xref: /freebsd/sys/vm/vm_map.c (revision 21e0559cbcdf275377da88dec0d7a98e85f00f80)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t mapzone;
127 static uma_zone_t vmspace_zone;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void vmspace_zfini(void *mem, int size);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void vm_map_zfini(void *mem, int size);
132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
133     vm_offset_t max);
134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
136 #ifdef INVARIANTS
137 static void vm_map_zdtor(void *mem, int size, void *arg);
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 
141 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
142     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
143      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
144 
145 /*
146  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
147  * stable.
148  */
149 #define PROC_VMSPACE_LOCK(p) do { } while (0)
150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
151 
152 /*
153  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
154  *
155  *	Asserts that the starting and ending region
156  *	addresses fall within the valid range of the map.
157  */
158 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
159 		{					\
160 		if (start < vm_map_min(map))		\
161 			start = vm_map_min(map);	\
162 		if (end > vm_map_max(map))		\
163 			end = vm_map_max(map);		\
164 		if (start > end)			\
165 			start = end;			\
166 		}
167 
168 /*
169  *	vm_map_startup:
170  *
171  *	Initialize the vm_map module.  Must be called before
172  *	any other vm_map routines.
173  *
174  *	Map and entry structures are allocated from the general
175  *	purpose memory pool with some exceptions:
176  *
177  *	- The kernel map and kmem submap are allocated statically.
178  *	- Kernel map entries are allocated out of a static pool.
179  *
180  *	These restrictions are necessary since malloc() uses the
181  *	maps and requires map entries.
182  */
183 
184 void
185 vm_map_startup(void)
186 {
187 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
188 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
189 #ifdef INVARIANTS
190 	    vm_map_zdtor,
191 #else
192 	    NULL,
193 #endif
194 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 	uma_prealloc(mapzone, MAX_KMAP);
196 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
197 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
198 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
199 	uma_prealloc(kmapentzone, MAX_KMAPENT);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 }
203 
204 static void
205 vmspace_zfini(void *mem, int size)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
211 }
212 
213 static int
214 vmspace_zinit(void *mem, int size, int flags)
215 {
216 	struct vmspace *vm;
217 
218 	vm = (struct vmspace *)mem;
219 
220 	vm->vm_map.pmap = NULL;
221 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
222 	return (0);
223 }
224 
225 static void
226 vm_map_zfini(void *mem, int size)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	mtx_destroy(&map->system_mtx);
232 	sx_destroy(&map->lock);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	map->nentries = 0;
242 	map->size = 0;
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  */
277 struct vmspace *
278 vmspace_alloc(min, max)
279 	vm_offset_t min, max;
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 void
303 vm_init2(void)
304 {
305 	uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count,
306 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 	     maxproc * 2 + maxfiles);
308 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309 #ifdef INVARIANTS
310 	    vmspace_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 }
316 
317 static void
318 vmspace_container_reset(struct proc *p)
319 {
320 
321 #ifdef RACCT
322 	PROC_LOCK(p);
323 	racct_set(p, RACCT_DATA, 0);
324 	racct_set(p, RACCT_STACK, 0);
325 	racct_set(p, RACCT_RSS, 0);
326 	racct_set(p, RACCT_MEMLOCK, 0);
327 	racct_set(p, RACCT_VMEM, 0);
328 	PROC_UNLOCK(p);
329 #endif
330 }
331 
332 static inline void
333 vmspace_dofree(struct vmspace *vm)
334 {
335 
336 	CTR1(KTR_VM, "vmspace_free: %p", vm);
337 
338 	/*
339 	 * Make sure any SysV shm is freed, it might not have been in
340 	 * exit1().
341 	 */
342 	shmexit(vm);
343 
344 	/*
345 	 * Lock the map, to wait out all other references to it.
346 	 * Delete all of the mappings and pages they hold, then call
347 	 * the pmap module to reclaim anything left.
