pointer points to its successor. The map header node 1262 * is the predecessor of the first map entry, and the successor of the 1263 * last. 1264 * 1265 * The new root is the vm_map_entry containing "addr", or else an 1266 * adjacent entry (lower if possible) if addr is not in the tree. 1267 * 1268 * The map must be locked, and leaves it so. 1269 * 1270 * Returns: the new root. 1271 */ 1272 static vm_map_entry_t 1273 vm_map_splay(vm_map_t map, vm_offset_t addr) 1274 { 1275 vm_map_entry_t header, llist, rlist, root; 1276 vm_size_t max_free_left, max_free_right; 1277 1278 header = &map->header; 1279 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1280 if (root != NULL) { 1281 max_free_left = vm_map_splay_merge_left(header, root, llist); 1282 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1283 } else if (llist != header) { 1284 /* 1285 * Recover the greatest node in the left 1286 * subtree and make it the root. 1287 */ 1288 root = llist; 1289 llist = root->right; 1290 max_free_left = vm_map_splay_merge_left(header, root, llist); 1291 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1292 } else if (rlist != header) { 1293 /* 1294 * Recover the least node in the right 1295 * subtree and make it the root. 1296 */ 1297 root = rlist; 1298 rlist = root->left; 1299 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1300 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1301 } else { 1302 /* There is no root. */ 1303 return (NULL); 1304 } 1305 root->max_free = vm_size_max(max_free_left, max_free_right); 1306 map->root = root; 1307 VM_MAP_ASSERT_CONSISTENT(map); 1308 return (root); 1309 } 1310 1311 /* 1312 * vm_map_entry_{un,}link: 1313 * 1314 * Insert/remove entries from maps. On linking, if new entry clips 1315 * existing entry, trim existing entry to avoid overlap, and manage 1316 * offsets. On unlinking, merge disappearing entry with neighbor, if 1317 * called for, and manage offsets. Callers should not modify fields in 1318 * entries already mapped. 1319 */ 1320 static void 1321 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1322 { 1323 vm_map_entry_t header, llist, rlist, root; 1324 vm_size_t max_free_left, max_free_right; 1325 1326 CTR3(KTR_VM, 1327 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1328 map->nentries, entry); 1329 VM_MAP_ASSERT_LOCKED(map); 1330 map->nentries++; 1331 header = &map->header; 1332 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1333 if (root == NULL) { 1334 /* 1335 * The new entry does not overlap any existing entry in the 1336 * map, so it becomes the new root of the map tree. 1337 */ 1338 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1339 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1340 } else if (entry->start == root->start) { 1341 /* 1342 * The new entry is a clone of root, with only the end field 1343 * changed. The root entry will be shrunk to abut the new 1344 * entry, and will be the right child of the new root entry in 1345 * the modified map. 1346 */ 1347 KASSERT(entry->end < root->end, 1348 ("%s: clip_start not within entry", __func__)); 1349 vm_map_splay_findprev(root, &llist); 1350 root->offset += entry->end - root->start; 1351 root->start = entry->end; 1352 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1353 max_free_right = root->max_free = vm_size_max( 1354 vm_map_splay_merge_pred(entry, root, entry), 1355 vm_map_splay_merge_right(header, root, rlist)); 1356 } else { 1357 /* 1358 * The new entry is a clone of root, with only the start field 1359 * changed. The root entry will be shrunk to abut the new 1360 * entry, and will be the left child of the new root entry in 1361 * the modified map. 1362 */ 1363 KASSERT(entry->end == root->end, 1364 ("%s: clip_start not within entry", __func__)); 1365 vm_map_splay_findnext(root, &rlist); 1366 entry->offset += entry->start - root->start; 1367 root->end = entry->start; 1368 max_free_left = root->max_free = vm_size_max( 1369 vm_map_splay_merge_left(header, root, llist), 1370 vm_map_splay_merge_succ(entry, root, entry)); 1371 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1372 } 1373 entry->max_free = vm_size_max(max_free_left, max_free_right); 1374 map->root = entry; 1375 VM_MAP_ASSERT_CONSISTENT(map); 1376 } 1377 1378 enum unlink_merge_type { 1379 UNLINK_MERGE_NONE, 1380 UNLINK_MERGE_NEXT 1381 }; 1382 1383 static void 1384 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1385 enum unlink_merge_type op) 1386 { 1387 vm_map_entry_t header, llist, rlist, root; 1388 vm_size_t max_free_left, max_free_right; 1389 1390 VM_MAP_ASSERT_LOCKED(map); 1391 header = &map->header; 1392 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1393 KASSERT(root != NULL, 1394 ("vm_map_entry_unlink: unlink object not mapped")); 1395 1396 vm_map_splay_findprev(root, &llist); 1397 vm_map_splay_findnext(root, &rlist); 1398 if (op == UNLINK_MERGE_NEXT) { 1399 rlist->start = root->start; 1400 rlist->offset = root->offset; 1401 } 1402 if (llist != header) { 1403 root = llist; 1404 llist = root->right; 1405 max_free_left = vm_map_splay_merge_left(header, root, llist); 1406 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1407 } else if (rlist != header) { 1408 root = rlist; 1409 rlist = root->left; 1410 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1411 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1412 } else { 1413 header->left = header->right = header; 1414 root = NULL; 1415 } 1416 if (root != NULL) 1417 root->max_free = vm_size_max(max_free_left, max_free_right); 1418 map->root = root; 1419 VM_MAP_ASSERT_CONSISTENT(map); 1420 map->nentries--; 1421 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1422 map->nentries, entry); 1423 } 1424 1425 /* 1426 * vm_map_entry_resize: 1427 * 1428 * Resize a vm_map_entry, recompute the amount of free space that 1429 * follows it and propagate that value up the tree. 1430 * 1431 * The map must be locked, and leaves it so. 1432 */ 1433 static void 1434 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1435 { 1436 vm_map_entry_t header, llist, rlist, root; 1437 1438 VM_MAP_ASSERT_LOCKED(map); 1439 header = &map->header; 1440 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1441 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1442 vm_map_splay_findnext(root, &rlist); 1443 entry->end += grow_amount; 1444 root->max_free = vm_size_max( 1445 vm_map_splay_merge_left(header, root, llist), 1446 vm_map_splay_merge_succ(header, root, rlist)); 1447 map->root = root; 1448 VM_MAP_ASSERT_CONSISTENT(map); 1449 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1450 __func__, map, map->nentries, entry); 1451 } 1452 1453 /* 1454 * vm_map_lookup_entry: [ internal use only ] 1455 * 1456 * Finds the map entry containing (or 1457 * immediately preceding) the specified address 1458 * in the given map; the entry is returned 1459 * in the "entry" parameter. The boolean 1460 * result indicates whether the address is 1461 * actually contained in the map. 1462 */ 1463 boolean_t 1464 vm_map_lookup_entry( 1465 vm_map_t map, 1466 vm_offset_t address, 1467 vm_map_entry_t *entry) /* OUT */ 1468 { 1469 vm_map_entry_t cur, header, lbound, ubound; 1470 boolean_t locked; 1471 1472 /* 1473 * If the map is empty, then the map entry immediately preceding 1474 * "address" is the map's header. 1475 */ 1476 header = &map->header; 1477 cur = map->root; 1478 if (cur == NULL) { 1479 *entry = header; 1480 return (FALSE); 1481 } 1482 if (address >= cur->start && cur->end > address) { 1483 *entry = cur; 1484 return (TRUE); 1485 } 1486 if ((locked = vm_map_locked(map)) || 1487 sx_try_upgrade(&map->lock)) { 1488 /* 1489 * Splay requires a write lock on the map. However, it only 1490 * restructures the binary search tree; it does not otherwise 1491 * change the map. Thus, the map's timestamp need not change 1492 * on a temporary upgrade. 1493 */ 1494 cur = vm_map_splay(map, address); 1495 if (!locked) { 1496 VM_MAP_UNLOCK_CONSISTENT(map); 1497 sx_downgrade(&map->lock); 1498 } 1499 1500 /* 1501 * If "address" is contained within a map entry, the new root 1502 * is that map entry. Otherwise, the new root is a map entry 1503 * immediately before or after "address". 1504 */ 1505 if (address < cur->start) { 1506 *entry = header; 1507 return (FALSE); 1508 } 1509 *entry = cur; 1510 return (address < cur->end); 1511 } 1512 /* 1513 * Since the map is only locked for read access, perform a 1514 * standard binary search tree lookup for "address". 1515 */ 1516 lbound = ubound = header; 1517 for (;;) { 1518 if (address < cur->start) { 1519 ubound = cur; 1520 cur = cur->left; 1521 if (cur == lbound) 1522 break; 1523 } else if (cur->end <= address) { 1524 lbound = cur; 1525 cur = cur->right; 1526 if (cur == ubound) 1527 break; 1528 } else { 1529 *entry = cur; 1530 return (TRUE); 1531 } 1532 } 1533 *entry = lbound; 1534 return (FALSE); 1535 } 1536 1537 /* 1538 * vm_map_insert: 1539 * 1540 * Inserts the given whole VM object into the target 1541 * map at the specified address range. The object's 1542 * size should match that of the address range. 1543 * 1544 * Requires that the map be locked, and leaves it so. 1545 * 1546 * If object is non-NULL, ref count must be bumped by caller 1547 * prior to making call to account for the new entry. 1548 */ 1549 int 1550 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1551 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1552 { 1553 vm_map_entry_t new_entry, next_entry, prev_entry; 1554 struct ucred *cred; 1555 vm_eflags_t protoeflags; 1556 vm_inherit_t inheritance; 1557 1558 VM_MAP_ASSERT_LOCKED(map); 1559 KASSERT(object != kernel_object || 1560 (cow & MAP_COPY_ON_WRITE) == 0, 1561 ("vm_map_insert: kernel object and COW")); 1562 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1563 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1564 KASSERT((prot & ~max) == 0, 1565 ("prot %#x is not subset of max_prot %#x", prot, max)); 1566 1567 /* 1568 * Check that the start and end points are not bogus. 1569 */ 1570 if (start == end || !vm_map_range_valid(map, start, end)) 1571 return (KERN_INVALID_ADDRESS); 1572 1573 /* 1574 * Find the entry prior to the proposed starting address; if it's part 1575 * of an existing entry, this range is bogus. 1576 */ 1577 if (vm_map_lookup_entry(map, start, &prev_entry)) 1578 return (KERN_NO_SPACE); 1579 1580 /* 1581 * Assert that the next entry doesn't overlap the end point. 1582 */ 1583 next_entry = vm_map_entry_succ(prev_entry); 1584 if (next_entry->start < end) 1585 return (KERN_NO_SPACE); 1586 1587 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1588 max != VM_PROT_NONE)) 1589 return (KERN_INVALID_ARGUMENT); 1590 1591 protoeflags = 0; 1592 if (cow & MAP_COPY_ON_WRITE) 1593 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1594 if (cow & MAP_NOFAULT) 1595 protoeflags |= MAP_ENTRY_NOFAULT; 1596 if (cow & MAP_DISABLE_SYNCER) 1597 protoeflags |= MAP_ENTRY_NOSYNC; 1598 if (cow & MAP_DISABLE_COREDUMP) 1599 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1600 if (cow & MAP_STACK_GROWS_DOWN) 1601 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1602 if (cow & MAP_STACK_GROWS_UP) 1603 protoeflags |= MAP_ENTRY_GROWS_UP; 1604 if (cow & MAP_WRITECOUNT) 1605 protoeflags |= MAP_ENTRY_WRITECNT; 1606 if (cow & MAP_VN_EXEC) 1607 protoeflags |= MAP_ENTRY_VN_EXEC; 1608 if ((cow & MAP_CREATE_GUARD) != 0) 1609 protoeflags |= MAP_ENTRY_GUARD; 1610 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1611 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1612 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1613 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1614 if (cow & MAP_INHERIT_SHARE) 1615 inheritance = VM_INHERIT_SHARE; 1616 else 1617 inheritance = VM_INHERIT_DEFAULT; 1618 1619 cred = NULL; 1620 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1621 goto charged; 1622 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1623 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1624 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1625 return (KERN_RESOURCE_SHORTAGE); 1626 KASSERT(object == NULL || 1627 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1628 object->cred == NULL, 1629 ("overcommit: vm_map_insert o %p", object)); 1630 cred = curthread->td_ucred; 1631 } 1632 1633 charged: 1634 /* Expand the kernel pmap, if necessary. */ 1635 if (map == kernel_map && end > kernel_vm_end) 1636 pmap_growkernel(end); 1637 if (object != NULL) { 1638 /* 1639 * OBJ_ONEMAPPING must be cleared unless this mapping 1640 * is trivially proven to be the only mapping for any 1641 * of the object's pages. (Object granularity 1642 * reference counting is insufficient to recognize 1643 * aliases with precision.) 1644 */ 1645 if ((object->flags & OBJ_ANON) != 0) { 1646 VM_OBJECT_WLOCK(object); 1647 if (object->ref_count > 1 || object->shadow_count != 0) 1648 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1649 VM_OBJECT_WUNLOCK(object); 1650 } 1651 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1652 protoeflags && 1653 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1654 MAP_VN_EXEC)) == 0 && 1655 prev_entry->end == start && (prev_entry->cred == cred || 1656 (prev_entry->object.vm_object != NULL && 1657 prev_entry->object.vm_object->cred == cred)) && 1658 vm_object_coalesce(prev_entry->object.vm_object, 1659 prev_entry->offset, 1660 (vm_size_t)(prev_entry->end - prev_entry->start), 1661 (vm_size_t)(end - prev_entry->end), cred != NULL && 1662 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1663 /* 1664 * We were able to extend the object. Determine if we 1665 * can extend the previous map entry to include the 1666 * new range as well. 1667 */ 1668 if (prev_entry->inheritance == inheritance && 1669 prev_entry->protection == prot && 1670 prev_entry->max_protection == max && 1671 prev_entry->wired_count == 0) { 1672 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1673 0, ("prev_entry %p has incoherent wiring", 1674 prev_entry)); 1675 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1676 map->size += end - prev_entry->end; 1677 vm_map_entry_resize(map, prev_entry, 1678 end - prev_entry->end); 1679 vm_map_try_merge_entries(map, prev_entry, next_entry); 1680 return (KERN_SUCCESS); 1681 } 1682 1683 /* 1684 * If we can extend the object but cannot extend the 1685 * map entry, we have to create a new map entry. We 1686 * must bump the ref count on the extended object to 1687 * account for it. object may be NULL. 1688 */ 1689 object = prev_entry->object.vm_object; 1690 offset = prev_entry->offset + 1691 (prev_entry->end - prev_entry->start); 1692 vm_object_reference(object); 1693 if (cred != NULL && object != NULL && object->cred != NULL && 1694 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1695 /* Object already accounts for this uid. */ 1696 cred = NULL; 1697 } 1698 } 1699 if (cred != NULL) 1700 crhold(cred); 1701 1702 /* 1703 * Create a new entry 1704 */ 1705 new_entry = vm_map_entry_create(map); 1706 new_entry->start = start; 1707 new_entry->end = end; 1708 new_entry->cred = NULL; 1709 1710 new_entry->eflags = protoeflags; 1711 new_entry->object.vm_object = object; 1712 new_entry->offset = offset; 1713 1714 new_entry->inheritance = inheritance; 1715 new_entry->protection = prot; 1716 new_entry->max_protection = max; 1717 new_entry->wired_count = 0; 1718 new_entry->wiring_thread = NULL; 1719 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1720 new_entry->next_read = start; 1721 1722 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1723 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1724 new_entry->cred = cred; 1725 1726 /* 1727 * Insert the new entry into the list 1728 */ 1729 vm_map_entry_link(map, new_entry); 1730 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1731 map->size += new_entry->end - new_entry->start; 1732 1733 /* 1734 * Try to coalesce the new entry with both the previous and next 1735 * entries in the list. Previously, we only attempted to coalesce 1736 * with the previous entry when object is NULL. Here, we handle the 1737 * other cases, which are less common. 