xref: /freebsd/sys/vm/vm_map.c (revision 28f4385e45a2681c14bd04b83fe1796eaefe8265)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287 	if (!pinit(vmspace_pmap(vm))) {
288 		uma_zfree(vmspace_zone, vm);
289 		return (NULL);
290 	}
291 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293 	vm->vm_refcnt = 1;
294 	vm->vm_shm = NULL;
295 	vm->vm_swrss = 0;
296 	vm->vm_tsize = 0;
297 	vm->vm_dsize = 0;
298 	vm->vm_ssize = 0;
299 	vm->vm_taddr = 0;
300 	vm->vm_daddr = 0;
301 	vm->vm_maxsaddr = 0;
302 	return (vm);
303 }
304 
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309 
310 	PROC_LOCK(p);
311 	racct_set(p, RACCT_DATA, 0);
312 	racct_set(p, RACCT_STACK, 0);
313 	racct_set(p, RACCT_RSS, 0);
314 	racct_set(p, RACCT_MEMLOCK, 0);
315 	racct_set(p, RACCT_VMEM, 0);
316 	PROC_UNLOCK(p);
317 }
318 #endif
319 
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323 
324 	CTR1(KTR_VM, "vmspace_free: %p", vm);
325 
326 	/*
327 	 * Make sure any SysV shm is freed, it might not have been in
328 	 * exit1().
329 	 */
330 	shmexit(vm);
331 
332 	/*
333 	 * Lock the map, to wait out all other references to it.
334 	 * Delete all of the mappings and pages they hold, then call
335 	 * the pmap module to reclaim anything left.
336 	 */
337 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338 	    vm_map_max(&vm->vm_map));
339 
340 	pmap_release(vmspace_pmap(vm));
341 	vm->vm_map.pmap = NULL;
342 	uma_zfree(vmspace_zone, vm);
343 }
344 
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348 
349 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350 	    "vmspace_free() called");
351 
352 	if (vm->vm_refcnt == 0)
353 		panic("vmspace_free: attempt to free already freed vmspace");
354 
355 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356 		vmspace_dofree(vm);
357 }
358 
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362 	struct vmspace *vm;
363 
364 	PROC_VMSPACE_LOCK(p);
365 	vm = p->p_vmspace;
366 	p->p_vmspace = NULL;
367 	PROC_VMSPACE_UNLOCK(p);
368 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369 	vmspace_free(vm);
370 }
371 
372 void
373 vmspace_exit(struct thread *td)
374 {
375 	int refcnt;
376 	struct vmspace *vm;
377 	struct proc *p;
378 
379 	/*
380 	 * Release user portion of address space.
381 	 * This releases references to vnodes,
382 	 * which could cause I/O if the file has been unlinked.
383 	 * Need to do this early enough that we can still sleep.
384 	 *
385 	 * The last exiting process to reach this point releases as
386 	 * much of the environment as it can. vmspace_dofree() is the
387 	 * slower fallback in case another process had a temporary
388 	 * reference to the vmspace.
389 	 */
390 
391 	p = td->td_proc;
392 	vm = p->p_vmspace;
393 	atomic_add_int(&vmspace0.vm_refcnt, 1);
394 	refcnt = vm->vm_refcnt;
395 	do {
396 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397 			/* Switch now since other proc might free vmspace */
398 			PROC_VMSPACE_LOCK(p);
399 			p->p_vmspace = &vmspace0;
400 			PROC_VMSPACE_UNLOCK(p);
401 			pmap_activate(td);
402 		}
403 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404 	if (refcnt == 1) {
405 		if (p->p_vmspace != vm) {
406 			/* vmspace not yet freed, switch back */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = vm;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 		pmap_remove_pages(vmspace_pmap(vm));
413 		/* Switch now since this proc will free vmspace */
414 		PROC_VMSPACE_LOCK(p);
415 		p->p_vmspace = &vmspace0;
416 		PROC_VMSPACE_UNLOCK(p);
417 		pmap_activate(td);
418 		vmspace_dofree(vm);
419 	}
420 #ifdef RACCT
421 	if (racct_enable)
422 		vmspace_container_reset(p);
423 #endif
424 }
425 
426 /* Acquire reference to vmspace owned by another process. */
427 
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431 	struct vmspace *vm;
432 	int refcnt;
433 
434 	PROC_VMSPACE_LOCK(p);
435 	vm = p->p_vmspace;
436 	if (vm == NULL) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		return (NULL);
439 	}
440 	refcnt = vm->vm_refcnt;
441 	do {
442 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
443 			PROC_VMSPACE_UNLOCK(p);
444 			return (NULL);
445 		}
446 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447 	if (vm != p->p_vmspace) {
448 		PROC_VMSPACE_UNLOCK(p);
449 		vmspace_free(vm);
450 		return (NULL);
451 	}
452 	PROC_VMSPACE_UNLOCK(p);
453 	return (vm);
454 }
455 
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475 	struct vmspace *oldvm;
476 
477 	/* XXX: Need some way to assert that this is an aio daemon. */
478 
479 	KASSERT(newvm->vm_refcnt > 0,
480 	    ("vmspace_switch_aio: newvm unreferenced"));
481 
482 	oldvm = curproc->p_vmspace;
483 	if (oldvm == newvm)
484 		return;
485 
486 	/*
487 	 * Point to the new address space and refer to it.
488 	 */
489 	curproc->p_vmspace = newvm;
490 	atomic_add_int(&newvm->vm_refcnt, 1);
491 
492 	/* Activate the new mapping. */
493 	pmap_activate(curthread);
494 
495 	/* Remove the daemon's reference to the old address space. */
496 	KASSERT(oldvm->vm_refcnt > 1,
497 	    ("vmspace_switch_aio: oldvm dropping last reference"));
498 	vmspace_free(oldvm);
499 }
500 
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504 
505 	if (map->system_map)
506 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
507 	else
508 		sx_xlock_(&map->lock, file, line);
509 	map->timestamp++;
510 }
511 
512 static void
513 vm_map_process_deferred(void)
514 {
515 	struct thread *td;
516 	vm_map_entry_t entry, next;
517 	vm_object_t object;
518 
519 	td = curthread;
520 	entry = td->td_map_def_user;
521 	td->td_map_def_user = NULL;
522 	while (entry != NULL) {
523 		next = entry->next;
524 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525 			/*
526 			 * Decrement the object's writemappings and
527 			 * possibly the vnode's v_writecount.
528 			 */
529 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530 			    ("Submap with writecount"));
531 			object = entry->object.vm_object;
532 			KASSERT(object != NULL, ("No object for writecount"));
533 			vnode_pager_release_writecount(object, entry->start,
534 			    entry->end);
535 		}
536 		vm_map_entry_deallocate(entry, FALSE);
537 		entry = next;
538 	}
539 }
540 
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544 
545 	if (map->system_map)
546 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547 	else {
548 		sx_xunlock_(&map->lock, file, line);
549 		vm_map_process_deferred();
550 	}
551 }
552 
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556 
557 	if (map->system_map)
558 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
559 	else
560 		sx_slock_(&map->lock, file, line);
561 }
562 
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566 
567 	if (map->system_map)
568 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569 	else {
570 		sx_sunlock_(&map->lock, file, line);
571 		vm_map_process_deferred();
572 	}
573 }
574 
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578 	int error;
579 
580 	error = map->system_map ?
581 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582 	    !sx_try_xlock_(&map->lock, file, line);
583 	if (error == 0)
584 		map->timestamp++;
585 	return (error == 0);
586 }
587 
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591 	int error;
592 
593 	error = map->system_map ?
594 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595 	    !sx_try_slock_(&map->lock, file, line);
596 	return (error == 0);
597 }
598 
599 /*
600  *	_vm_map_lock_upgrade:	[ internal use only ]
601  *
602  *	Tries to upgrade a read (shared) lock on the specified map to a write
603  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *	returned without a read or write lock held.
606  *
607  *	Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612 	unsigned int last_timestamp;
613 
614 	if (map->system_map) {
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	} else {
617 		if (!sx_try_upgrade_(&map->lock, file, line)) {
618 			last_timestamp = map->timestamp;
619 			sx_sunlock_(&map->lock, file, line);
620 			vm_map_process_deferred();
621 			/*
622 			 * If the map's timestamp does not change while the
623 			 * map is unlocked, then the upgrade succeeds.
624 			 */
625 			sx_xlock_(&map->lock, file, line);
626 			if (last_timestamp != map->timestamp) {
627 				sx_xunlock_(&map->lock, file, line);
628 				return (1);
629 			}
630 		}
631 	}
632 	map->timestamp++;
633 	return (0);
634 }
635 
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639 
640 	if (map->system_map) {
641 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642 	} else
643 		sx_downgrade_(&map->lock, file, line);
644 }
645 
646 /*
647  *	vm_map_locked:
648  *
649  *	Returns a non-zero value if the caller holds a write (exclusive) lock
650  *	on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655 
656 	if (map->system_map)
657 		return (mtx_owned(&map->system_mtx));
658 	else
659 		return (sx_xlocked(&map->lock));
660 }
661 
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666 
667 	if (map->system_map)
668 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669 	else
670 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672 
673 #define	VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define	VM_MAP_ASSERT_LOCKED(map)
677 #endif
678 
679 /*
680  *	_vm_map_unlock_and_wait:
681  *
682  *	Atomically releases the lock on the specified map and puts the calling
683  *	thread to sleep.  The calling thread will remain asleep until either
684  *	vm_map_wakeup() is performed on the map or the specified timeout is
685  *	exceeded.
686  *
687  *	WARNING!  This function does not perform deferred deallocations of
688  *	objects and map	entries.  Therefore, the calling thread is expected to
689  *	reacquire the map lock after reawakening and later perform an ordinary
690  *	unlock operation, such as vm_map_unlock(), before completing its
691  *	operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696 
697 	mtx_lock(&map_sleep_mtx);
698 	if (map->system_map)
699 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700 	else
701 		sx_xunlock_(&map->lock, file, line);
702 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703 	    timo));
704 }
705 
706 /*
707  *	vm_map_wakeup:
708  *
709  *	Awaken any threads that have slept on the map using
710  *	vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715 
716 	/*
717 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
718 	 * from being performed (and lost) between the map unlock
719 	 * and the msleep() in _vm_map_unlock_and_wait().
720 	 */
721 	mtx_lock(&map_sleep_mtx);
722 	mtx_unlock(&map_sleep_mtx);
723 	wakeup(&map->root);
724 }
725 
726 void
727 vm_map_busy(vm_map_t map)
728 {
729 
730 	VM_MAP_ASSERT_LOCKED(map);
731 	map->busy++;
732 }
733 
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737 
738 	VM_MAP_ASSERT_LOCKED(map);
739 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742 		wakeup(&map->busy);
743 	}
744 }
745 
746 void
747 vm_map_wait_busy(vm_map_t map)
748 {
749 
750 	VM_MAP_ASSERT_LOCKED(map);
751 	while (map->busy) {
752 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753 		if (map->system_map)
754 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755 		else
756 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757 	}
758 	map->timestamp++;
759 }
760 
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764 	return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766 
767 /*
768  *	vm_map_create:
769  *
770  *	Creates and returns a new empty VM map with
771  *	the given physical map structure, and having
772  *	the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777 	vm_map_t result;
778 
779 	result = uma_zalloc(mapzone, M_WAITOK);
780 	CTR1(KTR_VM, "vm_map_create: %p", result);
781 	_vm_map_init(result, pmap, min, max);
782 	return (result);
783 }
784 
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792 
793 	map->header.next = map->header.prev = &map->header;
794 	map->header.eflags = MAP_ENTRY_HEADER;
795 	map->needs_wakeup = FALSE;
796 	map->system_map = 0;
797 	map->pmap = pmap;
798 	map->header.end = min;
799 	map->header.start = max;
800 	map->flags = 0;
801 	map->root = NULL;
802 	map->timestamp = 0;
803 	map->busy = 0;
804 }
805 
806 void
807 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
808 {
809 
810 	_vm_map_init(map, pmap, min, max);
811 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
812 	sx_init(&map->lock, "user map");
813 }
814 
815 /*
816  *	vm_map_entry_dispose:	[ internal use only ]
817  *
818  *	Inverse of vm_map_entry_create.
819  */
820 static void
821 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
822 {
823 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
824 }
825 
826 /*
827  *	vm_map_entry_create:	[ internal use only ]
828  *
829  *	Allocates a VM map entry for insertion.
830  *	No entry fields are filled in.
831  */
832 static vm_map_entry_t
833 vm_map_entry_create(vm_map_t map)
834 {
835 	vm_map_entry_t new_entry;
836 
837 	if (map->system_map)
838 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
839 	else
840 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
841 	if (new_entry == NULL)
842 		panic("vm_map_entry_create: kernel resources exhausted");
843 	return (new_entry);
844 }
845 
846 /*
847  *	vm_map_entry_set_behavior:
848  *
849  *	Set the expected access behavior, either normal, random, or
850  *	sequential.
851  */
852 static inline void
853 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
854 {
855 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
856 	    (behavior & MAP_ENTRY_BEHAV_MASK);
857 }
858 
859 /*
860  *	vm_map_entry_set_max_free:
861  *
862  *	Set the max_free field in a vm_map_entry.
863  */
864 static inline void
865 vm_map_entry_set_max_free(vm_map_entry_t entry)
866 {
867 
868 	entry->max_free = entry->adj_free;
869 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
870 		entry->max_free = entry->left->max_free;
871 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
872 		entry->max_free = entry->right->max_free;
873 }
874 
875 /*
876  *	vm_map_entry_splay:
877  *
878  *	The Sleator and Tarjan top-down splay algorithm with the
879  *	following variation.  Max_free must be computed bottom-up, so
880  *	on the downward pass, maintain the left and right spines in
881  *	reverse order.  Then, make a second pass up each side to fix
882  *	the pointers and compute max_free.  The time bound is O(log n)
883  *	amortized.
884  *
885  *	The new root is the vm_map_entry containing "addr", or else an
886  *	adjacent entry (lower or higher) if addr is not in the tree.
887  *
888  *	The map must be locked, and leaves it so.
889  *
890  *	Returns: the new root.
891  */
892 static vm_map_entry_t
893 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
894 {
895 	vm_map_entry_t llist, rlist;
896 	vm_map_entry_t ltree, rtree;
897 	vm_map_entry_t y;
898 
899 	/* Special case of empty tree. */
900 	if (root == NULL)
901 		return (root);
902 
903 	/*
904 	 * Pass One: Splay down the tree until we find addr or a NULL
905 	 * pointer where addr would go.  llist and rlist are the two
906 	 * sides in reverse order (bottom-up), with llist linked by
907 	 * the right pointer and rlist linked by the left pointer in
908 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
909 	 * the two spines.
910 	 */
911 	llist = NULL;
912 	rlist = NULL;
913 	for (;;) {
914 		/* root is never NULL in here. */
915 		if (addr < root->start) {
916 			y = root->left;
917 			if (y == NULL)
918 				break;
919 			if (addr < y->start && y->left != NULL) {
920 				/* Rotate right and put y on rlist. */
921 				root->left = y->right;
922 				y->right = root;
923 				vm_map_entry_set_max_free(root);
924 				root = y->left;
925 				y->left = rlist;
926 				rlist = y;
927 			} else {
928 				/* Put root on rlist. */
929 				root->left = rlist;
930 				rlist = root;
931 				root = y;
932 			}
933 		} else if (addr >= root->end) {
934 			y = root->right;
935 			if (y == NULL)
936 				break;
937 			if (addr >= y->end && y->right != NULL) {
938 				/* Rotate left and put y on llist. */
939 				root->right = y->left;
940 				y->left = root;
941 				vm_map_entry_set_max_free(root);
942 				root = y->right;
943 				y->right = llist;
944 				llist = y;
945 			} else {
946 				/* Put root on llist. */
947 				root->right = llist;
948 				llist = root;
949 				root = y;
950 			}
951 		} else
952 			break;
953 	}
954 
955 	/*
956 	 * Pass Two: Walk back up the two spines, flip the pointers
957 	 * and set max_free.  The subtrees of the root go at the
958 	 * bottom of llist and rlist.
