xref: /freebsd/sys/vm/vm_map.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 #include <vm/vm_zone.h>
91 
92 /*
93  *	Virtual memory maps provide for the mapping, protection,
94  *	and sharing of virtual memory objects.  In addition,
95  *	this module provides for an efficient virtual copy of
96  *	memory from one map to another.
97  *
98  *	Synchronization is required prior to most operations.
99  *
100  *	Maps consist of an ordered doubly-linked list of simple
101  *	entries; a single hint is used to speed up lookups.
102  *
103  *	Since portions of maps are specified by start/end addresses,
104  *	which may not align with existing map entries, all
105  *	routines merely "clip" entries to these start/end values.
106  *	[That is, an entry is split into two, bordering at a
107  *	start or end value.]  Note that these clippings may not
108  *	always be necessary (as the two resulting entries are then
109  *	not changed); however, the clipping is done for convenience.
110  *
111  *	As mentioned above, virtual copy operations are performed
112  *	by copying VM object references from one map to
113  *	another, and then marking both regions as copy-on-write.
114  */
115 
116 /*
117  *	vm_map_startup:
118  *
119  *	Initialize the vm_map module.  Must be called before
120  *	any other vm_map routines.
121  *
122  *	Map and entry structures are allocated from the general
123  *	purpose memory pool with some exceptions:
124  *
125  *	- The kernel map and kmem submap are allocated statically.
126  *	- Kernel map entries are allocated out of a static pool.
127  *
128  *	These restrictions are necessary since malloc() uses the
129  *	maps and requires map entries.
130  */
131 
132 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
133 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
134 static struct vm_object kmapentobj, mapentobj, mapobj;
135 
136 static struct vm_map_entry map_entry_init[MAX_MAPENT];
137 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
138 static struct vm_map map_init[MAX_KMAP];
139 
140 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
141 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
142 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
143 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
144 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
145 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
146 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
147 		vm_map_entry_t));
148 static void vm_map_split __P((vm_map_entry_t));
149 
150 void
151 vm_map_startup()
152 {
153 	mapzone = &mapzone_store;
154 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
155 		map_init, MAX_KMAP);
156 	kmapentzone = &kmapentzone_store;
157 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
158 		kmap_entry_init, MAX_KMAPENT);
159 	mapentzone = &mapentzone_store;
160 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
161 		map_entry_init, MAX_MAPENT);
162 }
163 
164 /*
165  * Allocate a vmspace structure, including a vm_map and pmap,
166  * and initialize those structures.  The refcnt is set to 1.
167  * The remaining fields must be initialized by the caller.
168  */
169 struct vmspace *
170 vmspace_alloc(min, max)
171 	vm_offset_t min, max;
172 {
173 	struct vmspace *vm;
174 
175 	vm = zalloc(vmspace_zone);
176 	vm_map_init(&vm->vm_map, min, max);
177 	pmap_pinit(vmspace_pmap(vm));
178 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
179 	vm->vm_refcnt = 1;
180 	vm->vm_shm = NULL;
181 	return (vm);
182 }
183 
184 void
185 vm_init2(void) {
186 	zinitna(kmapentzone, &kmapentobj,
187 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
188 	zinitna(mapentzone, &mapentobj,
189 		NULL, 0, 0, 0, 1);
190 	zinitna(mapzone, &mapobj,
191 		NULL, 0, 0, 0, 1);
192 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
193 	pmap_init2();
194 	vm_object_init2();
195 }
196 
197 void
198 vmspace_free(vm)
199 	struct vmspace *vm;
200 {
201 
202 	if (vm->vm_refcnt == 0)
203 		panic("vmspace_free: attempt to free already freed vmspace");
204 
205 	if (--vm->vm_refcnt == 0) {
206 
207 		/*
208 		 * Lock the map, to wait out all other references to it.
209 		 * Delete all of the mappings and pages they hold, then call
210 		 * the pmap module to reclaim anything left.
211 		 */
212 		vm_map_lock(&vm->vm_map);
213 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
214 		    vm->vm_map.max_offset);
215 		vm_map_unlock(&vm->vm_map);
216 
217 		pmap_release(vmspace_pmap(vm));
218 		zfree(vmspace_zone, vm);
219 	}
220 }
221 
222 /*
223  *	vm_map_create:
224  *
225  *	Creates and returns a new empty VM map with
226  *	the given physical map structure, and having
227  *	the given lower and upper address bounds.
228  */
229 vm_map_t
230 vm_map_create(pmap, min, max)
231 	pmap_t pmap;
232 	vm_offset_t min, max;
233 {
234 	vm_map_t result;
235 
236 	result = zalloc(mapzone);
237 	vm_map_init(result, min, max);
238 	result->pmap = pmap;
239 	return (result);
240 }
241 
242 /*
243  * Initialize an existing vm_map structure
244  * such as that in the vmspace structure.
245  * The pmap is set elsewhere.
246  */
247 void
248 vm_map_init(map, min, max)
249 	struct vm_map *map;
250 	vm_offset_t min, max;
251 {
252 	map->header.next = map->header.prev = &map->header;
253 	map->nentries = 0;
254 	map->size = 0;
255 	map->system_map = 0;
256 	map->min_offset = min;
257 	map->max_offset = max;
258 	map->first_free = &map->header;
259 	map->hint = &map->header;
260 	map->timestamp = 0;
261 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
262 }
263 
264 /*
265  *	vm_map_entry_dispose:	[ internal use only ]
266  *
267  *	Inverse of vm_map_entry_create.
268  */
269 static void
270 vm_map_entry_dispose(map, entry)
271 	vm_map_t map;
272 	vm_map_entry_t entry;
273 {
274 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
275 }
276 
277 /*
278  *	vm_map_entry_create:	[ internal use only ]
279  *
280  *	Allocates a VM map entry for insertion.
281  *	No entry fields are filled in.  This routine is
282  */
283 static vm_map_entry_t
284 vm_map_entry_create(map)
285 	vm_map_t map;
286 {
287 	vm_map_entry_t new_entry;
288 
289 	new_entry = zalloc((map->system_map || !mapentzone) ?
290 		kmapentzone : mapentzone);
291 	if (new_entry == NULL)
292 	    panic("vm_map_entry_create: kernel resources exhausted");
293 	return(new_entry);
294 }
295 
296 /*
297  *	vm_map_entry_{un,}link:
298  *
299  *	Insert/remove entries from maps.
300  */
301 static __inline void
302 vm_map_entry_link(vm_map_t map,
303 		  vm_map_entry_t after_where,
304 		  vm_map_entry_t entry)
305 {
306 	map->nentries++;
307 	entry->prev = after_where;
308 	entry->next = after_where->next;
309 	entry->next->prev = entry;
310 	after_where->next = entry;
311 }
312 
313 static __inline void
314 vm_map_entry_unlink(vm_map_t map,
315 		    vm_map_entry_t entry)
316 {
317 	vm_map_entry_t prev = entry->prev;
318 	vm_map_entry_t next = entry->next;
319 
320 	next->prev = prev;
321 	prev->next = next;
322 	map->nentries--;
323 }
324 
325 /*
326  *	SAVE_HINT:
327  *
328  *	Saves the specified entry as the hint for
329  *	future lookups.
330  */
331 #define	SAVE_HINT(map,value) \
332 		(map)->hint = (value);
333 
334 /*
335  *	vm_map_lookup_entry:	[ internal use only ]
336  *
337  *	Finds the map entry containing (or
338  *	immediately preceding) the specified address
339  *	in the given map; the entry is returned
340  *	in the "entry" parameter.  The boolean
341  *	result indicates whether the address is
342  *	actually contained in the map.
343  */
344 boolean_t
345 vm_map_lookup_entry(map, address, entry)
346 	vm_map_t map;
347 	vm_offset_t address;
348 	vm_map_entry_t *entry;	/* OUT */
349 {
350 	vm_map_entry_t cur;
351 	vm_map_entry_t last;
352 
353 	/*
354 	 * Start looking either from the head of the list, or from the hint.
355 	 */
356 
357 	cur = map->hint;
358 
359 	if (cur == &map->header)
360 		cur = cur->next;
361 
362 	if (address >= cur->start) {
363 		/*
364 		 * Go from hint to end of list.
365 		 *
366 		 * But first, make a quick check to see if we are already looking
367 		 * at the entry we want (which is usually the case). Note also
368 		 * that we don't need to save the hint here... it is the same
369 		 * hint (unless we are at the header, in which case the hint
370 		 * didn't buy us anything anyway).
371 		 */
372 		last = &map->header;
373 		if ((cur != last) && (cur->end > address)) {
374 			*entry = cur;
375 			return (TRUE);
376 		}
377 	} else {
378 		/*
379 		 * Go from start to hint, *inclusively*
380 		 */
381 		last = cur->next;
382 		cur = map->header.next;
383 	}
384 
385 	/*
386 	 * Search linearly
387 	 */
388 
389 	while (cur != last) {
390 		if (cur->end > address) {
391 			if (address >= cur->start) {
392 				/*
393 				 * Save this lookup for future hints, and
394 				 * return
395 				 */
396 
397 				*entry = cur;
398 				SAVE_HINT(map, cur);
399 				return (TRUE);
400 			}
401 			break;
402 		}
403 		cur = cur->next;
404 	}
405 	*entry = cur->prev;
406 	SAVE_HINT(map, *entry);
407 	return (FALSE);
408 }
409 
410 /*
411  *	vm_map_insert:
412  *
413  *	Inserts the given whole VM object into the target
414  *	map at the specified address range.  The object's
415  *	size should match that of the address range.
416  *
417  *	Requires that the map be locked, and leaves it so.
418  *
419  *	If object is non-NULL, ref count must be bumped by caller
420  *	prior to making call to account for the new entry.
421  */
422 int
423 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
424 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
425 	      int cow)
426 {
427 	vm_map_entry_t new_entry;
428 	vm_map_entry_t prev_entry;
429 	vm_map_entry_t temp_entry;
430 	vm_eflags_t protoeflags;
431 
432 	/*
433 	 * Check that the start and end points are not bogus.
434 	 */
435 
436 	if ((start < map->min_offset) || (end > map->max_offset) ||
437 	    (start >= end))
438 		return (KERN_INVALID_ADDRESS);
439 
440 	/*
441 	 * Find the entry prior to the proposed starting address; if it's part
442 	 * of an existing entry, this range is bogus.
443 	 */
444 
445 	if (vm_map_lookup_entry(map, start, &temp_entry))
446 		return (KERN_NO_SPACE);
447 
448 	prev_entry = temp_entry;
449 
450 	/*
451 	 * Assert that the next entry doesn't overlap the end point.
452 	 */
453 
454 	if ((prev_entry->next != &map->header) &&
455 	    (prev_entry->next->start < end))
456 		return (KERN_NO_SPACE);
457 
458 	protoeflags = 0;
459 
460 	if (cow & MAP_COPY_ON_WRITE)
461 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
462 
463 	if (cow & MAP_NOFAULT) {
464 		protoeflags |= MAP_ENTRY_NOFAULT;
465 
466 		KASSERT(object == NULL,
467 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
468 	}
469 	if (cow & MAP_DISABLE_SYNCER)
470 		protoeflags |= MAP_ENTRY_NOSYNC;
471 	if (cow & MAP_DISABLE_COREDUMP)
472 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
473 
474 	if (object) {
475 		/*
476 		 * When object is non-NULL, it could be shared with another
477 		 * process.  We have to set or clear OBJ_ONEMAPPING
478 		 * appropriately.