1738 */ 1739 vm_map_try_merge_entries(map, prev_entry, new_entry); 1740 vm_map_try_merge_entries(map, new_entry, next_entry); 1741 1742 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1743 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1744 end - start, cow & MAP_PREFAULT_PARTIAL); 1745 } 1746 1747 return (KERN_SUCCESS); 1748 } 1749 1750 /* 1751 * vm_map_findspace: 1752 * 1753 * Find the first fit (lowest VM address) for "length" free bytes 1754 * beginning at address >= start in the given map. 1755 * 1756 * In a vm_map_entry, "max_free" is the maximum amount of 1757 * contiguous free space between an entry in its subtree and a 1758 * neighbor of that entry. This allows finding a free region in 1759 * one path down the tree, so O(log n) amortized with splay 1760 * trees. 1761 * 1762 * The map must be locked, and leaves it so. 1763 * 1764 * Returns: starting address if sufficient space, 1765 * vm_map_max(map)-length+1 if insufficient space. 1766 */ 1767 vm_offset_t 1768 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1769 { 1770 vm_map_entry_t header, llist, rlist, root, y; 1771 vm_size_t left_length, max_free_left, max_free_right; 1772 vm_offset_t gap_end; 1773 1774 /* 1775 * Request must fit within min/max VM address and must avoid 1776 * address wrap. 1777 */ 1778 start = MAX(start, vm_map_min(map)); 1779 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1780 return (vm_map_max(map) - length + 1); 1781 1782 /* Empty tree means wide open address space. */ 1783 if (map->root == NULL) 1784 return (start); 1785 1786 /* 1787 * After splay_split, if start is within an entry, push it to the start 1788 * of the following gap. If rlist is at the end of the gap containing 1789 * start, save the end of that gap in gap_end to see if the gap is big 1790 * enough; otherwise set gap_end to start skip gap-checking and move 1791 * directly to a search of the right subtree. 1792 */ 1793 header = &map->header; 1794 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1795 gap_end = rlist->start; 1796 if (root != NULL) { 1797 start = root->end; 1798 if (root->right != rlist) 1799 gap_end = start; 1800 max_free_left = vm_map_splay_merge_left(header, root, llist); 1801 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1802 } else if (rlist != header) { 1803 root = rlist; 1804 rlist = root->left; 1805 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1806 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1807 } else { 1808 root = llist; 1809 llist = root->right; 1810 max_free_left = vm_map_splay_merge_left(header, root, llist); 1811 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1812 } 1813 root->max_free = vm_size_max(max_free_left, max_free_right); 1814 map->root = root; 1815 VM_MAP_ASSERT_CONSISTENT(map); 1816 if (length <= gap_end - start) 1817 return (start); 1818 1819 /* With max_free, can immediately tell if no solution. */ 1820 if (root->right == header || length > root->right->max_free) 1821 return (vm_map_max(map) - length + 1); 1822 1823 /* 1824 * Splay for the least large-enough gap in the right subtree. 1825 */ 1826 llist = rlist = header; 1827 for (left_length = 0;; 1828 left_length = vm_map_entry_max_free_left(root, llist)) { 1829 if (length <= left_length) 1830 SPLAY_LEFT_STEP(root, y, llist, rlist, 1831 length <= vm_map_entry_max_free_left(y, llist)); 1832 else 1833 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1834 length > vm_map_entry_max_free_left(y, root)); 1835 if (root == NULL) 1836 break; 1837 } 1838 root = llist; 1839 llist = root->right; 1840 max_free_left = vm_map_splay_merge_left(header, root, llist); 1841 if (rlist == header) { 1842 root->max_free = vm_size_max(max_free_left, 1843 vm_map_splay_merge_succ(header, root, rlist)); 1844 } else { 1845 y = rlist; 1846 rlist = y->left; 1847 y->max_free = vm_size_max( 1848 vm_map_splay_merge_pred(root, y, root), 1849 vm_map_splay_merge_right(header, y, rlist)); 1850 root->max_free = vm_size_max(max_free_left, y->max_free); 1851 } 1852 map->root = root; 1853 VM_MAP_ASSERT_CONSISTENT(map); 1854 return (root->end); 1855 } 1856 1857 int 1858 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1859 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1860 vm_prot_t max, int cow) 1861 { 1862 vm_offset_t end; 1863 int result; 1864 1865 end = start + length; 1866 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1867 object == NULL, 1868 ("vm_map_fixed: non-NULL backing object for stack")); 1869 vm_map_lock(map); 1870 VM_MAP_RANGE_CHECK(map, start, end); 1871 if ((cow & MAP_CHECK_EXCL) == 0) 1872 vm_map_delete(map, start, end); 1873 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1874 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1875 prot, max, cow); 1876 } else { 1877 result = vm_map_insert(map, object, offset, start, end, 1878 prot, max, cow); 1879 } 1880 vm_map_unlock(map); 1881 return (result); 1882 } 1883 1884 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1885 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1886 1887 static int cluster_anon = 1; 1888 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1889 &cluster_anon, 0, 1890 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1891 1892 static bool 1893 clustering_anon_allowed(vm_offset_t addr) 1894 { 1895 1896 switch (cluster_anon) { 1897 case 0: 1898 return (false); 1899 case 1: 1900 return (addr == 0); 1901 case 2: 1902 default: 1903 return (true); 1904 } 1905 } 1906 1907 static long aslr_restarts; 1908 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1909 &aslr_restarts, 0, 1910 "Number of aslr failures"); 1911 1912 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1913 1914 /* 1915 * Searches for the specified amount of free space in the given map with the 1916 * specified alignment. Performs an address-ordered, first-fit search from 1917 * the given address "*addr", with an optional upper bound "max_addr". If the 1918 * parameter "alignment" is zero, then the alignment is computed from the 1919 * given (object, offset) pair so as to enable the greatest possible use of 1920 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1921 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1922 * 1923 * The map must be locked. Initially, there must be at least "length" bytes 1924 * of free space at the given address. 1925 */ 1926 static int 1927 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1928 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1929 vm_offset_t alignment) 1930 { 1931 vm_offset_t aligned_addr, free_addr; 1932 1933 VM_MAP_ASSERT_LOCKED(map); 1934 free_addr = *addr; 1935 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1936 ("caller failed to provide space %#jx at address %p", 1937 (uintmax_t)length, (void *)free_addr)); 1938 for (;;) { 1939 /* 1940 * At the start of every iteration, the free space at address 1941 * "*addr" is at least "length" bytes. 1942 */ 1943 if (alignment == 0) 1944 pmap_align_superpage(object, offset, addr, length); 1945 else if ((*addr & (alignment - 1)) != 0) { 1946 *addr &= ~(alignment - 1); 1947 *addr += alignment; 1948 } 1949 aligned_addr = *addr; 1950 if (aligned_addr == free_addr) { 1951 /* 1952 * Alignment did not change "*addr", so "*addr" must 1953 * still provide sufficient free space. 1954 */ 1955 return (KERN_SUCCESS); 1956 } 1957 1958 /* 1959 * Test for address wrap on "*addr". A wrapped "*addr" could 1960 * be a valid address, in which case vm_map_findspace() cannot 1961 * be relied upon to fail. 1962 */ 1963 if (aligned_addr < free_addr) 1964 return (KERN_NO_SPACE); 1965 *addr = vm_map_findspace(map, aligned_addr, length); 1966 if (*addr + length > vm_map_max(map) || 1967 (max_addr != 0 && *addr + length > max_addr)) 1968 return (KERN_NO_SPACE); 1969 free_addr = *addr; 1970 if (free_addr == aligned_addr) { 1971 /* 1972 * If a successful call to vm_map_findspace() did not 1973 * change "*addr", then "*addr" must still be aligned 1974 * and provide sufficient free space. 1975 */ 1976 return (KERN_SUCCESS); 1977 } 1978 } 1979 } 1980 1981 /* 1982 * vm_map_find finds an unallocated region in the target address 1983 * map with the given length. The search is defined to be 1984 * first-fit from the specified address; the region found is 1985 * returned in the same parameter. 1986 * 1987 * If object is non-NULL, ref count must be bumped by caller 1988 * prior to making call to account for the new entry. 1989 */ 1990 int 1991 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1992 vm_offset_t *addr, /* IN/OUT */ 1993 vm_size_t length, vm_offset_t max_addr, int find_space, 1994 vm_prot_t prot, vm_prot_t max, int cow) 1995 { 1996 vm_offset_t alignment, curr_min_addr, min_addr; 1997 int gap, pidx, rv, try; 1998 bool cluster, en_aslr, update_anon; 1999 2000 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2001 object == NULL, 2002 ("vm_map_find: non-NULL backing object for stack")); 2003 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2004 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2005 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2006 (object->flags & OBJ_COLORED) == 0)) 2007 find_space = VMFS_ANY_SPACE; 2008 if (find_space >> 8 != 0) { 2009 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2010 alignment = (vm_offset_t)1 << (find_space >> 8); 2011 } else 2012 alignment = 0; 2013 en_aslr = (map->flags & MAP_ASLR) != 0; 2014 update_anon = cluster = clustering_anon_allowed(*addr) && 2015 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2016 find_space != VMFS_NO_SPACE && object == NULL && 2017 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2018 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2019 curr_min_addr = min_addr = *addr; 2020 if (en_aslr && min_addr == 0 && !cluster && 2021 find_space != VMFS_NO_SPACE && 2022 (map->flags & MAP_ASLR_IGNSTART) != 0) 2023 curr_min_addr = min_addr = vm_map_min(map); 2024 try = 0; 2025 vm_map_lock(map); 2026 if (cluster) { 2027 curr_min_addr = map->anon_loc; 2028 if (curr_min_addr == 0) 2029 cluster = false; 2030 } 2031 if (find_space != VMFS_NO_SPACE) { 2032 KASSERT(find_space == VMFS_ANY_SPACE || 2033 find_space == VMFS_OPTIMAL_SPACE || 2034 find_space == VMFS_SUPER_SPACE || 2035 alignment != 0, ("unexpected VMFS flag")); 2036 again: 2037 /* 2038 * When creating an anonymous mapping, try clustering 2039 * with an existing anonymous mapping first. 2040 * 2041 * We make up to two attempts to find address space 2042 * for a given find_space value. The first attempt may 2043 * apply randomization or may cluster with an existing 2044 * anonymous mapping. If this first attempt fails, 2045 * perform a first-fit search of the available address 2046 * space. 2047 * 2048 * If all tries failed, and find_space is 2049 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2050 * Again enable clustering and randomization. 2051 */ 2052 try++; 2053 MPASS(try <= 2); 2054 2055 if (try == 2) { 2056 /* 2057 * Second try: we failed either to find a 2058 * suitable region for randomizing the 2059 * allocation, or to cluster with an existing 2060 * mapping. Retry with free run. 2061 */ 2062 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2063 vm_map_min(map) : min_addr; 2064 atomic_add_long(&aslr_restarts, 1); 2065 } 2066 2067 if (try == 1 && en_aslr && !cluster) { 2068 /* 2069 * Find space for allocation, including 2070 * gap needed for later randomization. 2071 */ 2072 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2073 (find_space == VMFS_SUPER_SPACE || find_space == 2074 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2075 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2076 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2077 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2078 *addr = vm_map_findspace(map, curr_min_addr, 2079 length + gap * pagesizes[pidx]); 2080 if (*addr + length + gap * pagesizes[pidx] > 2081 vm_map_max(map)) 2082 goto again; 2083 /* And randomize the start address. */ 2084 *addr += (arc4random() % gap) * pagesizes[pidx]; 2085 if (max_addr != 0 && *addr + length > max_addr) 2086 goto again; 2087 } else { 2088 *addr = vm_map_findspace(map, curr_min_addr, length); 2089 if (*addr + length > vm_map_max(map) || 2090 (max_addr != 0 && *addr + length > max_addr)) { 2091 if (cluster) { 2092 cluster = false; 2093 MPASS(try == 1); 2094 goto again; 2095 } 2096 rv = KERN_NO_SPACE; 2097 goto done; 2098 } 2099 } 2100 2101 if (find_space != VMFS_ANY_SPACE && 2102 (rv = vm_map_alignspace(map, object, offset, addr, length, 2103 max_addr, alignment)) != KERN_SUCCESS) { 2104 if (find_space == VMFS_OPTIMAL_SPACE) { 2105 find_space = VMFS_ANY_SPACE; 2106 curr_min_addr = min_addr; 2107 cluster = update_anon; 2108 try = 0; 2109 goto again; 2110 } 2111 goto done; 2112 } 2113 } else if ((cow & MAP_REMAP) != 0) { 2114 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2115 rv = KERN_INVALID_ADDRESS; 2116 goto done; 2117 } 2118 vm_map_delete(map, *addr, *addr + length); 2119 } 2120 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2121 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2122 max, cow); 2123 } else { 2124 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2125 prot, max, cow); 2126 } 2127 if (rv == KERN_SUCCESS && update_anon) 2128 map->anon_loc = *addr + length; 2129 done: 2130 vm_map_unlock(map); 2131 return (rv); 2132 } 2133 2134 /* 2135 * vm_map_find_min() is a variant of vm_map_find() that takes an 2136 * additional parameter (min_addr) and treats the given address 2137 * (*addr) differently. Specifically, it treats *addr as a hint 2138 * and not as the minimum address where the mapping is created. 2139 * 2140 * This function works in two phases. First, it tries to 2141 * allocate above the hint. If that fails and the hint is 2142 * greater than min_addr, it performs a second pass, replacing 2143 * the hint with min_addr as the minimum address for the 2144 * allocation. 