959 	 */
960 	ltree = root->left;
961 	while (llist != NULL) {
962 		y = llist->right;
963 		llist->right = ltree;
964 		vm_map_entry_set_max_free(llist);
965 		ltree = llist;
966 		llist = y;
967 	}
968 	rtree = root->right;
969 	while (rlist != NULL) {
970 		y = rlist->left;
971 		rlist->left = rtree;
972 		vm_map_entry_set_max_free(rlist);
973 		rtree = rlist;
974 		rlist = y;
975 	}
976 
977 	/*
978 	 * Final assembly: add ltree and rtree as subtrees of root.
979 	 */
980 	root->left = ltree;
981 	root->right = rtree;
982 	vm_map_entry_set_max_free(root);
983 
984 	return (root);
985 }
986 
987 /*
988  *	vm_map_entry_{un,}link:
989  *
990  *	Insert/remove entries from maps.
991  */
992 static void
993 vm_map_entry_link(vm_map_t map,
994 		  vm_map_entry_t after_where,
995 		  vm_map_entry_t entry)
996 {
997 
998 	CTR4(KTR_VM,
999 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1000 	    map->nentries, entry, after_where);
1001 	VM_MAP_ASSERT_LOCKED(map);
1002 	KASSERT(after_where->end <= entry->start,
1003 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1004 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1005 	KASSERT(entry->end <= after_where->next->start,
1006 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1007 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1008 
1009 	map->nentries++;
1010 	entry->prev = after_where;
1011 	entry->next = after_where->next;
1012 	entry->next->prev = entry;
1013 	after_where->next = entry;
1014 
1015 	if (after_where != &map->header) {
1016 		if (after_where != map->root)
1017 			vm_map_entry_splay(after_where->start, map->root);
1018 		entry->right = after_where->right;
1019 		entry->left = after_where;
1020 		after_where->right = NULL;
1021 		after_where->adj_free = entry->start - after_where->end;
1022 		vm_map_entry_set_max_free(after_where);
1023 	} else {
1024 		entry->right = map->root;
1025 		entry->left = NULL;
1026 	}
1027 	entry->adj_free = entry->next->start - entry->end;
1028 	vm_map_entry_set_max_free(entry);
1029 	map->root = entry;
1030 }
1031 
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034 		    vm_map_entry_t entry)
1035 {
1036 	vm_map_entry_t next, prev, root;
1037 
1038 	VM_MAP_ASSERT_LOCKED(map);
1039 	if (entry != map->root)
1040 		vm_map_entry_splay(entry->start, map->root);
1041 	if (entry->left == NULL)
1042 		root = entry->right;
1043 	else {
1044 		root = vm_map_entry_splay(entry->start, entry->left);
1045 		root->right = entry->right;
1046 		root->adj_free = entry->next->start - root->end;
1047 		vm_map_entry_set_max_free(root);
1048 	}
1049 	map->root = root;
1050 
1051 	prev = entry->prev;
1052 	next = entry->next;
1053 	next->prev = prev;
1054 	prev->next = next;
1055 	map->nentries--;
1056 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1057 	    map->nentries, entry);
1058 }
1059 
1060 /*
1061  *	vm_map_entry_resize_free:
1062  *
1063  *	Recompute the amount of free space following a vm_map_entry
1064  *	and propagate that value up the tree.  Call this function after
1065  *	resizing a map entry in-place, that is, without a call to
1066  *	vm_map_entry_link() or _unlink().
1067  *
1068  *	The map must be locked, and leaves it so.
1069  */
1070 static void
1071 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1072 {
1073 
1074 	/*
1075 	 * Using splay trees without parent pointers, propagating
1076 	 * max_free up the tree is done by moving the entry to the
1077 	 * root and making the change there.
1078 	 */
1079 	if (entry != map->root)
1080 		map->root = vm_map_entry_splay(entry->start, map->root);
1081 
1082 	entry->adj_free = entry->next->start - entry->end;
1083 	vm_map_entry_set_max_free(entry);
1084 }
1085 
1086 /*
1087  *	vm_map_lookup_entry:	[ internal use only ]
1088  *
1089  *	Finds the map entry containing (or
1090  *	immediately preceding) the specified address
1091  *	in the given map; the entry is returned
1092  *	in the "entry" parameter.  The boolean
1093  *	result indicates whether the address is
1094  *	actually contained in the map.
1095  */
1096 boolean_t
1097 vm_map_lookup_entry(
1098 	vm_map_t map,
1099 	vm_offset_t address,
1100 	vm_map_entry_t *entry)	/* OUT */
1101 {
1102 	vm_map_entry_t cur;
1103 	boolean_t locked;
1104 
1105 	/*
1106 	 * If the map is empty, then the map entry immediately preceding
1107 	 * "address" is the map's header.
1108 	 */
1109 	cur = map->root;
1110 	if (cur == NULL)
1111 		*entry = &map->header;
1112 	else if (address >= cur->start && cur->end > address) {
1113 		*entry = cur;
1114 		return (TRUE);
1115 	} else if ((locked = vm_map_locked(map)) ||
1116 	    sx_try_upgrade(&map->lock)) {
1117 		/*
1118 		 * Splay requires a write lock on the map.  However, it only
1119 		 * restructures the binary search tree; it does not otherwise
1120 		 * change the map.  Thus, the map's timestamp need not change
1121 		 * on a temporary upgrade.
1122 		 */
1123 		map->root = cur = vm_map_entry_splay(address, cur);
1124 		if (!locked)
1125 			sx_downgrade(&map->lock);
1126 
1127 		/*
1128 		 * If "address" is contained within a map entry, the new root
1129 		 * is that map entry.  Otherwise, the new root is a map entry
1130 		 * immediately before or after "address".
1131 		 */
1132 		if (address >= cur->start) {
1133 			*entry = cur;
1134 			if (cur->end > address)
1135 				return (TRUE);
1136 		} else
1137 			*entry = cur->prev;
1138 	} else
1139 		/*
1140 		 * Since the map is only locked for read access, perform a
1141 		 * standard binary search tree lookup for "address".
1142 		 */
1143 		for (;;) {
1144 			if (address < cur->start) {
1145 				if (cur->left == NULL) {
1146 					*entry = cur->prev;
1147 					break;
1148 				}
1149 				cur = cur->left;
1150 			} else if (cur->end > address) {
1151 				*entry = cur;
1152 				return (TRUE);
1153 			} else {
1154 				if (cur->right == NULL) {
1155 					*entry = cur;
1156 					break;
1157 				}
1158 				cur = cur->right;
1159 			}
1160 		}
1161 	return (FALSE);
1162 }
1163 
1164 /*
1165  *	vm_map_insert:
1166  *
1167  *	Inserts the given whole VM object into the target
1168  *	map at the specified address range.  The object's
1169  *	size should match that of the address range.
1170  *
1171  *	Requires that the map be locked, and leaves it so.
1172  *
1173  *	If object is non-NULL, ref count must be bumped by caller
1174  *	prior to making call to account for the new entry.
1175  */
1176 int
1177 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1178     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1179 {
1180 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1181 	struct ucred *cred;
1182 	vm_eflags_t protoeflags;
1183 	vm_inherit_t inheritance;
1184 
1185 	VM_MAP_ASSERT_LOCKED(map);
1186 	KASSERT(object != kernel_object ||
1187 	    (cow & MAP_COPY_ON_WRITE) == 0,
1188 	    ("vm_map_insert: kernel object and COW"));
1189 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1190 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1191 	KASSERT((prot & ~max) == 0,
1192 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1193 
1194 	/*
1195 	 * Check that the start and end points are not bogus.
1196 	 */
1197 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1198 	    start >= end)
1199 		return (KERN_INVALID_ADDRESS);
1200 
1201 	/*
1202 	 * Find the entry prior to the proposed starting address; if it's part
1203 	 * of an existing entry, this range is bogus.
1204 	 */
1205 	if (vm_map_lookup_entry(map, start, &temp_entry))
1206 		return (KERN_NO_SPACE);
1207 
1208 	prev_entry = temp_entry;
1209 
1210 	/*
1211 	 * Assert that the next entry doesn't overlap the end point.
1212 	 */
1213 	if (prev_entry->next->start < end)
1214 		return (KERN_NO_SPACE);
1215 
1216 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1217 	    max != VM_PROT_NONE))
1218 		return (KERN_INVALID_ARGUMENT);
1219 
1220 	protoeflags = 0;
1221 	if (cow & MAP_COPY_ON_WRITE)
1222 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1223 	if (cow & MAP_NOFAULT)
1224 		protoeflags |= MAP_ENTRY_NOFAULT;
1225 	if (cow & MAP_DISABLE_SYNCER)
1226 		protoeflags |= MAP_ENTRY_NOSYNC;
1227 	if (cow & MAP_DISABLE_COREDUMP)
1228 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1229 	if (cow & MAP_STACK_GROWS_DOWN)
1230 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1231 	if (cow & MAP_STACK_GROWS_UP)
1232 		protoeflags |= MAP_ENTRY_GROWS_UP;
1233 	if (cow & MAP_VN_WRITECOUNT)
1234 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1235 	if ((cow & MAP_CREATE_GUARD) != 0)
1236 		protoeflags |= MAP_ENTRY_GUARD;
1237 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1238 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1239 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1240 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1241 	if (cow & MAP_INHERIT_SHARE)
1242 		inheritance = VM_INHERIT_SHARE;
1243 	else
1244 		inheritance = VM_INHERIT_DEFAULT;
1245 
1246 	cred = NULL;
1247 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1248 		goto charged;
1249 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1250 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1251 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1252 			return (KERN_RESOURCE_SHORTAGE);
1253 		KASSERT(object == NULL ||
1254 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1255 		    object->cred == NULL,
1256 		    ("overcommit: vm_map_insert o %p", object));
1257 		cred = curthread->td_ucred;
1258 	}
1259 
1260 charged:
1261 	/* Expand the kernel pmap, if necessary. */
1262 	if (map == kernel_map && end > kernel_vm_end)
1263 		pmap_growkernel(end);
1264 	if (object != NULL) {
1265 		/*
1266 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1267 		 * is trivially proven to be the only mapping for any
1268 		 * of the object's pages.  (Object granularity
1269 		 * reference counting is insufficient to recognize
1270 		 * aliases with precision.)
1271 		 */
1272 		VM_OBJECT_WLOCK(object);
1273 		if (object->ref_count > 1 || object->shadow_count != 0)
1274 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1275 		VM_OBJECT_WUNLOCK(object);
1276 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1277 	    protoeflags &&
1278 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1279 	    prev_entry->end == start && (prev_entry->cred == cred ||
1280 	    (prev_entry->object.vm_object != NULL &&
1281 	    prev_entry->object.vm_object->cred == cred)) &&
1282 	    vm_object_coalesce(prev_entry->object.vm_object,
1283 	    prev_entry->offset,
1284 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1285 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1286 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1287 		/*
1288 		 * We were able to extend the object.  Determine if we
1289 		 * can extend the previous map entry to include the
1290 		 * new range as well.
1291 		 */
1292 		if (prev_entry->inheritance == inheritance &&
1293 		    prev_entry->protection == prot &&
1294 		    prev_entry->max_protection == max &&
1295 		    prev_entry->wired_count == 0) {
1296 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1297 			    0, ("prev_entry %p has incoherent wiring",
1298 			    prev_entry));
1299 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300 				map->size += end - prev_entry->end;
1301 			prev_entry->end = end;
1302 			vm_map_entry_resize_free(map, prev_entry);
1303 			vm_map_simplify_entry(map, prev_entry);
1304 			return (KERN_SUCCESS);
1305 		}
1306 
1307 		/*
1308 		 * If we can extend the object but cannot extend the
1309 		 * map entry, we have to create a new map entry.  We
1310 		 * must bump the ref count on the extended object to
1311 		 * account for it.  object may be NULL.
1312 		 */
1313 		object = prev_entry->object.vm_object;
1314 		offset = prev_entry->offset +
1315 		    (prev_entry->end - prev_entry->start);
1316 		vm_object_reference(object);
1317 		if (cred != NULL && object != NULL && object->cred != NULL &&
1318 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319 			/* Object already accounts for this uid. */
1320 			cred = NULL;
1321 		}
1322 	}
1323 	if (cred != NULL)
1324 		crhold(cred);
1325 
1326 	/*
1327 	 * Create a new entry
1328 	 */
1329 	new_entry = vm_map_entry_create(map);
1330 	new_entry->start = start;
1331 	new_entry->end = end;
1332 	new_entry->cred = NULL;
1333 
1334 	new_entry->eflags = protoeflags;
1335 	new_entry->object.vm_object = object;
1336 	new_entry->offset = offset;
1337 
1338 	new_entry->inheritance = inheritance;
1339 	new_entry->protection = prot;
1340 	new_entry->max_protection = max;
1341 	new_entry->wired_count = 0;
1342 	new_entry->wiring_thread = NULL;
1343 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344 	new_entry->next_read = start;
1345 
1346 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348 	new_entry->cred = cred;
1349 
1350 	/*
1351 	 * Insert the new entry into the list
1352 	 */
1353 	vm_map_entry_link(map, prev_entry, new_entry);
1354 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355 		map->size += new_entry->end - new_entry->start;
1356 
1357 	/*
1358 	 * Try to coalesce the new entry with both the previous and next
1359 	 * entries in the list.  Previously, we only attempted to coalesce
1360 	 * with the previous entry when object is NULL.  Here, we handle the
1361 	 * other cases, which are less common.
1362 	 */
1363 	vm_map_simplify_entry(map, new_entry);
1364 
1365 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1368 	}
1369 
1370 	return (KERN_SUCCESS);
1371 }
1372 
1373 /*
1374  *	vm_map_findspace:
1375  *
1376  *	Find the first fit (lowest VM address) for "length" free bytes
1377  *	beginning at address >= start in the given map.
1378  *
1379  *	In a vm_map_entry, "adj_free" is the amount of free space
1380  *	adjacent (higher address) to this entry, and "max_free" is the
1381  *	maximum amount of contiguous free space in its subtree.  This
1382  *	allows finding a free region in one path down the tree, so
1383  *	O(log n) amortized with splay trees.
1384  *
1385  *	The map must be locked, and leaves it so.
1386  *
1387  *	Returns: 0 on success, and starting address in *addr,
1388  *		 1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)	/* OUT */
1393 {
1394 	vm_map_entry_t entry;
1395 	vm_offset_t st;
1396 
1397 	/*
1398 	 * Request must fit within min/max VM address and must avoid
1399 	 * address wrap.
1400 	 */
1401 	start = MAX(start, vm_map_min(map));
1402 	if (start + length > vm_map_max(map) || start + length < start)
1403 		return (1);
1404 
1405 	/* Empty tree means wide open address space. */
1406 	if (map->root == NULL) {
1407 		*addr = start;
1408 		return (0);
1409 	}
1410 
1411 	/*
1412 	 * After splay, if start comes before root node, then there
1413 	 * must be a gap from start to the root.
1414 	 */
1415 	map->root = vm_map_entry_splay(start, map->root);
1416 	if (start + length <= map->root->start) {
1417 		*addr = start;
1418 		return (0);
1419 	}
1420 
1421 	/*
1422 	 * Root is the last node that might begin its gap before
1423 	 * start, and this is the last comparison where address
1424 	 * wrap might be a problem.
1425 	 */
1426 	st = (start > map->root->end) ? start : map->root->end;
1427 	if (length <= map->root->end + map->root->adj_free - st) {
1428 		*addr = st;
1429 		return (0);
1430 	}
1431 
1432 	/* With max_free, can immediately tell if no solution. */
1433 	entry = map->root->right;
1434 	if (entry == NULL || length > entry->max_free)
1435 		return (1);
1436 
1437 	/*
1438 	 * Search the right subtree in the order: left subtree, root,
1439 	 * right subtree (first fit).  The previous splay implies that
1440 	 * all regions in the right subtree have addresses > start.