479 		 */
480 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
481 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
482 		}
483 	}
484 	else if ((prev_entry != &map->header) &&
485 		 (prev_entry->eflags == protoeflags) &&
486 		 (prev_entry->end == start) &&
487 		 (prev_entry->wired_count == 0) &&
488 		 ((prev_entry->object.vm_object == NULL) ||
489 		  vm_object_coalesce(prev_entry->object.vm_object,
490 				     OFF_TO_IDX(prev_entry->offset),
491 				     (vm_size_t)(prev_entry->end - prev_entry->start),
492 				     (vm_size_t)(end - prev_entry->end)))) {
493 		/*
494 		 * We were able to extend the object.  Determine if we
495 		 * can extend the previous map entry to include the
496 		 * new range as well.
497 		 */
498 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
499 		    (prev_entry->protection == prot) &&
500 		    (prev_entry->max_protection == max)) {
501 			map->size += (end - prev_entry->end);
502 			prev_entry->end = end;
503 			return (KERN_SUCCESS);
504 		}
505 
506 		/*
507 		 * If we can extend the object but cannot extend the
508 		 * map entry, we have to create a new map entry.  We
509 		 * must bump the ref count on the extended object to
510 		 * account for it.
511 		 */
512 		object = prev_entry->object.vm_object;
513 		offset = prev_entry->offset +
514 			(prev_entry->end - prev_entry->start);
515 		vm_object_reference(object);
516 	}
517 
518 	/*
519 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
520 	 * in things like the buffer map where we manage kva but do not manage
521 	 * backing objects.
522 	 */
523 
524 	/*
525 	 * Create a new entry
526 	 */
527 
528 	new_entry = vm_map_entry_create(map);
529 	new_entry->start = start;
530 	new_entry->end = end;
531 
532 	new_entry->eflags = protoeflags;
533 	new_entry->object.vm_object = object;
534 	new_entry->offset = offset;
535 	new_entry->avail_ssize = 0;
536 
537 	new_entry->inheritance = VM_INHERIT_DEFAULT;
538 	new_entry->protection = prot;
539 	new_entry->max_protection = max;
540 	new_entry->wired_count = 0;
541 
542 	/*
543 	 * Insert the new entry into the list
544 	 */
545 
546 	vm_map_entry_link(map, prev_entry, new_entry);
547 	map->size += new_entry->end - new_entry->start;
548 
549 	/*
550 	 * Update the free space hint
551 	 */
552 	if ((map->first_free == prev_entry) &&
553 	    (prev_entry->end >= new_entry->start)) {
554 		map->first_free = new_entry;
555 	}
556 
557 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
558 		pmap_object_init_pt(map->pmap, start,
559 				    object, OFF_TO_IDX(offset), end - start,
560 				    cow & MAP_PREFAULT_PARTIAL);
561 	}
562 
563 	return (KERN_SUCCESS);
564 }
565 
566 /*
567  * Find sufficient space for `length' bytes in the given map, starting at
568  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
569  */
570 int
571 vm_map_findspace(map, start, length, addr)
572 	vm_map_t map;
573 	vm_offset_t start;
574 	vm_size_t length;
575 	vm_offset_t *addr;
576 {
577 	vm_map_entry_t entry, next;
578 	vm_offset_t end;
579 
580 	if (start < map->min_offset)
581 		start = map->min_offset;
582 	if (start > map->max_offset)
583 		return (1);
584 
585 	/*
586 	 * Look for the first possible address; if there's already something
587 	 * at this address, we have to start after it.
588 	 */
589 	if (start == map->min_offset) {
590 		if ((entry = map->first_free) != &map->header)
591 			start = entry->end;
592 	} else {
593 		vm_map_entry_t tmp;
594 
595 		if (vm_map_lookup_entry(map, start, &tmp))
596 			start = tmp->end;
597 		entry = tmp;
598 	}
599 
600 	/*
601 	 * Look through the rest of the map, trying to fit a new region in the
602 	 * gap between existing regions, or after the very last region.
603 	 */
604 	for (;; start = (entry = next)->end) {
605 		/*
606 		 * Find the end of the proposed new region.  Be sure we didn't
607 		 * go beyond the end of the map, or wrap around the address;
608 		 * if so, we lose.  Otherwise, if this is the last entry, or
609 		 * if the proposed new region fits before the next entry, we
610 		 * win.
611 		 */
612 		end = start + length;
613 		if (end > map->max_offset || end < start)
614 			return (1);
615 		next = entry->next;
616 		if (next == &map->header || next->start >= end)
617 			break;
618 	}
619 	SAVE_HINT(map, entry);
620 	*addr = start;
621 	if (map == kernel_map) {
622 		vm_offset_t ksize;
623 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
624 			pmap_growkernel(ksize);
625 		}
626 	}
627 	return (0);
628 }
629 
630 /*
631  *	vm_map_find finds an unallocated region in the target address
632  *	map with the given length.  The search is defined to be
633  *	first-fit from the specified address; the region found is
634  *	returned in the same parameter.
635  *
636  *	If object is non-NULL, ref count must be bumped by caller
637  *	prior to making call to account for the new entry.
638  */
639 int
640 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
641 	    vm_offset_t *addr,	/* IN/OUT */
642 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
643 	    vm_prot_t max, int cow)
644 {
645 	vm_offset_t start;
646 	int result, s = 0;
647 
648 	start = *addr;
649 
650 	if (map == kmem_map || map == mb_map)
651 		s = splvm();
652 
653 	vm_map_lock(map);
654 	if (find_space) {
655 		if (vm_map_findspace(map, start, length, addr)) {
656 			vm_map_unlock(map);
657 			if (map == kmem_map || map == mb_map)
658 				splx(s);
659 			return (KERN_NO_SPACE);
660 		}
661 		start = *addr;
662 	}
663 	result = vm_map_insert(map, object, offset,
664 		start, start + length, prot, max, cow);
665 	vm_map_unlock(map);
666 
667 	if (map == kmem_map || map == mb_map)
668 		splx(s);
669 
670 	return (result);
671 }
672 
673 /*
674  *	vm_map_simplify_entry:
675  *
676  *	Simplify the given map entry by merging with either neighbor.
677  */
678 void
679 vm_map_simplify_entry(map, entry)
680 	vm_map_t map;
681 	vm_map_entry_t entry;
682 {
683 	vm_map_entry_t next, prev;
684 	vm_size_t prevsize, esize;
685 
686 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
687 		return;
688 
689 	prev = entry->prev;
690 	if (prev != &map->header) {
691 		prevsize = prev->end - prev->start;
692 		if ( (prev->end == entry->start) &&
693 		     (prev->object.vm_object == entry->object.vm_object) &&
694 		     (!prev->object.vm_object ||
695 			(prev->offset + prevsize == entry->offset)) &&
696 		     (prev->eflags == entry->eflags) &&
697 		     (prev->protection == entry->protection) &&
698 		     (prev->max_protection == entry->max_protection) &&
699 		     (prev->inheritance == entry->inheritance) &&
700 		     (prev->wired_count == entry->wired_count)) {
701 			if (map->first_free == prev)
702 				map->first_free = entry;
703 			if (map->hint == prev)
704 				map->hint = entry;
705 			vm_map_entry_unlink(map, prev);
706 			entry->start = prev->start;
707 			entry->offset = prev->offset;
708 			if (prev->object.vm_object)
709 				vm_object_deallocate(prev->object.vm_object);
710 			vm_map_entry_dispose(map, prev);
711 		}
712 	}
713 
714 	next = entry->next;
715 	if (next != &map->header) {
716 		esize = entry->end - entry->start;
717 		if ((entry->end == next->start) &&
718 		    (next->object.vm_object == entry->object.vm_object) &&
719 		     (!entry->object.vm_object ||
720 			(entry->offset + esize == next->offset)) &&
721 		    (next->eflags == entry->eflags) &&
722 		    (next->protection == entry->protection) &&
723 		    (next->max_protection == entry->max_protection) &&
724 		    (next->inheritance == entry->inheritance) &&
725 		    (next->wired_count == entry->wired_count)) {
726 			if (map->first_free == next)
727 				map->first_free = entry;
728 			if (map->hint == next)
729 				map->hint = entry;
730 			vm_map_entry_unlink(map, next);
731 			entry->end = next->end;
732 			if (next->object.vm_object)
733 				vm_object_deallocate(next->object.vm_object);
734 			vm_map_entry_dispose(map, next);
735 	        }
736 	}
737 }
738 /*
739  *	vm_map_clip_start:	[ internal use only ]
740  *
741  *	Asserts that the given entry begins at or after
742  *	the specified address; if necessary,
743  *	it splits the entry into two.
744  */
745 #define vm_map_clip_start(map, entry, startaddr) \
746 { \
747 	if (startaddr > entry->start) \
748 		_vm_map_clip_start(map, entry, startaddr); \
749 }
750 
751 /*
752  *	This routine is called only when it is known that
753  *	the entry must be split.
754  */
755 static void
756 _vm_map_clip_start(map, entry, start)
757 	vm_map_t map;
758 	vm_map_entry_t entry;
759 	vm_offset_t start;
760 {
761 	vm_map_entry_t new_entry;
762 
763 	/*
764 	 * Split off the front portion -- note that we must insert the new
765 	 * entry BEFORE this one, so that this entry has the specified
766 	 * starting address.
767 	 */
768 
769 	vm_map_simplify_entry(map, entry);
770 
771 	/*
772 	 * If there is no object backing this entry, we might as well create
773 	 * one now.  If we defer it, an object can get created after the map
774 	 * is clipped, and individual objects will be created for the split-up
775 	 * map.  This is a bit of a hack, but is also about the best place to
776 	 * put this improvement.
777 	 */
778 
779 	if (entry->object.vm_object == NULL) {
780 		vm_object_t object;
781 		object = vm_object_allocate(OBJT_DEFAULT,
782 				atop(entry->end - entry->start));
783 		entry->object.vm_object = object;
784 		entry->offset = 0;
785 	}
786 
787 	new_entry = vm_map_entry_create(map);
788 	*new_entry = *entry;
789 
790 	new_entry->end = start;
791 	entry->offset += (start - entry->start);
792 	entry->start = start;
793 
794 	vm_map_entry_link(map, entry->prev, new_entry);
795 
796 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
797 		vm_object_reference(new_entry->object.vm_object);
798 	}
799 }
800 
801 /*
802  *	vm_map_clip_end:	[ internal use only ]
803  *
804  *	Asserts that the given entry ends at or before
805  *	the specified address; if necessary,
806  *	it splits the entry into two.
807  */
808 
809 #define vm_map_clip_end(map, entry, endaddr) \
810 { \
811 	if (endaddr < entry->end) \
812 		_vm_map_clip_end(map, entry, endaddr); \
813 }
814 
815 /*
816  *	This routine is called only when it is known that
817  *	the entry must be split.
818  */
819 static void
820 _vm_map_clip_end(map, entry, end)
821 	vm_map_t map;
822 	vm_map_entry_t entry;
823 	vm_offset_t end;
824 {
825 	vm_map_entry_t new_entry;
826 
827 	/*
828 	 * If there is no object backing this entry, we might as well create
829 	 * one now.  If we defer it, an object can get created after the map
830 	 * is clipped, and individual objects will be created for the split-up
831 	 * map.  This is a bit of a hack, but is also about the best place to
832 	 * put this improvement.
833 	 */
834 
835 	if (entry->object.vm_object == NULL) {
836 		vm_object_t object;
837 		object = vm_object_allocate(OBJT_DEFAULT,
838 				atop(entry->end - entry->start));
839 		entry->object.vm_object = object;
840 		entry->offset = 0;
841 	}
842 
843 	/*
844 	 * Create a new entry and insert it AFTER the specified entry
845 	 */
846 
847 	new_entry = vm_map_entry_create(map);
848 	*new_entry = *entry;
849 
850 	new_entry->start = entry->end = end;
851 	new_entry->offset += (end - entry->start);
852 
853 	vm_map_entry_link(map, entry, new_entry);
854 
855 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
856 		vm_object_reference(new_entry->object.vm_object);
857 	}
858 }
859 
860 /*
861  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
862  *
863  *	Asserts that the starting and ending region
864  *	addresses fall within the valid range of the map.