348 	 */
349 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
350 	    vm->vm_map.max_offset);
351 
352 	pmap_release(vmspace_pmap(vm));
353 	vm->vm_map.pmap = NULL;
354 	uma_zfree(vmspace_zone, vm);
355 }
356 
357 void
358 vmspace_free(struct vmspace *vm)
359 {
360 
361 	if (vm->vm_refcnt == 0)
362 		panic("vmspace_free: attempt to free already freed vmspace");
363 
364 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
365 		vmspace_dofree(vm);
366 }
367 
368 void
369 vmspace_exitfree(struct proc *p)
370 {
371 	struct vmspace *vm;
372 
373 	PROC_VMSPACE_LOCK(p);
374 	vm = p->p_vmspace;
375 	p->p_vmspace = NULL;
376 	PROC_VMSPACE_UNLOCK(p);
377 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
378 	vmspace_free(vm);
379 }
380 
381 void
382 vmspace_exit(struct thread *td)
383 {
384 	int refcnt;
385 	struct vmspace *vm;
386 	struct proc *p;
387 
388 	/*
389 	 * Release user portion of address space.
390 	 * This releases references to vnodes,
391 	 * which could cause I/O if the file has been unlinked.
392 	 * Need to do this early enough that we can still sleep.
393 	 *
394 	 * The last exiting process to reach this point releases as
395 	 * much of the environment as it can. vmspace_dofree() is the
396 	 * slower fallback in case another process had a temporary
397 	 * reference to the vmspace.
398 	 */
399 
400 	p = td->td_proc;
401 	vm = p->p_vmspace;
402 	atomic_add_int(&vmspace0.vm_refcnt, 1);
403 	do {
404 		refcnt = vm->vm_refcnt;
405 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
406 			/* Switch now since other proc might free vmspace */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = &vmspace0;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
413 	if (refcnt == 1) {
414 		if (p->p_vmspace != vm) {
415 			/* vmspace not yet freed, switch back */
416 			PROC_VMSPACE_LOCK(p);
417 			p->p_vmspace = vm;
418 			PROC_VMSPACE_UNLOCK(p);
419 			pmap_activate(td);
420 		}
421 		pmap_remove_pages(vmspace_pmap(vm));
422 		/* Switch now since this proc will free vmspace */
423 		PROC_VMSPACE_LOCK(p);
424 		p->p_vmspace = &vmspace0;
425 		PROC_VMSPACE_UNLOCK(p);
426 		pmap_activate(td);
427 		vmspace_dofree(vm);
428 	}
429 	vmspace_container_reset(p);
430 }
431 
432 /* Acquire reference to vmspace owned by another process. */
433 
434 struct vmspace *
435 vmspace_acquire_ref(struct proc *p)
436 {
437 	struct vmspace *vm;
438 	int refcnt;
439 
440 	PROC_VMSPACE_LOCK(p);
441 	vm = p->p_vmspace;
442 	if (vm == NULL) {
443 		PROC_VMSPACE_UNLOCK(p);
444 		return (NULL);
445 	}
446 	do {
447 		refcnt = vm->vm_refcnt;
448 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
449 			PROC_VMSPACE_UNLOCK(p);
450 			return (NULL);
451 		}
452 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
453 	if (vm != p->p_vmspace) {
454 		PROC_VMSPACE_UNLOCK(p);
455 		vmspace_free(vm);
456 		return (NULL);
457 	}
458 	PROC_VMSPACE_UNLOCK(p);
459 	return (vm);
460 }
461 
462 void
463 _vm_map_lock(vm_map_t map, const char *file, int line)
464 {
465 
466 	if (map->system_map)
467 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
468 	else
469 		sx_xlock_(&map->lock, file, line);
470 	map->timestamp++;
471 }
472 
473 static void
474 vm_map_process_deferred(void)
475 {
476 	struct thread *td;
477 	vm_map_entry_t entry, next;
478 	vm_object_t object;
479 
480 	td = curthread;
481 	entry = td->td_map_def_user;
482 	td->td_map_def_user = NULL;
483 	while (entry != NULL) {
484 		next = entry->next;
485 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
486 			/*
487 			 * Decrement the object's writemappings and
488 			 * possibly the vnode's v_writecount.