1441 	 */
1442 	while (entry != NULL) {
1443 		if (entry->left != NULL && entry->left->max_free >= length)
1444 			entry = entry->left;
1445 		else if (entry->adj_free >= length) {
1446 			*addr = entry->end;
1447 			return (0);
1448 		} else
1449 			entry = entry->right;
1450 	}
1451 
1452 	/* Can't get here, so panic if we do. */
1453 	panic("vm_map_findspace: max_free corrupt");
1454 }
1455 
1456 int
1457 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1458     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1459     vm_prot_t max, int cow)
1460 {
1461 	vm_offset_t end;
1462 	int result;
1463 
1464 	end = start + length;
1465 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1466 	    object == NULL,
1467 	    ("vm_map_fixed: non-NULL backing object for stack"));
1468 	vm_map_lock(map);
1469 	VM_MAP_RANGE_CHECK(map, start, end);
1470 	if ((cow & MAP_CHECK_EXCL) == 0)
1471 		vm_map_delete(map, start, end);
1472 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1473 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1474 		    prot, max, cow);
1475 	} else {
1476 		result = vm_map_insert(map, object, offset, start, end,
1477 		    prot, max, cow);
1478 	}
1479 	vm_map_unlock(map);
1480 	return (result);
1481 }
1482 
1483 /*
1484  * Searches for the specified amount of free space in the given map with the
1485  * specified alignment.  Performs an address-ordered, first-fit search from
1486  * the given address "*addr", with an optional upper bound "max_addr".  If the
1487  * parameter "alignment" is zero, then the alignment is computed from the
1488  * given (object, offset) pair so as to enable the greatest possible use of
1489  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1490  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1491  *
1492  * The map must be locked.  Initially, there must be at least "length" bytes
1493  * of free space at the given address.
1494  */
1495 static int
1496 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1497     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1498     vm_offset_t alignment)
1499 {
1500 	vm_offset_t aligned_addr, free_addr;
1501 
1502 	VM_MAP_ASSERT_LOCKED(map);
1503 	free_addr = *addr;
1504 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1505 	    free_addr == *addr, ("caller provided insufficient free space"));
1506 	for (;;) {
1507 		/*
1508 		 * At the start of every iteration, the free space at address
1509 		 * "*addr" is at least "length" bytes.
1510 		 */
1511 		if (alignment == 0)
1512 			pmap_align_superpage(object, offset, addr, length);
1513 		else if ((*addr & (alignment - 1)) != 0) {
1514 			*addr &= ~(alignment - 1);
1515 			*addr += alignment;
1516 		}
1517 		aligned_addr = *addr;
1518 		if (aligned_addr == free_addr) {
1519 			/*
1520 			 * Alignment did not change "*addr", so "*addr" must
1521 			 * still provide sufficient free space.
1522 			 */
1523 			return (KERN_SUCCESS);
1524 		}
1525 
1526 		/*
1527 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1528 		 * be a valid address, in which case vm_map_findspace() cannot
1529 		 * be relied upon to fail.
1530 		 */
1531 		if (aligned_addr < free_addr ||
1532 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1533 		    (max_addr != 0 && *addr + length > max_addr))
1534 			return (KERN_NO_SPACE);
1535 		free_addr = *addr;
1536 		if (free_addr == aligned_addr) {
1537 			/*
1538 			 * If a successful call to vm_map_findspace() did not
1539 			 * change "*addr", then "*addr" must still be aligned
1540 			 * and provide sufficient free space.
1541 			 */
1542 			return (KERN_SUCCESS);
1543 		}
1544 	}
1545 }
1546 
1547 /*
1548  *	vm_map_find finds an unallocated region in the target address
1549  *	map with the given length.  The search is defined to be
1550  *	first-fit from the specified address; the region found is
1551  *	returned in the same parameter.
1552  *
1553  *	If object is non-NULL, ref count must be bumped by caller
1554  *	prior to making call to account for the new entry.
1555  */
1556 int
1557 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1558 	    vm_offset_t *addr,	/* IN/OUT */
1559 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1560 	    vm_prot_t prot, vm_prot_t max, int cow)
1561 {
1562 	vm_offset_t alignment, min_addr;
1563 	int rv;
1564 
1565 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1566 	    object == NULL,
1567 	    ("vm_map_find: non-NULL backing object for stack"));
1568 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1569 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1570 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1571 	    (object->flags & OBJ_COLORED) == 0))
1572 		find_space = VMFS_ANY_SPACE;
1573 	if (find_space >> 8 != 0) {
1574 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1575 		alignment = (vm_offset_t)1 << (find_space >> 8);
1576 	} else
1577 		alignment = 0;
1578 	vm_map_lock(map);
1579 	if (find_space != VMFS_NO_SPACE) {
1580 		KASSERT(find_space == VMFS_ANY_SPACE ||
1581 		    find_space == VMFS_OPTIMAL_SPACE ||
1582 		    find_space == VMFS_SUPER_SPACE ||
1583 		    alignment != 0, ("unexpected VMFS flag"));
1584 		min_addr = *addr;
1585 again:
1586 		if (vm_map_findspace(map, min_addr, length, addr) ||
1587 		    (max_addr != 0 && *addr + length > max_addr)) {
1588 			rv = KERN_NO_SPACE;
1589 			goto done;
1590 		}
1591 		if (find_space != VMFS_ANY_SPACE &&
1592 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1593 		    max_addr, alignment)) != KERN_SUCCESS) {
1594 			if (find_space == VMFS_OPTIMAL_SPACE) {
1595 				find_space = VMFS_ANY_SPACE;
1596 				goto again;
1597 			}
1598 			goto done;
1599 		}
1600 	} else if ((cow & MAP_REMAP) != 0) {
1601 		if (*addr < vm_map_min(map) ||
1602 		    *addr + length > vm_map_max(map) ||
1603 		    *addr + length <= length) {
1604 			rv = KERN_INVALID_ADDRESS;
1605 			goto done;
1606 		}
1607 		vm_map_delete(map, *addr, *addr + length);
1608 	}
1609 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1610 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1611 		    max, cow);
1612 	} else {
1613 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1614 		    prot, max, cow);
1615 	}
1616 done:
1617 	vm_map_unlock(map);
1618 	return (rv);
1619 }
1620 
1621 /*
1622  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1623  *	additional parameter (min_addr) and treats the given address
1624  *	(*addr) differently.  Specifically, it treats *addr as a hint
1625  *	and not as the minimum address where the mapping is created.
1626  *
1627  *	This function works in two phases.  First, it tries to
1628  *	allocate above the hint.  If that fails and the hint is
1629  *	greater than min_addr, it performs a second pass, replacing
1630  *	the hint with min_addr as the minimum address for the
1631  *	allocation.
1632  */
1633 int
1634 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1635     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1636     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1637     int cow)
1638 {
1639 	vm_offset_t hint;
1640 	int rv;
1641 
1642 	hint = *addr;
1643 	for (;;) {
1644 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1645 		    find_space, prot, max, cow);
1646 		if (rv == KERN_SUCCESS || min_addr >= hint)
1647 			return (rv);
1648 		*addr = hint = min_addr;
1649 	}
1650 }
1651 
1652 /*
1653  * A map entry with any of the following flags set must not be merged with
1654  * another entry.
1655  */
1656 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1657 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1658 
1659 static bool
1660 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1661 {
1662 
1663 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1664 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1665 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1666 	    prev, entry));
1667 	return (prev->end == entry->start &&
1668 	    prev->object.vm_object == entry->object.vm_object &&
1669 	    (prev->object.vm_object == NULL ||
1670 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
1671 	    prev->eflags == entry->eflags &&
1672 	    prev->protection == entry->protection &&
1673 	    prev->max_protection == entry->max_protection &&
1674 	    prev->inheritance == entry->inheritance &&
1675 	    prev->wired_count == entry->wired_count &&
1676 	    prev->cred == entry->cred);
1677 }
1678 
1679 static void
1680 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1681 {
1682 
1683 	/*
1684 	 * If the backing object is a vnode object, vm_object_deallocate()
1685 	 * calls vrele().  However, vrele() does not lock the vnode because
1686 	 * the vnode has additional references.  Thus, the map lock can be
1687 	 * kept without causing a lock-order reversal with the vnode lock.
1688 	 *
1689 	 * Since we count the number of virtual page mappings in
1690 	 * object->un_pager.vnp.writemappings, the writemappings value
1691 	 * should not be adjusted when the entry is disposed of.
1692 	 */
1693 	if (entry->object.vm_object != NULL)
1694 		vm_object_deallocate(entry->object.vm_object);
1695 	if (entry->cred != NULL)
1696 		crfree(entry->cred);
1697 	vm_map_entry_dispose(map, entry);
1698 }
1699 
1700 /*
1701  *	vm_map_simplify_entry:
1702  *
1703  *	Simplify the given map entry by merging with either neighbor.  This
1704  *	routine also has the ability to merge with both neighbors.
1705  *
1706  *	The map must be locked.
1707  *
1708  *	This routine guarantees that the passed entry remains valid (though
1709  *	possibly extended).  When merging, this routine may delete one or
1710  *	both neighbors.
1711  */
1712 void
1713 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1714 {
1715 	vm_map_entry_t next, prev;
1716 
1717 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1718 		return;
1719 	prev = entry->prev;
1720 	if (vm_map_mergeable_neighbors(prev, entry)) {
1721 		vm_map_entry_unlink(map, prev);
1722 		entry->start = prev->start;
1723 		entry->offset = prev->offset;
1724 		if (entry->prev != &map->header)
1725 			vm_map_entry_resize_free(map, entry->prev);
1726 		vm_map_merged_neighbor_dispose(map, prev);
1727 	}
1728 	next = entry->next;
1729 	if (vm_map_mergeable_neighbors(entry, next)) {
1730 		vm_map_entry_unlink(map, next);
1731 		entry->end = next->end;
1732 		vm_map_entry_resize_free(map, entry);
1733 		vm_map_merged_neighbor_dispose(map, next);
1734 	}
1735 }
1736 
1737 /*
1738  *	vm_map_clip_start:	[ internal use only ]
1739  *
1740  *	Asserts that the given entry begins at or after
1741  *	the specified address; if necessary,
1742  *	it splits the entry into two.
1743  */
1744 #define vm_map_clip_start(map, entry, startaddr) \
1745 { \
1746 	if (startaddr > entry->start) \
1747 		_vm_map_clip_start(map, entry, startaddr); \
1748 }
1749 
1750 /*
1751  *	This routine is called only when it is known that
1752  *	the entry must be split.
1753  */
1754 static void
1755 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1756 {
1757 	vm_map_entry_t new_entry;
1758 
1759 	VM_MAP_ASSERT_LOCKED(map);
1760 	KASSERT(entry->end > start && entry->start < start,
1761 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1762 
1763 	/*
1764 	 * Split off the front portion -- note that we must insert the new
1765 	 * entry BEFORE this one, so that this entry has the specified
1766 	 * starting address.
1767 	 */
1768 	vm_map_simplify_entry(map, entry);
1769 
1770 	/*
1771 	 * If there is no object backing this entry, we might as well create
1772 	 * one now.  If we defer it, an object can get created after the map
1773 	 * is clipped, and individual objects will be created for the split-up
1774 	 * map.  This is a bit of a hack, but is also about the best place to
1775 	 * put this improvement.
1776 	 */
1777 	if (entry->object.vm_object == NULL && !map->system_map &&
1778 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1779 		vm_object_t object;
1780 		object = vm_object_allocate(OBJT_DEFAULT,
1781 				atop(entry->end - entry->start));
1782 		entry->object.vm_object = object;
1783 		entry->offset = 0;
1784 		if (entry->cred != NULL) {
1785 			object->cred = entry->cred;
1786 			object->charge = entry->end - entry->start;
1787 			entry->cred = NULL;
1788 		}
1789 	} else if (entry->object.vm_object != NULL &&
1790 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1791 		   entry->cred != NULL) {
1792 		VM_OBJECT_WLOCK(entry->object.vm_object);
1793 		KASSERT(entry->object.vm_object->cred == NULL,
1794 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1795 		entry->object.vm_object->cred = entry->cred;
1796 		entry->object.vm_object->charge = entry->end - entry->start;
1797 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1798 		entry->cred = NULL;
1799 	}
1800 
1801 	new_entry = vm_map_entry_create(map);
1802 	*new_entry = *entry;
1803 
1804 	new_entry->end = start;
1805 	entry->offset += (start - entry->start);
1806 	entry->start = start;
1807 	if (new_entry->cred != NULL)
1808 		crhold(entry->cred);
1809 
1810 	vm_map_entry_link(map, entry->prev, new_entry);
1811 
1812 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1813 		vm_object_reference(new_entry->object.vm_object);
1814 		/*
1815 		 * The object->un_pager.vnp.writemappings for the
1816 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1817 		 * kept as is here.  The virtual pages are
1818 		 * re-distributed among the clipped entries, so the sum is
1819 		 * left the same.
1820 		 */
1821 	}
1822 }
1823 
1824 /*
1825  *	vm_map_clip_end:	[ internal use only ]
1826  *
1827  *	Asserts that the given entry ends at or before
1828  *	the specified address; if necessary,
1829  *	it splits the entry into two.
1830  */
1831 #define vm_map_clip_end(map, entry, endaddr) \
1832 { \
1833 	if ((endaddr) < (entry->end)) \
1834 		_vm_map_clip_end((map), (entry), (endaddr)); \
1835 }
1836 
1837 /*
1838  *	This routine is called only when it is known that
1839  *	the entry must be split.
1840  */
1841 static void
1842 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1843 {
1844 	vm_map_entry_t new_entry;
1845 
1846 	VM_MAP_ASSERT_LOCKED(map);
1847 	KASSERT(entry->start < end && entry->end > end,
1848 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1849 
1850 	/*
1851 	 * If there is no object backing this entry, we might as well create
1852 	 * one now.  If we defer it, an object can get created after the map
1853 	 * is clipped, and individual objects will be created for the split-up
1854 	 * map.  This is a bit of a hack, but is also about the best place to
1855 	 * put this improvement.
1856 	 */
1857 	if (entry->object.vm_object == NULL && !map->system_map &&
1858 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1859 		vm_object_t object;
1860 		object = vm_object_allocate(OBJT_DEFAULT,
1861 				atop(entry->end - entry->start));
1862 		entry->object.vm_object = object;
1863 		entry->offset = 0;
1864 		if (entry->cred != NULL) {
1865 			object->cred = entry->cred;
1866 			object->charge = entry->end - entry->start;
1867 			entry->cred = NULL;
1868 		}
1869 	} else if (entry->object.vm_object != NULL &&
1870 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1871 		   entry->cred != NULL) {
1872 		VM_OBJECT_WLOCK(entry->object.vm_object);
1873 		KASSERT(entry->object.vm_object->cred == NULL,
1874 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1875 		entry->object.vm_object->cred = entry->cred;
1876 		entry->object.vm_object->charge = entry->end - entry->start;
1877 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1878 		entry->cred = NULL;
1879 	}
1880 
1881 	/*
1882 	 * Create a new entry and insert it AFTER the specified entry
1883 	 */
1884 	new_entry = vm_map_entry_create(map);
1885 	*new_entry = *entry;
1886 
1887 	new_entry->start = entry->end = end;
1888 	new_entry->offset += (end - entry->start);
1889 	if (new_entry->cred != NULL)
1890 		crhold(entry->cred);
1891 
1892 	vm_map_entry_link(map, entry, new_entry);
1893 
1894 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1895 		vm_object_reference(new_entry->object.vm_object);
1896 	}
1897 }
1898 
1899 /*
1900  *	vm_map_submap:		[ kernel use only ]
1901  *
1902  *	Mark the given range as handled by a subordinate map.
1903  *
1904  *	This range must have been created with vm_map_find,
1905  *	and no other operations may have been performed on this
1906  *	range prior to calling vm_map_submap.
1907  *
1908  *	Only a limited number of operations can be performed
1909  *	within this rage after calling vm_map_submap:
1910  *		vm_fault
1911  *	[Don't try vm_map_copy!]
1912  *
1913  *	To remove a submapping, one must first remove the
1914  *	range from the superior map, and then destroy the
1915  *	submap (if desired).  [Better yet, don't try it.]