865  */
866 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
867 		{					\
868 		if (start < vm_map_min(map))		\
869 			start = vm_map_min(map);	\
870 		if (end > vm_map_max(map))		\
871 			end = vm_map_max(map);		\
872 		if (start > end)			\
873 			start = end;			\
874 		}
875 
876 /*
877  *	vm_map_submap:		[ kernel use only ]
878  *
879  *	Mark the given range as handled by a subordinate map.
880  *
881  *	This range must have been created with vm_map_find,
882  *	and no other operations may have been performed on this
883  *	range prior to calling vm_map_submap.
884  *
885  *	Only a limited number of operations can be performed
886  *	within this rage after calling vm_map_submap:
887  *		vm_fault
888  *	[Don't try vm_map_copy!]
889  *
890  *	To remove a submapping, one must first remove the
891  *	range from the superior map, and then destroy the
892  *	submap (if desired).  [Better yet, don't try it.]
893  */
894 int
895 vm_map_submap(map, start, end, submap)
896 	vm_map_t map;
897 	vm_offset_t start;
898 	vm_offset_t end;
899 	vm_map_t submap;
900 {
901 	vm_map_entry_t entry;
902 	int result = KERN_INVALID_ARGUMENT;
903 
904 	vm_map_lock(map);
905 
906 	VM_MAP_RANGE_CHECK(map, start, end);
907 
908 	if (vm_map_lookup_entry(map, start, &entry)) {
909 		vm_map_clip_start(map, entry, start);
910 	} else
911 		entry = entry->next;
912 
913 	vm_map_clip_end(map, entry, end);
914 
915 	if ((entry->start == start) && (entry->end == end) &&
916 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
917 	    (entry->object.vm_object == NULL)) {
918 		entry->object.sub_map = submap;
919 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
920 		result = KERN_SUCCESS;
921 	}
922 	vm_map_unlock(map);
923 
924 	return (result);
925 }
926 
927 /*
928  *	vm_map_protect:
929  *
930  *	Sets the protection of the specified address
931  *	region in the target map.  If "set_max" is
932  *	specified, the maximum protection is to be set;
933  *	otherwise, only the current protection is affected.
934  */
935 int
936 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
937 	       vm_prot_t new_prot, boolean_t set_max)
938 {
939 	vm_map_entry_t current;
940 	vm_map_entry_t entry;
941 
942 	vm_map_lock(map);
943 
944 	VM_MAP_RANGE_CHECK(map, start, end);
945 
946 	if (vm_map_lookup_entry(map, start, &entry)) {
947 		vm_map_clip_start(map, entry, start);
948 	} else {
949 		entry = entry->next;
950 	}
951 
952 	/*
953 	 * Make a first pass to check for protection violations.
954 	 */
955 
956 	current = entry;
957 	while ((current != &map->header) && (current->start < end)) {
958 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
959 			vm_map_unlock(map);
960 			return (KERN_INVALID_ARGUMENT);
961 		}
962 		if ((new_prot & current->max_protection) != new_prot) {
963 			vm_map_unlock(map);
964 			return (KERN_PROTECTION_FAILURE);
965 		}
966 		current = current->next;
967 	}
968 
969 	/*
970 	 * Go back and fix up protections. [Note that clipping is not
971 	 * necessary the second time.]
972 	 */
973 
974 	current = entry;
975 
976 	while ((current != &map->header) && (current->start < end)) {
977 		vm_prot_t old_prot;
978 
979 		vm_map_clip_end(map, current, end);
980 
981 		old_prot = current->protection;
982 		if (set_max)
983 			current->protection =
984 			    (current->max_protection = new_prot) &
985 			    old_prot;
986 		else
987 			current->protection = new_prot;
988 
989 		/*
990 		 * Update physical map if necessary. Worry about copy-on-write
991 		 * here -- CHECK THIS XXX
992 		 */
993 
994 		if (current->protection != old_prot) {
995 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
996 							VM_PROT_ALL)
997 
998 			pmap_protect(map->pmap, current->start,
999 			    current->end,
1000 			    current->protection & MASK(current));
1001 #undef	MASK
1002 		}
1003 
1004 		vm_map_simplify_entry(map, current);
1005 
1006 		current = current->next;
1007 	}
1008 
1009 	vm_map_unlock(map);
1010 	return (KERN_SUCCESS);
1011 }
1012 
1013 /*
1014  *	vm_map_madvise:
1015  *
1016  * 	This routine traverses a processes map handling the madvise
1017  *	system call.  Advisories are classified as either those effecting
1018  *	the vm_map_entry structure, or those effecting the underlying
1019  *	objects.
1020  */
1021 
1022 int
1023 vm_map_madvise(map, start, end, behav)
1024 	vm_map_t map;
1025 	vm_offset_t start, end;
1026 	int behav;
1027 {
1028 	vm_map_entry_t current, entry;
1029 	int modify_map = 0;
1030 
1031 	/*
1032 	 * Some madvise calls directly modify the vm_map_entry, in which case
1033 	 * we need to use an exclusive lock on the map and we need to perform
1034 	 * various clipping operations.  Otherwise we only need a read-lock
1035 	 * on the map.
1036 	 */
1037 
1038 	switch(behav) {
1039 	case MADV_NORMAL:
1040 	case MADV_SEQUENTIAL:
1041 	case MADV_RANDOM:
1042 	case MADV_NOSYNC:
1043 	case MADV_AUTOSYNC:
1044 	case MADV_NOCORE:
1045 	case MADV_CORE:
1046 		modify_map = 1;
1047 		vm_map_lock(map);
1048 		break;
1049 	case MADV_WILLNEED:
1050 	case MADV_DONTNEED:
1051 	case MADV_FREE:
1052 		vm_map_lock_read(map);
1053 		break;
1054 	default:
1055 		return (KERN_INVALID_ARGUMENT);
1056 	}
1057 
1058 	/*
1059 	 * Locate starting entry and clip if necessary.
1060 	 */
1061 
1062 	VM_MAP_RANGE_CHECK(map, start, end);
1063 
1064 	if (vm_map_lookup_entry(map, start, &entry)) {
1065 		if (modify_map)
1066 			vm_map_clip_start(map, entry, start);
1067 	} else {
1068 		entry = entry->next;
1069 	}
1070 
1071 	if (modify_map) {
1072 		/*
1073 		 * madvise behaviors that are implemented in the vm_map_entry.
1074 		 *
1075 		 * We clip the vm_map_entry so that behavioral changes are
1076 		 * limited to the specified address range.
1077 		 */
1078 		for (current = entry;
1079 		     (current != &map->header) && (current->start < end);
1080 		     current = current->next
1081 		) {
1082 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1083 				continue;
1084 
1085 			vm_map_clip_end(map, current, end);
1086 
1087 			switch (behav) {
1088 			case MADV_NORMAL:
1089 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1090 				break;
1091 			case MADV_SEQUENTIAL:
1092 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1093 				break;
1094 			case MADV_RANDOM:
1095 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1096 				break;
1097 			case MADV_NOSYNC:
1098 				current->eflags |= MAP_ENTRY_NOSYNC;
1099 				break;
1100 			case MADV_AUTOSYNC:
1101 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1102 				break;
1103 			case MADV_NOCORE:
1104 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1105 				break;
1106 			case MADV_CORE:
1107 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1108 				break;
1109 			default:
1110 				break;
1111 			}
1112 			vm_map_simplify_entry(map, current);
1113 		}
1114 		vm_map_unlock(map);
1115 	} else {
1116 		vm_pindex_t pindex;
1117 		int count;
1118 
1119 		/*
1120 		 * madvise behaviors that are implemented in the underlying
1121 		 * vm_object.
1122 		 *
1123 		 * Since we don't clip the vm_map_entry, we have to clip
1124 		 * the vm_object pindex and count.
1125 		 */
1126 		for (current = entry;
1127 		     (current != &map->header) && (current->start < end);
1128 		     current = current->next
1129 		) {
1130 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1131 				continue;
1132 
1133 			pindex = OFF_TO_IDX(current->offset);
1134 			count = atop(current->end - current->start);
1135 
1136 			if (current->start < start) {
1137 				pindex += atop(start - current->start);
1138 				count -= atop(start - current->start);
1139 			}
1140 			if (current->end > end)
1141 				count -= atop(current->end - end);
1142 
1143 			if (count <= 0)
1144 				continue;
1145 
1146 			vm_object_madvise(current->object.vm_object,
1147 					  pindex, count, behav);
1148 			if (behav == MADV_WILLNEED) {
1149 				pmap_object_init_pt(
1150 				    map->pmap,
1151 				    current->start,
1152 				    current->object.vm_object,
1153 				    pindex,
1154 				    (count << PAGE_SHIFT),
1155 				    0
1156 				);
1157 			}
1158 		}
1159 		vm_map_unlock_read(map);
1160 	}
1161 	return(0);
1162 }
1163 
1164 
1165 /*
1166  *	vm_map_inherit:
1167  *
1168  *	Sets the inheritance of the specified address
1169  *	range in the target map.  Inheritance
1170  *	affects how the map will be shared with
1171  *	child maps at the time of vm_map_fork.
1172  */
1173 int
1174 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1175 	       vm_inherit_t new_inheritance)
1176 {
1177 	vm_map_entry_t entry;
1178 	vm_map_entry_t temp_entry;
1179 
1180 	switch (new_inheritance) {
1181 	case VM_INHERIT_NONE:
1182 	case VM_INHERIT_COPY:
1183 	case VM_INHERIT_SHARE:
1184 		break;
1185 	default:
1186 		return (KERN_INVALID_ARGUMENT);
1187 	}
1188 
1189 	vm_map_lock(map);
1190 
1191 	VM_MAP_RANGE_CHECK(map, start, end);
1192 
1193 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1194 		entry = temp_entry;
1195 		vm_map_clip_start(map, entry, start);
1196 	} else
1197 		entry = temp_entry->next;
1198 
1199 	while ((entry != &map->header) && (entry->start < end)) {
1200 		vm_map_clip_end(map, entry, end);
1201 
1202 		entry->inheritance = new_inheritance;
1203 
1204 		vm_map_simplify_entry(map, entry);
1205 
1206 		entry = entry->next;
1207 	}
1208 
1209 	vm_map_unlock(map);
1210 	return (KERN_SUCCESS);
1211 }
1212 
1213 /*
1214  * Implement the semantics of mlock
1215  */
1216 int
1217 vm_map_user_pageable(map, start, end, new_pageable)
1218 	vm_map_t map;
1219 	vm_offset_t start;
1220 	vm_offset_t end;
1221 	boolean_t new_pageable;
1222 {
1223 	vm_map_entry_t entry;
1224 	vm_map_entry_t start_entry;
1225 	vm_offset_t estart;
1226 	int rv;
1227 
1228 	vm_map_lock(map);
1229 	VM_MAP_RANGE_CHECK(map, start, end);
1230 
1231 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1232 		vm_map_unlock(map);
1233 		return (KERN_INVALID_ADDRESS);
1234 	}
1235 
1236 	if (new_pageable) {
1237 
1238 		entry = start_entry;
1239 		vm_map_clip_start(map, entry, start);
1240 
1241 		/*
1242 		 * Now decrement the wiring count for each region. If a region
1243 		 * becomes completely unwired, unwire its physical pages and
1244 		 * mappings.