2145 */ 2146 int 2147 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2148 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2149 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2150 int cow) 2151 { 2152 vm_offset_t hint; 2153 int rv; 2154 2155 hint = *addr; 2156 for (;;) { 2157 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2158 find_space, prot, max, cow); 2159 if (rv == KERN_SUCCESS || min_addr >= hint) 2160 return (rv); 2161 *addr = hint = min_addr; 2162 } 2163 } 2164 2165 /* 2166 * A map entry with any of the following flags set must not be merged with 2167 * another entry. 2168 */ 2169 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2170 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2171 2172 static bool 2173 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2174 { 2175 2176 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2177 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2178 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2179 prev, entry)); 2180 return (prev->end == entry->start && 2181 prev->object.vm_object == entry->object.vm_object && 2182 (prev->object.vm_object == NULL || 2183 prev->offset + (prev->end - prev->start) == entry->offset) && 2184 prev->eflags == entry->eflags && 2185 prev->protection == entry->protection && 2186 prev->max_protection == entry->max_protection && 2187 prev->inheritance == entry->inheritance && 2188 prev->wired_count == entry->wired_count && 2189 prev->cred == entry->cred); 2190 } 2191 2192 static void 2193 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2194 { 2195 2196 /* 2197 * If the backing object is a vnode object, vm_object_deallocate() 2198 * calls vrele(). However, vrele() does not lock the vnode because 2199 * the vnode has additional references. Thus, the map lock can be 2200 * kept without causing a lock-order reversal with the vnode lock. 2201 * 2202 * Since we count the number of virtual page mappings in 2203 * object->un_pager.vnp.writemappings, the writemappings value 2204 * should not be adjusted when the entry is disposed of. 2205 */ 2206 if (entry->object.vm_object != NULL) 2207 vm_object_deallocate(entry->object.vm_object); 2208 if (entry->cred != NULL) 2209 crfree(entry->cred); 2210 vm_map_entry_dispose(map, entry); 2211 } 2212 2213 /* 2214 * vm_map_try_merge_entries: 2215 * 2216 * Compare the given map entry to its predecessor, and merge its precessor 2217 * into it if possible. The entry remains valid, and may be extended. 2218 * The predecessor may be deleted. 2219 * 2220 * The map must be locked. 2221 */ 2222 void 2223 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2224 vm_map_entry_t entry) 2225 { 2226 2227 VM_MAP_ASSERT_LOCKED(map); 2228 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2229 vm_map_mergeable_neighbors(prev_entry, entry)) { 2230 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2231 vm_map_merged_neighbor_dispose(map, prev_entry); 2232 } 2233 } 2234 2235 /* 2236 * vm_map_entry_back: 2237 * 2238 * Allocate an object to back a map entry. 2239 */ 2240 static inline void 2241 vm_map_entry_back(vm_map_entry_t entry) 2242 { 2243 vm_object_t object; 2244 2245 KASSERT(entry->object.vm_object == NULL, 2246 ("map entry %p has backing object", entry)); 2247 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2248 ("map entry %p is a submap", entry)); 2249 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2250 entry->cred, entry->end - entry->start); 2251 entry->object.vm_object = object; 2252 entry->offset = 0; 2253 entry->cred = NULL; 2254 } 2255 2256 /* 2257 * vm_map_entry_charge_object 2258 * 2259 * If there is no object backing this entry, create one. Otherwise, if 2260 * the entry has cred, give it to the backing object. 2261 */ 2262 static inline void 2263 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2264 { 2265 2266 VM_MAP_ASSERT_LOCKED(map); 2267 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2268 ("map entry %p is a submap", entry)); 2269 if (entry->object.vm_object == NULL && !map->system_map && 2270 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2271 vm_map_entry_back(entry); 2272 else if (entry->object.vm_object != NULL && 2273 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2274 entry->cred != NULL) { 2275 VM_OBJECT_WLOCK(entry->object.vm_object); 2276 KASSERT(entry->object.vm_object->cred == NULL, 2277 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2278 entry->object.vm_object->cred = entry->cred; 2279 entry->object.vm_object->charge = entry->end - entry->start; 2280 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2281 entry->cred = NULL; 2282 } 2283 } 2284 2285 /* 2286 * vm_map_entry_clone 2287 * 2288 * Create a duplicate map entry for clipping. 2289 */ 2290 static vm_map_entry_t 2291 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2292 { 2293 vm_map_entry_t new_entry; 2294 2295 VM_MAP_ASSERT_LOCKED(map); 2296 2297 /* 2298 * Create a backing object now, if none exists, so that more individual 2299 * objects won't be created after the map entry is split. 2300 */ 2301 vm_map_entry_charge_object(map, entry); 2302 2303 /* Clone the entry. */ 2304 new_entry = vm_map_entry_create(map); 2305 *new_entry = *entry; 2306 if (new_entry->cred != NULL) 2307 crhold(entry->cred); 2308 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2309 vm_object_reference(new_entry->object.vm_object); 2310 vm_map_entry_set_vnode_text(new_entry, true); 2311 /* 2312 * The object->un_pager.vnp.writemappings for the object of 2313 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2314 * virtual pages are re-distributed among the clipped entries, 2315 * so the sum is left the same. 2316 */ 2317 } 2318 return (new_entry); 2319 } 2320 2321 /* 2322 * vm_map_clip_start: [ internal use only ] 2323 * 2324 * Asserts that the given entry begins at or after 2325 * the specified address; if necessary, 2326 * it splits the entry into two. 2327 */ 2328 static inline void 2329 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2330 { 2331 vm_map_entry_t new_entry; 2332 2333 if (!map->system_map) 2334 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2335 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2336 (uintmax_t)start); 2337 2338 if (start <= entry->start) 2339 return; 2340 2341 VM_MAP_ASSERT_LOCKED(map); 2342 KASSERT(entry->end > start && entry->start < start, 2343 ("%s: invalid clip of entry %p", __func__, entry)); 2344 2345 new_entry = vm_map_entry_clone(map, entry); 2346 2347 /* 2348 * Split off the front portion. Insert the new entry BEFORE this one, 2349 * so that this entry has the specified starting address. 2350 */ 2351 new_entry->end = start; 2352 vm_map_entry_link(map, new_entry); 2353 } 2354 2355 /* 2356 * vm_map_lookup_clip_start: 2357 * 2358 * Find the entry at or just after 'start', and clip it if 'start' is in 2359 * the interior of the entry. Return entry after 'start', and in 2360 * prev_entry set the entry before 'start'. 2361 */ 2362 static inline vm_map_entry_t 2363 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2364 vm_map_entry_t *prev_entry) 2365 { 2366 vm_map_entry_t entry; 2367 2368 if (!map->system_map) 2369 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2370 "%s: map %p start 0x%jx prev %p", __func__, map, 2371 (uintmax_t)start, prev_entry); 2372 2373 if (vm_map_lookup_entry(map, start, prev_entry)) { 2374 entry = *prev_entry; 2375 vm_map_clip_start(map, entry, start); 2376 *prev_entry = vm_map_entry_pred(entry); 2377 } else 2378 entry = vm_map_entry_succ(*prev_entry); 2379 return (entry); 2380 } 2381 2382 /* 2383 * vm_map_clip_end: [ internal use only ] 2384 * 2385 * Asserts that the given entry ends at or before 2386 * the specified address; if necessary, 2387 * it splits the entry into two. 2388 */ 2389 static inline void 2390 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2391 { 2392 vm_map_entry_t new_entry; 2393 2394 if (!map->system_map) 2395 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2396 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2397 (uintmax_t)end); 2398 2399 if (end >= entry->end) 2400 return; 2401 2402 VM_MAP_ASSERT_LOCKED(map); 2403 KASSERT(entry->start < end && entry->end > end, 2404 ("%s: invalid clip of entry %p", __func__, entry)); 2405 2406 new_entry = vm_map_entry_clone(map, entry); 2407 2408 /* 2409 * Split off the back portion. Insert the new entry AFTER this one, 2410 * so that this entry has the specified ending address. 2411 */ 2412 new_entry->start = end; 2413 vm_map_entry_link(map, new_entry); 2414 } 2415 2416 /* 2417 * vm_map_submap: [ kernel use only ] 2418 * 2419 * Mark the given range as handled by a subordinate map. 2420 * 2421 * This range must have been created with vm_map_find, 2422 * and no other operations may have been performed on this 2423 * range prior to calling vm_map_submap. 2424 * 2425 * Only a limited number of operations can be performed 2426 * within this rage after calling vm_map_submap: 2427 * vm_fault 2428 * [Don't try vm_map_copy!] 2429 * 2430 * To remove a submapping, one must first remove the 2431 * range from the superior map, and then destroy the 2432 * submap (if desired). [Better yet, don't try it.] 2433 */ 2434 int 2435 vm_map_submap( 2436 vm_map_t map, 2437 vm_offset_t start, 2438 vm_offset_t end, 2439 vm_map_t submap) 2440 { 2441 vm_map_entry_t entry; 2442 int result; 2443 2444 result = KERN_INVALID_ARGUMENT; 2445 2446 vm_map_lock(submap); 2447 submap->flags |= MAP_IS_SUB_MAP; 2448 vm_map_unlock(submap); 2449 2450 vm_map_lock(map); 2451 VM_MAP_RANGE_CHECK(map, start, end); 2452 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2453 (entry->eflags & MAP_ENTRY_COW) == 0 && 2454 entry->object.vm_object == NULL) { 2455 vm_map_clip_start(map, entry, start); 2456 vm_map_clip_end(map, entry, end); 2457 entry->object.sub_map = submap; 2458 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2459 result = KERN_SUCCESS; 2460 } 2461 vm_map_unlock(map); 2462 2463 if (result != KERN_SUCCESS) { 2464 vm_map_lock(submap); 2465 submap->flags &= ~MAP_IS_SUB_MAP; 2466 vm_map_unlock(submap); 2467 } 2468 return (result); 2469 } 2470 2471 /* 2472 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2473 */ 2474 #define MAX_INIT_PT 96 2475 2476 /* 2477 * vm_map_pmap_enter: 2478 * 2479 * Preload the specified map's pmap with mappings to the specified 2480 * object's memory-resident pages. No further physical pages are 2481 * allocated, and no further virtual pages are retrieved from secondary 2482 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2483 * limited number of page mappings are created at the low-end of the 2484 * specified address range. (For this purpose, a superpage mapping 2485 * counts as one page mapping.) Otherwise, all resident pages within 2486 * the specified address range are mapped. 2487 */ 2488 static void 2489 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2490 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2491 { 2492 vm_offset_t start; 2493 vm_page_t p, p_start; 2494 vm_pindex_t mask, psize, threshold, tmpidx; 2495 2496 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2497 return; 2498 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2499 VM_OBJECT_WLOCK(object); 2500 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2501 pmap_object_init_pt(map->pmap, addr, object, pindex, 2502 size); 2503 VM_OBJECT_WUNLOCK(object); 2504 return; 2505 } 2506 VM_OBJECT_LOCK_DOWNGRADE(object); 2507 } else 2508 VM_OBJECT_RLOCK(object); 2509 2510 psize = atop(size); 2511 if (psize + pindex > object->size) { 2512 if (pindex >= object->size) { 2513 VM_OBJECT_RUNLOCK(object); 2514 return; 2515 } 2516 psize = object->size - pindex; 2517 } 2518 2519 start = 0; 2520 p_start = NULL; 2521 threshold = MAX_INIT_PT; 2522 2523 p = vm_page_find_least(object, pindex); 2524 /* 2525 * Assert: the variable p is either (1) the page with the 2526 * least pindex greater than or equal to the parameter pindex 2527 * or (2) NULL. 2528 */ 2529 for (; 2530 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2531 p = TAILQ_NEXT(p, listq)) { 2532 /* 2533 * don't allow an madvise to blow away our really 2534 * free pages allocating pv entries. 2535 */ 2536 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2537 vm_page_count_severe()) || 2538 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2539 tmpidx >= threshold)) { 2540 psize = tmpidx; 2541 break; 2542 } 2543 if (vm_page_all_valid(p)) { 2544 if (p_start == NULL) { 2545 start = addr + ptoa(tmpidx); 2546 p_start = p; 2547 } 2548 /* Jump ahead if a superpage mapping is possible. */ 2549 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2550 (pagesizes[p->psind] - 1)) == 0) { 2551 mask = atop(pagesizes[p->psind]) - 1; 2552 if (tmpidx + mask < psize && 2553 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2554 p += mask; 2555 threshold += mask; 2556 } 2557 } 2558 } else if (p_start != NULL) { 2559 pmap_enter_object(map->pmap, start, addr + 2560 ptoa(tmpidx), p_start, prot); 2561 p_start = NULL; 2562 } 2563 } 2564 if (p_start != NULL) 2565 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2566 p_start, prot); 2567 VM_OBJECT_RUNLOCK(object); 2568 } 2569 2570 /* 2571 * vm_map_protect: 2572 * 2573 * Sets the protection of the specified address 2574 * region in the target map. If "set_max" is 2575 * specified, the maximum protection is to be set; 2576 * otherwise, only the current protection is affected. 2577 */ 2578 int 2579 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2580 vm_prot_t new_prot, boolean_t set_max) 2581 { 2582 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2583 vm_object_t obj; 2584 struct ucred *cred; 2585 vm_prot_t old_prot; 2586 int rv; 2587 2588 if (start == end) 2589 return (KERN_SUCCESS); 2590 2591 again: 2592 in_tran = NULL; 2593 vm_map_lock(map); 2594 2595 /* 2596 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2597 * need to fault pages into the map and will drop the map lock while 2598 * doing so, and the VM object may end up in an inconsistent state if we 2599 * update the protection on the map entry in between faults. 2600 */ 2601 vm_map_wait_busy(map); 2602 2603 VM_MAP_RANGE_CHECK(map, start, end); 2604 2605 if (!vm_map_lookup_entry(map, start, &first_entry)) 2606 first_entry = vm_map_entry_succ(first_entry); 2607 2608 /* 2609 * Make a first pass to check for protection violations. 2610 */ 2611 for (entry = first_entry; entry->start < end; 2612 entry = vm_map_entry_succ(entry)) { 2613 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2614 continue; 2615 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2616 vm_map_unlock(map); 2617 return (KERN_INVALID_ARGUMENT); 2618 } 2619 if ((new_prot & entry->max_protection) != new_prot) { 2620 vm_map_unlock(map); 2621 return (KERN_PROTECTION_FAILURE); 2622 } 2623 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2624 in_tran = entry; 2625 } 2626 2627 /* 2628 * Postpone the operation until all in-transition map entries have 2629 * stabilized. An in-transition entry might already have its pages 2630 * wired and wired_count incremented, but not yet have its 2631 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2632 * vm_fault_copy_entry() in the final loop below. 