1916  */
1917 int
1918 vm_map_submap(
1919 	vm_map_t map,
1920 	vm_offset_t start,
1921 	vm_offset_t end,
1922 	vm_map_t submap)
1923 {
1924 	vm_map_entry_t entry;
1925 	int result = KERN_INVALID_ARGUMENT;
1926 
1927 	vm_map_lock(map);
1928 
1929 	VM_MAP_RANGE_CHECK(map, start, end);
1930 
1931 	if (vm_map_lookup_entry(map, start, &entry)) {
1932 		vm_map_clip_start(map, entry, start);
1933 	} else
1934 		entry = entry->next;
1935 
1936 	vm_map_clip_end(map, entry, end);
1937 
1938 	if ((entry->start == start) && (entry->end == end) &&
1939 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1940 	    (entry->object.vm_object == NULL)) {
1941 		entry->object.sub_map = submap;
1942 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1943 		result = KERN_SUCCESS;
1944 	}
1945 	vm_map_unlock(map);
1946 
1947 	return (result);
1948 }
1949 
1950 /*
1951  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1952  */
1953 #define	MAX_INIT_PT	96
1954 
1955 /*
1956  *	vm_map_pmap_enter:
1957  *
1958  *	Preload the specified map's pmap with mappings to the specified
1959  *	object's memory-resident pages.  No further physical pages are
1960  *	allocated, and no further virtual pages are retrieved from secondary
1961  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1962  *	limited number of page mappings are created at the low-end of the
1963  *	specified address range.  (For this purpose, a superpage mapping
1964  *	counts as one page mapping.)  Otherwise, all resident pages within
1965  *	the specified address range are mapped.
1966  */
1967 static void
1968 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1969     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1970 {
1971 	vm_offset_t start;
1972 	vm_page_t p, p_start;
1973 	vm_pindex_t mask, psize, threshold, tmpidx;
1974 
1975 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1976 		return;
1977 	VM_OBJECT_RLOCK(object);
1978 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979 		VM_OBJECT_RUNLOCK(object);
1980 		VM_OBJECT_WLOCK(object);
1981 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1982 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1983 			    size);
1984 			VM_OBJECT_WUNLOCK(object);
1985 			return;
1986 		}
1987 		VM_OBJECT_LOCK_DOWNGRADE(object);
1988 	}
1989 
1990 	psize = atop(size);
1991 	if (psize + pindex > object->size) {
1992 		if (object->size < pindex) {
1993 			VM_OBJECT_RUNLOCK(object);
1994 			return;
1995 		}
1996 		psize = object->size - pindex;
1997 	}
1998 
1999 	start = 0;
2000 	p_start = NULL;
2001 	threshold = MAX_INIT_PT;
2002 
2003 	p = vm_page_find_least(object, pindex);
2004 	/*
2005 	 * Assert: the variable p is either (1) the page with the
2006 	 * least pindex greater than or equal to the parameter pindex
2007 	 * or (2) NULL.
2008 	 */
2009 	for (;
2010 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2011 	     p = TAILQ_NEXT(p, listq)) {
2012 		/*
2013 		 * don't allow an madvise to blow away our really
2014 		 * free pages allocating pv entries.
2015 		 */
2016 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2017 		    vm_page_count_severe()) ||
2018 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2019 		    tmpidx >= threshold)) {
2020 			psize = tmpidx;
2021 			break;
2022 		}
2023 		if (p->valid == VM_PAGE_BITS_ALL) {
2024 			if (p_start == NULL) {
2025 				start = addr + ptoa(tmpidx);
2026 				p_start = p;
2027 			}
2028 			/* Jump ahead if a superpage mapping is possible. */
2029 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2030 			    (pagesizes[p->psind] - 1)) == 0) {
2031 				mask = atop(pagesizes[p->psind]) - 1;
2032 				if (tmpidx + mask < psize &&
2033 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2034 					p += mask;
2035 					threshold += mask;
2036 				}
2037 			}
2038 		} else if (p_start != NULL) {
2039 			pmap_enter_object(map->pmap, start, addr +
2040 			    ptoa(tmpidx), p_start, prot);
2041 			p_start = NULL;
2042 		}
2043 	}
2044 	if (p_start != NULL)
2045 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2046 		    p_start, prot);
2047 	VM_OBJECT_RUNLOCK(object);
2048 }
2049 
2050 /*
2051  *	vm_map_protect:
2052  *
2053  *	Sets the protection of the specified address
2054  *	region in the target map.  If "set_max" is
2055  *	specified, the maximum protection is to be set;
2056  *	otherwise, only the current protection is affected.
2057  */
2058 int
2059 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2060 	       vm_prot_t new_prot, boolean_t set_max)
2061 {
2062 	vm_map_entry_t current, entry;
2063 	vm_object_t obj;
2064 	struct ucred *cred;
2065 	vm_prot_t old_prot;
2066 
2067 	if (start == end)
2068 		return (KERN_SUCCESS);
2069 
2070 	vm_map_lock(map);
2071 
2072 	/*
2073 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2074 	 * need to fault pages into the map and will drop the map lock while
2075 	 * doing so, and the VM object may end up in an inconsistent state if we
2076 	 * update the protection on the map entry in between faults.
2077 	 */
2078 	vm_map_wait_busy(map);
2079 
2080 	VM_MAP_RANGE_CHECK(map, start, end);
2081 
2082 	if (vm_map_lookup_entry(map, start, &entry)) {
2083 		vm_map_clip_start(map, entry, start);
2084 	} else {
2085 		entry = entry->next;
2086 	}
2087 
2088 	/*
2089 	 * Make a first pass to check for protection violations.
2090 	 */
2091 	for (current = entry; current->start < end; current = current->next) {
2092 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2093 			continue;
2094 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2095 			vm_map_unlock(map);
2096 			return (KERN_INVALID_ARGUMENT);
2097 		}
2098 		if ((new_prot & current->max_protection) != new_prot) {
2099 			vm_map_unlock(map);
2100 			return (KERN_PROTECTION_FAILURE);
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * Do an accounting pass for private read-only mappings that
2106 	 * now will do cow due to allowed write (e.g. debugger sets
2107 	 * breakpoint on text segment)
2108 	 */
2109 	for (current = entry; current->start < end; current = current->next) {
2110 
2111 		vm_map_clip_end(map, current, end);
2112 
2113 		if (set_max ||
2114 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2115 		    ENTRY_CHARGED(current) ||
2116 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2117 			continue;
2118 		}
2119 
2120 		cred = curthread->td_ucred;
2121 		obj = current->object.vm_object;
2122 
2123 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2124 			if (!swap_reserve(current->end - current->start)) {
2125 				vm_map_unlock(map);
2126 				return (KERN_RESOURCE_SHORTAGE);
2127 			}
2128 			crhold(cred);
2129 			current->cred = cred;
2130 			continue;
2131 		}
2132 
2133 		VM_OBJECT_WLOCK(obj);
2134 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2135 			VM_OBJECT_WUNLOCK(obj);
2136 			continue;
2137 		}
2138 
2139 		/*
2140 		 * Charge for the whole object allocation now, since
2141 		 * we cannot distinguish between non-charged and
2142 		 * charged clipped mapping of the same object later.
2143 		 */
2144 		KASSERT(obj->charge == 0,
2145 		    ("vm_map_protect: object %p overcharged (entry %p)",
2146 		    obj, current));
2147 		if (!swap_reserve(ptoa(obj->size))) {
2148 			VM_OBJECT_WUNLOCK(obj);
2149 			vm_map_unlock(map);
2150 			return (KERN_RESOURCE_SHORTAGE);
2151 		}
2152 
2153 		crhold(cred);
2154 		obj->cred = cred;
2155 		obj->charge = ptoa(obj->size);
2156 		VM_OBJECT_WUNLOCK(obj);
2157 	}
2158 
2159 	/*
2160 	 * Go back and fix up protections. [Note that clipping is not
2161 	 * necessary the second time.]
2162 	 */
2163 	for (current = entry; current->start < end; current = current->next) {
2164 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2165 			continue;
2166 
2167 		old_prot = current->protection;
2168 
2169 		if (set_max)
2170 			current->protection =
2171 			    (current->max_protection = new_prot) &
2172 			    old_prot;
2173 		else
2174 			current->protection = new_prot;
2175 
2176 		/*
2177 		 * For user wired map entries, the normal lazy evaluation of
2178 		 * write access upgrades through soft page faults is
2179 		 * undesirable.  Instead, immediately copy any pages that are
2180 		 * copy-on-write and enable write access in the physical map.
2181 		 */
2182 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2183 		    (current->protection & VM_PROT_WRITE) != 0 &&
2184 		    (old_prot & VM_PROT_WRITE) == 0)
2185 			vm_fault_copy_entry(map, map, current, current, NULL);
2186 
2187 		/*
2188 		 * When restricting access, update the physical map.  Worry
2189 		 * about copy-on-write here.
2190 		 */
2191 		if ((old_prot & ~current->protection) != 0) {
2192 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2193 							VM_PROT_ALL)
2194 			pmap_protect(map->pmap, current->start,
2195 			    current->end,
2196 			    current->protection & MASK(current));
2197 #undef	MASK
2198 		}
2199 		vm_map_simplify_entry(map, current);
2200 	}
2201 	vm_map_unlock(map);
2202 	return (KERN_SUCCESS);
2203 }
2204 
2205 /*
2206  *	vm_map_madvise:
2207  *
2208  *	This routine traverses a processes map handling the madvise
2209  *	system call.  Advisories are classified as either those effecting
2210  *	the vm_map_entry structure, or those effecting the underlying
2211  *	objects.
2212  */
2213 int
2214 vm_map_madvise(
2215 	vm_map_t map,
2216 	vm_offset_t start,
2217 	vm_offset_t end,
2218 	int behav)
2219 {
2220 	vm_map_entry_t current, entry;
2221 	bool modify_map;
2222 
2223 	/*
2224 	 * Some madvise calls directly modify the vm_map_entry, in which case
2225 	 * we need to use an exclusive lock on the map and we need to perform
2226 	 * various clipping operations.  Otherwise we only need a read-lock
2227 	 * on the map.
2228 	 */
2229 	switch(behav) {
2230 	case MADV_NORMAL:
2231 	case MADV_SEQUENTIAL:
2232 	case MADV_RANDOM:
2233 	case MADV_NOSYNC:
2234 	case MADV_AUTOSYNC:
2235 	case MADV_NOCORE:
2236 	case MADV_CORE:
2237 		if (start == end)
2238 			return (0);
2239 		modify_map = true;
2240 		vm_map_lock(map);
2241 		break;
2242 	case MADV_WILLNEED:
2243 	case MADV_DONTNEED:
2244 	case MADV_FREE:
2245 		if (start == end)
2246 			return (0);
2247 		modify_map = false;
2248 		vm_map_lock_read(map);
2249 		break;
2250 	default:
2251 		return (EINVAL);
2252 	}
2253 
2254 	/*
2255 	 * Locate starting entry and clip if necessary.
2256 	 */
2257 	VM_MAP_RANGE_CHECK(map, start, end);
2258 
2259 	if (vm_map_lookup_entry(map, start, &entry)) {
2260 		if (modify_map)
2261 			vm_map_clip_start(map, entry, start);
2262 	} else {
2263 		entry = entry->next;
2264 	}
2265 
2266 	if (modify_map) {
2267 		/*
2268 		 * madvise behaviors that are implemented in the vm_map_entry.
2269 		 *
2270 		 * We clip the vm_map_entry so that behavioral changes are
2271 		 * limited to the specified address range.
2272 		 */
2273 		for (current = entry; current->start < end;
2274 		    current = current->next) {
2275 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2276 				continue;
2277 
2278 			vm_map_clip_end(map, current, end);
2279 
2280 			switch (behav) {
2281 			case MADV_NORMAL:
2282 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2283 				break;
2284 			case MADV_SEQUENTIAL:
2285 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2286 				break;
2287 			case MADV_RANDOM:
2288 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2289 				break;
2290 			case MADV_NOSYNC:
2291 				current->eflags |= MAP_ENTRY_NOSYNC;
2292 				break;
2293 			case MADV_AUTOSYNC:
2294 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2295 				break;
2296 			case MADV_NOCORE:
2297 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2298 				break;
2299 			case MADV_CORE:
2300 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2301 				break;
2302 			default:
2303 				break;
2304 			}
2305 			vm_map_simplify_entry(map, current);
2306 		}
2307 		vm_map_unlock(map);
2308 	} else {
2309 		vm_pindex_t pstart, pend;
2310 
2311 		/*
2312 		 * madvise behaviors that are implemented in the underlying
2313 		 * vm_object.
2314 		 *
2315 		 * Since we don't clip the vm_map_entry, we have to clip
2316 		 * the vm_object pindex and count.
2317 		 */
2318 		for (current = entry; current->start < end;
2319 		    current = current->next) {
2320 			vm_offset_t useEnd, useStart;
2321 
2322 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2323 				continue;
2324 
2325 			pstart = OFF_TO_IDX(current->offset);
2326 			pend = pstart + atop(current->end - current->start);
2327 			useStart = current->start;
2328 			useEnd = current->end;
2329 
2330 			if (current->start < start) {
2331 				pstart += atop(start - current->start);
2332 				useStart = start;
2333 			}
2334 			if (current->end > end) {
2335 				pend -= atop(current->end - end);
2336 				useEnd = end;
2337 			}
2338 
2339 			if (pstart >= pend)
2340 				continue;
2341 
2342 			/*
2343 			 * Perform the pmap_advise() before clearing
2344 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2345 			 * concurrent pmap operation, such as pmap_remove(),
2346 			 * could clear a reference in the pmap and set
2347 			 * PGA_REFERENCED on the page before the pmap_advise()
2348 			 * had completed.  Consequently, the page would appear
2349 			 * referenced based upon an old reference that
2350 			 * occurred before this pmap_advise() ran.
2351 			 */
2352 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2353 				pmap_advise(map->pmap, useStart, useEnd,
2354 				    behav);
2355 
2356 			vm_object_madvise(current->object.vm_object, pstart,
2357 			    pend, behav);
2358 
2359 			/*
2360 			 * Pre-populate paging structures in the
2361 			 * WILLNEED case.  For wired entries, the
2362 			 * paging structures are already populated.
2363 			 */
2364 			if (behav == MADV_WILLNEED &&
2365 			    current->wired_count == 0) {
2366 				vm_map_pmap_enter(map,
2367 				    useStart,
2368 				    current->protection,
2369 				    current->object.vm_object,
2370 				    pstart,
2371 				    ptoa(pend - pstart),
2372 				    MAP_PREFAULT_MADVISE
2373 				);
2374 			}
2375 		}
2376 		vm_map_unlock_read(map);
2377 	}
2378 	return (0);
2379 }
2380 
2381 
2382 /*
2383  *	vm_map_inherit:
2384  *
2385  *	Sets the inheritance of the specified address
2386  *	range in the target map.  Inheritance
2387  *	affects how the map will be shared with
2388  *	child maps at the time of vmspace_fork.
2389  */
2390 int
2391 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2392 	       vm_inherit_t new_inheritance)
2393 {
2394 	vm_map_entry_t entry;
2395 	vm_map_entry_t temp_entry;
2396 
2397 	switch (new_inheritance) {
2398 	case VM_INHERIT_NONE:
2399 	case VM_INHERIT_COPY:
2400 	case VM_INHERIT_SHARE:
2401 	case VM_INHERIT_ZERO:
2402 		break;
2403 	default:
2404 		return (KERN_INVALID_ARGUMENT);
2405 	}
2406 	if (start == end)
2407 		return (KERN_SUCCESS);
2408 	vm_map_lock(map);
2409 	VM_MAP_RANGE_CHECK(map, start, end);
2410 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2411 		entry = temp_entry;
2412 		vm_map_clip_start(map, entry, start);
2413 	} else
2414 		entry = temp_entry->next;
2415 	while (entry->start < end) {
2416 		vm_map_clip_end(map, entry, end);
2417 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2418 		    new_inheritance != VM_INHERIT_ZERO)
2419 			entry->inheritance = new_inheritance;
2420 		vm_map_simplify_entry(map, entry);
2421 		entry = entry->next;
2422 	}
2423 	vm_map_unlock(map);
2424 	return (KERN_SUCCESS);
2425 }
2426 
2427 /*
2428  *	vm_map_unwire:
2429  *
2430  *	Implements both kernel and user unwiring.
2431  */
2432 int
2433 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2434     int flags)
2435 {
2436 	vm_map_entry_t entry, first_entry, tmp_entry;
2437 	vm_offset_t saved_start;
2438 	unsigned int last_timestamp;
2439 	int rv;
2440 	boolean_t need_wakeup, result, user_unwire;
2441 
2442 	if (start == end)
2443 		return (KERN_SUCCESS);
2444 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2445 	vm_map_lock(map);
2446 	VM_MAP_RANGE_CHECK(map, start, end);
2447 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2448 		if (flags & VM_MAP_WIRE_HOLESOK)
2449 			first_entry = first_entry->next;
2450 		else {
2451 			vm_map_unlock(map);
2452 			return (KERN_INVALID_ADDRESS);
2453 		}
2454 	}
2455 	last_timestamp = map->timestamp;
2456 	entry = first_entry;
2457 	while (entry->start < end) {
2458 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2459 			/*
2460 			 * We have not yet clipped the entry.