1245 		 */
1246 		while ((entry != &map->header) && (entry->start < end)) {
1247 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1248 				vm_map_clip_end(map, entry, end);
1249 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1250 				entry->wired_count--;
1251 				if (entry->wired_count == 0)
1252 					vm_fault_unwire(map, entry->start, entry->end);
1253 			}
1254 			vm_map_simplify_entry(map,entry);
1255 			entry = entry->next;
1256 		}
1257 	} else {
1258 
1259 		entry = start_entry;
1260 
1261 		while ((entry != &map->header) && (entry->start < end)) {
1262 
1263 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1264 				entry = entry->next;
1265 				continue;
1266 			}
1267 
1268 			if (entry->wired_count != 0) {
1269 				entry->wired_count++;
1270 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1271 				entry = entry->next;
1272 				continue;
1273 			}
1274 
1275 			/* Here on entry being newly wired */
1276 
1277 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1278 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1279 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1280 
1281 					vm_object_shadow(&entry->object.vm_object,
1282 					    &entry->offset,
1283 					    atop(entry->end - entry->start));
1284 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1285 
1286 				} else if (entry->object.vm_object == NULL) {
1287 
1288 					entry->object.vm_object =
1289 					    vm_object_allocate(OBJT_DEFAULT,
1290 						atop(entry->end - entry->start));
1291 					entry->offset = (vm_offset_t) 0;
1292 
1293 				}
1294 			}
1295 
1296 			vm_map_clip_start(map, entry, start);
1297 			vm_map_clip_end(map, entry, end);
1298 
1299 			entry->wired_count++;
1300 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1301 			estart = entry->start;
1302 
1303 			/* First we need to allow map modifications */
1304 			vm_map_set_recursive(map);
1305 			vm_map_lock_downgrade(map);
1306 			map->timestamp++;
1307 
1308 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1309 			if (rv) {
1310 
1311 				entry->wired_count--;
1312 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1313 
1314 				vm_map_clear_recursive(map);
1315 				vm_map_unlock(map);
1316 
1317 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1318 				return rv;
1319 			}
1320 
1321 			vm_map_clear_recursive(map);
1322 			if (vm_map_lock_upgrade(map)) {
1323 				vm_map_lock(map);
1324 				if (vm_map_lookup_entry(map, estart, &entry)
1325 				    == FALSE) {
1326 					vm_map_unlock(map);
1327 					(void) vm_map_user_pageable(map,
1328 								    start,
1329 								    estart,
1330 								    TRUE);
1331 					return (KERN_INVALID_ADDRESS);
1332 				}
1333 			}
1334 			vm_map_simplify_entry(map,entry);
1335 		}
1336 	}
1337 	map->timestamp++;
1338 	vm_map_unlock(map);
1339 	return KERN_SUCCESS;
1340 }
1341 
1342 /*
1343  *	vm_map_pageable:
1344  *
1345  *	Sets the pageability of the specified address
1346  *	range in the target map.  Regions specified
1347  *	as not pageable require locked-down physical
1348  *	memory and physical page maps.
1349  *
1350  *	The map must not be locked, but a reference
1351  *	must remain to the map throughout the call.
1352  */
1353 int
1354 vm_map_pageable(map, start, end, new_pageable)
1355 	vm_map_t map;
1356 	vm_offset_t start;
1357 	vm_offset_t end;
1358 	boolean_t new_pageable;
1359 {
1360 	vm_map_entry_t entry;
1361 	vm_map_entry_t start_entry;
1362 	vm_offset_t failed = 0;
1363 	int rv;
1364 
1365 	vm_map_lock(map);
1366 
1367 	VM_MAP_RANGE_CHECK(map, start, end);
1368 
1369 	/*
1370 	 * Only one pageability change may take place at one time, since
1371 	 * vm_fault assumes it will be called only once for each
1372 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1373 	 * changing the pageability for the entire region.  We do so before
1374 	 * making any changes.
1375 	 */
1376 
1377 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1378 		vm_map_unlock(map);
1379 		return (KERN_INVALID_ADDRESS);
1380 	}
1381 	entry = start_entry;
1382 
1383 	/*
1384 	 * Actions are rather different for wiring and unwiring, so we have
1385 	 * two separate cases.
1386 	 */
1387 
1388 	if (new_pageable) {
1389 
1390 		vm_map_clip_start(map, entry, start);
1391 
1392 		/*
1393 		 * Unwiring.  First ensure that the range to be unwired is
1394 		 * really wired down and that there are no holes.
1395 		 */
1396 		while ((entry != &map->header) && (entry->start < end)) {
1397 
1398 			if (entry->wired_count == 0 ||
1399 			    (entry->end < end &&
1400 				(entry->next == &map->header ||
1401 				    entry->next->start > entry->end))) {
1402 				vm_map_unlock(map);
1403 				return (KERN_INVALID_ARGUMENT);
1404 			}
1405 			entry = entry->next;
1406 		}
1407 
1408 		/*
1409 		 * Now decrement the wiring count for each region. If a region
1410 		 * becomes completely unwired, unwire its physical pages and
1411 		 * mappings.
1412 		 */
1413 		entry = start_entry;
1414 		while ((entry != &map->header) && (entry->start < end)) {
1415 			vm_map_clip_end(map, entry, end);
1416 
1417 			entry->wired_count--;
1418 			if (entry->wired_count == 0)
1419 				vm_fault_unwire(map, entry->start, entry->end);
1420 
1421 			vm_map_simplify_entry(map, entry);
1422 
1423 			entry = entry->next;
1424 		}
1425 	} else {
1426 		/*
1427 		 * Wiring.  We must do this in two passes:
1428 		 *
1429 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1430 		 * objects that need to be created. Then we clip each map
1431 		 * entry to the region to be wired and increment its wiring
1432 		 * count.  We create objects before clipping the map entries
1433 		 * to avoid object proliferation.
1434 		 *
1435 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1436 		 * fault in the pages for any newly wired area (wired_count is
1437 		 * 1).
1438 		 *
1439 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1440 		 * deadlock with another process that may have faulted on one
1441 		 * of the pages to be wired (it would mark the page busy,
1442 		 * blocking us, then in turn block on the map lock that we
1443 		 * hold).  Because of problems in the recursive lock package,
1444 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1445 		 * any actions that require the write lock must be done
1446 		 * beforehand.  Because we keep the read lock on the map, the
1447 		 * copy-on-write status of the entries we modify here cannot
1448 		 * change.
1449 		 */
1450 
1451 		/*
1452 		 * Pass 1.
1453 		 */
1454 		while ((entry != &map->header) && (entry->start < end)) {
1455 			if (entry->wired_count == 0) {
1456 
1457 				/*
1458 				 * Perform actions of vm_map_lookup that need
1459 				 * the write lock on the map: create a shadow
1460 				 * object for a copy-on-write region, or an
1461 				 * object for a zero-fill region.
1462 				 *
1463 				 * We don't have to do this for entries that
1464 				 * point to sub maps, because we won't
1465 				 * hold the lock on the sub map.
1466 				 */
1467 				if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1468 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1469 					if (copyflag &&
1470 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1471 
1472 						vm_object_shadow(&entry->object.vm_object,
1473 						    &entry->offset,
1474 						    atop(entry->end - entry->start));
1475 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1476 					} else if (entry->object.vm_object == NULL) {
1477 						entry->object.vm_object =
1478 						    vm_object_allocate(OBJT_DEFAULT,
1479 							atop(entry->end - entry->start));
1480 						entry->offset = (vm_offset_t) 0;
1481 					}
1482 				}
1483 			}
1484 			vm_map_clip_start(map, entry, start);
1485 			vm_map_clip_end(map, entry, end);
1486 			entry->wired_count++;
1487 
1488 			/*
1489 			 * Check for holes
1490 			 */
1491 			if (entry->end < end &&
1492 			    (entry->next == &map->header ||
1493 				entry->next->start > entry->end)) {
1494 				/*
1495 				 * Found one.  Object creation actions do not
1496 				 * need to be undone, but the wired counts
1497 				 * need to be restored.
1498 				 */
1499 				while (entry != &map->header && entry->end > start) {
1500 					entry->wired_count--;
1501 					entry = entry->prev;
1502 				}
1503 				vm_map_unlock(map);
1504 				return (KERN_INVALID_ARGUMENT);
1505 			}
1506 			entry = entry->next;
1507 		}
1508 
1509 		/*
1510 		 * Pass 2.
1511 		 */
1512 
1513 		/*
1514 		 * HACK HACK HACK HACK
1515 		 *
1516 		 * If we are wiring in the kernel map or a submap of it,
1517 		 * unlock the map to avoid deadlocks.  We trust that the
1518 		 * kernel is well-behaved, and therefore will not do
1519 		 * anything destructive to this region of the map while
1520 		 * we have it unlocked.  We cannot trust user processes
1521 		 * to do the same.
1522 		 *
1523 		 * HACK HACK HACK HACK
1524 		 */
1525 		if (vm_map_pmap(map) == kernel_pmap) {
1526 			vm_map_unlock(map);	/* trust me ... */
1527 		} else {
1528 			vm_map_lock_downgrade(map);
1529 		}
1530 
1531 		rv = 0;
1532 		entry = start_entry;
1533 		while (entry != &map->header && entry->start < end) {
1534 			/*
1535 			 * If vm_fault_wire fails for any page we need to undo
1536 			 * what has been done.  We decrement the wiring count
1537 			 * for those pages which have not yet been wired (now)
1538 			 * and unwire those that have (later).
1539 			 *
1540 			 * XXX this violates the locking protocol on the map,
1541 			 * needs to be fixed.
1542 			 */
1543 			if (rv)
1544 				entry->wired_count--;
1545 			else if (entry->wired_count == 1) {
1546 				rv = vm_fault_wire(map, entry->start, entry->end);
1547 				if (rv) {
1548 					failed = entry->start;
1549 					entry->wired_count--;
1550 				}
1551 			}
1552 			entry = entry->next;
1553 		}
1554 
1555 		if (vm_map_pmap(map) == kernel_pmap) {
1556 			vm_map_lock(map);
1557 		}
1558 		if (rv) {
1559 			vm_map_unlock(map);
1560 			(void) vm_map_pageable(map, start, failed, TRUE);
1561 			return (rv);
1562 		}
1563 		vm_map_simplify_entry(map, start_entry);
1564 	}
1565 
1566 	vm_map_unlock(map);
1567 
1568 	return (KERN_SUCCESS);
1569 }
1570 
1571 /*
1572  * vm_map_clean
1573  *
1574  * Push any dirty cached pages in the address range to their pager.
1575  * If syncio is TRUE, dirty pages are written synchronously.
1576  * If invalidate is TRUE, any cached pages are freed as well.
1577  *
1578  * Returns an error if any part of the specified range is not mapped.
1579  */
1580 int
1581 vm_map_clean(map, start, end, syncio, invalidate)
1582 	vm_map_t map;
1583 	vm_offset_t start;
1584 	vm_offset_t end;
1585 	boolean_t syncio;
1586 	boolean_t invalidate;
1587 {
1588 	vm_map_entry_t current;
1589 	vm_map_entry_t entry;
1590 	vm_size_t size;
1591 	vm_object_t object;
1592 	vm_ooffset_t offset;
1593 
1594 	vm_map_lock_read(map);
1595 	VM_MAP_RANGE_CHECK(map, start, end);
1596 	if (!vm_map_lookup_entry(map, start, &entry)) {
1597 		vm_map_unlock_read(map);
1598 		return (KERN_INVALID_ADDRESS);
1599 	}
1600 	/*
1601 	 * Make a first pass to check for holes.