2633 */ 2634 if (in_tran != NULL) { 2635 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2636 vm_map_unlock_and_wait(map, 0); 2637 goto again; 2638 } 2639 2640 /* 2641 * Before changing the protections, try to reserve swap space for any 2642 * private (i.e., copy-on-write) mappings that are transitioning from 2643 * read-only to read/write access. If a reservation fails, break out 2644 * of this loop early and let the next loop simplify the entries, since 2645 * some may now be mergeable. 2646 */ 2647 rv = KERN_SUCCESS; 2648 vm_map_clip_start(map, first_entry, start); 2649 for (entry = first_entry; entry->start < end; 2650 entry = vm_map_entry_succ(entry)) { 2651 vm_map_clip_end(map, entry, end); 2652 2653 if (set_max || 2654 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2655 ENTRY_CHARGED(entry) || 2656 (entry->eflags & MAP_ENTRY_GUARD) != 0) { 2657 continue; 2658 } 2659 2660 cred = curthread->td_ucred; 2661 obj = entry->object.vm_object; 2662 2663 if (obj == NULL || 2664 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2665 if (!swap_reserve(entry->end - entry->start)) { 2666 rv = KERN_RESOURCE_SHORTAGE; 2667 end = entry->end; 2668 break; 2669 } 2670 crhold(cred); 2671 entry->cred = cred; 2672 continue; 2673 } 2674 2675 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2676 continue; 2677 VM_OBJECT_WLOCK(obj); 2678 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2679 VM_OBJECT_WUNLOCK(obj); 2680 continue; 2681 } 2682 2683 /* 2684 * Charge for the whole object allocation now, since 2685 * we cannot distinguish between non-charged and 2686 * charged clipped mapping of the same object later. 2687 */ 2688 KASSERT(obj->charge == 0, 2689 ("vm_map_protect: object %p overcharged (entry %p)", 2690 obj, entry)); 2691 if (!swap_reserve(ptoa(obj->size))) { 2692 VM_OBJECT_WUNLOCK(obj); 2693 rv = KERN_RESOURCE_SHORTAGE; 2694 end = entry->end; 2695 break; 2696 } 2697 2698 crhold(cred); 2699 obj->cred = cred; 2700 obj->charge = ptoa(obj->size); 2701 VM_OBJECT_WUNLOCK(obj); 2702 } 2703 2704 /* 2705 * If enough swap space was available, go back and fix up protections. 2706 * Otherwise, just simplify entries, since some may have been modified. 2707 * [Note that clipping is not necessary the second time.] 2708 */ 2709 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2710 entry->start < end; 2711 vm_map_try_merge_entries(map, prev_entry, entry), 2712 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2713 if (rv != KERN_SUCCESS || 2714 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2715 continue; 2716 2717 old_prot = entry->protection; 2718 2719 if (set_max) 2720 entry->protection = 2721 (entry->max_protection = new_prot) & 2722 old_prot; 2723 else 2724 entry->protection = new_prot; 2725 2726 /* 2727 * For user wired map entries, the normal lazy evaluation of 2728 * write access upgrades through soft page faults is 2729 * undesirable. Instead, immediately copy any pages that are 2730 * copy-on-write and enable write access in the physical map. 2731 */ 2732 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2733 (entry->protection & VM_PROT_WRITE) != 0 && 2734 (old_prot & VM_PROT_WRITE) == 0) 2735 vm_fault_copy_entry(map, map, entry, entry, NULL); 2736 2737 /* 2738 * When restricting access, update the physical map. Worry 2739 * about copy-on-write here. 2740 */ 2741 if ((old_prot & ~entry->protection) != 0) { 2742 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2743 VM_PROT_ALL) 2744 pmap_protect(map->pmap, entry->start, 2745 entry->end, 2746 entry->protection & MASK(entry)); 2747 #undef MASK 2748 } 2749 } 2750 vm_map_try_merge_entries(map, prev_entry, entry); 2751 vm_map_unlock(map); 2752 return (rv); 2753 } 2754 2755 /* 2756 * vm_map_madvise: 2757 * 2758 * This routine traverses a processes map handling the madvise 2759 * system call. Advisories are classified as either those effecting 2760 * the vm_map_entry structure, or those effecting the underlying 2761 * objects. 2762 */ 2763 int 2764 vm_map_madvise( 2765 vm_map_t map, 2766 vm_offset_t start, 2767 vm_offset_t end, 2768 int behav) 2769 { 2770 vm_map_entry_t entry, prev_entry; 2771 bool modify_map; 2772 2773 /* 2774 * Some madvise calls directly modify the vm_map_entry, in which case 2775 * we need to use an exclusive lock on the map and we need to perform 2776 * various clipping operations. Otherwise we only need a read-lock 2777 * on the map. 2778 */ 2779 switch(behav) { 2780 case MADV_NORMAL: 2781 case MADV_SEQUENTIAL: 2782 case MADV_RANDOM: 2783 case MADV_NOSYNC: 2784 case MADV_AUTOSYNC: 2785 case MADV_NOCORE: 2786 case MADV_CORE: 2787 if (start == end) 2788 return (0); 2789 modify_map = true; 2790 vm_map_lock(map); 2791 break; 2792 case MADV_WILLNEED: 2793 case MADV_DONTNEED: 2794 case MADV_FREE: 2795 if (start == end) 2796 return (0); 2797 modify_map = false; 2798 vm_map_lock_read(map); 2799 break; 2800 default: 2801 return (EINVAL); 2802 } 2803 2804 /* 2805 * Locate starting entry and clip if necessary. 2806 */ 2807 VM_MAP_RANGE_CHECK(map, start, end); 2808 2809 if (modify_map) { 2810 /* 2811 * madvise behaviors that are implemented in the vm_map_entry. 2812 * 2813 * We clip the vm_map_entry so that behavioral changes are 2814 * limited to the specified address range. 2815 */ 2816 for (entry = vm_map_lookup_clip_start(map, start, &prev_entry); 2817 entry->start < end; 2818 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2819 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2820 continue; 2821 2822 vm_map_clip_end(map, entry, end); 2823 2824 switch (behav) { 2825 case MADV_NORMAL: 2826 vm_map_entry_set_behavior(entry, 2827 MAP_ENTRY_BEHAV_NORMAL); 2828 break; 2829 case MADV_SEQUENTIAL: 2830 vm_map_entry_set_behavior(entry, 2831 MAP_ENTRY_BEHAV_SEQUENTIAL); 2832 break; 2833 case MADV_RANDOM: 2834 vm_map_entry_set_behavior(entry, 2835 MAP_ENTRY_BEHAV_RANDOM); 2836 break; 2837 case MADV_NOSYNC: 2838 entry->eflags |= MAP_ENTRY_NOSYNC; 2839 break; 2840 case MADV_AUTOSYNC: 2841 entry->eflags &= ~MAP_ENTRY_NOSYNC; 2842 break; 2843 case MADV_NOCORE: 2844 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 2845 break; 2846 case MADV_CORE: 2847 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2848 break; 2849 default: 2850 break; 2851 } 2852 vm_map_try_merge_entries(map, prev_entry, entry); 2853 } 2854 vm_map_try_merge_entries(map, prev_entry, entry); 2855 vm_map_unlock(map); 2856 } else { 2857 vm_pindex_t pstart, pend; 2858 2859 /* 2860 * madvise behaviors that are implemented in the underlying 2861 * vm_object. 2862 * 2863 * Since we don't clip the vm_map_entry, we have to clip 2864 * the vm_object pindex and count. 2865 */ 2866 if (!vm_map_lookup_entry(map, start, &entry)) 2867 entry = vm_map_entry_succ(entry); 2868 for (; entry->start < end; 2869 entry = vm_map_entry_succ(entry)) { 2870 vm_offset_t useEnd, useStart; 2871 2872 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2873 continue; 2874 2875 /* 2876 * MADV_FREE would otherwise rewind time to 2877 * the creation of the shadow object. Because 2878 * we hold the VM map read-locked, neither the 2879 * entry's object nor the presence of a 2880 * backing object can change. 2881 */ 2882 if (behav == MADV_FREE && 2883 entry->object.vm_object != NULL && 2884 entry->object.vm_object->backing_object != NULL) 2885 continue; 2886 2887 pstart = OFF_TO_IDX(entry->offset); 2888 pend = pstart + atop(entry->end - entry->start); 2889 useStart = entry->start; 2890 useEnd = entry->end; 2891 2892 if (entry->start < start) { 2893 pstart += atop(start - entry->start); 2894 useStart = start; 2895 } 2896 if (entry->end > end) { 2897 pend -= atop(entry->end - end); 2898 useEnd = end; 2899 } 2900 2901 if (pstart >= pend) 2902 continue; 2903 2904 /* 2905 * Perform the pmap_advise() before clearing 2906 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2907 * concurrent pmap operation, such as pmap_remove(), 2908 * could clear a reference in the pmap and set 2909 * PGA_REFERENCED on the page before the pmap_advise() 2910 * had completed. Consequently, the page would appear 2911 * referenced based upon an old reference that 2912 * occurred before this pmap_advise() ran. 2913 */ 2914 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2915 pmap_advise(map->pmap, useStart, useEnd, 2916 behav); 2917 2918 vm_object_madvise(entry->object.vm_object, pstart, 2919 pend, behav); 2920 2921 /* 2922 * Pre-populate paging structures in the 2923 * WILLNEED case. For wired entries, the 2924 * paging structures are already populated. 2925 */ 2926 if (behav == MADV_WILLNEED && 2927 entry->wired_count == 0) { 2928 vm_map_pmap_enter(map, 2929 useStart, 2930 entry->protection, 2931 entry->object.vm_object, 2932 pstart, 2933 ptoa(pend - pstart), 2934 MAP_PREFAULT_MADVISE 2935 ); 2936 } 2937 } 2938 vm_map_unlock_read(map); 2939 } 2940 return (0); 2941 } 2942 2943 /* 2944 * vm_map_inherit: 2945 * 2946 * Sets the inheritance of the specified address 2947 * range in the target map. Inheritance 2948 * affects how the map will be shared with 2949 * child maps at the time of vmspace_fork. 2950 */ 2951 int 2952 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2953 vm_inherit_t new_inheritance) 2954 { 2955 vm_map_entry_t entry, prev_entry; 2956 2957 switch (new_inheritance) { 2958 case VM_INHERIT_NONE: 2959 case VM_INHERIT_COPY: 2960 case VM_INHERIT_SHARE: 2961 case VM_INHERIT_ZERO: 2962 break; 2963 default: 2964 return (KERN_INVALID_ARGUMENT); 2965 } 2966 if (start == end) 2967 return (KERN_SUCCESS); 2968 vm_map_lock(map); 2969 VM_MAP_RANGE_CHECK(map, start, end); 2970 for (entry = vm_map_lookup_clip_start(map, start, &prev_entry); 2971 entry->start < end; 2972 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2973 vm_map_clip_end(map, entry, end); 2974 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2975 new_inheritance != VM_INHERIT_ZERO) 2976 entry->inheritance = new_inheritance; 2977 vm_map_try_merge_entries(map, prev_entry, entry); 2978 } 2979 vm_map_try_merge_entries(map, prev_entry, entry); 2980 vm_map_unlock(map); 2981 return (KERN_SUCCESS); 2982 } 2983 2984 /* 2985 * vm_map_entry_in_transition: 2986 * 2987 * Release the map lock, and sleep until the entry is no longer in 2988 * transition. Awake and acquire the map lock. If the map changed while 2989 * another held the lock, lookup a possibly-changed entry at or after the 2990 * 'start' position of the old entry. 2991 */ 2992 static vm_map_entry_t 2993 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 2994 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 2995 { 2996 vm_map_entry_t entry; 2997 vm_offset_t start; 2998 u_int last_timestamp; 2999 3000 VM_MAP_ASSERT_LOCKED(map); 3001 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3002 ("not in-tranition map entry %p", in_entry)); 3003 /* 3004 * We have not yet clipped the entry. 3005 */ 3006 start = MAX(in_start, in_entry->start); 3007 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3008 last_timestamp = map->timestamp; 3009 if (vm_map_unlock_and_wait(map, 0)) { 3010 /* 3011 * Allow interruption of user wiring/unwiring? 3012 */ 3013 } 3014 vm_map_lock(map); 3015 if (last_timestamp + 1 == map->timestamp) 3016 return (in_entry); 3017 3018 /* 3019 * Look again for the entry because the map was modified while it was 3020 * unlocked. Specifically, the entry may have been clipped, merged, or 3021 * deleted. 3022 */ 3023 if (!vm_map_lookup_entry(map, start, &entry)) { 3024 if (!holes_ok) { 3025 *io_end = start; 3026 return (NULL); 3027 } 3028 entry = vm_map_entry_succ(entry); 3029 } 3030 return (entry); 3031 } 3032 3033 /* 3034 * vm_map_unwire: 3035 * 3036 * Implements both kernel and user unwiring. 3037 */ 3038 int 3039 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3040 int flags) 3041 { 3042 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3043 int rv; 3044 bool holes_ok, need_wakeup, user_unwire; 3045 3046 if (start == end) 3047 return (KERN_SUCCESS); 3048 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3049 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3050 vm_map_lock(map); 3051 VM_MAP_RANGE_CHECK(map, start, end); 3052 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3053 if (holes_ok) 3054 first_entry = vm_map_entry_succ(first_entry); 3055 else { 3056 vm_map_unlock(map); 3057 return (KERN_INVALID_ADDRESS); 3058 } 3059 } 3060 rv = KERN_SUCCESS; 3061 for (entry = first_entry; entry->start < end; entry = next_entry) { 3062 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3063 /* 3064 * We have not yet clipped the entry. 3065 */ 3066 next_entry = vm_map_entry_in_transition(map, start, 3067 &end, holes_ok, entry); 3068 if (next_entry == NULL) { 3069 if (entry == first_entry) { 3070 vm_map_unlock(map); 3071 return (KERN_INVALID_ADDRESS); 3072 } 3073 rv = KERN_INVALID_ADDRESS; 3074 break; 3075 } 3076 first_entry = (entry == first_entry) ? 3077 next_entry : NULL; 3078 continue; 3079 } 3080 vm_map_clip_start(map, entry, start); 3081 vm_map_clip_end(map, entry, end); 3082 /* 3083 * Mark the entry in case the map lock is released. (See 3084 * above.) 3085 */ 3086 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3087 entry->wiring_thread == NULL, 3088 ("owned map entry %p", entry)); 3089 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3090 entry->wiring_thread = curthread; 3091 next_entry = vm_map_entry_succ(entry); 3092 /* 3093 * Check the map for holes in the specified region. 3094 * If holes_ok, skip this check. 3095 */ 3096 if (!holes_ok && 3097 entry->end < end && next_entry->start > entry->end) { 3098 end = entry->end; 3099 rv = KERN_INVALID_ADDRESS; 3100 break; 3101 } 3102 /* 3103 * If system unwiring, require that the entry is system wired. 3104 */ 3105 if (!user_unwire && 3106 vm_map_entry_system_wired_count(entry) == 0) { 3107 end = entry->end; 3108 rv = KERN_INVALID_ARGUMENT; 3109 break; 3110 } 3111 } 3112 need_wakeup = false; 3113 if (first_entry == NULL && 3114 !vm_map_lookup_entry(map, start, &first_entry)) { 3115 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3116 prev_entry = first_entry; 3117 entry = vm_map_entry_succ(first_entry); 3118 } else { 3119 prev_entry = vm_map_entry_pred(first_entry); 3120 entry = first_entry; 3121 } 3122 for (; entry->start < end; 3123 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3124 /* 3125 * If holes_ok was specified, an empty 3126 * space in the unwired region could have been mapped 3127 * while the map lock was dropped for draining 3128 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3129 * could be simultaneously wiring this new mapping 3130 * entry. Detect these cases and skip any entries 3131 * marked as in transition by us. 3132 */ 3133 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3134 entry->wiring_thread != curthread) { 3135 KASSERT(holes_ok, 3136 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3137 continue; 3138 } 3139 3140 if (rv == KERN_SUCCESS && (!user_unwire || 3141 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3142 if (entry->wired_count == 1) 3143 vm_map_entry_unwire(map, entry); 3144 else 3145 entry->wired_count--; 3146 if (user_unwire) 3147 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3148 } 3149 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3150 ("vm_map_unwire: in-transition flag missing %p", entry)); 3151 KASSERT(entry->wiring_thread == curthread, 3152 ("vm_map_unwire: alien wire %p", entry)); 3153 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3154 entry->wiring_thread = NULL; 3155 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3156 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3157 need_wakeup = true; 3158 } 3159 vm_map_try_merge_entries(map, prev_entry, entry); 3160 } 3161 vm_map_try_merge_entries(map, prev_entry, entry); 3162 vm_map_unlock(map); 3163 if (need_wakeup) 3164 vm_map_wakeup(map); 3165 return (rv); 3166 } 3167 3168 static void 3169 vm_map_wire_user_count_sub(u_long npages) 3170 { 3171 3172 atomic_subtract_long(&vm_user_wire_count, npages); 3173 } 3174 3175 static bool 3176 vm_map_wire_user_count_add(u_long npages) 3177 { 3178 u_long wired; 3179 3180 wired = vm_user_wire_count; 3181 do { 3182 if (npages + wired > vm_page_max_user_wired) 3183 return (false); 3184 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3185 npages + wired)); 3186 3187 return (true); 3188 } 3189 3190 /* 3191 * vm_map_wire_entry_failure: 3192 * 3193 * Handle a wiring failure on the given entry. 