489 			 */
490 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
491 			    ("Submap with writecount"));
492 			object = entry->object.vm_object;
493 			KASSERT(object != NULL, ("No object for writecount"));
494 			vnode_pager_release_writecount(object, entry->start,
495 			    entry->end);
496 		}
497 		vm_map_entry_deallocate(entry, FALSE);
498 		entry = next;
499 	}
500 }
501 
502 void
503 _vm_map_unlock(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_xunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 void
515 _vm_map_lock_read(vm_map_t map, const char *file, int line)
516 {
517 
518 	if (map->system_map)
519 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
520 	else
521 		sx_slock_(&map->lock, file, line);
522 }
523 
524 void
525 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
526 {
527 
528 	if (map->system_map)
529 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
530 	else {
531 		sx_sunlock_(&map->lock, file, line);
532 		vm_map_process_deferred();
533 	}
534 }
535 
536 int
537 _vm_map_trylock(vm_map_t map, const char *file, int line)
538 {
539 	int error;
540 
541 	error = map->system_map ?
542 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
543 	    !sx_try_xlock_(&map->lock, file, line);
544 	if (error == 0)
545 		map->timestamp++;
546 	return (error == 0);
547 }
548 
549 int
550 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
551 {
552 	int error;
553 
554 	error = map->system_map ?
555 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
556 	    !sx_try_slock_(&map->lock, file, line);
557 	return (error == 0);
558 }
559 
560 /*
561  *	_vm_map_lock_upgrade:	[ internal use only ]
562  *
563  *	Tries to upgrade a read (shared) lock on the specified map to a write
564  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
565  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
566  *	returned without a read or write lock held.
567  *
568  *	Requires that the map be read locked.
569  */
570 int
571 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
572 {
573 	unsigned int last_timestamp;
574 
575 	if (map->system_map) {
576 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
577 	} else {
578 		if (!sx_try_upgrade_(&map->lock, file, line)) {
579 			last_timestamp = map->timestamp;
580 			sx_sunlock_(&map->lock, file, line);
581 			vm_map_process_deferred();
582 			/*
583 			 * If the map's timestamp does not change while the
584 			 * map is unlocked, then the upgrade succeeds.
585 			 */
586 			sx_xlock_(&map->lock, file, line);
587 			if (last_timestamp != map->timestamp) {
588 				sx_xunlock_(&map->lock, file, line);
589 				return (1);
590 			}
591 		}
592 	}
593 	map->timestamp++;
594 	return (0);
595 }
596 
597 void
598 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
599 {
600 
601 	if (map->system_map) {
602 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
603 	} else
604 		sx_downgrade_(&map->lock, file, line);
605 }
606 
607 /*
608  *	vm_map_locked:
609  *
610  *	Returns a non-zero value if the caller holds a write (exclusive) lock
611  *	on the specified map and the value "0" otherwise.
612  */
613 int
614 vm_map_locked(vm_map_t map)
615 {
616 
617 	if (map->system_map)
618 		return (mtx_owned(&map->system_mtx));
619 	else
620 		return (sx_xlocked(&map->lock));
621 }
622 
623 #ifdef INVARIANTS
624 static void
625 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
626 {
627 
628 	if (map->system_map)
629 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
630 	else
631 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
632 }
633 
634 #define	VM_MAP_ASSERT_LOCKED(map) \
635     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
636 #else
637 #define	VM_MAP_ASSERT_LOCKED(map)
638 #endif
639 
640 /*
641  *	_vm_map_unlock_and_wait:
642  *
643  *	Atomically releases the lock on the specified map and puts the calling
644  *	thread to sleep.  The calling thread will remain asleep until either
645  *	vm_map_wakeup() is performed on the map or the specified timeout is
646  *	exceeded.
647  *
648  *	WARNING!  This function does not perform deferred deallocations of
649  *	objects and map	entries.  Therefore, the calling thread is expected to
650  *	reacquire the map lock after reawakening and later perform an ordinary
651  *	unlock operation, such as vm_map_unlock(), before completing its
652  *	operation on the map.