1602 	 */
1603 	for (current = entry; current->start < end; current = current->next) {
1604 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1605 			vm_map_unlock_read(map);
1606 			return (KERN_INVALID_ARGUMENT);
1607 		}
1608 		if (end > current->end &&
1609 		    (current->next == &map->header ||
1610 			current->end != current->next->start)) {
1611 			vm_map_unlock_read(map);
1612 			return (KERN_INVALID_ADDRESS);
1613 		}
1614 	}
1615 
1616 	if (invalidate)
1617 		pmap_remove(vm_map_pmap(map), start, end);
1618 	/*
1619 	 * Make a second pass, cleaning/uncaching pages from the indicated
1620 	 * objects as we go.
1621 	 */
1622 	for (current = entry; current->start < end; current = current->next) {
1623 		offset = current->offset + (start - current->start);
1624 		size = (end <= current->end ? end : current->end) - start;
1625 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1626 			vm_map_t smap;
1627 			vm_map_entry_t tentry;
1628 			vm_size_t tsize;
1629 
1630 			smap = current->object.sub_map;
1631 			vm_map_lock_read(smap);
1632 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1633 			tsize = tentry->end - offset;
1634 			if (tsize < size)
1635 				size = tsize;
1636 			object = tentry->object.vm_object;
1637 			offset = tentry->offset + (offset - tentry->start);
1638 			vm_map_unlock_read(smap);
1639 		} else {
1640 			object = current->object.vm_object;
1641 		}
1642 		/*
1643 		 * Note that there is absolutely no sense in writing out
1644 		 * anonymous objects, so we track down the vnode object
1645 		 * to write out.
1646 		 * We invalidate (remove) all pages from the address space
1647 		 * anyway, for semantic correctness.
1648 		 */
1649 		while (object->backing_object) {
1650 			object = object->backing_object;
1651 			offset += object->backing_object_offset;
1652 			if (object->size < OFF_TO_IDX( offset + size))
1653 				size = IDX_TO_OFF(object->size) - offset;
1654 		}
1655 		if (object && (object->type == OBJT_VNODE) &&
1656 		    (current->protection & VM_PROT_WRITE)) {
1657 			/*
1658 			 * Flush pages if writing is allowed, invalidate them
1659 			 * if invalidation requested.  Pages undergoing I/O
1660 			 * will be ignored by vm_object_page_remove().
1661 			 *
1662 			 * We cannot lock the vnode and then wait for paging
1663 			 * to complete without deadlocking against vm_fault.
1664 			 * Instead we simply call vm_object_page_remove() and
1665 			 * allow it to block internally on a page-by-page
1666 			 * basis when it encounters pages undergoing async
1667 			 * I/O.
1668 			 */
1669 			int flags;
1670 
1671 			vm_object_reference(object);
1672 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1673 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1674 			flags |= invalidate ? OBJPC_INVAL : 0;
1675 			vm_object_page_clean(object,
1676 			    OFF_TO_IDX(offset),
1677 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1678 			    flags);
1679 			if (invalidate) {
1680 				/*vm_object_pip_wait(object, "objmcl");*/
1681 				vm_object_page_remove(object,
1682 				    OFF_TO_IDX(offset),
1683 				    OFF_TO_IDX(offset + size + PAGE_MASK),
1684 				    FALSE);
1685 			}
1686 			VOP_UNLOCK(object->handle, 0, curproc);
1687 			vm_object_deallocate(object);
1688 		}
1689 		start += size;
1690 	}
1691 
1692 	vm_map_unlock_read(map);
1693 	return (KERN_SUCCESS);
1694 }
1695 
1696 /*
1697  *	vm_map_entry_unwire:	[ internal use only ]
1698  *
1699  *	Make the region specified by this entry pageable.
1700  *
1701  *	The map in question should be locked.
1702  *	[This is the reason for this routine's existence.]
1703  */
1704 static void
1705 vm_map_entry_unwire(map, entry)
1706 	vm_map_t map;
1707 	vm_map_entry_t entry;
1708 {
1709 	vm_fault_unwire(map, entry->start, entry->end);
1710 	entry->wired_count = 0;
1711 }
1712 
1713 /*
1714  *	vm_map_entry_delete:	[ internal use only ]
1715  *
1716  *	Deallocate the given entry from the target map.
1717  */
1718 static void
1719 vm_map_entry_delete(map, entry)
1720 	vm_map_t map;
1721 	vm_map_entry_t entry;
1722 {
1723 	vm_map_entry_unlink(map, entry);
1724 	map->size -= entry->end - entry->start;
1725 
1726 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1727 		vm_object_deallocate(entry->object.vm_object);
1728 	}
1729 
1730 	vm_map_entry_dispose(map, entry);
1731 }
1732 
1733 /*
1734  *	vm_map_delete:	[ internal use only ]
1735  *
1736  *	Deallocates the given address range from the target
1737  *	map.
1738  */
1739 int
1740 vm_map_delete(map, start, end)
1741 	vm_map_t map;
1742 	vm_offset_t start;
1743 	vm_offset_t end;
1744 {
1745 	vm_object_t object;
1746 	vm_map_entry_t entry;
1747 	vm_map_entry_t first_entry;
1748 
1749 	/*
1750 	 * Find the start of the region, and clip it
1751 	 */
1752 
1753 	if (!vm_map_lookup_entry(map, start, &first_entry))
1754 		entry = first_entry->next;
1755 	else {
1756 		entry = first_entry;
1757 		vm_map_clip_start(map, entry, start);
1758 		/*
1759 		 * Fix the lookup hint now, rather than each time though the
1760 		 * loop.
1761 		 */
1762 		SAVE_HINT(map, entry->prev);
1763 	}
1764 
1765 	/*
1766 	 * Save the free space hint
1767 	 */
1768 
1769 	if (entry == &map->header) {
1770 		map->first_free = &map->header;
1771 	} else if (map->first_free->start >= start) {
1772 		map->first_free = entry->prev;
1773 	}
1774 
1775 	/*
1776 	 * Step through all entries in this region
1777 	 */
1778 
1779 	while ((entry != &map->header) && (entry->start < end)) {
1780 		vm_map_entry_t next;
1781 		vm_offset_t s, e;
1782 		vm_pindex_t offidxstart, offidxend, count;
1783 
1784 		vm_map_clip_end(map, entry, end);
1785 
1786 		s = entry->start;
1787 		e = entry->end;
1788 		next = entry->next;
1789 
1790 		offidxstart = OFF_TO_IDX(entry->offset);
1791 		count = OFF_TO_IDX(e - s);
1792 		object = entry->object.vm_object;
1793 
1794 		/*
1795 		 * Unwire before removing addresses from the pmap; otherwise,
1796 		 * unwiring will put the entries back in the pmap.
1797 		 */
1798 		if (entry->wired_count != 0) {
1799 			vm_map_entry_unwire(map, entry);
1800 		}
1801 
1802 		offidxend = offidxstart + count;
1803 
1804 		if ((object == kernel_object) || (object == kmem_object)) {
1805 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1806 		} else {
1807 			pmap_remove(map->pmap, s, e);
1808 			if (object != NULL &&
1809 			    object->ref_count != 1 &&
1810 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
1811 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1812 				vm_object_collapse(object);
1813 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1814 				if (object->type == OBJT_SWAP) {
1815 					swap_pager_freespace(object, offidxstart, count);
1816 				}
1817 				if (offidxend >= object->size &&
1818 				    offidxstart < object->size) {
1819 					object->size = offidxstart;
1820 				}
1821 			}
1822 		}
1823 
1824 		/*
1825 		 * Delete the entry (which may delete the object) only after
1826 		 * removing all pmap entries pointing to its pages.
1827 		 * (Otherwise, its page frames may be reallocated, and any
1828 		 * modify bits will be set in the wrong object!)
1829 		 */
1830 		vm_map_entry_delete(map, entry);
1831 		entry = next;
1832 	}
1833 	return (KERN_SUCCESS);
1834 }
1835 
1836 /*
1837  *	vm_map_remove:
1838  *
1839  *	Remove the given address range from the target map.
1840  *	This is the exported form of vm_map_delete.
1841  */
1842 int
1843 vm_map_remove(map, start, end)
1844 	vm_map_t map;
1845 	vm_offset_t start;
1846 	vm_offset_t end;
1847 {
1848 	int result, s = 0;
1849 
1850 	if (map == kmem_map || map == mb_map)
1851 		s = splvm();
1852 
1853 	vm_map_lock(map);
1854 	VM_MAP_RANGE_CHECK(map, start, end);
1855 	result = vm_map_delete(map, start, end);
1856 	vm_map_unlock(map);
1857 
1858 	if (map == kmem_map || map == mb_map)
1859 		splx(s);
1860 
1861 	return (result);
1862 }
1863 
1864 /*
1865  *	vm_map_check_protection:
1866  *
1867  *	Assert that the target map allows the specified
1868  *	privilege on the entire address region given.
1869  *	The entire region must be allocated.
1870  */
1871 boolean_t
1872 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 			vm_prot_t protection)
1874 {
1875 	vm_map_entry_t entry;
1876 	vm_map_entry_t tmp_entry;
1877 
1878 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1879 		return (FALSE);
1880 	}
1881 	entry = tmp_entry;
1882 
1883 	while (start < end) {
1884 		if (entry == &map->header) {
1885 			return (FALSE);
1886 		}
1887 		/*
1888 		 * No holes allowed!
1889 		 */
1890 
1891 		if (start < entry->start) {
1892 			return (FALSE);
1893 		}
1894 		/*
1895 		 * Check protection associated with entry.
1896 		 */
1897 
1898 		if ((entry->protection & protection) != protection) {
1899 			return (FALSE);
1900 		}
1901 		/* go to next entry */
1902 
1903 		start = entry->end;
1904 		entry = entry->next;
1905 	}
1906 	return (TRUE);
1907 }
1908 
1909 /*
1910  * Split the pages in a map entry into a new object.  This affords
1911  * easier removal of unused pages, and keeps object inheritance from
1912  * being a negative impact on memory usage.
1913  */
1914 static void
1915 vm_map_split(entry)
1916 	vm_map_entry_t entry;
1917 {
1918 	vm_page_t m;
1919 	vm_object_t orig_object, new_object, source;
1920 	vm_offset_t s, e;
1921 	vm_pindex_t offidxstart, offidxend, idx;
1922 	vm_size_t size;
1923 	vm_ooffset_t offset;
1924 
1925 	orig_object = entry->object.vm_object;
1926 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1927 		return;
1928 	if (orig_object->ref_count <= 1)
1929 		return;
1930 
1931 	offset = entry->offset;
1932 	s = entry->start;
1933 	e = entry->end;
1934 
1935 	offidxstart = OFF_TO_IDX(offset);
1936 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1937 	size = offidxend - offidxstart;
1938 
1939 	new_object = vm_pager_allocate(orig_object->type,
1940 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1941 	if (new_object == NULL)
1942 		return;
1943 
1944 	source = orig_object->backing_object;
1945 	if (source != NULL) {
1946 		vm_object_reference(source);	/* Referenced by new_object */
1947 		TAILQ_INSERT_TAIL(&source->shadow_head,
1948 				  new_object, shadow_list);
1949 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1950 		new_object->backing_object_offset =
1951 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
1952 		new_object->backing_object = source;
1953 		source->shadow_count++;
1954 		source->generation++;
1955 	}
1956 
1957 	for (idx = 0; idx < size; idx++) {
1958 		vm_page_t m;
1959 
1960 	retry:
1961 		m = vm_page_lookup(orig_object, offidxstart + idx);
1962 		if (m == NULL)
1963 			continue;
1964 
1965 		/*
1966 		 * We must wait for pending I/O to complete before we can
1967 		 * rename the page.