2461 			 */
2462 			saved_start = (start >= entry->start) ? start :
2463 			    entry->start;
2464 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2465 			if (vm_map_unlock_and_wait(map, 0)) {
2466 				/*
2467 				 * Allow interruption of user unwiring?
2468 				 */
2469 			}
2470 			vm_map_lock(map);
2471 			if (last_timestamp+1 != map->timestamp) {
2472 				/*
2473 				 * Look again for the entry because the map was
2474 				 * modified while it was unlocked.
2475 				 * Specifically, the entry may have been
2476 				 * clipped, merged, or deleted.
2477 				 */
2478 				if (!vm_map_lookup_entry(map, saved_start,
2479 				    &tmp_entry)) {
2480 					if (flags & VM_MAP_WIRE_HOLESOK)
2481 						tmp_entry = tmp_entry->next;
2482 					else {
2483 						if (saved_start == start) {
2484 							/*
2485 							 * First_entry has been deleted.
2486 							 */
2487 							vm_map_unlock(map);
2488 							return (KERN_INVALID_ADDRESS);
2489 						}
2490 						end = saved_start;
2491 						rv = KERN_INVALID_ADDRESS;
2492 						goto done;
2493 					}
2494 				}
2495 				if (entry == first_entry)
2496 					first_entry = tmp_entry;
2497 				else
2498 					first_entry = NULL;
2499 				entry = tmp_entry;
2500 			}
2501 			last_timestamp = map->timestamp;
2502 			continue;
2503 		}
2504 		vm_map_clip_start(map, entry, start);
2505 		vm_map_clip_end(map, entry, end);
2506 		/*
2507 		 * Mark the entry in case the map lock is released.  (See
2508 		 * above.)
2509 		 */
2510 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2511 		    entry->wiring_thread == NULL,
2512 		    ("owned map entry %p", entry));
2513 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2514 		entry->wiring_thread = curthread;
2515 		/*
2516 		 * Check the map for holes in the specified region.
2517 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2518 		 */
2519 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2520 		    (entry->end < end && entry->next->start > entry->end)) {
2521 			end = entry->end;
2522 			rv = KERN_INVALID_ADDRESS;
2523 			goto done;
2524 		}
2525 		/*
2526 		 * If system unwiring, require that the entry is system wired.
2527 		 */
2528 		if (!user_unwire &&
2529 		    vm_map_entry_system_wired_count(entry) == 0) {
2530 			end = entry->end;
2531 			rv = KERN_INVALID_ARGUMENT;
2532 			goto done;
2533 		}
2534 		entry = entry->next;
2535 	}
2536 	rv = KERN_SUCCESS;
2537 done:
2538 	need_wakeup = FALSE;
2539 	if (first_entry == NULL) {
2540 		result = vm_map_lookup_entry(map, start, &first_entry);
2541 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2542 			first_entry = first_entry->next;
2543 		else
2544 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2545 	}
2546 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2547 		/*
2548 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2549 		 * space in the unwired region could have been mapped
2550 		 * while the map lock was dropped for draining
2551 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2552 		 * could be simultaneously wiring this new mapping
2553 		 * entry.  Detect these cases and skip any entries
2554 		 * marked as in transition by us.
2555 		 */
2556 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2557 		    entry->wiring_thread != curthread) {
2558 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2559 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2560 			continue;
2561 		}
2562 
2563 		if (rv == KERN_SUCCESS && (!user_unwire ||
2564 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2565 			if (user_unwire)
2566 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2567 			if (entry->wired_count == 1)
2568 				vm_map_entry_unwire(map, entry);
2569 			else
2570 				entry->wired_count--;
2571 		}
2572 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2573 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2574 		KASSERT(entry->wiring_thread == curthread,
2575 		    ("vm_map_unwire: alien wire %p", entry));
2576 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2577 		entry->wiring_thread = NULL;
2578 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2579 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2580 			need_wakeup = TRUE;
2581 		}
2582 		vm_map_simplify_entry(map, entry);
2583 	}
2584 	vm_map_unlock(map);
2585 	if (need_wakeup)
2586 		vm_map_wakeup(map);
2587 	return (rv);
2588 }
2589 
2590 /*
2591  *	vm_map_wire_entry_failure:
2592  *
2593  *	Handle a wiring failure on the given entry.
2594  *
2595  *	The map should be locked.
2596  */
2597 static void
2598 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2599     vm_offset_t failed_addr)
2600 {
2601 
2602 	VM_MAP_ASSERT_LOCKED(map);
2603 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2604 	    entry->wired_count == 1,
2605 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2606 	KASSERT(failed_addr < entry->end,
2607 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2608 
2609 	/*
2610 	 * If any pages at the start of this entry were successfully wired,
2611 	 * then unwire them.
2612 	 */
2613 	if (failed_addr > entry->start) {
2614 		pmap_unwire(map->pmap, entry->start, failed_addr);
2615 		vm_object_unwire(entry->object.vm_object, entry->offset,
2616 		    failed_addr - entry->start, PQ_ACTIVE);
2617 	}
2618 
2619 	/*
2620 	 * Assign an out-of-range value to represent the failure to wire this
2621 	 * entry.
2622 	 */
2623 	entry->wired_count = -1;
2624 }
2625 
2626 /*
2627  *	vm_map_wire:
2628  *
2629  *	Implements both kernel and user wiring.
2630  */
2631 int
2632 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2633     int flags)
2634 {
2635 	vm_map_entry_t entry, first_entry, tmp_entry;
2636 	vm_offset_t faddr, saved_end, saved_start;
2637 	unsigned int last_timestamp;
2638 	int rv;
2639 	boolean_t need_wakeup, result, user_wire;
2640 	vm_prot_t prot;
2641 
2642 	if (start == end)
2643 		return (KERN_SUCCESS);
2644 	prot = 0;
2645 	if (flags & VM_MAP_WIRE_WRITE)
2646 		prot |= VM_PROT_WRITE;
2647 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2648 	vm_map_lock(map);
2649 	VM_MAP_RANGE_CHECK(map, start, end);
2650 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2651 		if (flags & VM_MAP_WIRE_HOLESOK)
2652 			first_entry = first_entry->next;
2653 		else {
2654 			vm_map_unlock(map);
2655 			return (KERN_INVALID_ADDRESS);
2656 		}
2657 	}
2658 	last_timestamp = map->timestamp;
2659 	entry = first_entry;
2660 	while (entry->start < end) {
2661 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2662 			/*
2663 			 * We have not yet clipped the entry.
2664 			 */
2665 			saved_start = (start >= entry->start) ? start :
2666 			    entry->start;
2667 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2668 			if (vm_map_unlock_and_wait(map, 0)) {
2669 				/*
2670 				 * Allow interruption of user wiring?
2671 				 */
2672 			}
2673 			vm_map_lock(map);
2674 			if (last_timestamp + 1 != map->timestamp) {
2675 				/*
2676 				 * Look again for the entry because the map was
2677 				 * modified while it was unlocked.
2678 				 * Specifically, the entry may have been
2679 				 * clipped, merged, or deleted.
2680 				 */
2681 				if (!vm_map_lookup_entry(map, saved_start,
2682 				    &tmp_entry)) {
2683 					if (flags & VM_MAP_WIRE_HOLESOK)
2684 						tmp_entry = tmp_entry->next;
2685 					else {
2686 						if (saved_start == start) {
2687 							/*
2688 							 * first_entry has been deleted.
2689 							 */
2690 							vm_map_unlock(map);
2691 							return (KERN_INVALID_ADDRESS);
2692 						}
2693 						end = saved_start;
2694 						rv = KERN_INVALID_ADDRESS;
2695 						goto done;
2696 					}
2697 				}
2698 				if (entry == first_entry)
2699 					first_entry = tmp_entry;
2700 				else
2701 					first_entry = NULL;
2702 				entry = tmp_entry;
2703 			}
2704 			last_timestamp = map->timestamp;
2705 			continue;
2706 		}
2707 		vm_map_clip_start(map, entry, start);
2708 		vm_map_clip_end(map, entry, end);
2709 		/*
2710 		 * Mark the entry in case the map lock is released.  (See
2711 		 * above.)
2712 		 */
2713 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2714 		    entry->wiring_thread == NULL,
2715 		    ("owned map entry %p", entry));
2716 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2717 		entry->wiring_thread = curthread;
2718 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2719 		    || (entry->protection & prot) != prot) {
2720 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2721 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2722 				end = entry->end;
2723 				rv = KERN_INVALID_ADDRESS;
2724 				goto done;
2725 			}
2726 			goto next_entry;
2727 		}
2728 		if (entry->wired_count == 0) {
2729 			entry->wired_count++;
2730 			saved_start = entry->start;
2731 			saved_end = entry->end;
2732 
2733 			/*
2734 			 * Release the map lock, relying on the in-transition
2735 			 * mark.  Mark the map busy for fork.
2736 			 */
2737 			vm_map_busy(map);
2738 			vm_map_unlock(map);
2739 
2740 			faddr = saved_start;
2741 			do {
2742 				/*
2743 				 * Simulate a fault to get the page and enter
2744 				 * it into the physical map.
2745 				 */
2746 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2747 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2748 					break;
2749 			} while ((faddr += PAGE_SIZE) < saved_end);
2750 			vm_map_lock(map);
2751 			vm_map_unbusy(map);
2752 			if (last_timestamp + 1 != map->timestamp) {
2753 				/*
2754 				 * Look again for the entry because the map was
2755 				 * modified while it was unlocked.  The entry
2756 				 * may have been clipped, but NOT merged or
2757 				 * deleted.
2758 				 */
2759 				result = vm_map_lookup_entry(map, saved_start,
2760 				    &tmp_entry);
2761 				KASSERT(result, ("vm_map_wire: lookup failed"));
2762 				if (entry == first_entry)
2763 					first_entry = tmp_entry;
2764 				else
2765 					first_entry = NULL;
2766 				entry = tmp_entry;
2767 				while (entry->end < saved_end) {
2768 					/*
2769 					 * In case of failure, handle entries
2770 					 * that were not fully wired here;
2771 					 * fully wired entries are handled
2772 					 * later.
2773 					 */
2774 					if (rv != KERN_SUCCESS &&
2775 					    faddr < entry->end)
2776 						vm_map_wire_entry_failure(map,
2777 						    entry, faddr);
2778 					entry = entry->next;
2779 				}
2780 			}
2781 			last_timestamp = map->timestamp;
2782 			if (rv != KERN_SUCCESS) {
2783 				vm_map_wire_entry_failure(map, entry, faddr);
2784 				end = entry->end;
2785 				goto done;
2786 			}
2787 		} else if (!user_wire ||
2788 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2789 			entry->wired_count++;
2790 		}
2791 		/*
2792 		 * Check the map for holes in the specified region.
2793 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2794 		 */
2795 	next_entry:
2796 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2797 		    entry->end < end && entry->next->start > entry->end) {
2798 			end = entry->end;
2799 			rv = KERN_INVALID_ADDRESS;
2800 			goto done;
2801 		}
2802 		entry = entry->next;
2803 	}
2804 	rv = KERN_SUCCESS;
2805 done:
2806 	need_wakeup = FALSE;
2807 	if (first_entry == NULL) {
2808 		result = vm_map_lookup_entry(map, start, &first_entry);
2809 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2810 			first_entry = first_entry->next;
2811 		else
2812 			KASSERT(result, ("vm_map_wire: lookup failed"));
2813 	}
2814 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2815 		/*
2816 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2817 		 * space in the unwired region could have been mapped
2818 		 * while the map lock was dropped for faulting in the
2819 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2820 		 * Moreover, another thread could be simultaneously
2821 		 * wiring this new mapping entry.  Detect these cases
2822 		 * and skip any entries marked as in transition not by us.
2823 		 */
2824 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2825 		    entry->wiring_thread != curthread) {
2826 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2827 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2828 			continue;
2829 		}
2830 
2831 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2832 			goto next_entry_done;
2833 
2834 		if (rv == KERN_SUCCESS) {
2835 			if (user_wire)
2836 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2837 		} else if (entry->wired_count == -1) {
2838 			/*
2839 			 * Wiring failed on this entry.  Thus, unwiring is
2840 			 * unnecessary.
2841 			 */
2842 			entry->wired_count = 0;
2843 		} else if (!user_wire ||
2844 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2845 			/*
2846 			 * Undo the wiring.  Wiring succeeded on this entry
2847 			 * but failed on a later entry.
2848 			 */
2849 			if (entry->wired_count == 1)
2850 				vm_map_entry_unwire(map, entry);
2851 			else
2852 				entry->wired_count--;
2853 		}
2854 	next_entry_done:
2855 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2856 		    ("vm_map_wire: in-transition flag missing %p", entry));
2857 		KASSERT(entry->wiring_thread == curthread,
2858 		    ("vm_map_wire: alien wire %p", entry));
2859 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2860 		    MAP_ENTRY_WIRE_SKIPPED);
2861 		entry->wiring_thread = NULL;
2862 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2863 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2864 			need_wakeup = TRUE;
2865 		}
2866 		vm_map_simplify_entry(map, entry);
2867 	}
2868 	vm_map_unlock(map);
2869 	if (need_wakeup)
2870 		vm_map_wakeup(map);
2871 	return (rv);
2872 }
2873 
2874 /*
2875  * vm_map_sync
2876  *
2877  * Push any dirty cached pages in the address range to their pager.
2878  * If syncio is TRUE, dirty pages are written synchronously.
2879  * If invalidate is TRUE, any cached pages are freed as well.
2880  *
2881  * If the size of the region from start to end is zero, we are
2882  * supposed to flush all modified pages within the region containing
2883  * start.  Unfortunately, a region can be split or coalesced with
2884  * neighboring regions, making it difficult to determine what the
2885  * original region was.  Therefore, we approximate this requirement by
2886  * flushing the current region containing start.
2887  *
2888  * Returns an error if any part of the specified range is not mapped.
2889  */
2890 int
2891 vm_map_sync(
2892 	vm_map_t map,
2893 	vm_offset_t start,
2894 	vm_offset_t end,
2895 	boolean_t syncio,
2896 	boolean_t invalidate)
2897 {
2898 	vm_map_entry_t current;
2899 	vm_map_entry_t entry;
2900 	vm_size_t size;
2901 	vm_object_t object;
2902 	vm_ooffset_t offset;
2903 	unsigned int last_timestamp;
2904 	boolean_t failed;
2905 
2906 	vm_map_lock_read(map);
2907 	VM_MAP_RANGE_CHECK(map, start, end);
2908 	if (!vm_map_lookup_entry(map, start, &entry)) {
2909 		vm_map_unlock_read(map);
2910 		return (KERN_INVALID_ADDRESS);
2911 	} else if (start == end) {
2912 		start = entry->start;
2913 		end = entry->end;
2914 	}
2915 	/*
2916 	 * Make a first pass to check for user-wired memory and holes.
2917 	 */
2918 	for (current = entry; current->start < end; current = current->next) {
2919 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2920 			vm_map_unlock_read(map);
2921 			return (KERN_INVALID_ARGUMENT);
2922 		}
2923 		if (end > current->end &&
2924 		    current->end != current->next->start) {
2925 			vm_map_unlock_read(map);
2926 			return (KERN_INVALID_ADDRESS);
2927 		}
2928 	}
2929 
2930 	if (invalidate)
2931 		pmap_remove(map->pmap, start, end);
2932 	failed = FALSE;
2933 
2934 	/*
2935 	 * Make a second pass, cleaning/uncaching pages from the indicated
2936 	 * objects as we go.