653  */
654 int
655 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
656 {
657 
658 	mtx_lock(&map_sleep_mtx);
659 	if (map->system_map)
660 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
661 	else
662 		sx_xunlock_(&map->lock, file, line);
663 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
664 	    timo));
665 }
666 
667 /*
668  *	vm_map_wakeup:
669  *
670  *	Awaken any threads that have slept on the map using
671  *	vm_map_unlock_and_wait().
672  */
673 void
674 vm_map_wakeup(vm_map_t map)
675 {
676 
677 	/*
678 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
679 	 * from being performed (and lost) between the map unlock
680 	 * and the msleep() in _vm_map_unlock_and_wait().
681 	 */
682 	mtx_lock(&map_sleep_mtx);
683 	mtx_unlock(&map_sleep_mtx);
684 	wakeup(&map->root);
685 }
686 
687 void
688 vm_map_busy(vm_map_t map)
689 {
690 
691 	VM_MAP_ASSERT_LOCKED(map);
692 	map->busy++;
693 }
694 
695 void
696 vm_map_unbusy(vm_map_t map)
697 {
698 
699 	VM_MAP_ASSERT_LOCKED(map);
700 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
701 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
702 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
703 		wakeup(&map->busy);
704 	}
705 }
706 
707 void
708 vm_map_wait_busy(vm_map_t map)
709 {
710 
711 	VM_MAP_ASSERT_LOCKED(map);
712 	while (map->busy) {
713 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
714 		if (map->system_map)
715 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
716 		else
717 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
718 	}
719 	map->timestamp++;
720 }
721 
722 long
723 vmspace_resident_count(struct vmspace *vmspace)
724 {
725 	return pmap_resident_count(vmspace_pmap(vmspace));
726 }
727 
728 /*
729  *	vm_map_create:
730  *
731  *	Creates and returns a new empty VM map with
732  *	the given physical map structure, and having
733  *	the given lower and upper address bounds.
734  */
735 vm_map_t
736 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
737 {
738 	vm_map_t result;
739 
740 	result = uma_zalloc(mapzone, M_WAITOK);
741 	CTR1(KTR_VM, "vm_map_create: %p", result);
742 	_vm_map_init(result, pmap, min, max);
743 	return (result);
744 }
745 
746 /*
747  * Initialize an existing vm_map structure
748  * such as that in the vmspace structure.
749  */
750 static void
751 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
752 {
753 
754 	map->header.next = map->header.prev = &map->header;
755 	map->needs_wakeup = FALSE;
756 	map->system_map = 0;
757 	map->pmap = pmap;
758 	map->min_offset = min;
759 	map->max_offset = max;
760 	map->flags = 0;
761 	map->root = NULL;
762 	map->timestamp = 0;
763 	map->busy = 0;
764 }
765 
766 void
767 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
768 {
769 
770 	_vm_map_init(map, pmap, min, max);
771 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
772 	sx_init(&map->lock, "user map");
773 }
774 
775 /*
776  *	vm_map_entry_dispose:	[ internal use only ]
777  *
778  *	Inverse of vm_map_entry_create.
779  */
780 static void
781 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
782 {
783 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
784 }
785 
786 /*
787  *	vm_map_entry_create:	[ internal use only ]
788  *
789  *	Allocates a VM map entry for insertion.
790  *	No entry fields are filled in.
791  */
792 static vm_map_entry_t
793 vm_map_entry_create(vm_map_t map)
794 {
795 	vm_map_entry_t new_entry;
796 
797 	if (map->system_map)
798 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
799 	else
800 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
801 	if (new_entry == NULL)
802 		panic("vm_map_entry_create: kernel resources exhausted");
803 	return (new_entry);
804 }
805 
806 /*
807  *	vm_map_entry_set_behavior:
808  *
809  *	Set the expected access behavior, either normal, random, or
810  *	sequential.