1968 		 *
1969 		 * We do not have to VM_PROT_NONE the page as mappings should
1970 		 * not be changed by this operation.
1971 		 */
1972 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
1973 			goto retry;
1974 
1975 		vm_page_busy(m);
1976 		vm_page_rename(m, new_object, idx);
1977 		/* page automatically made dirty by rename and cache handled */
1978 		vm_page_busy(m);
1979 	}
1980 
1981 	if (orig_object->type == OBJT_SWAP) {
1982 		vm_object_pip_add(orig_object, 1);
1983 		/*
1984 		 * copy orig_object pages into new_object
1985 		 * and destroy unneeded pages in
1986 		 * shadow object.
1987 		 */
1988 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1989 		vm_object_pip_wakeup(orig_object);
1990 	}
1991 
1992 	for (idx = 0; idx < size; idx++) {
1993 		m = vm_page_lookup(new_object, idx);
1994 		if (m) {
1995 			vm_page_wakeup(m);
1996 		}
1997 	}
1998 
1999 	entry->object.vm_object = new_object;
2000 	entry->offset = 0LL;
2001 	vm_object_deallocate(orig_object);
2002 }
2003 
2004 /*
2005  *	vm_map_copy_entry:
2006  *
2007  *	Copies the contents of the source entry to the destination
2008  *	entry.  The entries *must* be aligned properly.
2009  */
2010 static void
2011 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
2012 	vm_map_t src_map, dst_map;
2013 	vm_map_entry_t src_entry, dst_entry;
2014 {
2015 	vm_object_t src_object;
2016 
2017 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2018 		return;
2019 
2020 	if (src_entry->wired_count == 0) {
2021 
2022 		/*
2023 		 * If the source entry is marked needs_copy, it is already
2024 		 * write-protected.
2025 		 */
2026 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2027 			pmap_protect(src_map->pmap,
2028 			    src_entry->start,
2029 			    src_entry->end,
2030 			    src_entry->protection & ~VM_PROT_WRITE);
2031 		}
2032 
2033 		/*
2034 		 * Make a copy of the object.
2035 		 */
2036 		if ((src_object = src_entry->object.vm_object) != NULL) {
2037 
2038 			if ((src_object->handle == NULL) &&
2039 				(src_object->type == OBJT_DEFAULT ||
2040 				 src_object->type == OBJT_SWAP)) {
2041 				vm_object_collapse(src_object);
2042 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2043 					vm_map_split(src_entry);
2044 					src_object = src_entry->object.vm_object;
2045 				}
2046 			}
2047 
2048 			vm_object_reference(src_object);
2049 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2050 			dst_entry->object.vm_object = src_object;
2051 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2052 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2053 			dst_entry->offset = src_entry->offset;
2054 		} else {
2055 			dst_entry->object.vm_object = NULL;
2056 			dst_entry->offset = 0;
2057 		}
2058 
2059 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2060 		    dst_entry->end - dst_entry->start, src_entry->start);
2061 	} else {
2062 		/*
2063 		 * Of course, wired down pages can't be set copy-on-write.
2064 		 * Cause wired pages to be copied into the new map by
2065 		 * simulating faults (the new pages are pageable)
2066 		 */
2067 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2068 	}
2069 }
2070 
2071 /*
2072  * vmspace_fork:
2073  * Create a new process vmspace structure and vm_map
2074  * based on those of an existing process.  The new map
2075  * is based on the old map, according to the inheritance
2076  * values on the regions in that map.
2077  *
2078  * The source map must not be locked.
2079  */
2080 struct vmspace *
2081 vmspace_fork(vm1)
2082 	struct vmspace *vm1;
2083 {
2084 	struct vmspace *vm2;
2085 	vm_map_t old_map = &vm1->vm_map;
2086 	vm_map_t new_map;
2087 	vm_map_entry_t old_entry;
2088 	vm_map_entry_t new_entry;
2089 	vm_object_t object;
2090 
2091 	vm_map_lock(old_map);
2092 
2093 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2094 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2095 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2096 	new_map = &vm2->vm_map;	/* XXX */
2097 	new_map->timestamp = 1;
2098 
2099 	old_entry = old_map->header.next;
2100 
2101 	while (old_entry != &old_map->header) {
2102 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2103 			panic("vm_map_fork: encountered a submap");
2104 
2105 		switch (old_entry->inheritance) {
2106 		case VM_INHERIT_NONE:
2107 			break;
2108 
2109 		case VM_INHERIT_SHARE:
2110 			/*
2111 			 * Clone the entry, creating the shared object if necessary.
2112 			 */
2113 			object = old_entry->object.vm_object;
2114 			if (object == NULL) {
2115 				object = vm_object_allocate(OBJT_DEFAULT,
2116 					atop(old_entry->end - old_entry->start));
2117 				old_entry->object.vm_object = object;
2118 				old_entry->offset = (vm_offset_t) 0;
2119 			}
2120 
2121 			/*
2122 			 * Add the reference before calling vm_object_shadow
2123 			 * to insure that a shadow object is created.
2124 			 */
2125 			vm_object_reference(object);
2126 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2127 				vm_object_shadow(&old_entry->object.vm_object,
2128 					&old_entry->offset,
2129 					atop(old_entry->end - old_entry->start));
2130 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2131 				object = old_entry->object.vm_object;
2132 			}
2133 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2134 
2135 			/*
2136 			 * Clone the entry, referencing the shared object.
2137 			 */
2138 			new_entry = vm_map_entry_create(new_map);
2139 			*new_entry = *old_entry;
2140 			new_entry->wired_count = 0;
2141 
2142 			/*
2143 			 * Insert the entry into the new map -- we know we're
2144 			 * inserting at the end of the new map.
2145 			 */
2146 
2147 			vm_map_entry_link(new_map, new_map->header.prev,
2148 			    new_entry);
2149 
2150 			/*
2151 			 * Update the physical map
2152 			 */
2153 
2154 			pmap_copy(new_map->pmap, old_map->pmap,
2155 			    new_entry->start,
2156 			    (old_entry->end - old_entry->start),
2157 			    old_entry->start);
2158 			break;
2159 
2160 		case VM_INHERIT_COPY:
2161 			/*
2162 			 * Clone the entry and link into the map.
2163 			 */
2164 			new_entry = vm_map_entry_create(new_map);
2165 			*new_entry = *old_entry;
2166 			new_entry->wired_count = 0;
2167 			new_entry->object.vm_object = NULL;
2168 			vm_map_entry_link(new_map, new_map->header.prev,
2169 			    new_entry);
2170 			vm_map_copy_entry(old_map, new_map, old_entry,
2171 			    new_entry);
2172 			break;
2173 		}
2174 		old_entry = old_entry->next;
2175 	}
2176 
2177 	new_map->size = old_map->size;
2178 	vm_map_unlock(old_map);
2179 
2180 	return (vm2);
2181 }
2182 
2183 int
2184 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2185 	      vm_prot_t prot, vm_prot_t max, int cow)
2186 {
2187 	vm_map_entry_t prev_entry;
2188 	vm_map_entry_t new_stack_entry;
2189 	vm_size_t      init_ssize;
2190 	int            rv;
2191 
2192 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2193 		return (KERN_NO_SPACE);
2194 
2195 	if (max_ssize < SGROWSIZ)
2196 		init_ssize = max_ssize;
2197 	else
2198 		init_ssize = SGROWSIZ;
2199 
2200 	vm_map_lock(map);
2201 
2202 	/* If addr is already mapped, no go */
2203 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2204 		vm_map_unlock(map);
2205 		return (KERN_NO_SPACE);
2206 	}
2207 
2208 	/* If we can't accomodate max_ssize in the current mapping,
2209 	 * no go.  However, we need to be aware that subsequent user
2210 	 * mappings might map into the space we have reserved for
2211 	 * stack, and currently this space is not protected.
2212 	 *
2213 	 * Hopefully we will at least detect this condition
2214 	 * when we try to grow the stack.
2215 	 */
2216 	if ((prev_entry->next != &map->header) &&
2217 	    (prev_entry->next->start < addrbos + max_ssize)) {
2218 		vm_map_unlock(map);
2219 		return (KERN_NO_SPACE);
2220 	}
2221 
2222 	/* We initially map a stack of only init_ssize.  We will
2223 	 * grow as needed later.  Since this is to be a grow
2224 	 * down stack, we map at the top of the range.
2225 	 *
2226 	 * Note: we would normally expect prot and max to be
2227 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2228 	 * eliminate these as input parameters, and just
2229 	 * pass these values here in the insert call.
2230 	 */
2231 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2232 	                   addrbos + max_ssize, prot, max, cow);
2233 
2234 	/* Now set the avail_ssize amount */
2235 	if (rv == KERN_SUCCESS){
2236 		if (prev_entry != &map->header)
2237 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2238 		new_stack_entry = prev_entry->next;
2239 		if (new_stack_entry->end   != addrbos + max_ssize ||
2240 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2241 			panic ("Bad entry start/end for new stack entry");
2242 		else
2243 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2244 	}
2245 
2246 	vm_map_unlock(map);
2247 	return (rv);
2248 }
2249 
2250 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2251  * desired address is already mapped, or if we successfully grow
2252  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2253  * stack range (this is strange, but preserves compatibility with
2254  * the grow function in vm_machdep.c).
2255  */
2256 int
2257 vm_map_growstack (struct proc *p, vm_offset_t addr)
2258 {
2259 	vm_map_entry_t prev_entry;
2260 	vm_map_entry_t stack_entry;
2261 	vm_map_entry_t new_stack_entry;
2262 	struct vmspace *vm = p->p_vmspace;
2263 	vm_map_t map = &vm->vm_map;
2264 	vm_offset_t    end;
2265 	int      grow_amount;
2266 	int      rv;
2267 	int      is_procstack;
2268 Retry:
2269 	vm_map_lock_read(map);
2270 
2271 	/* If addr is already in the entry range, no need to grow.*/
2272 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2273 		vm_map_unlock_read(map);
2274 		return (KERN_SUCCESS);
2275 	}
2276 
2277 	if ((stack_entry = prev_entry->next) == &map->header) {
2278 		vm_map_unlock_read(map);
2279 		return (KERN_SUCCESS);
2280 	}
2281 	if (prev_entry == &map->header)
2282 		end = stack_entry->start - stack_entry->avail_ssize;
2283 	else
2284 		end = prev_entry->end;
2285 
2286 	/* This next test mimics the old grow function in vm_machdep.c.
2287 	 * It really doesn't quite make sense, but we do it anyway
2288 	 * for compatibility.
2289 	 *
2290 	 * If not growable stack, return success.  This signals the
2291 	 * caller to proceed as he would normally with normal vm.
2292 	 */
2293 	if (stack_entry->avail_ssize < 1 ||
2294 	    addr >= stack_entry->start ||
2295 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2296 		vm_map_unlock_read(map);
2297 		return (KERN_SUCCESS);
2298 	}
2299 
2300 	/* Find the minimum grow amount */
2301 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2302 	if (grow_amount > stack_entry->avail_ssize) {
2303 		vm_map_unlock_read(map);
2304 		return (KERN_NO_SPACE);
2305 	}
2306 
2307 	/* If there is no longer enough space between the entries
2308 	 * nogo, and adjust the available space.  Note: this
2309 	 * should only happen if the user has mapped into the
2310 	 * stack area after the stack was created, and is
2311 	 * probably an error.
2312 	 *
2313 	 * This also effectively destroys any guard page the user
2314 	 * might have intended by limiting the stack size.