3194 * 3195 * The map should be locked. 3196 */ 3197 static void 3198 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3199 vm_offset_t failed_addr) 3200 { 3201 3202 VM_MAP_ASSERT_LOCKED(map); 3203 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3204 entry->wired_count == 1, 3205 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3206 KASSERT(failed_addr < entry->end, 3207 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3208 3209 /* 3210 * If any pages at the start of this entry were successfully wired, 3211 * then unwire them. 3212 */ 3213 if (failed_addr > entry->start) { 3214 pmap_unwire(map->pmap, entry->start, failed_addr); 3215 vm_object_unwire(entry->object.vm_object, entry->offset, 3216 failed_addr - entry->start, PQ_ACTIVE); 3217 } 3218 3219 /* 3220 * Assign an out-of-range value to represent the failure to wire this 3221 * entry. 3222 */ 3223 entry->wired_count = -1; 3224 } 3225 3226 int 3227 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3228 { 3229 int rv; 3230 3231 vm_map_lock(map); 3232 rv = vm_map_wire_locked(map, start, end, flags); 3233 vm_map_unlock(map); 3234 return (rv); 3235 } 3236 3237 /* 3238 * vm_map_wire_locked: 3239 * 3240 * Implements both kernel and user wiring. Returns with the map locked, 3241 * the map lock may be dropped. 3242 */ 3243 int 3244 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3245 { 3246 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3247 vm_offset_t faddr, saved_end, saved_start; 3248 u_long npages; 3249 u_int last_timestamp; 3250 int rv; 3251 bool holes_ok, need_wakeup, user_wire; 3252 vm_prot_t prot; 3253 3254 VM_MAP_ASSERT_LOCKED(map); 3255 3256 if (start == end) 3257 return (KERN_SUCCESS); 3258 prot = 0; 3259 if (flags & VM_MAP_WIRE_WRITE) 3260 prot |= VM_PROT_WRITE; 3261 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3262 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3263 VM_MAP_RANGE_CHECK(map, start, end); 3264 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3265 if (holes_ok) 3266 first_entry = vm_map_entry_succ(first_entry); 3267 else 3268 return (KERN_INVALID_ADDRESS); 3269 } 3270 for (entry = first_entry; entry->start < end; entry = next_entry) { 3271 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3272 /* 3273 * We have not yet clipped the entry. 3274 */ 3275 next_entry = vm_map_entry_in_transition(map, start, 3276 &end, holes_ok, entry); 3277 if (next_entry == NULL) { 3278 if (entry == first_entry) 3279 return (KERN_INVALID_ADDRESS); 3280 rv = KERN_INVALID_ADDRESS; 3281 goto done; 3282 } 3283 first_entry = (entry == first_entry) ? 3284 next_entry : NULL; 3285 continue; 3286 } 3287 vm_map_clip_start(map, entry, start); 3288 vm_map_clip_end(map, entry, end); 3289 /* 3290 * Mark the entry in case the map lock is released. (See 3291 * above.) 3292 */ 3293 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3294 entry->wiring_thread == NULL, 3295 ("owned map entry %p", entry)); 3296 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3297 entry->wiring_thread = curthread; 3298 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3299 || (entry->protection & prot) != prot) { 3300 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3301 if (!holes_ok) { 3302 end = entry->end; 3303 rv = KERN_INVALID_ADDRESS; 3304 goto done; 3305 } 3306 } else if (entry->wired_count == 0) { 3307 entry->wired_count++; 3308 3309 npages = atop(entry->end - entry->start); 3310 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3311 vm_map_wire_entry_failure(map, entry, 3312 entry->start); 3313 end = entry->end; 3314 rv = KERN_RESOURCE_SHORTAGE; 3315 goto done; 3316 } 3317 3318 /* 3319 * Release the map lock, relying on the in-transition 3320 * mark. Mark the map busy for fork. 3321 */ 3322 saved_start = entry->start; 3323 saved_end = entry->end; 3324 last_timestamp = map->timestamp; 3325 vm_map_busy(map); 3326 vm_map_unlock(map); 3327 3328 faddr = saved_start; 3329 do { 3330 /* 3331 * Simulate a fault to get the page and enter 3332 * it into the physical map. 3333 */ 3334 if ((rv = vm_fault(map, faddr, 3335 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3336 KERN_SUCCESS) 3337 break; 3338 } while ((faddr += PAGE_SIZE) < saved_end); 3339 vm_map_lock(map); 3340 vm_map_unbusy(map); 3341 if (last_timestamp + 1 != map->timestamp) { 3342 /* 3343 * Look again for the entry because the map was 3344 * modified while it was unlocked. The entry 3345 * may have been clipped, but NOT merged or 3346 * deleted. 3347 */ 3348 if (!vm_map_lookup_entry(map, saved_start, 3349 &next_entry)) 3350 KASSERT(false, 3351 ("vm_map_wire: lookup failed")); 3352 first_entry = (entry == first_entry) ? 3353 next_entry : NULL; 3354 for (entry = next_entry; entry->end < saved_end; 3355 entry = vm_map_entry_succ(entry)) { 3356 /* 3357 * In case of failure, handle entries 3358 * that were not fully wired here; 3359 * fully wired entries are handled 3360 * later. 3361 */ 3362 if (rv != KERN_SUCCESS && 3363 faddr < entry->end) 3364 vm_map_wire_entry_failure(map, 3365 entry, faddr); 3366 } 3367 } 3368 if (rv != KERN_SUCCESS) { 3369 vm_map_wire_entry_failure(map, entry, faddr); 3370 if (user_wire) 3371 vm_map_wire_user_count_sub(npages); 3372 end = entry->end; 3373 goto done; 3374 } 3375 } else if (!user_wire || 3376 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3377 entry->wired_count++; 3378 } 3379 /* 3380 * Check the map for holes in the specified region. 3381 * If holes_ok was specified, skip this check. 3382 */ 3383 next_entry = vm_map_entry_succ(entry); 3384 if (!holes_ok && 3385 entry->end < end && next_entry->start > entry->end) { 3386 end = entry->end; 3387 rv = KERN_INVALID_ADDRESS; 3388 goto done; 3389 } 3390 } 3391 rv = KERN_SUCCESS; 3392 done: 3393 need_wakeup = false; 3394 if (first_entry == NULL && 3395 !vm_map_lookup_entry(map, start, &first_entry)) { 3396 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3397 prev_entry = first_entry; 3398 entry = vm_map_entry_succ(first_entry); 3399 } else { 3400 prev_entry = vm_map_entry_pred(first_entry); 3401 entry = first_entry; 3402 } 3403 for (; entry->start < end; 3404 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3405 /* 3406 * If holes_ok was specified, an empty 3407 * space in the unwired region could have been mapped 3408 * while the map lock was dropped for faulting in the 3409 * pages or draining MAP_ENTRY_IN_TRANSITION. 3410 * Moreover, another thread could be simultaneously 3411 * wiring this new mapping entry. Detect these cases 3412 * and skip any entries marked as in transition not by us. 3413 */ 3414 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3415 entry->wiring_thread != curthread) { 3416 KASSERT(holes_ok, 3417 ("vm_map_wire: !HOLESOK and new/changed entry")); 3418 continue; 3419 } 3420 3421 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3422 /* do nothing */ 3423 } else if (rv == KERN_SUCCESS) { 3424 if (user_wire) 3425 entry->eflags |= MAP_ENTRY_USER_WIRED; 3426 } else if (entry->wired_count == -1) { 3427 /* 3428 * Wiring failed on this entry. Thus, unwiring is 3429 * unnecessary. 3430 */ 3431 entry->wired_count = 0; 3432 } else if (!user_wire || 3433 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3434 /* 3435 * Undo the wiring. Wiring succeeded on this entry 3436 * but failed on a later entry. 3437 */ 3438 if (entry->wired_count == 1) { 3439 vm_map_entry_unwire(map, entry); 3440 if (user_wire) 3441 vm_map_wire_user_count_sub( 3442 atop(entry->end - entry->start)); 3443 } else 3444 entry->wired_count--; 3445 } 3446 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3447 ("vm_map_wire: in-transition flag missing %p", entry)); 3448 KASSERT(entry->wiring_thread == curthread, 3449 ("vm_map_wire: alien wire %p", entry)); 3450 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3451 MAP_ENTRY_WIRE_SKIPPED); 3452 entry->wiring_thread = NULL; 3453 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3454 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3455 need_wakeup = true; 3456 } 3457 vm_map_try_merge_entries(map, prev_entry, entry); 3458 } 3459 vm_map_try_merge_entries(map, prev_entry, entry); 3460 if (need_wakeup) 3461 vm_map_wakeup(map); 3462 return (rv); 3463 } 3464 3465 /* 3466 * vm_map_sync 3467 * 3468 * Push any dirty cached pages in the address range to their pager. 3469 * If syncio is TRUE, dirty pages are written synchronously. 3470 * If invalidate is TRUE, any cached pages are freed as well. 3471 * 3472 * If the size of the region from start to end is zero, we are 3473 * supposed to flush all modified pages within the region containing 3474 * start. Unfortunately, a region can be split or coalesced with 3475 * neighboring regions, making it difficult to determine what the 3476 * original region was. Therefore, we approximate this requirement by 3477 * flushing the current region containing start. 3478 * 3479 * Returns an error if any part of the specified range is not mapped. 3480 */ 3481 int 3482 vm_map_sync( 3483 vm_map_t map, 3484 vm_offset_t start, 3485 vm_offset_t end, 3486 boolean_t syncio, 3487 boolean_t invalidate) 3488 { 3489 vm_map_entry_t entry, first_entry, next_entry; 3490 vm_size_t size; 3491 vm_object_t object; 3492 vm_ooffset_t offset; 3493 unsigned int last_timestamp; 3494 boolean_t failed; 3495 3496 vm_map_lock_read(map); 3497 VM_MAP_RANGE_CHECK(map, start, end); 3498 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3499 vm_map_unlock_read(map); 3500 return (KERN_INVALID_ADDRESS); 3501 } else if (start == end) { 3502 start = first_entry->start; 3503 end = first_entry->end; 3504 } 3505 /* 3506 * Make a first pass to check for user-wired memory and holes. 3507 */ 3508 for (entry = first_entry; entry->start < end; entry = next_entry) { 3509 if (invalidate && 3510 (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3511 vm_map_unlock_read(map); 3512 return (KERN_INVALID_ARGUMENT); 3513 } 3514 next_entry = vm_map_entry_succ(entry); 3515 if (end > entry->end && 3516 entry->end != next_entry->start) { 3517 vm_map_unlock_read(map); 3518 return (KERN_INVALID_ADDRESS); 3519 } 3520 } 3521 3522 if (invalidate) 3523 pmap_remove(map->pmap, start, end); 3524 failed = FALSE; 3525 3526 /* 3527 * Make a second pass, cleaning/uncaching pages from the indicated 3528 * objects as we go. 3529 */ 3530 for (entry = first_entry; entry->start < end;) { 3531 offset = entry->offset + (start - entry->start); 3532 size = (end <= entry->end ? end : entry->end) - start; 3533 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3534 vm_map_t smap; 3535 vm_map_entry_t tentry; 3536 vm_size_t tsize; 3537 3538 smap = entry->object.sub_map; 3539 vm_map_lock_read(smap); 3540 (void) vm_map_lookup_entry(smap, offset, &tentry); 3541 tsize = tentry->end - offset; 3542 if (tsize < size) 3543 size = tsize; 3544 object = tentry->object.vm_object; 3545 offset = tentry->offset + (offset - tentry->start); 3546 vm_map_unlock_read(smap); 3547 } else { 3548 object = entry->object.vm_object; 3549 } 3550 vm_object_reference(object); 3551 last_timestamp = map->timestamp; 3552 vm_map_unlock_read(map); 3553 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3554 failed = TRUE; 3555 start += size; 3556 vm_object_deallocate(object); 3557 vm_map_lock_read(map); 3558 if (last_timestamp == map->timestamp || 3559 !vm_map_lookup_entry(map, start, &entry)) 3560 entry = vm_map_entry_succ(entry); 3561 } 3562 3563 vm_map_unlock_read(map); 3564 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3565 } 3566 3567 /* 3568 * vm_map_entry_unwire: [ internal use only ] 3569 * 3570 * Make the region specified by this entry pageable. 3571 * 3572 * The map in question should be locked. 3573 * [This is the reason for this routine's existence.] 3574 */ 3575 static void 3576 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3577 { 3578 vm_size_t size; 3579 3580 VM_MAP_ASSERT_LOCKED(map); 3581 KASSERT(entry->wired_count > 0, 3582 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3583 3584 size = entry->end - entry->start; 3585 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3586 vm_map_wire_user_count_sub(atop(size)); 3587 pmap_unwire(map->pmap, entry->start, entry->end); 3588 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3589 PQ_ACTIVE); 3590 entry->wired_count = 0; 3591 } 3592 3593 static void 3594 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3595 { 3596 3597 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3598 vm_object_deallocate(entry->object.vm_object); 3599 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3600 } 3601 3602 /* 3603 * vm_map_entry_delete: [ internal use only ] 3604 * 3605 * Deallocate the given entry from the target map. 3606 */ 3607 static void 3608 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3609 { 3610 vm_object_t object; 3611 vm_pindex_t offidxstart, offidxend, size1; 3612 vm_size_t size; 3613 3614 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3615 object = entry->object.vm_object; 3616 3617 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3618 MPASS(entry->cred == NULL); 3619 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3620 MPASS(object == NULL); 3621 vm_map_entry_deallocate(entry, map->system_map); 3622 return; 3623 } 3624 3625 size = entry->end - entry->start; 3626 map->size -= size; 3627 3628 if (entry->cred != NULL) { 3629 swap_release_by_cred(size, entry->cred); 3630 crfree(entry->cred); 3631 } 3632 3633 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3634 entry->object.vm_object = NULL; 3635 } else if ((object->flags & OBJ_ANON) != 0 || 3636 object == kernel_object) { 3637 KASSERT(entry->cred == NULL || object->cred == NULL || 3638 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3639 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3640 offidxstart = OFF_TO_IDX(entry->offset); 3641 offidxend = offidxstart + atop(size); 3642 VM_OBJECT_WLOCK(object); 3643 if (object->ref_count != 1 && 3644 ((object->flags & OBJ_ONEMAPPING) != 0 || 3645 object == kernel_object)) { 3646 vm_object_collapse(object); 3647 3648 /* 3649 * The option OBJPR_NOTMAPPED can be passed here 3650 * because vm_map_delete() already performed 3651 * pmap_remove() on the only mapping to this range 3652 * of pages. 