811  */
812 static inline void
813 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
814 {
815 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
816 	    (behavior & MAP_ENTRY_BEHAV_MASK);
817 }
818 
819 /*
820  *	vm_map_entry_set_max_free:
821  *
822  *	Set the max_free field in a vm_map_entry.
823  */
824 static inline void
825 vm_map_entry_set_max_free(vm_map_entry_t entry)
826 {
827 
828 	entry->max_free = entry->adj_free;
829 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
830 		entry->max_free = entry->left->max_free;
831 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
832 		entry->max_free = entry->right->max_free;
833 }
834 
835 /*
836  *	vm_map_entry_splay:
837  *
838  *	The Sleator and Tarjan top-down splay algorithm with the
839  *	following variation.  Max_free must be computed bottom-up, so
840  *	on the downward pass, maintain the left and right spines in
841  *	reverse order.  Then, make a second pass up each side to fix
842  *	the pointers and compute max_free.  The time bound is O(log n)
843  *	amortized.
844  *
845  *	The new root is the vm_map_entry containing "addr", or else an
846  *	adjacent entry (lower or higher) if addr is not in the tree.
847  *
848  *	The map must be locked, and leaves it so.
849  *
850  *	Returns: the new root.
851  */
852 static vm_map_entry_t
853 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
854 {
855 	vm_map_entry_t llist, rlist;
856 	vm_map_entry_t ltree, rtree;
857 	vm_map_entry_t y;
858 
859 	/* Special case of empty tree. */
860 	if (root == NULL)
861 		return (root);
862 
863 	/*
864 	 * Pass One: Splay down the tree until we find addr or a NULL
865 	 * pointer where addr would go.  llist and rlist are the two
866 	 * sides in reverse order (bottom-up), with llist linked by
867 	 * the right pointer and rlist linked by the left pointer in
868 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
869 	 * the two spines.
870 	 */
871 	llist = NULL;
872 	rlist = NULL;
873 	for (;;) {
874 		/* root is never NULL in here. */
875 		if (addr < root->start) {
876 			y = root->left;
877 			if (y == NULL)
878 				break;
879 			if (addr < y->start && y->left != NULL) {
880 				/* Rotate right and put y on rlist. */
881 				root->left = y->right;
882 				y->right = root;
883 				vm_map_entry_set_max_free(root);
884 				root = y->left;
885 				y->left = rlist;
886 				rlist = y;
887 			} else {
888 				/* Put root on rlist. */
889 				root->left = rlist;
890 				rlist = root;
891 				root = y;
892 			}
893 		} else if (addr >= root->end) {
894 			y = root->right;
895 			if (y == NULL)
896 				break;
897 			if (addr >= y->end && y->right != NULL) {
898 				/* Rotate left and put y on llist. */
899 				root->right = y->left;
900 				y->left = root;
901 				vm_map_entry_set_max_free(root);
902 				root = y->right;
903 				y->right = llist;
904 				llist = y;
905 			} else {
906 				/* Put root on llist. */
907 				root->right = llist;
908 				llist = root;
909 				root = y;
910 			}
911 		} else
912 			break;
913 	}
914 
915 	/*
916 	 * Pass Two: Walk back up the two spines, flip the pointers
917 	 * and set max_free.  The subtrees of the root go at the
918 	 * bottom of llist and rlist.
919 	 */
920 	ltree = root->left;
921 	while (llist != NULL) {
922 		y = llist->right;
923 		llist->right = ltree;
924 		vm_map_entry_set_max_free(llist);
925 		ltree = llist;
926 		llist = y;
927 	}
928 	rtree = root->right;
929 	while (rlist != NULL) {
930 		y = rlist->left;
931 		rlist->left = rtree;
932 		vm_map_entry_set_max_free(rlist);
933 		rtree = rlist;
934 		rlist = y;
935 	}
936 
937 	/*
938 	 * Final assembly: add ltree and rtree as subtrees of root.
939 	 */
940 	root->left = ltree;
941 	root->right = rtree;
942 	vm_map_entry_set_max_free(root);
943 
944 	return (root);
945 }
946 
947 /*
948  *	vm_map_entry_{un,}link:
949  *
950  *	Insert/remove entries from maps.