2315 	 */
2316 	if (grow_amount > stack_entry->start - end) {
2317 		if (vm_map_lock_upgrade(map))
2318 			goto Retry;
2319 
2320 		stack_entry->avail_ssize = stack_entry->start - end;
2321 
2322 		vm_map_unlock(map);
2323 		return (KERN_NO_SPACE);
2324 	}
2325 
2326 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2327 
2328 	/* If this is the main process stack, see if we're over the
2329 	 * stack limit.
2330 	 */
2331 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2332 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2333 		vm_map_unlock_read(map);
2334 		return (KERN_NO_SPACE);
2335 	}
2336 
2337 	/* Round up the grow amount modulo SGROWSIZ */
2338 	grow_amount = roundup (grow_amount, SGROWSIZ);
2339 	if (grow_amount > stack_entry->avail_ssize) {
2340 		grow_amount = stack_entry->avail_ssize;
2341 	}
2342 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2343 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2344 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2345 		              ctob(vm->vm_ssize);
2346 	}
2347 
2348 	if (vm_map_lock_upgrade(map))
2349 		goto Retry;
2350 
2351 	/* Get the preliminary new entry start value */
2352 	addr = stack_entry->start - grow_amount;
2353 
2354 	/* If this puts us into the previous entry, cut back our growth
2355 	 * to the available space.  Also, see the note above.
2356 	 */
2357 	if (addr < end) {
2358 		stack_entry->avail_ssize = stack_entry->start - end;
2359 		addr = end;
2360 	}
2361 
2362 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2363 			   VM_PROT_ALL,
2364 			   VM_PROT_ALL,
2365 			   0);
2366 
2367 	/* Adjust the available stack space by the amount we grew. */
2368 	if (rv == KERN_SUCCESS) {
2369 		if (prev_entry != &map->header)
2370 			vm_map_clip_end(map, prev_entry, addr);
2371 		new_stack_entry = prev_entry->next;
2372 		if (new_stack_entry->end   != stack_entry->start  ||
2373 		    new_stack_entry->start != addr)
2374 			panic ("Bad stack grow start/end in new stack entry");
2375 		else {
2376 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2377 							(new_stack_entry->end -
2378 							 new_stack_entry->start);
2379 			if (is_procstack)
2380 				vm->vm_ssize += btoc(new_stack_entry->end -
2381 						     new_stack_entry->start);
2382 		}
2383 	}
2384 
2385 	vm_map_unlock(map);
2386 	return (rv);
2387 
2388 }
2389 
2390 /*
2391  * Unshare the specified VM space for exec.  If other processes are
2392  * mapped to it, then create a new one.  The new vmspace is null.
2393  */
2394 
2395 void
2396 vmspace_exec(struct proc *p) {
2397 	struct vmspace *oldvmspace = p->p_vmspace;
2398 	struct vmspace *newvmspace;
2399 	vm_map_t map = &p->p_vmspace->vm_map;
2400 
2401 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2402 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2403 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2404 	/*
2405 	 * This code is written like this for prototype purposes.  The
2406 	 * goal is to avoid running down the vmspace here, but let the
2407 	 * other process's that are still using the vmspace to finally
2408 	 * run it down.  Even though there is little or no chance of blocking
2409 	 * here, it is a good idea to keep this form for future mods.
2410 	 */
2411 	vmspace_free(oldvmspace);
2412 	p->p_vmspace = newvmspace;
2413 	pmap_pinit2(vmspace_pmap(newvmspace));
2414 	if (p == curproc)
2415 		pmap_activate(p);
2416 }
2417 
2418 /*
2419  * Unshare the specified VM space for forcing COW.  This
2420  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2421  */
2422 
2423 void
2424 vmspace_unshare(struct proc *p) {
2425 	struct vmspace *oldvmspace = p->p_vmspace;
2426 	struct vmspace *newvmspace;
2427 
2428 	if (oldvmspace->vm_refcnt == 1)
2429 		return;
2430 	newvmspace = vmspace_fork(oldvmspace);
2431 	vmspace_free(oldvmspace);
2432 	p->p_vmspace = newvmspace;
2433 	pmap_pinit2(vmspace_pmap(newvmspace));
2434 	if (p == curproc)
2435 		pmap_activate(p);
2436 }
2437 
2438 
2439 /*
2440  *	vm_map_lookup:
2441  *
2442  *	Finds the VM object, offset, and
2443  *	protection for a given virtual address in the
2444  *	specified map, assuming a page fault of the
2445  *	type specified.
2446  *
2447  *	Leaves the map in question locked for read; return
2448  *	values are guaranteed until a vm_map_lookup_done
2449  *	call is performed.  Note that the map argument
2450  *	is in/out; the returned map must be used in
2451  *	the call to vm_map_lookup_done.
2452  *
2453  *	A handle (out_entry) is returned for use in
2454  *	vm_map_lookup_done, to make that fast.
2455  *
2456  *	If a lookup is requested with "write protection"
2457  *	specified, the map may be changed to perform virtual
2458  *	copying operations, although the data referenced will
2459  *	remain the same.
2460  */
2461 int
2462 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2463 	      vm_offset_t vaddr,
2464 	      vm_prot_t fault_typea,
2465 	      vm_map_entry_t *out_entry,	/* OUT */
2466 	      vm_object_t *object,		/* OUT */
2467 	      vm_pindex_t *pindex,		/* OUT */
2468 	      vm_prot_t *out_prot,		/* OUT */
2469 	      boolean_t *wired)			/* OUT */
2470 {
2471 	vm_map_entry_t entry;
2472 	vm_map_t map = *var_map;
2473 	vm_prot_t prot;
2474 	vm_prot_t fault_type = fault_typea;
2475 
2476 RetryLookup:;
2477 
2478 	/*
2479 	 * Lookup the faulting address.
2480 	 */
2481 
2482 	vm_map_lock_read(map);
2483 
2484 #define	RETURN(why) \
2485 		{ \
2486 		vm_map_unlock_read(map); \
2487 		return(why); \
2488 		}
2489 
2490 	/*
2491 	 * If the map has an interesting hint, try it before calling full
2492 	 * blown lookup routine.
2493 	 */
2494 
2495 	entry = map->hint;
2496 
2497 	*out_entry = entry;
2498 
2499 	if ((entry == &map->header) ||
2500 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2501 		vm_map_entry_t tmp_entry;
2502 
2503 		/*
2504 		 * Entry was either not a valid hint, or the vaddr was not
2505 		 * contained in the entry, so do a full lookup.
2506 		 */
2507 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2508 			RETURN(KERN_INVALID_ADDRESS);
2509 
2510 		entry = tmp_entry;
2511 		*out_entry = entry;
2512 	}
2513 
2514 	/*
2515 	 * Handle submaps.
2516 	 */
2517 
2518 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2519 		vm_map_t old_map = map;
2520 
2521 		*var_map = map = entry->object.sub_map;
2522 		vm_map_unlock_read(old_map);
2523 		goto RetryLookup;
2524 	}
2525 
2526 	/*
2527 	 * Check whether this task is allowed to have this page.
2528 	 * Note the special case for MAP_ENTRY_COW
2529 	 * pages with an override.  This is to implement a forced
2530 	 * COW for debuggers.
2531 	 */
2532 
2533 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2534 		prot = entry->max_protection;
2535 	else
2536 		prot = entry->protection;
2537 
2538 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2539 	if ((fault_type & prot) != fault_type) {
2540 			RETURN(KERN_PROTECTION_FAILURE);
2541 	}
2542 
2543 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2544 	    (entry->eflags & MAP_ENTRY_COW) &&
2545 	    (fault_type & VM_PROT_WRITE) &&
2546 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2547 		RETURN(KERN_PROTECTION_FAILURE);
2548 	}
2549 
2550 	/*
2551 	 * If this page is not pageable, we have to get it for all possible
2552 	 * accesses.
2553 	 */
2554 
2555 	*wired = (entry->wired_count != 0);
2556 	if (*wired)
2557 		prot = fault_type = entry->protection;
2558 
2559 	/*
2560 	 * If the entry was copy-on-write, we either ...
2561 	 */
2562 
2563 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2564 		/*
2565 		 * If we want to write the page, we may as well handle that
2566 		 * now since we've got the map locked.
2567 		 *
2568 		 * If we don't need to write the page, we just demote the
2569 		 * permissions allowed.
2570 		 */
2571 
2572 		if (fault_type & VM_PROT_WRITE) {
2573 			/*
2574 			 * Make a new object, and place it in the object
2575 			 * chain.  Note that no new references have appeared
2576 			 * -- one just moved from the map to the new
2577 			 * object.
2578 			 */
2579 
2580 			if (vm_map_lock_upgrade(map))
2581 				goto RetryLookup;
2582 
2583 			vm_object_shadow(
2584 			    &entry->object.vm_object,
2585 			    &entry->offset,
2586 			    atop(entry->end - entry->start));
2587 
2588 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2589 			vm_map_lock_downgrade(map);
2590 		} else {
2591 			/*
2592 			 * We're attempting to read a copy-on-write page --
2593 			 * don't allow writes.
2594 			 */
2595 
2596 			prot &= ~VM_PROT_WRITE;
2597 		}
2598 	}
2599 
2600 	/*
2601 	 * Create an object if necessary.
2602 	 */
2603 	if (entry->object.vm_object == NULL) {
2604 		if (vm_map_lock_upgrade(map))
2605 			goto RetryLookup;
2606 
2607 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2608 		    atop(entry->end - entry->start));
2609 		entry->offset = 0;
2610 		vm_map_lock_downgrade(map);
2611 	}
2612 
2613 	/*
2614 	 * Return the object/offset from this entry.  If the entry was
2615 	 * copy-on-write or empty, it has been fixed up.
2616 	 */
2617 
2618 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2619 	*object = entry->object.vm_object;
2620 
2621 	/*
2622 	 * Return whether this is the only map sharing this data.
2623 	 */
2624 
2625 	*out_prot = prot;
2626 	return (KERN_SUCCESS);
2627 
2628 #undef	RETURN
2629 }
2630 
2631 /*
2632  *	vm_map_lookup_done:
2633  *
2634  *	Releases locks acquired by a vm_map_lookup
2635  *	(according to the handle returned by that lookup).
2636  */
2637 
2638 void
2639 vm_map_lookup_done(map, entry)
2640 	vm_map_t map;
2641 	vm_map_entry_t entry;
2642 {
2643 	/*
2644 	 * Unlock the main-level map
2645 	 */
2646 
2647 	vm_map_unlock_read(map);
2648 }
2649 
2650 /*
2651  * Implement uiomove with VM operations.  This handles (and collateral changes)
2652  * support every combination of source object modification, and COW type
2653  * operations.
2654  */
2655 int
2656 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
2657 	vm_map_t mapa;
2658 	vm_object_t srcobject;
2659 	off_t cp;
2660 	int cnta;
2661 	vm_offset_t uaddra;
2662 	int *npages;
2663 {
2664 	vm_map_t map;
2665 	vm_object_t first_object, oldobject, object;
2666 	vm_map_entry_t entry;
2667 	vm_prot_t prot;
2668 	boolean_t wired;
2669 	int tcnt, rv;
2670 	vm_offset_t uaddr, start, end, tend;
2671 	vm_pindex_t first_pindex, osize, oindex;
2672 	off_t ooffset;
2673 	int cnt;
2674 
2675 	if (npages)
2676 		*npages = 0;
2677 
2678 	cnt = cnta;
2679 	uaddr = uaddra;
2680 
2681 	while (cnt > 0) {
2682 		map = mapa;
2683 
2684 		if ((vm_map_lookup(&map, uaddr,
2685 			VM_PROT_READ, &entry, &first_object,
2686 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2687 			return EFAULT;
2688 		}
2689 
2690 		vm_map_clip_start(map, entry, uaddr);
2691 
2692 		tcnt = cnt;
2693 		tend = uaddr + tcnt;
2694 		if (tend > entry->end) {
2695 			tcnt = entry->end - uaddr;
2696 			tend = entry->end;
2697 		}
2698 
2699 		vm_map_clip_end(map, entry, tend);
2700 
2701 		start = entry->start;
2702 		end = entry->end;
2703 
2704 		osize = atop(tcnt);
2705 
2706 		oindex = OFF_TO_IDX(cp);
2707 		if (npages) {
2708 			vm_pindex_t idx;
2709 			for (idx = 0; idx < osize; idx++) {
2710 				vm_page_t m;
2711 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2712 					vm_map_lookup_done(map, entry);
2713 					return 0;
2714 				}
2715 				/*
2716 				 * disallow busy or invalid pages, but allow
2717 				 * m->busy pages if they are entirely valid.