2937 	 */
2938 	for (current = entry; current->start < end;) {
2939 		offset = current->offset + (start - current->start);
2940 		size = (end <= current->end ? end : current->end) - start;
2941 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2942 			vm_map_t smap;
2943 			vm_map_entry_t tentry;
2944 			vm_size_t tsize;
2945 
2946 			smap = current->object.sub_map;
2947 			vm_map_lock_read(smap);
2948 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2949 			tsize = tentry->end - offset;
2950 			if (tsize < size)
2951 				size = tsize;
2952 			object = tentry->object.vm_object;
2953 			offset = tentry->offset + (offset - tentry->start);
2954 			vm_map_unlock_read(smap);
2955 		} else {
2956 			object = current->object.vm_object;
2957 		}
2958 		vm_object_reference(object);
2959 		last_timestamp = map->timestamp;
2960 		vm_map_unlock_read(map);
2961 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2962 			failed = TRUE;
2963 		start += size;
2964 		vm_object_deallocate(object);
2965 		vm_map_lock_read(map);
2966 		if (last_timestamp == map->timestamp ||
2967 		    !vm_map_lookup_entry(map, start, &current))
2968 			current = current->next;
2969 	}
2970 
2971 	vm_map_unlock_read(map);
2972 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2973 }
2974 
2975 /*
2976  *	vm_map_entry_unwire:	[ internal use only ]
2977  *
2978  *	Make the region specified by this entry pageable.
2979  *
2980  *	The map in question should be locked.
2981  *	[This is the reason for this routine's existence.]
2982  */
2983 static void
2984 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2985 {
2986 
2987 	VM_MAP_ASSERT_LOCKED(map);
2988 	KASSERT(entry->wired_count > 0,
2989 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2990 	pmap_unwire(map->pmap, entry->start, entry->end);
2991 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2992 	    entry->start, PQ_ACTIVE);
2993 	entry->wired_count = 0;
2994 }
2995 
2996 static void
2997 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2998 {
2999 
3000 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3001 		vm_object_deallocate(entry->object.vm_object);
3002 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3003 }
3004 
3005 /*
3006  *	vm_map_entry_delete:	[ internal use only ]
3007  *
3008  *	Deallocate the given entry from the target map.
3009  */
3010 static void
3011 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3012 {
3013 	vm_object_t object;
3014 	vm_pindex_t offidxstart, offidxend, count, size1;
3015 	vm_size_t size;
3016 
3017 	vm_map_entry_unlink(map, entry);
3018 	object = entry->object.vm_object;
3019 
3020 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3021 		MPASS(entry->cred == NULL);
3022 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3023 		MPASS(object == NULL);
3024 		vm_map_entry_deallocate(entry, map->system_map);
3025 		return;
3026 	}
3027 
3028 	size = entry->end - entry->start;
3029 	map->size -= size;
3030 
3031 	if (entry->cred != NULL) {
3032 		swap_release_by_cred(size, entry->cred);
3033 		crfree(entry->cred);
3034 	}
3035 
3036 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3037 	    (object != NULL)) {
3038 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3039 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3040 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3041 		count = atop(size);
3042 		offidxstart = OFF_TO_IDX(entry->offset);
3043 		offidxend = offidxstart + count;
3044 		VM_OBJECT_WLOCK(object);
3045 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3046 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3047 		    object == kernel_object)) {
3048 			vm_object_collapse(object);
3049 
3050 			/*
3051 			 * The option OBJPR_NOTMAPPED can be passed here
3052 			 * because vm_map_delete() already performed
3053 			 * pmap_remove() on the only mapping to this range
3054 			 * of pages.
3055 			 */
3056 			vm_object_page_remove(object, offidxstart, offidxend,
3057 			    OBJPR_NOTMAPPED);
3058 			if (object->type == OBJT_SWAP)
3059 				swap_pager_freespace(object, offidxstart,
3060 				    count);
3061 			if (offidxend >= object->size &&
3062 			    offidxstart < object->size) {
3063 				size1 = object->size;
3064 				object->size = offidxstart;
3065 				if (object->cred != NULL) {
3066 					size1 -= object->size;
3067 					KASSERT(object->charge >= ptoa(size1),
3068 					    ("object %p charge < 0", object));
3069 					swap_release_by_cred(ptoa(size1),
3070 					    object->cred);
3071 					object->charge -= ptoa(size1);
3072 				}
3073 			}
3074 		}
3075 		VM_OBJECT_WUNLOCK(object);
3076 	} else
3077 		entry->object.vm_object = NULL;
3078 	if (map->system_map)
3079 		vm_map_entry_deallocate(entry, TRUE);
3080 	else {
3081 		entry->next = curthread->td_map_def_user;
3082 		curthread->td_map_def_user = entry;
3083 	}
3084 }
3085 
3086 /*
3087  *	vm_map_delete:	[ internal use only ]
3088  *
3089  *	Deallocates the given address range from the target
3090  *	map.
3091  */
3092 int
3093 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3094 {
3095 	vm_map_entry_t entry;
3096 	vm_map_entry_t first_entry;
3097 
3098 	VM_MAP_ASSERT_LOCKED(map);
3099 	if (start == end)
3100 		return (KERN_SUCCESS);
3101 
3102 	/*
3103 	 * Find the start of the region, and clip it
3104 	 */
3105 	if (!vm_map_lookup_entry(map, start, &first_entry))
3106 		entry = first_entry->next;
3107 	else {
3108 		entry = first_entry;
3109 		vm_map_clip_start(map, entry, start);
3110 	}
3111 
3112 	/*
3113 	 * Step through all entries in this region
3114 	 */
3115 	while (entry->start < end) {
3116 		vm_map_entry_t next;
3117 
3118 		/*
3119 		 * Wait for wiring or unwiring of an entry to complete.
3120 		 * Also wait for any system wirings to disappear on
3121 		 * user maps.
3122 		 */
3123 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3124 		    (vm_map_pmap(map) != kernel_pmap &&
3125 		    vm_map_entry_system_wired_count(entry) != 0)) {
3126 			unsigned int last_timestamp;
3127 			vm_offset_t saved_start;
3128 			vm_map_entry_t tmp_entry;
3129 
3130 			saved_start = entry->start;
3131 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3132 			last_timestamp = map->timestamp;
3133 			(void) vm_map_unlock_and_wait(map, 0);
3134 			vm_map_lock(map);
3135 			if (last_timestamp + 1 != map->timestamp) {
3136 				/*
3137 				 * Look again for the entry because the map was
3138 				 * modified while it was unlocked.
3139 				 * Specifically, the entry may have been
3140 				 * clipped, merged, or deleted.
3141 				 */
3142 				if (!vm_map_lookup_entry(map, saved_start,
3143 							 &tmp_entry))
3144 					entry = tmp_entry->next;
3145 				else {
3146 					entry = tmp_entry;
3147 					vm_map_clip_start(map, entry,
3148 							  saved_start);
3149 				}
3150 			}
3151 			continue;
3152 		}
3153 		vm_map_clip_end(map, entry, end);
3154 
3155 		next = entry->next;
3156 
3157 		/*
3158 		 * Unwire before removing addresses from the pmap; otherwise,
3159 		 * unwiring will put the entries back in the pmap.
3160 		 */
3161 		if (entry->wired_count != 0)
3162 			vm_map_entry_unwire(map, entry);
3163 
3164 		/*
3165 		 * Remove mappings for the pages, but only if the
3166 		 * mappings could exist.  For instance, it does not
3167 		 * make sense to call pmap_remove() for guard entries.
3168 		 */
3169 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3170 		    entry->object.vm_object != NULL)
3171 			pmap_remove(map->pmap, entry->start, entry->end);
3172 
3173 		/*
3174 		 * Delete the entry only after removing all pmap
3175 		 * entries pointing to its pages.  (Otherwise, its
3176 		 * page frames may be reallocated, and any modify bits
3177 		 * will be set in the wrong object!)
3178 		 */
3179 		vm_map_entry_delete(map, entry);
3180 		entry = next;
3181 	}
3182 	return (KERN_SUCCESS);
3183 }
3184 
3185 /*
3186  *	vm_map_remove:
3187  *
3188  *	Remove the given address range from the target map.
3189  *	This is the exported form of vm_map_delete.
3190  */
3191 int
3192 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3193 {
3194 	int result;
3195 
3196 	vm_map_lock(map);
3197 	VM_MAP_RANGE_CHECK(map, start, end);
3198 	result = vm_map_delete(map, start, end);
3199 	vm_map_unlock(map);
3200 	return (result);
3201 }
3202 
3203 /*
3204  *	vm_map_check_protection:
3205  *
3206  *	Assert that the target map allows the specified privilege on the
3207  *	entire address region given.  The entire region must be allocated.
3208  *
3209  *	WARNING!  This code does not and should not check whether the
3210  *	contents of the region is accessible.  For example a smaller file
3211  *	might be mapped into a larger address space.
3212  *
3213  *	NOTE!  This code is also called by munmap().
3214  *
3215  *	The map must be locked.  A read lock is sufficient.
3216  */
3217 boolean_t
3218 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3219 			vm_prot_t protection)
3220 {
3221 	vm_map_entry_t entry;
3222 	vm_map_entry_t tmp_entry;
3223 
3224 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3225 		return (FALSE);
3226 	entry = tmp_entry;
3227 
3228 	while (start < end) {
3229 		/*
3230 		 * No holes allowed!
3231 		 */
3232 		if (start < entry->start)
3233 			return (FALSE);
3234 		/*
3235 		 * Check protection associated with entry.
3236 		 */
3237 		if ((entry->protection & protection) != protection)
3238 			return (FALSE);
3239 		/* go to next entry */
3240 		start = entry->end;
3241 		entry = entry->next;
3242 	}
3243 	return (TRUE);
3244 }
3245 
3246 /*
3247  *	vm_map_copy_entry:
3248  *
3249  *	Copies the contents of the source entry to the destination
3250  *	entry.  The entries *must* be aligned properly.
3251  */
3252 static void
3253 vm_map_copy_entry(
3254 	vm_map_t src_map,
3255 	vm_map_t dst_map,
3256 	vm_map_entry_t src_entry,
3257 	vm_map_entry_t dst_entry,
3258 	vm_ooffset_t *fork_charge)
3259 {
3260 	vm_object_t src_object;
3261 	vm_map_entry_t fake_entry;
3262 	vm_offset_t size;
3263 	struct ucred *cred;
3264 	int charged;
3265 
3266 	VM_MAP_ASSERT_LOCKED(dst_map);
3267 
3268 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3269 		return;
3270 
3271 	if (src_entry->wired_count == 0 ||
3272 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3273 		/*
3274 		 * If the source entry is marked needs_copy, it is already
3275 		 * write-protected.
3276 		 */
3277 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3278 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3279 			pmap_protect(src_map->pmap,
3280 			    src_entry->start,
3281 			    src_entry->end,
3282 			    src_entry->protection & ~VM_PROT_WRITE);
3283 		}
3284 
3285 		/*
3286 		 * Make a copy of the object.
3287 		 */
3288 		size = src_entry->end - src_entry->start;
3289 		if ((src_object = src_entry->object.vm_object) != NULL) {
3290 			VM_OBJECT_WLOCK(src_object);
3291 			charged = ENTRY_CHARGED(src_entry);
3292 			if (src_object->handle == NULL &&
3293 			    (src_object->type == OBJT_DEFAULT ||
3294 			    src_object->type == OBJT_SWAP)) {
3295 				vm_object_collapse(src_object);
3296 				if ((src_object->flags & (OBJ_NOSPLIT |
3297 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3298 					vm_object_split(src_entry);
3299 					src_object =
3300 					    src_entry->object.vm_object;
3301 				}
3302 			}
3303 			vm_object_reference_locked(src_object);
3304 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3305 			if (src_entry->cred != NULL &&
3306 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3307 				KASSERT(src_object->cred == NULL,
3308 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3309 				     src_object));
3310 				src_object->cred = src_entry->cred;
3311 				src_object->charge = size;
3312 			}
3313 			VM_OBJECT_WUNLOCK(src_object);
3314 			dst_entry->object.vm_object = src_object;
3315 			if (charged) {
3316 				cred = curthread->td_ucred;
3317 				crhold(cred);
3318 				dst_entry->cred = cred;
3319 				*fork_charge += size;
3320 				if (!(src_entry->eflags &
3321 				      MAP_ENTRY_NEEDS_COPY)) {
3322 					crhold(cred);
3323 					src_entry->cred = cred;
3324 					*fork_charge += size;
3325 				}
3326 			}
3327 			src_entry->eflags |= MAP_ENTRY_COW |
3328 			    MAP_ENTRY_NEEDS_COPY;
3329 			dst_entry->eflags |= MAP_ENTRY_COW |
3330 			    MAP_ENTRY_NEEDS_COPY;
3331 			dst_entry->offset = src_entry->offset;
3332 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3333 				/*
3334 				 * MAP_ENTRY_VN_WRITECNT cannot
3335 				 * indicate write reference from
3336 				 * src_entry, since the entry is
3337 				 * marked as needs copy.  Allocate a
3338 				 * fake entry that is used to
3339 				 * decrement object->un_pager.vnp.writecount
3340 				 * at the appropriate time.  Attach
3341 				 * fake_entry to the deferred list.
3342 				 */
3343 				fake_entry = vm_map_entry_create(dst_map);
3344 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3345 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3346 				vm_object_reference(src_object);
3347 				fake_entry->object.vm_object = src_object;
3348 				fake_entry->start = src_entry->start;
3349 				fake_entry->end = src_entry->end;
3350 				fake_entry->next = curthread->td_map_def_user;
3351 				curthread->td_map_def_user = fake_entry;
3352 			}
3353 
3354 			pmap_copy(dst_map->pmap, src_map->pmap,
3355 			    dst_entry->start, dst_entry->end - dst_entry->start,
3356 			    src_entry->start);
3357 		} else {
3358 			dst_entry->object.vm_object = NULL;
3359 			dst_entry->offset = 0;
3360 			if (src_entry->cred != NULL) {
3361 				dst_entry->cred = curthread->td_ucred;
3362 				crhold(dst_entry->cred);
3363 				*fork_charge += size;
3364 			}
3365 		}
3366 	} else {
3367 		/*
3368 		 * We don't want to make writeable wired pages copy-on-write.
3369 		 * Immediately copy these pages into the new map by simulating
3370 		 * page faults.  The new pages are pageable.
3371 		 */
3372 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3373 		    fork_charge);
3374 	}
3375 }
3376 
3377 /*
3378  * vmspace_map_entry_forked:
3379  * Update the newly-forked vmspace each time a map entry is inherited
3380  * or copied.  The values for vm_dsize and vm_tsize are approximate
3381  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3382  */
3383 static void
3384 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3385     vm_map_entry_t entry)
3386 {
3387 	vm_size_t entrysize;
3388 	vm_offset_t newend;
3389 
3390 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3391 		return;
3392 	entrysize = entry->end - entry->start;
3393 	vm2->vm_map.size += entrysize;
3394 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3395 		vm2->vm_ssize += btoc(entrysize);
3396 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3397 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3398 		newend = MIN(entry->end,
3399 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3400 		vm2->vm_dsize += btoc(newend - entry->start);
3401 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3402 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3403 		newend = MIN(entry->end,
3404 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3405 		vm2->vm_tsize += btoc(newend - entry->start);
3406 	}
3407 }
3408 
3409 /*
3410  * vmspace_fork:
3411  * Create a new process vmspace structure and vm_map
3412  * based on those of an existing process.  The new map
3413  * is based on the old map, according to the inheritance
3414  * values on the regions in that map.
3415  *
3416  * XXX It might be worth coalescing the entries added to the new vmspace.
3417  *
3418  * The source map must not be locked.
3419  */
3420 struct vmspace *
3421 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3422 {
3423 	struct vmspace *vm2;
3424 	vm_map_t new_map, old_map;
3425 	vm_map_entry_t new_entry, old_entry;
3426 	vm_object_t object;
3427 	int locked;
3428 	vm_inherit_t inh;
3429 
3430 	old_map = &vm1->vm_map;
3431 	/* Copy immutable fields of vm1 to vm2. */
3432 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3433 	    pmap_pinit);
3434 	if (vm2 == NULL)
3435 		return (NULL);
3436 	vm2->vm_taddr = vm1->vm_taddr;
3437 	vm2->vm_daddr = vm1->vm_daddr;
3438 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3439 	vm_map_lock(old_map);
3440 	if (old_map->busy)
3441 		vm_map_wait_busy(old_map);
3442 	new_map = &vm2->vm_map;
3443 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3444 	KASSERT(locked, ("vmspace_fork: lock failed"));
3445 
3446 	old_entry = old_map->header.next;
3447 
3448 	while (old_entry != &old_map->header) {
3449 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3450 			panic("vm_map_fork: encountered a submap");
3451 
3452 		inh = old_entry->inheritance;
3453 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3454 		    inh != VM_INHERIT_NONE)
3455 			inh = VM_INHERIT_COPY;
3456 
3457 		switch (inh) {
3458 		case VM_INHERIT_NONE:
3459 			break;
3460 
3461 		case VM_INHERIT_SHARE:
3462 			/*
3463 			 * Clone the entry, creating the shared object if necessary.