3653 */ 3654 vm_object_page_remove(object, offidxstart, offidxend, 3655 OBJPR_NOTMAPPED); 3656 if (offidxend >= object->size && 3657 offidxstart < object->size) { 3658 size1 = object->size; 3659 object->size = offidxstart; 3660 if (object->cred != NULL) { 3661 size1 -= object->size; 3662 KASSERT(object->charge >= ptoa(size1), 3663 ("object %p charge < 0", object)); 3664 swap_release_by_cred(ptoa(size1), 3665 object->cred); 3666 object->charge -= ptoa(size1); 3667 } 3668 } 3669 } 3670 VM_OBJECT_WUNLOCK(object); 3671 } 3672 if (map->system_map) 3673 vm_map_entry_deallocate(entry, TRUE); 3674 else { 3675 entry->defer_next = curthread->td_map_def_user; 3676 curthread->td_map_def_user = entry; 3677 } 3678 } 3679 3680 /* 3681 * vm_map_delete: [ internal use only ] 3682 * 3683 * Deallocates the given address range from the target 3684 * map. 3685 */ 3686 int 3687 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3688 { 3689 vm_map_entry_t entry, next_entry; 3690 3691 VM_MAP_ASSERT_LOCKED(map); 3692 3693 if (start == end) 3694 return (KERN_SUCCESS); 3695 3696 /* 3697 * Find the start of the region, and clip it. 3698 * Step through all entries in this region. 3699 */ 3700 for (entry = vm_map_lookup_clip_start(map, start, &entry); 3701 entry->start < end; entry = next_entry) { 3702 /* 3703 * Wait for wiring or unwiring of an entry to complete. 3704 * Also wait for any system wirings to disappear on 3705 * user maps. 3706 */ 3707 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3708 (vm_map_pmap(map) != kernel_pmap && 3709 vm_map_entry_system_wired_count(entry) != 0)) { 3710 unsigned int last_timestamp; 3711 vm_offset_t saved_start; 3712 3713 saved_start = entry->start; 3714 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3715 last_timestamp = map->timestamp; 3716 (void) vm_map_unlock_and_wait(map, 0); 3717 vm_map_lock(map); 3718 if (last_timestamp + 1 != map->timestamp) { 3719 /* 3720 * Look again for the entry because the map was 3721 * modified while it was unlocked. 3722 * Specifically, the entry may have been 3723 * clipped, merged, or deleted. 3724 */ 3725 next_entry = vm_map_lookup_clip_start(map, 3726 saved_start, &next_entry); 3727 } else 3728 next_entry = entry; 3729 continue; 3730 } 3731 vm_map_clip_end(map, entry, end); 3732 next_entry = vm_map_entry_succ(entry); 3733 3734 /* 3735 * Unwire before removing addresses from the pmap; otherwise, 3736 * unwiring will put the entries back in the pmap. 3737 */ 3738 if (entry->wired_count != 0) 3739 vm_map_entry_unwire(map, entry); 3740 3741 /* 3742 * Remove mappings for the pages, but only if the 3743 * mappings could exist. For instance, it does not 3744 * make sense to call pmap_remove() for guard entries. 3745 */ 3746 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3747 entry->object.vm_object != NULL) 3748 pmap_remove(map->pmap, entry->start, entry->end); 3749 3750 if (entry->end == map->anon_loc) 3751 map->anon_loc = entry->start; 3752 3753 /* 3754 * Delete the entry only after removing all pmap 3755 * entries pointing to its pages. (Otherwise, its 3756 * page frames may be reallocated, and any modify bits 3757 * will be set in the wrong object!) 3758 */ 3759 vm_map_entry_delete(map, entry); 3760 } 3761 return (KERN_SUCCESS); 3762 } 3763 3764 /* 3765 * vm_map_remove: 3766 * 3767 * Remove the given address range from the target map. 3768 * This is the exported form of vm_map_delete. 3769 */ 3770 int 3771 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3772 { 3773 int result; 3774 3775 vm_map_lock(map); 3776 VM_MAP_RANGE_CHECK(map, start, end); 3777 result = vm_map_delete(map, start, end); 3778 vm_map_unlock(map); 3779 return (result); 3780 } 3781 3782 /* 3783 * vm_map_check_protection: 3784 * 3785 * Assert that the target map allows the specified privilege on the 3786 * entire address region given. The entire region must be allocated. 3787 * 3788 * WARNING! This code does not and should not check whether the 3789 * contents of the region is accessible. For example a smaller file 3790 * might be mapped into a larger address space. 3791 * 3792 * NOTE! This code is also called by munmap(). 3793 * 3794 * The map must be locked. A read lock is sufficient. 3795 */ 3796 boolean_t 3797 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3798 vm_prot_t protection) 3799 { 3800 vm_map_entry_t entry; 3801 vm_map_entry_t tmp_entry; 3802 3803 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3804 return (FALSE); 3805 entry = tmp_entry; 3806 3807 while (start < end) { 3808 /* 3809 * No holes allowed! 3810 */ 3811 if (start < entry->start) 3812 return (FALSE); 3813 /* 3814 * Check protection associated with entry. 3815 */ 3816 if ((entry->protection & protection) != protection) 3817 return (FALSE); 3818 /* go to next entry */ 3819 start = entry->end; 3820 entry = vm_map_entry_succ(entry); 3821 } 3822 return (TRUE); 3823 } 3824 3825 /* 3826 * 3827 * vm_map_copy_swap_object: 3828 * 3829 * Copies a swap-backed object from an existing map entry to a 3830 * new one. Carries forward the swap charge. May change the 3831 * src object on return. 3832 */ 3833 static void 3834 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 3835 vm_offset_t size, vm_ooffset_t *fork_charge) 3836 { 3837 vm_object_t src_object; 3838 struct ucred *cred; 3839 int charged; 3840 3841 src_object = src_entry->object.vm_object; 3842 charged = ENTRY_CHARGED(src_entry); 3843 if ((src_object->flags & OBJ_ANON) != 0) { 3844 VM_OBJECT_WLOCK(src_object); 3845 vm_object_collapse(src_object); 3846 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3847 vm_object_split(src_entry); 3848 src_object = src_entry->object.vm_object; 3849 } 3850 vm_object_reference_locked(src_object); 3851 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3852 VM_OBJECT_WUNLOCK(src_object); 3853 } else 3854 vm_object_reference(src_object); 3855 if (src_entry->cred != NULL && 3856 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3857 KASSERT(src_object->cred == NULL, 3858 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 3859 src_object)); 3860 src_object->cred = src_entry->cred; 3861 src_object->charge = size; 3862 } 3863 dst_entry->object.vm_object = src_object; 3864 if (charged) { 3865 cred = curthread->td_ucred; 3866 crhold(cred); 3867 dst_entry->cred = cred; 3868 *fork_charge += size; 3869 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3870 crhold(cred); 3871 src_entry->cred = cred; 3872 *fork_charge += size; 3873 } 3874 } 3875 } 3876 3877 /* 3878 * vm_map_copy_entry: 3879 * 3880 * Copies the contents of the source entry to the destination 3881 * entry. The entries *must* be aligned properly. 3882 */ 3883 static void 3884 vm_map_copy_entry( 3885 vm_map_t src_map, 3886 vm_map_t dst_map, 3887 vm_map_entry_t src_entry, 3888 vm_map_entry_t dst_entry, 3889 vm_ooffset_t *fork_charge) 3890 { 3891 vm_object_t src_object; 3892 vm_map_entry_t fake_entry; 3893 vm_offset_t size; 3894 3895 VM_MAP_ASSERT_LOCKED(dst_map); 3896 3897 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3898 return; 3899 3900 if (src_entry->wired_count == 0 || 3901 (src_entry->protection & VM_PROT_WRITE) == 0) { 3902 /* 3903 * If the source entry is marked needs_copy, it is already 3904 * write-protected. 3905 */ 3906 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3907 (src_entry->protection & VM_PROT_WRITE) != 0) { 3908 pmap_protect(src_map->pmap, 3909 src_entry->start, 3910 src_entry->end, 3911 src_entry->protection & ~VM_PROT_WRITE); 3912 } 3913 3914 /* 3915 * Make a copy of the object. 3916 */ 3917 size = src_entry->end - src_entry->start; 3918 if ((src_object = src_entry->object.vm_object) != NULL) { 3919 if (src_object->type == OBJT_DEFAULT || 3920 src_object->type == OBJT_SWAP) { 3921 vm_map_copy_swap_object(src_entry, dst_entry, 3922 size, fork_charge); 3923 /* May have split/collapsed, reload obj. */ 3924 src_object = src_entry->object.vm_object; 3925 } else { 3926 vm_object_reference(src_object); 3927 dst_entry->object.vm_object = src_object; 3928 } 3929 src_entry->eflags |= MAP_ENTRY_COW | 3930 MAP_ENTRY_NEEDS_COPY; 3931 dst_entry->eflags |= MAP_ENTRY_COW | 3932 MAP_ENTRY_NEEDS_COPY; 3933 dst_entry->offset = src_entry->offset; 3934 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3935 /* 3936 * MAP_ENTRY_WRITECNT cannot 3937 * indicate write reference from 3938 * src_entry, since the entry is 3939 * marked as needs copy. Allocate a 3940 * fake entry that is used to 3941 * decrement object->un_pager writecount 3942 * at the appropriate time. Attach 3943 * fake_entry to the deferred list. 3944 */ 3945 fake_entry = vm_map_entry_create(dst_map); 3946 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3947 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3948 vm_object_reference(src_object); 3949 fake_entry->object.vm_object = src_object; 3950 fake_entry->start = src_entry->start; 3951 fake_entry->end = src_entry->end; 3952 fake_entry->defer_next = 3953 curthread->td_map_def_user; 3954 curthread->td_map_def_user = fake_entry; 3955 } 3956 3957 pmap_copy(dst_map->pmap, src_map->pmap, 3958 dst_entry->start, dst_entry->end - dst_entry->start, 3959 src_entry->start); 3960 } else { 3961 dst_entry->object.vm_object = NULL; 3962 dst_entry->offset = 0; 3963 if (src_entry->cred != NULL) { 3964 dst_entry->cred = curthread->td_ucred; 3965 crhold(dst_entry->cred); 3966 *fork_charge += size; 3967 } 3968 } 3969 } else { 3970 /* 3971 * We don't want to make writeable wired pages copy-on-write. 3972 * Immediately copy these pages into the new map by simulating 3973 * page faults. The new pages are pageable. 3974 */ 3975 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3976 fork_charge); 3977 } 3978 } 3979 3980 /* 3981 * vmspace_map_entry_forked: 3982 * Update the newly-forked vmspace each time a map entry is inherited 3983 * or copied. The values for vm_dsize and vm_tsize are approximate 3984 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3985 */ 3986 static void 3987 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3988 vm_map_entry_t entry) 3989 { 3990 vm_size_t entrysize; 3991 vm_offset_t newend; 3992 3993 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3994 return; 3995 entrysize = entry->end - entry->start; 3996 vm2->vm_map.size += entrysize; 3997 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3998 vm2->vm_ssize += btoc(entrysize); 3999 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4000 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4001 newend = MIN(entry->end, 4002 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4003 vm2->vm_dsize += btoc(newend - entry->start); 4004 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4005 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4006 newend = MIN(entry->end, 4007 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4008 vm2->vm_tsize += btoc(newend - entry->start); 4009 } 4010 } 4011 4012 /* 4013 * vmspace_fork: 4014 * Create a new process vmspace structure and vm_map 4015 * based on those of an existing process. The new map 4016 * is based on the old map, according to the inheritance 4017 * values on the regions in that map. 4018 * 4019 * XXX It might be worth coalescing the entries added to the new vmspace. 4020 * 4021 * The source map must not be locked. 4022 */ 4023 struct vmspace * 4024 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4025 { 4026 struct vmspace *vm2; 4027 vm_map_t new_map, old_map; 4028 vm_map_entry_t new_entry, old_entry; 4029 vm_object_t object; 4030 int error, locked; 4031 vm_inherit_t inh; 4032 4033 old_map = &vm1->vm_map; 4034 /* Copy immutable fields of vm1 to vm2. */ 4035 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4036 pmap_pinit); 4037 if (vm2 == NULL) 4038 return (NULL); 4039 4040 vm2->vm_taddr = vm1->vm_taddr; 4041 vm2->vm_daddr = vm1->vm_daddr; 4042 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4043 vm_map_lock(old_map); 4044 if (old_map->busy) 4045 vm_map_wait_busy(old_map); 4046 new_map = &vm2->vm_map; 4047 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4048 KASSERT(locked, ("vmspace_fork: lock failed")); 4049 4050 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4051 if (error != 0) { 4052 sx_xunlock(&old_map->lock); 4053 sx_xunlock(&new_map->lock); 4054 vm_map_process_deferred(); 4055 vmspace_free(vm2); 4056 return (NULL); 4057 } 4058 4059 new_map->anon_loc = old_map->anon_loc; 4060 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART); 4061 4062 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4063 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4064 panic("vm_map_fork: encountered a submap"); 4065 4066 inh = old_entry->inheritance; 4067 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4068 inh != VM_INHERIT_NONE) 4069 inh = VM_INHERIT_COPY; 4070 4071 switch (inh) { 4072 case VM_INHERIT_NONE: 4073 break; 4074 4075 case VM_INHERIT_SHARE: 4076 /* 4077 * Clone the entry, creating the shared object if 4078 * necessary. 4079 */ 4080 object = old_entry->object.vm_object; 4081 if (object == NULL) { 4082 vm_map_entry_back(old_entry); 4083 object = old_entry->object.vm_object; 4084 } 4085 4086 /* 4087 * Add the reference before calling vm_object_shadow 4088 * to insure that a shadow object is created. 4089 */ 4090 vm_object_reference(object); 4091 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4092 vm_object_shadow(&old_entry->object.vm_object, 4093 &old_entry->offset, 4094 old_entry->end - old_entry->start, 4095 old_entry->cred, 4096 /* Transfer the second reference too. */ 4097 true); 4098 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4099 old_entry->cred = NULL; 4100 4101 /* 4102 * As in vm_map_merged_neighbor_dispose(), 4103 * the vnode lock will not be acquired in 4104 * this call to vm_object_deallocate(). 4105 */ 4106 vm_object_deallocate(object); 4107 object = old_entry->object.vm_object; 4108 } else { 4109 VM_OBJECT_WLOCK(object); 4110 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4111 if (old_entry->cred != NULL) { 4112 KASSERT(object->cred == NULL, 4113 ("vmspace_fork both cred")); 4114 object->cred = old_entry->cred; 4115 object->charge = old_entry->end - 4116 old_entry->start; 4117 old_entry->cred = NULL; 4118 } 4119 4120 /* 4121 * Assert the correct state of the vnode 4122 * v_writecount while the object is locked, to 4123 * not relock it later for the assertion 4124 * correctness. 4125 */ 4126 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4127 object->type == OBJT_VNODE) { 4128 KASSERT(((struct vnode *)object-> 4129 handle)->v_writecount > 0, 4130 ("vmspace_fork: v_writecount %p", 4131 object)); 4132 KASSERT(object->un_pager.vnp. 4133 writemappings > 0, 4134 ("vmspace_fork: vnp.writecount %p", 4135 object)); 4136 } 4137 VM_OBJECT_WUNLOCK(object); 4138 } 4139 4140 /* 4141 * Clone the entry, referencing the shared object. 