2718 				 */
2719 				if ((m->flags & PG_BUSY) ||
2720 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2721 					vm_map_lookup_done(map, entry);
2722 					return 0;
2723 				}
2724 			}
2725 		}
2726 
2727 /*
2728  * If we are changing an existing map entry, just redirect
2729  * the object, and change mappings.
2730  */
2731 		if ((first_object->type == OBJT_VNODE) &&
2732 			((oldobject = entry->object.vm_object) == first_object)) {
2733 
2734 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2735 				/*
2736    				* Remove old window into the file
2737    				*/
2738 				pmap_remove (map->pmap, uaddr, tend);
2739 
2740 				/*
2741    				* Force copy on write for mmaped regions
2742    				*/
2743 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2744 
2745 				/*
2746    				* Point the object appropriately
2747    				*/
2748 				if (oldobject != srcobject) {
2749 
2750 				/*
2751    				* Set the object optimization hint flag
2752    				*/
2753 					vm_object_set_flag(srcobject, OBJ_OPT);
2754 					vm_object_reference(srcobject);
2755 					entry->object.vm_object = srcobject;
2756 
2757 					if (oldobject) {
2758 						vm_object_deallocate(oldobject);
2759 					}
2760 				}
2761 
2762 				entry->offset = cp;
2763 				map->timestamp++;
2764 			} else {
2765 				pmap_remove (map->pmap, uaddr, tend);
2766 			}
2767 
2768 		} else if ((first_object->ref_count == 1) &&
2769 			(first_object->size == osize) &&
2770 			((first_object->type == OBJT_DEFAULT) ||
2771 				(first_object->type == OBJT_SWAP)) ) {
2772 
2773 			oldobject = first_object->backing_object;
2774 
2775 			if ((first_object->backing_object_offset != cp) ||
2776 				(oldobject != srcobject)) {
2777 				/*
2778    				* Remove old window into the file
2779    				*/
2780 				pmap_remove (map->pmap, uaddr, tend);
2781 
2782 				/*
2783 				 * Remove unneeded old pages
2784 				 */
2785 				vm_object_page_remove(first_object, 0, 0, 0);
2786 
2787 				/*
2788 				 * Invalidate swap space
2789 				 */
2790 				if (first_object->type == OBJT_SWAP) {
2791 					swap_pager_freespace(first_object,
2792 						0,
2793 						first_object->size);
2794 				}
2795 
2796 				/*
2797    				* Force copy on write for mmaped regions
2798    				*/
2799 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2800 
2801 				/*
2802    				* Point the object appropriately
2803    				*/
2804 				if (oldobject != srcobject) {
2805 
2806 				/*
2807    				* Set the object optimization hint flag
2808    				*/
2809 					vm_object_set_flag(srcobject, OBJ_OPT);
2810 					vm_object_reference(srcobject);
2811 
2812 					if (oldobject) {
2813 						TAILQ_REMOVE(&oldobject->shadow_head,
2814 							first_object, shadow_list);
2815 						oldobject->shadow_count--;
2816 						/* XXX bump generation? */
2817 						vm_object_deallocate(oldobject);
2818 					}
2819 
2820 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2821 						first_object, shadow_list);
2822 					srcobject->shadow_count++;
2823 					/* XXX bump generation? */
2824 
2825 					first_object->backing_object = srcobject;
2826 				}
2827 				first_object->backing_object_offset = cp;
2828 				map->timestamp++;
2829 			} else {
2830 				pmap_remove (map->pmap, uaddr, tend);
2831 			}
2832 /*
2833  * Otherwise, we have to do a logical mmap.
2834  */
2835 		} else {
2836 
2837 			vm_object_set_flag(srcobject, OBJ_OPT);
2838 			vm_object_reference(srcobject);
2839 
2840 			pmap_remove (map->pmap, uaddr, tend);
2841 
2842 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2843 			vm_map_lock_upgrade(map);
2844 
2845 			if (entry == &map->header) {
2846 				map->first_free = &map->header;
2847 			} else if (map->first_free->start >= start) {
2848 				map->first_free = entry->prev;
2849 			}
2850 
2851 			SAVE_HINT(map, entry->prev);
2852 			vm_map_entry_delete(map, entry);
2853 
2854 			object = srcobject;
2855 			ooffset = cp;
2856 
2857 			rv = vm_map_insert(map, object, ooffset, start, tend,
2858 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
2859 
2860 			if (rv != KERN_SUCCESS)
2861 				panic("vm_uiomove: could not insert new entry: %d", rv);
2862 		}
2863 
2864 /*
2865  * Map the window directly, if it is already in memory
2866  */
2867 		pmap_object_init_pt(map->pmap, uaddr,
2868 			srcobject, oindex, tcnt, 0);
2869 
2870 		map->timestamp++;
2871 		vm_map_unlock(map);
2872 
2873 		cnt -= tcnt;
2874 		uaddr += tcnt;
2875 		cp += tcnt;
2876 		if (npages)
2877 			*npages += osize;
2878 	}
2879 	return 0;
2880 }
2881 
2882 /*
2883  * Performs the copy_on_write operations necessary to allow the virtual copies
2884  * into user space to work.  This has to be called for write(2) system calls
2885  * from other processes, file unlinking, and file size shrinkage.
2886  */
2887 void
2888 vm_freeze_copyopts(object, froma, toa)
2889 	vm_object_t object;
2890 	vm_pindex_t froma, toa;
2891 {
2892 	int rv;
2893 	vm_object_t robject;
2894 	vm_pindex_t idx;
2895 
2896 	if ((object == NULL) ||
2897 		((object->flags & OBJ_OPT) == 0))
2898 		return;
2899 
2900 	if (object->shadow_count > object->ref_count)
2901 		panic("vm_freeze_copyopts: sc > rc");
2902 
2903 	while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
2904 		vm_pindex_t bo_pindex;
2905 		vm_page_t m_in, m_out;
2906 
2907 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
2908 
2909 		vm_object_reference(robject);
2910 
2911 		vm_object_pip_wait(robject, "objfrz");
2912 
2913 		if (robject->ref_count == 1) {
2914 			vm_object_deallocate(robject);
2915 			continue;
2916 		}
2917 
2918 		vm_object_pip_add(robject, 1);
2919 
2920 		for (idx = 0; idx < robject->size; idx++) {
2921 
2922 			m_out = vm_page_grab(robject, idx,
2923 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2924 
2925 			if (m_out->valid == 0) {
2926 				m_in = vm_page_grab(object, bo_pindex + idx,
2927 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2928 				if (m_in->valid == 0) {
2929 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
2930 					if (rv != VM_PAGER_OK) {
2931 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
2932 						continue;
2933 					}
2934 					vm_page_deactivate(m_in);
2935 				}
2936 
2937 				vm_page_protect(m_in, VM_PROT_NONE);
2938 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
2939 				m_out->valid = m_in->valid;
2940 				vm_page_dirty(m_out);
2941 				vm_page_activate(m_out);
2942 				vm_page_wakeup(m_in);
2943 			}
2944 			vm_page_wakeup(m_out);
2945 		}
2946 
2947 		object->shadow_count--;
2948 		object->ref_count--;
2949 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
2950 		robject->backing_object = NULL;
2951 		robject->backing_object_offset = 0;
2952 
2953 		vm_object_pip_wakeup(robject);
2954 		vm_object_deallocate(robject);
2955 	}
2956 
2957 	vm_object_clear_flag(object, OBJ_OPT);
2958 }
2959 
2960 #include "opt_ddb.h"
2961 #ifdef DDB
2962 #include <sys/kernel.h>
2963 
2964 #include <ddb/ddb.h>
2965 
2966 /*
2967  *	vm_map_print:	[ debug ]
2968  */
2969 DB_SHOW_COMMAND(map, vm_map_print)
2970 {
2971 	static int nlines;
2972 	/* XXX convert args. */
2973 	vm_map_t map = (vm_map_t)addr;
2974 	boolean_t full = have_addr;
2975 
2976 	vm_map_entry_t entry;
2977 
2978 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
2979 	    (void *)map,
2980 	    (void *)map->pmap, map->nentries, map->timestamp);
2981 	nlines++;
2982 
2983 	if (!full && db_indent)
2984 		return;
2985 
2986 	db_indent += 2;
2987 	for (entry = map->header.next; entry != &map->header;
2988 	    entry = entry->next) {
2989 		db_iprintf("map entry %p: start=%p, end=%p\n",
2990 		    (void *)entry, (void *)entry->start, (void *)entry->end);
2991 		nlines++;
2992 		{
2993 			static char *inheritance_name[4] =
2994 			{"share", "copy", "none", "donate_copy"};
2995 
2996 			db_iprintf(" prot=%x/%x/%s",
2997 			    entry->protection,
2998 			    entry->max_protection,
2999 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3000 			if (entry->wired_count != 0)
3001 				db_printf(", wired");
3002 		}
3003 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3004 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3005 			db_printf(", share=%p, offset=0x%lx\n",
3006 			    (void *)entry->object.sub_map,
3007 			    (long)entry->offset);
3008 			nlines++;
3009 			if ((entry->prev == &map->header) ||
3010 			    (entry->prev->object.sub_map !=
3011 				entry->object.sub_map)) {
3012 				db_indent += 2;
3013 				vm_map_print((db_expr_t)(intptr_t)
3014 					     entry->object.sub_map,
3015 					     full, 0, (char *)0);
3016 				db_indent -= 2;
3017 			}
3018 		} else {
3019 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3020 			db_printf(", object=%p, offset=0x%lx",
3021 			    (void *)entry->object.vm_object,
3022 			    (long)entry->offset);
3023 			if (entry->eflags & MAP_ENTRY_COW)
3024 				db_printf(", copy (%s)",
3025 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3026 			db_printf("\n");
3027 			nlines++;
3028 
3029 			if ((entry->prev == &map->header) ||
3030 			    (entry->prev->object.vm_object !=
3031 				entry->object.vm_object)) {
3032 				db_indent += 2;
3033 				vm_object_print((db_expr_t)(intptr_t)
3034 						entry->object.vm_object,
3035 						full, 0, (char *)0);
3036 				nlines += 4;
3037 				db_indent -= 2;
3038 			}
3039 		}
3040 	}
3041 	db_indent -= 2;
3042 	if (db_indent == 0)
3043 		nlines = 0;
3044 }
3045 
3046 
3047 DB_SHOW_COMMAND(procvm, procvm)
3048 {
3049 	struct proc *p;
3050 
3051 	if (have_addr) {
3052 		p = (struct proc *) addr;
3053 	} else {
3054 		p = curproc;
3055 	}
3056 
3057 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3058 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3059 	    (void *)vmspace_pmap(p->p_vmspace));
3060 
3061 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3062 }
3063 
3064 #endif /* DDB */
3065