3464 			 */
3465 			object = old_entry->object.vm_object;
3466 			if (object == NULL) {
3467 				object = vm_object_allocate(OBJT_DEFAULT,
3468 					atop(old_entry->end - old_entry->start));
3469 				old_entry->object.vm_object = object;
3470 				old_entry->offset = 0;
3471 				if (old_entry->cred != NULL) {
3472 					object->cred = old_entry->cred;
3473 					object->charge = old_entry->end -
3474 					    old_entry->start;
3475 					old_entry->cred = NULL;
3476 				}
3477 			}
3478 
3479 			/*
3480 			 * Add the reference before calling vm_object_shadow
3481 			 * to insure that a shadow object is created.
3482 			 */
3483 			vm_object_reference(object);
3484 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3485 				vm_object_shadow(&old_entry->object.vm_object,
3486 				    &old_entry->offset,
3487 				    old_entry->end - old_entry->start);
3488 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3489 				/* Transfer the second reference too. */
3490 				vm_object_reference(
3491 				    old_entry->object.vm_object);
3492 
3493 				/*
3494 				 * As in vm_map_simplify_entry(), the
3495 				 * vnode lock will not be acquired in
3496 				 * this call to vm_object_deallocate().
3497 				 */
3498 				vm_object_deallocate(object);
3499 				object = old_entry->object.vm_object;
3500 			}
3501 			VM_OBJECT_WLOCK(object);
3502 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3503 			if (old_entry->cred != NULL) {
3504 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3505 				object->cred = old_entry->cred;
3506 				object->charge = old_entry->end - old_entry->start;
3507 				old_entry->cred = NULL;
3508 			}
3509 
3510 			/*
3511 			 * Assert the correct state of the vnode
3512 			 * v_writecount while the object is locked, to
3513 			 * not relock it later for the assertion
3514 			 * correctness.
3515 			 */
3516 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3517 			    object->type == OBJT_VNODE) {
3518 				KASSERT(((struct vnode *)object->handle)->
3519 				    v_writecount > 0,
3520 				    ("vmspace_fork: v_writecount %p", object));
3521 				KASSERT(object->un_pager.vnp.writemappings > 0,
3522 				    ("vmspace_fork: vnp.writecount %p",
3523 				    object));
3524 			}
3525 			VM_OBJECT_WUNLOCK(object);
3526 
3527 			/*
3528 			 * Clone the entry, referencing the shared object.
3529 			 */
3530 			new_entry = vm_map_entry_create(new_map);
3531 			*new_entry = *old_entry;
3532 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3533 			    MAP_ENTRY_IN_TRANSITION);
3534 			new_entry->wiring_thread = NULL;
3535 			new_entry->wired_count = 0;
3536 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3537 				vnode_pager_update_writecount(object,
3538 				    new_entry->start, new_entry->end);
3539 			}
3540 
3541 			/*
3542 			 * Insert the entry into the new map -- we know we're
3543 			 * inserting at the end of the new map.
3544 			 */
3545 			vm_map_entry_link(new_map, new_map->header.prev,
3546 			    new_entry);
3547 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3548 
3549 			/*
3550 			 * Update the physical map
3551 			 */
3552 			pmap_copy(new_map->pmap, old_map->pmap,
3553 			    new_entry->start,
3554 			    (old_entry->end - old_entry->start),
3555 			    old_entry->start);
3556 			break;
3557 
3558 		case VM_INHERIT_COPY:
3559 			/*
3560 			 * Clone the entry and link into the map.
3561 			 */
3562 			new_entry = vm_map_entry_create(new_map);
3563 			*new_entry = *old_entry;
3564 			/*
3565 			 * Copied entry is COW over the old object.
3566 			 */
3567 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3568 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3569 			new_entry->wiring_thread = NULL;
3570 			new_entry->wired_count = 0;
3571 			new_entry->object.vm_object = NULL;
3572 			new_entry->cred = NULL;
3573 			vm_map_entry_link(new_map, new_map->header.prev,
3574 			    new_entry);
3575 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3576 			vm_map_copy_entry(old_map, new_map, old_entry,
3577 			    new_entry, fork_charge);
3578 			break;
3579 
3580 		case VM_INHERIT_ZERO:
3581 			/*
3582 			 * Create a new anonymous mapping entry modelled from
3583 			 * the old one.
3584 			 */
3585 			new_entry = vm_map_entry_create(new_map);
3586 			memset(new_entry, 0, sizeof(*new_entry));
3587 
3588 			new_entry->start = old_entry->start;
3589 			new_entry->end = old_entry->end;
3590 			new_entry->eflags = old_entry->eflags &
3591 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3592 			    MAP_ENTRY_VN_WRITECNT);
3593 			new_entry->protection = old_entry->protection;
3594 			new_entry->max_protection = old_entry->max_protection;
3595 			new_entry->inheritance = VM_INHERIT_ZERO;
3596 
3597 			vm_map_entry_link(new_map, new_map->header.prev,
3598 			    new_entry);
3599 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3600 
3601 			new_entry->cred = curthread->td_ucred;
3602 			crhold(new_entry->cred);
3603 			*fork_charge += (new_entry->end - new_entry->start);
3604 
3605 			break;
3606 		}
3607 		old_entry = old_entry->next;
3608 	}
3609 	/*
3610 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3611 	 * map entries, which cannot be done until both old_map and
3612 	 * new_map locks are released.
3613 	 */
3614 	sx_xunlock(&old_map->lock);
3615 	sx_xunlock(&new_map->lock);
3616 	vm_map_process_deferred();
3617 
3618 	return (vm2);
3619 }
3620 
3621 /*
3622  * Create a process's stack for exec_new_vmspace().  This function is never
3623  * asked to wire the newly created stack.
3624  */
3625 int
3626 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3627     vm_prot_t prot, vm_prot_t max, int cow)
3628 {
3629 	vm_size_t growsize, init_ssize;
3630 	rlim_t vmemlim;
3631 	int rv;
3632 
3633 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3634 	growsize = sgrowsiz;
3635 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3636 	vm_map_lock(map);
3637 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3638 	/* If we would blow our VMEM resource limit, no go */
3639 	if (map->size + init_ssize > vmemlim) {
3640 		rv = KERN_NO_SPACE;
3641 		goto out;
3642 	}
3643 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3644 	    max, cow);
3645 out:
3646 	vm_map_unlock(map);
3647 	return (rv);
3648 }
3649 
3650 static int stack_guard_page = 1;
3651 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3652     &stack_guard_page, 0,
3653     "Specifies the number of guard pages for a stack that grows");
3654 
3655 static int
3656 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3657     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3658 {
3659 	vm_map_entry_t new_entry, prev_entry;
3660 	vm_offset_t bot, gap_bot, gap_top, top;
3661 	vm_size_t init_ssize, sgp;
3662 	int orient, rv;
3663 
3664 	/*
3665 	 * The stack orientation is piggybacked with the cow argument.
3666 	 * Extract it into orient and mask the cow argument so that we
3667 	 * don't pass it around further.
3668 	 */
3669 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3670 	KASSERT(orient != 0, ("No stack grow direction"));
3671 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3672 	    ("bi-dir stack"));
3673 
3674 	if (addrbos < vm_map_min(map) ||
3675 	    addrbos + max_ssize > vm_map_max(map) ||
3676 	    addrbos + max_ssize <= addrbos)
3677 		return (KERN_INVALID_ADDRESS);
3678 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3679 	if (sgp >= max_ssize)
3680 		return (KERN_INVALID_ARGUMENT);
3681 
3682 	init_ssize = growsize;
3683 	if (max_ssize < init_ssize + sgp)
3684 		init_ssize = max_ssize - sgp;
3685 
3686 	/* If addr is already mapped, no go */
3687 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3688 		return (KERN_NO_SPACE);
3689 
3690 	/*
3691 	 * If we can't accommodate max_ssize in the current mapping, no go.
3692 	 */
3693 	if (prev_entry->next->start < addrbos + max_ssize)
3694 		return (KERN_NO_SPACE);
3695 
3696 	/*
3697 	 * We initially map a stack of only init_ssize.  We will grow as
3698 	 * needed later.  Depending on the orientation of the stack (i.e.
3699 	 * the grow direction) we either map at the top of the range, the
3700 	 * bottom of the range or in the middle.
3701 	 *
3702 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3703 	 * and cow to be 0.  Possibly we should eliminate these as input
3704 	 * parameters, and just pass these values here in the insert call.
3705 	 */
3706 	if (orient == MAP_STACK_GROWS_DOWN) {
3707 		bot = addrbos + max_ssize - init_ssize;
3708 		top = bot + init_ssize;
3709 		gap_bot = addrbos;
3710 		gap_top = bot;
3711 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3712 		bot = addrbos;
3713 		top = bot + init_ssize;
3714 		gap_bot = top;
3715 		gap_top = addrbos + max_ssize;
3716 	}
3717 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3718 	if (rv != KERN_SUCCESS)
3719 		return (rv);
3720 	new_entry = prev_entry->next;
3721 	KASSERT(new_entry->end == top || new_entry->start == bot,
3722 	    ("Bad entry start/end for new stack entry"));
3723 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3724 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3725 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3726 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3727 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3728 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3729 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3730 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3731 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3732 	if (rv != KERN_SUCCESS)
3733 		(void)vm_map_delete(map, bot, top);
3734 	return (rv);
3735 }
3736 
3737 /*
3738  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3739  * successfully grow the stack.
3740  */
3741 static int
3742 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3743 {
3744 	vm_map_entry_t stack_entry;
3745 	struct proc *p;
3746 	struct vmspace *vm;
3747 	struct ucred *cred;
3748 	vm_offset_t gap_end, gap_start, grow_start;
3749 	size_t grow_amount, guard, max_grow;
3750 	rlim_t lmemlim, stacklim, vmemlim;
3751 	int rv, rv1;
3752 	bool gap_deleted, grow_down, is_procstack;
3753 #ifdef notyet
3754 	uint64_t limit;
3755 #endif
3756 #ifdef RACCT
3757 	int error;
3758 #endif
3759 
3760 	p = curproc;
3761 	vm = p->p_vmspace;
3762 
3763 	/*
3764 	 * Disallow stack growth when the access is performed by a
3765 	 * debugger or AIO daemon.  The reason is that the wrong
3766 	 * resource limits are applied.
3767 	 */
3768 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3769 		return (KERN_FAILURE);
3770 
3771 	MPASS(!map->system_map);
3772 
3773 	guard = stack_guard_page * PAGE_SIZE;
3774 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3775 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3776 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3777 retry:
3778 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3779 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3780 		return (KERN_FAILURE);
3781 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3782 		return (KERN_SUCCESS);
3783 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3784 		stack_entry = gap_entry->next;
3785 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3786 		    stack_entry->start != gap_entry->end)
3787 			return (KERN_FAILURE);
3788 		grow_amount = round_page(stack_entry->start - addr);
3789 		grow_down = true;
3790 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3791 		stack_entry = gap_entry->prev;
3792 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3793 		    stack_entry->end != gap_entry->start)
3794 			return (KERN_FAILURE);
3795 		grow_amount = round_page(addr + 1 - stack_entry->end);
3796 		grow_down = false;
3797 	} else {
3798 		return (KERN_FAILURE);
3799 	}
3800 	max_grow = gap_entry->end - gap_entry->start;
3801 	if (guard > max_grow)
3802 		return (KERN_NO_SPACE);
3803 	max_grow -= guard;
3804 	if (grow_amount > max_grow)
3805 		return (KERN_NO_SPACE);
3806 
3807 	/*
3808 	 * If this is the main process stack, see if we're over the stack
3809 	 * limit.
3810 	 */
3811 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3812 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3813 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3814 		return (KERN_NO_SPACE);
3815 
3816 #ifdef RACCT
3817 	if (racct_enable) {
3818 		PROC_LOCK(p);
3819 		if (is_procstack && racct_set(p, RACCT_STACK,
3820 		    ctob(vm->vm_ssize) + grow_amount)) {
3821 			PROC_UNLOCK(p);
3822 			return (KERN_NO_SPACE);
3823 		}
3824 		PROC_UNLOCK(p);
3825 	}
3826 #endif
3827 
3828 	grow_amount = roundup(grow_amount, sgrowsiz);
3829 	if (grow_amount > max_grow)
3830 		grow_amount = max_grow;
3831 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3832 		grow_amount = trunc_page((vm_size_t)stacklim) -
3833 		    ctob(vm->vm_ssize);
3834 	}
3835 
3836 #ifdef notyet
3837 	PROC_LOCK(p);
3838 	limit = racct_get_available(p, RACCT_STACK);
3839 	PROC_UNLOCK(p);
3840 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3841 		grow_amount = limit - ctob(vm->vm_ssize);
3842 #endif
3843 
3844 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3845 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3846 			rv = KERN_NO_SPACE;
3847 			goto out;
3848 		}
3849 #ifdef RACCT
3850 		if (racct_enable) {
3851 			PROC_LOCK(p);
3852 			if (racct_set(p, RACCT_MEMLOCK,
3853 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3854 				PROC_UNLOCK(p);
3855 				rv = KERN_NO_SPACE;
3856 				goto out;
3857 			}
3858 			PROC_UNLOCK(p);
3859 		}
3860 #endif
3861 	}
3862 
3863 	/* If we would blow our VMEM resource limit, no go */
3864 	if (map->size + grow_amount > vmemlim) {
3865 		rv = KERN_NO_SPACE;
3866 		goto out;
3867 	}
3868 #ifdef RACCT
3869 	if (racct_enable) {
3870 		PROC_LOCK(p);
3871 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3872 			PROC_UNLOCK(p);
3873 			rv = KERN_NO_SPACE;
3874 			goto out;
3875 		}
3876 		PROC_UNLOCK(p);
3877 	}
3878 #endif
3879 
3880 	if (vm_map_lock_upgrade(map)) {
3881 		gap_entry = NULL;
3882 		vm_map_lock_read(map);
3883 		goto retry;
3884 	}
3885 
3886 	if (grow_down) {
3887 		grow_start = gap_entry->end - grow_amount;
3888 		if (gap_entry->start + grow_amount == gap_entry->end) {
3889 			gap_start = gap_entry->start;
3890 			gap_end = gap_entry->end;
3891 			vm_map_entry_delete(map, gap_entry);
3892 			gap_deleted = true;
3893 		} else {
3894 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3895 			gap_entry->end -= grow_amount;
3896 			vm_map_entry_resize_free(map, gap_entry);
3897 			gap_deleted = false;
3898 		}
3899 		rv = vm_map_insert(map, NULL, 0, grow_start,
3900 		    grow_start + grow_amount,
3901 		    stack_entry->protection, stack_entry->max_protection,
3902 		    MAP_STACK_GROWS_DOWN);
3903 		if (rv != KERN_SUCCESS) {
3904 			if (gap_deleted) {
3905 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3906 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3907 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3908 				MPASS(rv1 == KERN_SUCCESS);
3909 			} else {
3910 				gap_entry->end += grow_amount;
3911 				vm_map_entry_resize_free(map, gap_entry);
3912 			}
3913 		}
3914 	} else {
3915 		grow_start = stack_entry->end;
3916 		cred = stack_entry->cred;
3917 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3918 			cred = stack_entry->object.vm_object->cred;
3919 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3920 			rv = KERN_NO_SPACE;
3921 		/* Grow the underlying object if applicable. */
3922 		else if (stack_entry->object.vm_object == NULL ||
3923 		    vm_object_coalesce(stack_entry->object.vm_object,
3924 		    stack_entry->offset,
3925 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3926 		    (vm_size_t)grow_amount, cred != NULL)) {
3927 			if (gap_entry->start + grow_amount == gap_entry->end)
3928 				vm_map_entry_delete(map, gap_entry);
3929 			else
3930 				gap_entry->start += grow_amount;
3931 			stack_entry->end += grow_amount;
3932 			map->size += grow_amount;
3933 			vm_map_entry_resize_free(map, stack_entry);
3934 			rv = KERN_SUCCESS;
3935 		} else
3936 			rv = KERN_FAILURE;
3937 	}
3938 	if (rv == KERN_SUCCESS && is_procstack)
3939 		vm->vm_ssize += btoc(grow_amount);
3940 
3941 	/*
3942 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3943 	 */
3944 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3945 		vm_map_unlock(map);
3946 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3947 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3948 		vm_map_lock_read(map);
3949 	} else
3950 		vm_map_lock_downgrade(map);
3951 
3952 out:
3953 #ifdef RACCT
3954 	if (racct_enable && rv != KERN_SUCCESS) {
3955 		PROC_LOCK(p);
3956 		error = racct_set(p, RACCT_VMEM, map->size);
3957 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3958 		if (!old_mlock) {
3959 			error = racct_set(p, RACCT_MEMLOCK,
3960 			    ptoa(pmap_wired_count(map->pmap)));
3961 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3962 		}
3963 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3964 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3965 		PROC_UNLOCK(p);
3966 	}
3967 #endif
3968 
3969 	return (rv);
3970 }
3971 
3972 /*
3973  * Unshare the specified VM space for exec.  If other processes are
3974  * mapped to it, then create a new one.  The new vmspace is null.