951  */
952 static void
953 vm_map_entry_link(vm_map_t map,
954 		  vm_map_entry_t after_where,
955 		  vm_map_entry_t entry)
956 {
957 
958 	CTR4(KTR_VM,
959 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
960 	    map->nentries, entry, after_where);
961 	VM_MAP_ASSERT_LOCKED(map);
962 	map->nentries++;
963 	entry->prev = after_where;
964 	entry->next = after_where->next;
965 	entry->next->prev = entry;
966 	after_where->next = entry;
967 
968 	if (after_where != &map->header) {
969 		if (after_where != map->root)
970 			vm_map_entry_splay(after_where->start, map->root);
971 		entry->right = after_where->right;
972 		entry->left = after_where;
973 		after_where->right = NULL;
974 		after_where->adj_free = entry->start - after_where->end;
975 		vm_map_entry_set_max_free(after_where);
976 	} else {
977 		entry->right = map->root;
978 		entry->left = NULL;
979 	}
980 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
981 	    entry->next->start) - entry->end;
982 	vm_map_entry_set_max_free(entry);
983 	map->root = entry;
984 }
985 
986 static void
987 vm_map_entry_unlink(vm_map_t map,
988 		    vm_map_entry_t entry)
989 {
990 	vm_map_entry_t next, prev, root;
991 
992 	VM_MAP_ASSERT_LOCKED(map);
993 	if (entry != map->root)
994 		vm_map_entry_splay(entry->start, map->root);
995 	if (entry->left == NULL)
996 		root = entry->right;
997 	else {
998 		root = vm_map_entry_splay(entry->start, entry->left);
999 		root->right = entry->right;
1000 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1001 		    entry->next->start) - root->end;
1002 		vm_map_entry_set_max_free(root);
1003 	}
1004 	map->root = root;
1005 
1006 	prev = entry->prev;
1007 	next = entry->next;
1008 	next->prev = prev;
1009 	prev->next = next;
1010 	map->nentries--;
1011 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1012 	    map->nentries, entry);
1013 }
1014 
1015 /*
1016  *	vm_map_entry_resize_free:
1017  *
1018  *	Recompute the amount of free space following a vm_map_entry
1019  *	and propagate that value up the tree.  Call this function after
1020  *	resizing a map entry in-place, that is, without a call to
1021  *	vm_map_entry_link() or _unlink().
1022  *
1023  *	The map must be locked, and leaves it so.
1024  */
1025 static void
1026 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1027 {
1028 
1029 	/*
1030 	 * Using splay trees without parent pointers, propagating
1031 	 * max_free up the tree is done by moving the entry to the
1032 	 * root and making the change there.
1033 	 */
1034 	if (entry != map->root)
1035 		map->root = vm_map_entry_splay(entry->start, map->root);
1036 
1037 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1038 	    entry->next->start) - entry->end;
1039 	vm_map_entry_set_max_free(entry);
1040 }
1041 
1042 /*
1043  *	vm_map_lookup_entry:	[ internal use only ]
1044  *
1045  *	Finds the map entry containing (or
1046  *	immediately preceding) the specified address
1047  *	in the given map; the entry is returned
1048  *	in the "entry" parameter.  The boolean
1049  *	result indicates whether the address is
1050  *	actually contained in the map.
1051  */
1052 boolean_t
1053 vm_map_lookup_entry(
1054 	vm_map_t map,
1055 	vm_offset_t address,
1056 	vm_map_entry_t *entry)	/* OUT */
1057 {
1058 	vm_map_entry_t cur;
1059 	boolean_t locked;
1060 
1061 	/*
1062 	 * If the map is empty, then the map entry immediately preceding
1063 	 * "address" is the map's header.