4142 */ 4143 new_entry = vm_map_entry_create(new_map); 4144 *new_entry = *old_entry; 4145 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4146 MAP_ENTRY_IN_TRANSITION); 4147 new_entry->wiring_thread = NULL; 4148 new_entry->wired_count = 0; 4149 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4150 vm_pager_update_writecount(object, 4151 new_entry->start, new_entry->end); 4152 } 4153 vm_map_entry_set_vnode_text(new_entry, true); 4154 4155 /* 4156 * Insert the entry into the new map -- we know we're 4157 * inserting at the end of the new map. 4158 */ 4159 vm_map_entry_link(new_map, new_entry); 4160 vmspace_map_entry_forked(vm1, vm2, new_entry); 4161 4162 /* 4163 * Update the physical map 4164 */ 4165 pmap_copy(new_map->pmap, old_map->pmap, 4166 new_entry->start, 4167 (old_entry->end - old_entry->start), 4168 old_entry->start); 4169 break; 4170 4171 case VM_INHERIT_COPY: 4172 /* 4173 * Clone the entry and link into the map. 4174 */ 4175 new_entry = vm_map_entry_create(new_map); 4176 *new_entry = *old_entry; 4177 /* 4178 * Copied entry is COW over the old object. 4179 */ 4180 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4181 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4182 new_entry->wiring_thread = NULL; 4183 new_entry->wired_count = 0; 4184 new_entry->object.vm_object = NULL; 4185 new_entry->cred = NULL; 4186 vm_map_entry_link(new_map, new_entry); 4187 vmspace_map_entry_forked(vm1, vm2, new_entry); 4188 vm_map_copy_entry(old_map, new_map, old_entry, 4189 new_entry, fork_charge); 4190 vm_map_entry_set_vnode_text(new_entry, true); 4191 break; 4192 4193 case VM_INHERIT_ZERO: 4194 /* 4195 * Create a new anonymous mapping entry modelled from 4196 * the old one. 4197 */ 4198 new_entry = vm_map_entry_create(new_map); 4199 memset(new_entry, 0, sizeof(*new_entry)); 4200 4201 new_entry->start = old_entry->start; 4202 new_entry->end = old_entry->end; 4203 new_entry->eflags = old_entry->eflags & 4204 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4205 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4206 new_entry->protection = old_entry->protection; 4207 new_entry->max_protection = old_entry->max_protection; 4208 new_entry->inheritance = VM_INHERIT_ZERO; 4209 4210 vm_map_entry_link(new_map, new_entry); 4211 vmspace_map_entry_forked(vm1, vm2, new_entry); 4212 4213 new_entry->cred = curthread->td_ucred; 4214 crhold(new_entry->cred); 4215 *fork_charge += (new_entry->end - new_entry->start); 4216 4217 break; 4218 } 4219 } 4220 /* 4221 * Use inlined vm_map_unlock() to postpone handling the deferred 4222 * map entries, which cannot be done until both old_map and 4223 * new_map locks are released. 4224 */ 4225 sx_xunlock(&old_map->lock); 4226 sx_xunlock(&new_map->lock); 4227 vm_map_process_deferred(); 4228 4229 return (vm2); 4230 } 4231 4232 /* 4233 * Create a process's stack for exec_new_vmspace(). This function is never 4234 * asked to wire the newly created stack. 4235 */ 4236 int 4237 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4238 vm_prot_t prot, vm_prot_t max, int cow) 4239 { 4240 vm_size_t growsize, init_ssize; 4241 rlim_t vmemlim; 4242 int rv; 4243 4244 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4245 growsize = sgrowsiz; 4246 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4247 vm_map_lock(map); 4248 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4249 /* If we would blow our VMEM resource limit, no go */ 4250 if (map->size + init_ssize > vmemlim) { 4251 rv = KERN_NO_SPACE; 4252 goto out; 4253 } 4254 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4255 max, cow); 4256 out: 4257 vm_map_unlock(map); 4258 return (rv); 4259 } 4260 4261 static int stack_guard_page = 1; 4262 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4263 &stack_guard_page, 0, 4264 "Specifies the number of guard pages for a stack that grows"); 4265 4266 static int 4267 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4268 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4269 { 4270 vm_map_entry_t new_entry, prev_entry; 4271 vm_offset_t bot, gap_bot, gap_top, top; 4272 vm_size_t init_ssize, sgp; 4273 int orient, rv; 4274 4275 /* 4276 * The stack orientation is piggybacked with the cow argument. 4277 * Extract it into orient and mask the cow argument so that we 4278 * don't pass it around further. 4279 */ 4280 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4281 KASSERT(orient != 0, ("No stack grow direction")); 4282 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4283 ("bi-dir stack")); 4284 4285 if (max_ssize == 0 || 4286 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4287 return (KERN_INVALID_ADDRESS); 4288 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4289 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4290 (vm_size_t)stack_guard_page * PAGE_SIZE; 4291 if (sgp >= max_ssize) 4292 return (KERN_INVALID_ARGUMENT); 4293 4294 init_ssize = growsize; 4295 if (max_ssize < init_ssize + sgp) 4296 init_ssize = max_ssize - sgp; 4297 4298 /* If addr is already mapped, no go */ 4299 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4300 return (KERN_NO_SPACE); 4301 4302 /* 4303 * If we can't accommodate max_ssize in the current mapping, no go. 4304 */ 4305 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4306 return (KERN_NO_SPACE); 4307 4308 /* 4309 * We initially map a stack of only init_ssize. We will grow as 4310 * needed later. Depending on the orientation of the stack (i.e. 4311 * the grow direction) we either map at the top of the range, the 4312 * bottom of the range or in the middle. 4313 * 4314 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4315 * and cow to be 0. Possibly we should eliminate these as input 4316 * parameters, and just pass these values here in the insert call. 4317 */ 4318 if (orient == MAP_STACK_GROWS_DOWN) { 4319 bot = addrbos + max_ssize - init_ssize; 4320 top = bot + init_ssize; 4321 gap_bot = addrbos; 4322 gap_top = bot; 4323 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4324 bot = addrbos; 4325 top = bot + init_ssize; 4326 gap_bot = top; 4327 gap_top = addrbos + max_ssize; 4328 } 4329 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4330 if (rv != KERN_SUCCESS) 4331 return (rv); 4332 new_entry = vm_map_entry_succ(prev_entry); 4333 KASSERT(new_entry->end == top || new_entry->start == bot, 4334 ("Bad entry start/end for new stack entry")); 4335 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4336 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4337 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4338 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4339 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4340 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4341 if (gap_bot == gap_top) 4342 return (KERN_SUCCESS); 4343 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4344 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4345 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4346 if (rv == KERN_SUCCESS) { 4347 /* 4348 * Gap can never successfully handle a fault, so 4349 * read-ahead logic is never used for it. Re-use 4350 * next_read of the gap entry to store 4351 * stack_guard_page for vm_map_growstack(). 4352 */ 4353 if (orient == MAP_STACK_GROWS_DOWN) 4354 vm_map_entry_pred(new_entry)->next_read = sgp; 4355 else 4356 vm_map_entry_succ(new_entry)->next_read = sgp; 4357 } else { 4358 (void)vm_map_delete(map, bot, top); 4359 } 4360 return (rv); 4361 } 4362 4363 /* 4364 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4365 * successfully grow the stack. 4366 */ 4367 static int 4368 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4369 { 4370 vm_map_entry_t stack_entry; 4371 struct proc *p; 4372 struct vmspace *vm; 4373 struct ucred *cred; 4374 vm_offset_t gap_end, gap_start, grow_start; 4375 vm_size_t grow_amount, guard, max_grow; 4376 rlim_t lmemlim, stacklim, vmemlim; 4377 int rv, rv1; 4378 bool gap_deleted, grow_down, is_procstack; 4379 #ifdef notyet 4380 uint64_t limit; 4381 #endif 4382 #ifdef RACCT 4383 int error; 4384 #endif 4385 4386 p = curproc; 4387 vm = p->p_vmspace; 4388 4389 /* 4390 * Disallow stack growth when the access is performed by a 4391 * debugger or AIO daemon. The reason is that the wrong 4392 * resource limits are applied. 4393 */ 4394 if (p != initproc && (map != &p->p_vmspace->vm_map || 4395 p->p_textvp == NULL)) 4396 return (KERN_FAILURE); 4397 4398 MPASS(!map->system_map); 4399 4400 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4401 stacklim = lim_cur(curthread, RLIMIT_STACK); 4402 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4403 retry: 4404 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4405 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4406 return (KERN_FAILURE); 4407 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4408 return (KERN_SUCCESS); 4409 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4410 stack_entry = vm_map_entry_succ(gap_entry); 4411 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4412 stack_entry->start != gap_entry->end) 4413 return (KERN_FAILURE); 4414 grow_amount = round_page(stack_entry->start - addr); 4415 grow_down = true; 4416 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4417 stack_entry = vm_map_entry_pred(gap_entry); 4418 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4419 stack_entry->end != gap_entry->start) 4420 return (KERN_FAILURE); 4421 grow_amount = round_page(addr + 1 - stack_entry->end); 4422 grow_down = false; 4423 } else { 4424 return (KERN_FAILURE); 4425 } 4426 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4427 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4428 gap_entry->next_read; 4429 max_grow = gap_entry->end - gap_entry->start; 4430 if (guard > max_grow) 4431 return (KERN_NO_SPACE); 4432 max_grow -= guard; 4433 if (grow_amount > max_grow) 4434 return (KERN_NO_SPACE); 4435 4436 /* 4437 * If this is the main process stack, see if we're over the stack 4438 * limit. 4439 */ 4440 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4441 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4442 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4443 return (KERN_NO_SPACE); 4444 4445 #ifdef RACCT 4446 if (racct_enable) { 4447 PROC_LOCK(p); 4448 if (is_procstack && racct_set(p, RACCT_STACK, 4449 ctob(vm->vm_ssize) + grow_amount)) { 4450 PROC_UNLOCK(p); 4451 return (KERN_NO_SPACE); 4452 } 4453 PROC_UNLOCK(p); 4454 } 4455 #endif 4456 4457 grow_amount = roundup(grow_amount, sgrowsiz); 4458 if (grow_amount > max_grow) 4459 grow_amount = max_grow; 4460 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4461 grow_amount = trunc_page((vm_size_t)stacklim) - 4462 ctob(vm->vm_ssize); 4463 } 4464 4465 #ifdef notyet 4466 PROC_LOCK(p); 4467 limit = racct_get_available(p, RACCT_STACK); 4468 PROC_UNLOCK(p); 4469 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4470 grow_amount = limit - ctob(vm->vm_ssize); 4471 #endif 4472 4473 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4474 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4475 rv = KERN_NO_SPACE; 4476 goto out; 4477 } 4478 #ifdef RACCT 4479 if (racct_enable) { 4480 PROC_LOCK(p); 4481 if (racct_set(p, RACCT_MEMLOCK, 4482 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4483 PROC_UNLOCK(p); 4484 rv = KERN_NO_SPACE; 4485 goto out; 4486 } 4487 PROC_UNLOCK(p); 4488 } 4489 #endif 4490 } 4491 4492 /* If we would blow our VMEM resource limit, no go */ 4493 if (map->size + grow_amount > vmemlim) { 4494 rv = KERN_NO_SPACE; 4495 goto out; 4496 } 4497 #ifdef RACCT 4498 if (racct_enable) { 4499 PROC_LOCK(p); 4500 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4501 PROC_UNLOCK(p); 4502 rv = KERN_NO_SPACE; 4503 goto out; 4504 } 4505 PROC_UNLOCK(p); 4506 } 4507 #endif 4508 4509 if (vm_map_lock_upgrade(map)) { 4510 gap_entry = NULL; 4511 vm_map_lock_read(map); 4512 goto retry; 4513 } 4514 4515 if (grow_down) { 4516 grow_start = gap_entry->end - grow_amount; 4517 if (gap_entry->start + grow_amount == gap_entry->end) { 4518 gap_start = gap_entry->start; 4519 gap_end = gap_entry->end; 4520 vm_map_entry_delete(map, gap_entry); 4521 gap_deleted = true; 4522 } else { 4523 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4524 vm_map_entry_resize(map, gap_entry, -grow_amount); 4525 gap_deleted = false; 4526 } 4527 rv = vm_map_insert(map, NULL, 0, grow_start, 4528 grow_start + grow_amount, 4529 stack_entry->protection, stack_entry->max_protection, 4530 MAP_STACK_GROWS_DOWN); 4531 if (rv != KERN_SUCCESS) { 4532 if (gap_deleted) { 4533 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4534 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4535 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4536 MPASS(rv1 == KERN_SUCCESS); 4537 } else 4538 vm_map_entry_resize(map, gap_entry, 4539 grow_amount); 4540 } 4541 } else { 4542 grow_start = stack_entry->end; 4543 cred = stack_entry->cred; 4544 if (cred == NULL && stack_entry->object.vm_object != NULL) 4545 cred = stack_entry->object.vm_object->cred; 4546 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4547 rv = KERN_NO_SPACE; 4548 /* Grow the underlying object if applicable. */ 4549 else if (stack_entry->object.vm_object == NULL || 4550 vm_object_coalesce(stack_entry->object.vm_object, 4551 stack_entry->offset, 4552 (vm_size_t)(stack_entry->end - stack_entry->start), 4553 grow_amount, cred != NULL)) { 4554 if (gap_entry->start + grow_amount == gap_entry->end) { 4555 vm_map_entry_delete(map, gap_entry); 4556 vm_map_entry_resize(map, stack_entry, 4557 grow_amount); 4558 } else { 4559 gap_entry->start += grow_amount; 4560 stack_entry->end += grow_amount; 4561 } 4562 map->size += grow_amount; 4563 rv = KERN_SUCCESS; 4564 } else 4565 rv = KERN_FAILURE; 4566 } 4567 if (rv == KERN_SUCCESS && is_procstack) 4568 vm->vm_ssize += btoc(grow_amount); 4569 4570 /* 4571 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4572 */ 4573 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4574 rv = vm_map_wire_locked(map, grow_start, 4575 grow_start + grow_amount, 4576 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4577 } 4578 vm_map_lock_downgrade(map); 4579 4580 out: 4581 #ifdef RACCT 4582 if (racct_enable && rv != KERN_SUCCESS) { 4583 PROC_LOCK(p); 4584 error = racct_set(p, RACCT_VMEM, map->size); 4585 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4586 if (!old_mlock) { 4587 error = racct_set(p, RACCT_MEMLOCK, 4588 ptoa(pmap_wired_count(map->pmap))); 4589 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4590 } 4591 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4592 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4593 PROC_UNLOCK(p); 4594 } 4595 #endif 4596 4597 return (rv); 4598 } 4599 4600 /* 4601 * Unshare the specified VM space for exec. If other processes are 4602 * mapped to it, then create a new one. The new vmspace is null. 4603 */ 4604 int 4605 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4606 { 4607 struct vmspace *oldvmspace = p->p_vmspace; 4608 struct vmspace *newvmspace; 4609 4610 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4611 ("vmspace_exec recursed")); 4612 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4613 if (newvmspace == NULL) 4614 return (ENOMEM); 4615 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4616 /* 4617 * This code is written like this for prototype purposes. The 4618 * goal is to avoid running down the vmspace here, but let the 4619 * other process's that are still using the vmspace to finally 4620 * run it down. Even though there is little or no chance of blocking 4621 * here, it is a good idea to keep this form for future mods. 4622 */ 4623 PROC_VMSPACE_LOCK(p); 4624 p->p_vmspace = newvmspace; 4625 PROC_VMSPACE_UNLOCK(p); 4626 if (p == curthread->td_proc) 4627 pmap_activate(curthread); 4628 curthread->td_pflags |= TDP_EXECVMSPC; 4629 return (0); 4630 } 4631 4632 /* 4633 * Unshare the specified VM space for forcing COW. This 4634 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4635 */ 4636 int 4637 vmspace_unshare(struct proc *p) 4638 { 4639 struct vmspace *oldvmspace = p->p_vmspace; 4640 struct vmspace *newvmspace; 4641 vm_ooffset_t fork_charge; 4642 4643 if (oldvmspace->vm_refcnt == 1) 4644 return (0); 4645 fork_charge = 0; 4646 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4647 if (newvmspace == NULL) 4648 return (ENOMEM); 4649 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4650 vmspace_free(newvmspace); 4651 return (ENOMEM); 4652 } 4653 PROC_VMSPACE_LOCK(p); 4654 p->p_vmspace = newvmspace; 4655 PROC_VMSPACE_UNLOCK(p); 4656 if (p == curthread->td_proc) 4657 pmap_activate(curthread); 4658 vmspace_free(oldvmspace); 4659 return (0); 4660 } 4661 4662 /* 4663 * vm_map_lookup: 4664 * 4665 * Finds the VM object, offset, and 4666 * protection for a given virtual address in the 4667 * specified map, assuming a page fault of the 4668 * type specified. 