3975  */
3976 int
3977 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3978 {
3979 	struct vmspace *oldvmspace = p->p_vmspace;
3980 	struct vmspace *newvmspace;
3981 
3982 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3983 	    ("vmspace_exec recursed"));
3984 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
3985 	if (newvmspace == NULL)
3986 		return (ENOMEM);
3987 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3988 	/*
3989 	 * This code is written like this for prototype purposes.  The
3990 	 * goal is to avoid running down the vmspace here, but let the
3991 	 * other process's that are still using the vmspace to finally
3992 	 * run it down.  Even though there is little or no chance of blocking
3993 	 * here, it is a good idea to keep this form for future mods.
3994 	 */
3995 	PROC_VMSPACE_LOCK(p);
3996 	p->p_vmspace = newvmspace;
3997 	PROC_VMSPACE_UNLOCK(p);
3998 	if (p == curthread->td_proc)
3999 		pmap_activate(curthread);
4000 	curthread->td_pflags |= TDP_EXECVMSPC;
4001 	return (0);
4002 }
4003 
4004 /*
4005  * Unshare the specified VM space for forcing COW.  This
4006  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4007  */
4008 int
4009 vmspace_unshare(struct proc *p)
4010 {
4011 	struct vmspace *oldvmspace = p->p_vmspace;
4012 	struct vmspace *newvmspace;
4013 	vm_ooffset_t fork_charge;
4014 
4015 	if (oldvmspace->vm_refcnt == 1)
4016 		return (0);
4017 	fork_charge = 0;
4018 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4019 	if (newvmspace == NULL)
4020 		return (ENOMEM);
4021 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4022 		vmspace_free(newvmspace);
4023 		return (ENOMEM);
4024 	}
4025 	PROC_VMSPACE_LOCK(p);
4026 	p->p_vmspace = newvmspace;
4027 	PROC_VMSPACE_UNLOCK(p);
4028 	if (p == curthread->td_proc)
4029 		pmap_activate(curthread);
4030 	vmspace_free(oldvmspace);
4031 	return (0);
4032 }
4033 
4034 /*
4035  *	vm_map_lookup:
4036  *
4037  *	Finds the VM object, offset, and
4038  *	protection for a given virtual address in the
4039  *	specified map, assuming a page fault of the
4040  *	type specified.
4041  *
4042  *	Leaves the map in question locked for read; return
4043  *	values are guaranteed until a vm_map_lookup_done
4044  *	call is performed.  Note that the map argument
4045  *	is in/out; the returned map must be used in
4046  *	the call to vm_map_lookup_done.
4047  *
4048  *	A handle (out_entry) is returned for use in
4049  *	vm_map_lookup_done, to make that fast.
4050  *
4051  *	If a lookup is requested with "write protection"
4052  *	specified, the map may be changed to perform virtual
4053  *	copying operations, although the data referenced will
4054  *	remain the same.
4055  */
4056 int
4057 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4058 	      vm_offset_t vaddr,
4059 	      vm_prot_t fault_typea,
4060 	      vm_map_entry_t *out_entry,	/* OUT */
4061 	      vm_object_t *object,		/* OUT */
4062 	      vm_pindex_t *pindex,		/* OUT */
4063 	      vm_prot_t *out_prot,		/* OUT */
4064 	      boolean_t *wired)			/* OUT */
4065 {
4066 	vm_map_entry_t entry;
4067 	vm_map_t map = *var_map;
4068 	vm_prot_t prot;
4069 	vm_prot_t fault_type = fault_typea;
4070 	vm_object_t eobject;
4071 	vm_size_t size;
4072 	struct ucred *cred;
4073 
4074 RetryLookup:
4075 
4076 	vm_map_lock_read(map);
4077 
4078 RetryLookupLocked:
4079 	/*
4080 	 * Lookup the faulting address.
4081 	 */
4082 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4083 		vm_map_unlock_read(map);
4084 		return (KERN_INVALID_ADDRESS);
4085 	}
4086 
4087 	entry = *out_entry;
4088 
4089 	/*
4090 	 * Handle submaps.
4091 	 */
4092 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4093 		vm_map_t old_map = map;
4094 
4095 		*var_map = map = entry->object.sub_map;
4096 		vm_map_unlock_read(old_map);
4097 		goto RetryLookup;
4098 	}
4099 
4100 	/*
4101 	 * Check whether this task is allowed to have this page.
4102 	 */
4103 	prot = entry->protection;
4104 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4105 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4106 		if (prot == VM_PROT_NONE && map != kernel_map &&
4107 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4108 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4109 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4110 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4111 			goto RetryLookupLocked;
4112 	}
4113 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4114 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4115 		vm_map_unlock_read(map);
4116 		return (KERN_PROTECTION_FAILURE);
4117 	}
4118 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4119 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4120 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4121 	    ("entry %p flags %x", entry, entry->eflags));
4122 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4123 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4124 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4125 		vm_map_unlock_read(map);
4126 		return (KERN_PROTECTION_FAILURE);
4127 	}
4128 
4129 	/*
4130 	 * If this page is not pageable, we have to get it for all possible
4131 	 * accesses.
4132 	 */
4133 	*wired = (entry->wired_count != 0);
4134 	if (*wired)
4135 		fault_type = entry->protection;
4136 	size = entry->end - entry->start;
4137 	/*
4138 	 * If the entry was copy-on-write, we either ...
4139 	 */
4140 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4141 		/*
4142 		 * If we want to write the page, we may as well handle that
4143 		 * now since we've got the map locked.
4144 		 *
4145 		 * If we don't need to write the page, we just demote the
4146 		 * permissions allowed.
4147 		 */
4148 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4149 		    (fault_typea & VM_PROT_COPY) != 0) {
4150 			/*
4151 			 * Make a new object, and place it in the object
4152 			 * chain.  Note that no new references have appeared
4153 			 * -- one just moved from the map to the new
4154 			 * object.
4155 			 */
4156 			if (vm_map_lock_upgrade(map))
4157 				goto RetryLookup;
4158 
4159 			if (entry->cred == NULL) {
4160 				/*
4161 				 * The debugger owner is charged for
4162 				 * the memory.
4163 				 */
4164 				cred = curthread->td_ucred;
4165 				crhold(cred);
4166 				if (!swap_reserve_by_cred(size, cred)) {
4167 					crfree(cred);
4168 					vm_map_unlock(map);
4169 					return (KERN_RESOURCE_SHORTAGE);
4170 				}
4171 				entry->cred = cred;
4172 			}
4173 			vm_object_shadow(&entry->object.vm_object,
4174 			    &entry->offset, size);
4175 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4176 			eobject = entry->object.vm_object;
4177 			if (eobject->cred != NULL) {
4178 				/*
4179 				 * The object was not shadowed.
4180 				 */
4181 				swap_release_by_cred(size, entry->cred);
4182 				crfree(entry->cred);
4183 				entry->cred = NULL;
4184 			} else if (entry->cred != NULL) {
4185 				VM_OBJECT_WLOCK(eobject);
4186 				eobject->cred = entry->cred;
4187 				eobject->charge = size;
4188 				VM_OBJECT_WUNLOCK(eobject);
4189 				entry->cred = NULL;
4190 			}
4191 
4192 			vm_map_lock_downgrade(map);
4193 		} else {
4194 			/*
4195 			 * We're attempting to read a copy-on-write page --
4196 			 * don't allow writes.
4197 			 */
4198 			prot &= ~VM_PROT_WRITE;
4199 		}
4200 	}
4201 
4202 	/*
4203 	 * Create an object if necessary.
4204 	 */
4205 	if (entry->object.vm_object == NULL &&
4206 	    !map->system_map) {
4207 		if (vm_map_lock_upgrade(map))
4208 			goto RetryLookup;
4209 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4210 		    atop(size));
4211 		entry->offset = 0;
4212 		if (entry->cred != NULL) {
4213 			VM_OBJECT_WLOCK(entry->object.vm_object);
4214 			entry->object.vm_object->cred = entry->cred;
4215 			entry->object.vm_object->charge = size;
4216 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4217 			entry->cred = NULL;
4218 		}
4219 		vm_map_lock_downgrade(map);
4220 	}
4221 
4222 	/*
4223 	 * Return the object/offset from this entry.  If the entry was
4224 	 * copy-on-write or empty, it has been fixed up.
4225 	 */
4226 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4227 	*object = entry->object.vm_object;
4228 
4229 	*out_prot = prot;
4230 	return (KERN_SUCCESS);
4231 }
4232 
4233 /*
4234  *	vm_map_lookup_locked:
4235  *
4236  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4237  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4238  */
4239 int
4240 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4241 		     vm_offset_t vaddr,
4242 		     vm_prot_t fault_typea,
4243 		     vm_map_entry_t *out_entry,	/* OUT */
4244 		     vm_object_t *object,	/* OUT */
4245 		     vm_pindex_t *pindex,	/* OUT */
4246 		     vm_prot_t *out_prot,	/* OUT */
4247 		     boolean_t *wired)		/* OUT */
4248 {
4249 	vm_map_entry_t entry;
4250 	vm_map_t map = *var_map;
4251 	vm_prot_t prot;
4252 	vm_prot_t fault_type = fault_typea;
4253 
4254 	/*
4255 	 * Lookup the faulting address.
4256 	 */
4257 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4258 		return (KERN_INVALID_ADDRESS);
4259 
4260 	entry = *out_entry;
4261 
4262 	/*
4263 	 * Fail if the entry refers to a submap.
4264 	 */
4265 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4266 		return (KERN_FAILURE);
4267 
4268 	/*
4269 	 * Check whether this task is allowed to have this page.
4270 	 */
4271 	prot = entry->protection;
4272 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4273 	if ((fault_type & prot) != fault_type)
4274 		return (KERN_PROTECTION_FAILURE);
4275 
4276 	/*
4277 	 * If this page is not pageable, we have to get it for all possible
4278 	 * accesses.
4279 	 */
4280 	*wired = (entry->wired_count != 0);
4281 	if (*wired)
4282 		fault_type = entry->protection;
4283 
4284 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4285 		/*
4286 		 * Fail if the entry was copy-on-write for a write fault.
4287 		 */
4288 		if (fault_type & VM_PROT_WRITE)
4289 			return (KERN_FAILURE);
4290 		/*
4291 		 * We're attempting to read a copy-on-write page --
4292 		 * don't allow writes.
4293 		 */
4294 		prot &= ~VM_PROT_WRITE;
4295 	}
4296 
4297 	/*
4298 	 * Fail if an object should be created.
4299 	 */
4300 	if (entry->object.vm_object == NULL && !map->system_map)
4301 		return (KERN_FAILURE);
4302 
4303 	/*
4304 	 * Return the object/offset from this entry.  If the entry was
4305 	 * copy-on-write or empty, it has been fixed up.
4306 	 */
4307 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4308 	*object = entry->object.vm_object;
4309 
4310 	*out_prot = prot;
4311 	return (KERN_SUCCESS);
4312 }
4313 
4314 /*
4315  *	vm_map_lookup_done:
4316  *
4317  *	Releases locks acquired by a vm_map_lookup
4318  *	(according to the handle returned by that lookup).
4319  */
4320 void
4321 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4322 {
4323 	/*
4324 	 * Unlock the main-level map
4325 	 */
4326 	vm_map_unlock_read(map);
4327 }
4328 
4329 vm_offset_t
4330 vm_map_max_KBI(const struct vm_map *map)
4331 {
4332 
4333 	return (vm_map_max(map));
4334 }
4335 
4336 vm_offset_t
4337 vm_map_min_KBI(const struct vm_map *map)
4338 {
4339 
4340 	return (vm_map_min(map));
4341 }
4342 
4343 pmap_t
4344 vm_map_pmap_KBI(vm_map_t map)
4345 {
4346 
4347 	return (map->pmap);
4348 }
4349 
4350 #include "opt_ddb.h"
4351 #ifdef DDB
4352 #include <sys/kernel.h>
4353 
4354 #include <ddb/ddb.h>
4355 
4356 static void
4357 vm_map_print(vm_map_t map)
4358 {
4359 	vm_map_entry_t entry;
4360 
4361 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4362 	    (void *)map,
4363 	    (void *)map->pmap, map->nentries, map->timestamp);
4364 
4365 	db_indent += 2;
4366 	for (entry = map->header.next; entry != &map->header;
4367 	    entry = entry->next) {
4368 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4369 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4370 		    entry->eflags);
4371 		{
4372 			static char *inheritance_name[4] =
4373 			{"share", "copy", "none", "donate_copy"};
4374 
4375 			db_iprintf(" prot=%x/%x/%s",
4376 			    entry->protection,
4377 			    entry->max_protection,
4378 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4379 			if (entry->wired_count != 0)
4380 				db_printf(", wired");
4381 		}
4382 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4383 			db_printf(", share=%p, offset=0x%jx\n",
4384 			    (void *)entry->object.sub_map,
4385 			    (uintmax_t)entry->offset);
4386 			if ((entry->prev == &map->header) ||
4387 			    (entry->prev->object.sub_map !=
4388 				entry->object.sub_map)) {
4389 				db_indent += 2;
4390 				vm_map_print((vm_map_t)entry->object.sub_map);
4391 				db_indent -= 2;
4392 			}
4393 		} else {
4394 			if (entry->cred != NULL)
4395 				db_printf(", ruid %d", entry->cred->cr_ruid);
4396 			db_printf(", object=%p, offset=0x%jx",
4397 			    (void *)entry->object.vm_object,
4398 			    (uintmax_t)entry->offset);
4399 			if (entry->object.vm_object && entry->object.vm_object->cred)
4400 				db_printf(", obj ruid %d charge %jx",
4401 				    entry->object.vm_object->cred->cr_ruid,
4402 				    (uintmax_t)entry->object.vm_object->charge);
4403 			if (entry->eflags & MAP_ENTRY_COW)
4404 				db_printf(", copy (%s)",
4405 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4406 			db_printf("\n");
4407 
4408 			if ((entry->prev == &map->header) ||
4409 			    (entry->prev->object.vm_object !=
4410 				entry->object.vm_object)) {
4411 				db_indent += 2;
4412 				vm_object_print((db_expr_t)(intptr_t)
4413 						entry->object.vm_object,
4414 						0, 0, (char *)0);
4415 				db_indent -= 2;
4416 			}
4417 		}
4418 	}
4419 	db_indent -= 2;
4420 }
4421 
4422 DB_SHOW_COMMAND(map, map)
4423 {
4424 
4425 	if (!have_addr) {
4426 		db_printf("usage: show map <addr>\n");
4427 		return;
4428 	}
4429 	vm_map_print((vm_map_t)addr);
4430 }
4431 
4432 DB_SHOW_COMMAND(procvm, procvm)
4433 {
4434 	struct proc *p;
4435 
4436 	if (have_addr) {
4437 		p = db_lookup_proc(addr);
4438 	} else {
4439 		p = curproc;
4440 	}
4441 
4442 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4443 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4444 	    (void *)vmspace_pmap(p->p_vmspace));
4445 
4446 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4447 }
4448 
4449 #endif /* DDB */
4450