4669 * 4670 * Leaves the map in question locked for read; return 4671 * values are guaranteed until a vm_map_lookup_done 4672 * call is performed. Note that the map argument 4673 * is in/out; the returned map must be used in 4674 * the call to vm_map_lookup_done. 4675 * 4676 * A handle (out_entry) is returned for use in 4677 * vm_map_lookup_done, to make that fast. 4678 * 4679 * If a lookup is requested with "write protection" 4680 * specified, the map may be changed to perform virtual 4681 * copying operations, although the data referenced will 4682 * remain the same. 4683 */ 4684 int 4685 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4686 vm_offset_t vaddr, 4687 vm_prot_t fault_typea, 4688 vm_map_entry_t *out_entry, /* OUT */ 4689 vm_object_t *object, /* OUT */ 4690 vm_pindex_t *pindex, /* OUT */ 4691 vm_prot_t *out_prot, /* OUT */ 4692 boolean_t *wired) /* OUT */ 4693 { 4694 vm_map_entry_t entry; 4695 vm_map_t map = *var_map; 4696 vm_prot_t prot; 4697 vm_prot_t fault_type; 4698 vm_object_t eobject; 4699 vm_size_t size; 4700 struct ucred *cred; 4701 4702 RetryLookup: 4703 4704 vm_map_lock_read(map); 4705 4706 RetryLookupLocked: 4707 /* 4708 * Lookup the faulting address. 4709 */ 4710 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4711 vm_map_unlock_read(map); 4712 return (KERN_INVALID_ADDRESS); 4713 } 4714 4715 entry = *out_entry; 4716 4717 /* 4718 * Handle submaps. 4719 */ 4720 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4721 vm_map_t old_map = map; 4722 4723 *var_map = map = entry->object.sub_map; 4724 vm_map_unlock_read(old_map); 4725 goto RetryLookup; 4726 } 4727 4728 /* 4729 * Check whether this task is allowed to have this page. 4730 */ 4731 prot = entry->protection; 4732 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4733 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4734 if (prot == VM_PROT_NONE && map != kernel_map && 4735 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4736 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4737 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4738 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4739 goto RetryLookupLocked; 4740 } 4741 fault_type = fault_typea & VM_PROT_ALL; 4742 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4743 vm_map_unlock_read(map); 4744 return (KERN_PROTECTION_FAILURE); 4745 } 4746 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4747 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4748 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4749 ("entry %p flags %x", entry, entry->eflags)); 4750 if ((fault_typea & VM_PROT_COPY) != 0 && 4751 (entry->max_protection & VM_PROT_WRITE) == 0 && 4752 (entry->eflags & MAP_ENTRY_COW) == 0) { 4753 vm_map_unlock_read(map); 4754 return (KERN_PROTECTION_FAILURE); 4755 } 4756 4757 /* 4758 * If this page is not pageable, we have to get it for all possible 4759 * accesses. 4760 */ 4761 *wired = (entry->wired_count != 0); 4762 if (*wired) 4763 fault_type = entry->protection; 4764 size = entry->end - entry->start; 4765 4766 /* 4767 * If the entry was copy-on-write, we either ... 4768 */ 4769 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4770 /* 4771 * If we want to write the page, we may as well handle that 4772 * now since we've got the map locked. 4773 * 4774 * If we don't need to write the page, we just demote the 4775 * permissions allowed. 4776 */ 4777 if ((fault_type & VM_PROT_WRITE) != 0 || 4778 (fault_typea & VM_PROT_COPY) != 0) { 4779 /* 4780 * Make a new object, and place it in the object 4781 * chain. Note that no new references have appeared 4782 * -- one just moved from the map to the new 4783 * object. 4784 */ 4785 if (vm_map_lock_upgrade(map)) 4786 goto RetryLookup; 4787 4788 if (entry->cred == NULL) { 4789 /* 4790 * The debugger owner is charged for 4791 * the memory. 4792 */ 4793 cred = curthread->td_ucred; 4794 crhold(cred); 4795 if (!swap_reserve_by_cred(size, cred)) { 4796 crfree(cred); 4797 vm_map_unlock(map); 4798 return (KERN_RESOURCE_SHORTAGE); 4799 } 4800 entry->cred = cred; 4801 } 4802 eobject = entry->object.vm_object; 4803 vm_object_shadow(&entry->object.vm_object, 4804 &entry->offset, size, entry->cred, false); 4805 if (eobject == entry->object.vm_object) { 4806 /* 4807 * The object was not shadowed. 4808 */ 4809 swap_release_by_cred(size, entry->cred); 4810 crfree(entry->cred); 4811 } 4812 entry->cred = NULL; 4813 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4814 4815 vm_map_lock_downgrade(map); 4816 } else { 4817 /* 4818 * We're attempting to read a copy-on-write page -- 4819 * don't allow writes. 4820 */ 4821 prot &= ~VM_PROT_WRITE; 4822 } 4823 } 4824 4825 /* 4826 * Create an object if necessary. 4827 */ 4828 if (entry->object.vm_object == NULL && !map->system_map) { 4829 if (vm_map_lock_upgrade(map)) 4830 goto RetryLookup; 4831 entry->object.vm_object = vm_object_allocate_anon(atop(size), 4832 NULL, entry->cred, entry->cred != NULL ? size : 0); 4833 entry->offset = 0; 4834 entry->cred = NULL; 4835 vm_map_lock_downgrade(map); 4836 } 4837 4838 /* 4839 * Return the object/offset from this entry. If the entry was 4840 * copy-on-write or empty, it has been fixed up. 4841 */ 4842 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4843 *object = entry->object.vm_object; 4844 4845 *out_prot = prot; 4846 return (KERN_SUCCESS); 4847 } 4848 4849 /* 4850 * vm_map_lookup_locked: 4851 * 4852 * Lookup the faulting address. A version of vm_map_lookup that returns 4853 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4854 */ 4855 int 4856 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4857 vm_offset_t vaddr, 4858 vm_prot_t fault_typea, 4859 vm_map_entry_t *out_entry, /* OUT */ 4860 vm_object_t *object, /* OUT */ 4861 vm_pindex_t *pindex, /* OUT */ 4862 vm_prot_t *out_prot, /* OUT */ 4863 boolean_t *wired) /* OUT */ 4864 { 4865 vm_map_entry_t entry; 4866 vm_map_t map = *var_map; 4867 vm_prot_t prot; 4868 vm_prot_t fault_type = fault_typea; 4869 4870 /* 4871 * Lookup the faulting address. 4872 */ 4873 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4874 return (KERN_INVALID_ADDRESS); 4875 4876 entry = *out_entry; 4877 4878 /* 4879 * Fail if the entry refers to a submap. 4880 */ 4881 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4882 return (KERN_FAILURE); 4883 4884 /* 4885 * Check whether this task is allowed to have this page. 4886 */ 4887 prot = entry->protection; 4888 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4889 if ((fault_type & prot) != fault_type) 4890 return (KERN_PROTECTION_FAILURE); 4891 4892 /* 4893 * If this page is not pageable, we have to get it for all possible 4894 * accesses. 4895 */ 4896 *wired = (entry->wired_count != 0); 4897 if (*wired) 4898 fault_type = entry->protection; 4899 4900 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4901 /* 4902 * Fail if the entry was copy-on-write for a write fault. 4903 */ 4904 if (fault_type & VM_PROT_WRITE) 4905 return (KERN_FAILURE); 4906 /* 4907 * We're attempting to read a copy-on-write page -- 4908 * don't allow writes. 4909 */ 4910 prot &= ~VM_PROT_WRITE; 4911 } 4912 4913 /* 4914 * Fail if an object should be created. 4915 */ 4916 if (entry->object.vm_object == NULL && !map->system_map) 4917 return (KERN_FAILURE); 4918 4919 /* 4920 * Return the object/offset from this entry. If the entry was 4921 * copy-on-write or empty, it has been fixed up. 4922 */ 4923 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4924 *object = entry->object.vm_object; 4925 4926 *out_prot = prot; 4927 return (KERN_SUCCESS); 4928 } 4929 4930 /* 4931 * vm_map_lookup_done: 4932 * 4933 * Releases locks acquired by a vm_map_lookup 4934 * (according to the handle returned by that lookup). 4935 */ 4936 void 4937 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4938 { 4939 /* 4940 * Unlock the main-level map 4941 */ 4942 vm_map_unlock_read(map); 4943 } 4944 4945 vm_offset_t 4946 vm_map_max_KBI(const struct vm_map *map) 4947 { 4948 4949 return (vm_map_max(map)); 4950 } 4951 4952 vm_offset_t 4953 vm_map_min_KBI(const struct vm_map *map) 4954 { 4955 4956 return (vm_map_min(map)); 4957 } 4958 4959 pmap_t 4960 vm_map_pmap_KBI(vm_map_t map) 4961 { 4962 4963 return (map->pmap); 4964 } 4965 4966 bool 4967 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 4968 { 4969 4970 return (vm_map_range_valid(map, start, end)); 4971 } 4972 4973 #ifdef INVARIANTS 4974 static void 4975 _vm_map_assert_consistent(vm_map_t map, int check) 4976 { 4977 vm_map_entry_t entry, prev; 4978 vm_map_entry_t cur, header, lbound, ubound; 4979 vm_size_t max_left, max_right; 4980 4981 #ifdef DIAGNOSTIC 4982 ++map->nupdates; 4983 #endif 4984 if (enable_vmmap_check != check) 4985 return; 4986 4987 header = prev = &map->header; 4988 VM_MAP_ENTRY_FOREACH(entry, map) { 4989 KASSERT(prev->end <= entry->start, 4990 ("map %p prev->end = %jx, start = %jx", map, 4991 (uintmax_t)prev->end, (uintmax_t)entry->start)); 4992 KASSERT(entry->start < entry->end, 4993 ("map %p start = %jx, end = %jx", map, 4994 (uintmax_t)entry->start, (uintmax_t)entry->end)); 4995 KASSERT(entry->left == header || 4996 entry->left->start < entry->start, 4997 ("map %p left->start = %jx, start = %jx", map, 4998 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 4999 KASSERT(entry->right == header || 5000 entry->start < entry->right->start, 5001 ("map %p start = %jx, right->start = %jx", map, 5002 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5003 cur = map->root; 5004 lbound = ubound = header; 5005 for (;;) { 5006 if (entry->start < cur->start) { 5007 ubound = cur; 5008 cur = cur->left; 5009 KASSERT(cur != lbound, 5010 ("map %p cannot find %jx", 5011 map, (uintmax_t)entry->start)); 5012 } else if (cur->end <= entry->start) { 5013 lbound = cur; 5014 cur = cur->right; 5015 KASSERT(cur != ubound, 5016 ("map %p cannot find %jx", 5017 map, (uintmax_t)entry->start)); 5018 } else { 5019 KASSERT(cur == entry, 5020 ("map %p cannot find %jx", 5021 map, (uintmax_t)entry->start)); 5022 break; 5023 } 5024 } 5025 max_left = vm_map_entry_max_free_left(entry, lbound); 5026 max_right = vm_map_entry_max_free_right(entry, ubound); 5027 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5028 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5029 (uintmax_t)entry->max_free, 5030 (uintmax_t)max_left, (uintmax_t)max_right)); 5031 prev = entry; 5032 } 5033 KASSERT(prev->end <= entry->start, 5034 ("map %p prev->end = %jx, start = %jx", map, 5035 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5036 } 5037 #endif 5038 5039 #include "opt_ddb.h" 5040 #ifdef DDB 5041 #include <sys/kernel.h> 5042 5043 #include <ddb/ddb.h> 5044 5045 static void 5046 vm_map_print(vm_map_t map) 5047 { 5048 vm_map_entry_t entry, prev; 5049 5050 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5051 (void *)map, 5052 (void *)map->pmap, map->nentries, map->timestamp); 5053 5054 db_indent += 2; 5055 prev = &map->header; 5056 VM_MAP_ENTRY_FOREACH(entry, map) { 5057 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5058 (void *)entry, (void *)entry->start, (void *)entry->end, 5059 entry->eflags); 5060 { 5061 static const char * const inheritance_name[4] = 5062 {"share", "copy", "none", "donate_copy"}; 5063 5064 db_iprintf(" prot=%x/%x/%s", 5065 entry->protection, 5066 entry->max_protection, 5067 inheritance_name[(int)(unsigned char) 5068 entry->inheritance]); 5069 if (entry->wired_count != 0) 5070 db_printf(", wired"); 5071 } 5072 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5073 db_printf(", share=%p, offset=0x%jx\n", 5074 (void *)entry->object.sub_map, 5075 (uintmax_t)entry->offset); 5076 if (prev == &map->header || 5077 prev->object.sub_map != 5078 entry->object.sub_map) { 5079 db_indent += 2; 5080 vm_map_print((vm_map_t)entry->object.sub_map); 5081 db_indent -= 2; 5082 } 5083 } else { 5084 if (entry->cred != NULL) 5085 db_printf(", ruid %d", entry->cred->cr_ruid); 5086 db_printf(", object=%p, offset=0x%jx", 5087 (void *)entry->object.vm_object, 5088 (uintmax_t)entry->offset); 5089 if (entry->object.vm_object && entry->object.vm_object->cred) 5090 db_printf(", obj ruid %d charge %jx", 5091 entry->object.vm_object->cred->cr_ruid, 5092 (uintmax_t)entry->object.vm_object->charge); 5093 if (entry->eflags & MAP_ENTRY_COW) 5094 db_printf(", copy (%s)", 5095 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5096 db_printf("\n"); 5097 5098 if (prev == &map->header || 5099 prev->object.vm_object != 5100 entry->object.vm_object) { 5101 db_indent += 2; 5102 vm_object_print((db_expr_t)(intptr_t) 5103 entry->object.vm_object, 5104 0, 0, (char *)0); 5105 db_indent -= 2; 5106 } 5107 } 5108 prev = entry; 5109 } 5110 db_indent -= 2; 5111 } 5112 5113 DB_SHOW_COMMAND(map, map) 5114 { 5115 5116 if (!have_addr) { 5117 db_printf("usage: show map <addr>\n"); 5118 return; 5119 } 5120 vm_map_print((vm_map_t)addr); 5121 } 5122 5123 DB_SHOW_COMMAND(procvm, procvm) 5124 { 5125 struct proc *p; 5126 5127 if (have_addr) { 5128 p = db_lookup_proc(addr); 5129 } else { 5130 p = curproc; 5131 } 5132 5133 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5134 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5135 (void *)vmspace_pmap(p->p_vmspace)); 5136 5137 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5138 } 5139 5140 #endif /* DDB */ 5141