1064 	 */
1065 	cur = map->root;
1066 	if (cur == NULL)
1067 		*entry = &map->header;
1068 	else if (address >= cur->start && cur->end > address) {
1069 		*entry = cur;
1070 		return (TRUE);
1071 	} else if ((locked = vm_map_locked(map)) ||
1072 	    sx_try_upgrade(&map->lock)) {
1073 		/*
1074 		 * Splay requires a write lock on the map.  However, it only
1075 		 * restructures the binary search tree; it does not otherwise
1076 		 * change the map.  Thus, the map's timestamp need not change
1077 		 * on a temporary upgrade.
1078 		 */
1079 		map->root = cur = vm_map_entry_splay(address, cur);
1080 		if (!locked)
1081 			sx_downgrade(&map->lock);
1082 
1083 		/*
1084 		 * If "address" is contained within a map entry, the new root
1085 		 * is that map entry.  Otherwise, the new root is a map entry
1086 		 * immediately before or after "address".
1087 		 */
1088 		if (address >= cur->start) {
1089 			*entry = cur;
1090 			if (cur->end > address)
1091 				return (TRUE);
1092 		} else
1093 			*entry = cur->prev;
1094 	} else
1095 		/*
1096 		 * Since the map is only locked for read access, perform a
1097 		 * standard binary search tree lookup for "address".
1098 		 */
1099 		for (;;) {
1100 			if (address < cur->start) {
1101 				if (cur->left == NULL) {
1102 					*entry = cur->prev;
1103 					break;
1104 				}
1105 				cur = cur->left;
1106 			} else if (cur->end > address) {
1107 				*entry = cur;
1108 				return (TRUE);
1109 			} else {
1110 				if (cur->right == NULL) {
1111 					*entry = cur;
1112 					break;
1113 				}
1114 				cur = cur->right;
1115 			}
1116 		}
1117 	return (FALSE);
1118 }
1119 
1120 /*
1121  *	vm_map_insert:
1122  *
1123  *	Inserts the given whole VM object into the target
1124  *	map at the specified address range.  The object's
1125  *	size should match that of the address range.
1126  *
1127  *	Requires that the map be locked, and leaves it so.
1128  *
1129  *	If object is non-NULL, ref count must be bumped by caller
1130  *	prior to making call to account for the new entry.
1131  */
1132 int
1133 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1134 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1135 	      int cow)
1136 {
1137 	vm_map_entry_t new_entry;
1138 	vm_map_entry_t prev_entry;
1139 	vm_map_entry_t temp_entry;
1140 	vm_eflags_t protoeflags;
1141 	struct ucred *cred;
1142 	vm_inherit_t inheritance;
1143 	boolean_t charge_prev_obj;
1144 
1145 	VM_MAP_ASSERT_LOCKED(map);
1146 
1147 	/*
1148 	 * Check that the start and end points are not bogus.
1149 	 */
1150 	if ((start < map->min_offset) || (end > map->max_offset) ||
1151 	    (start >= end))
1152 		return (KERN_INVALID_ADDRESS);
1153 
1154 	/*
1155 	 * Find the entry prior to the proposed starting address; if it's part
1156 	 * of an existing entry, this range is bogus.
1157 	 */
1158 	if (vm_map_lookup_entry(map, start, &temp_entry))
1159 		return (KERN_NO_SPACE);
1160 
1161 	prev_entry = temp_entry;
1162 
1163 	/*
1164 	 * Assert that the next entry doesn't overlap the end point.
1165 	 */
1166 	if ((prev_entry->next != &map->header) &&
1167 	    (prev_entry->next->start < end))
1168 		return (KERN_NO_SPACE);
1169 
1170 	protoeflags = 0;
1171 	charge_prev_obj = FALSE;
1172 
1173 	if (cow & MAP_COPY_ON_WRITE)
1174 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1175 
1176 	if (cow & MAP_NOFAULT) {
1177 		protoeflags |= MAP_ENTRY_NOFAULT;
1178 
1179 		KASSERT(object == NULL,
1180 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1181 	}
1182 	if (cow & MAP_DISABLE_SYNCER)
1183 		protoeflags |= MAP_ENTRY_NOSYNC;
1184 	if (cow & MAP_DISABLE_COREDUMP)
1185 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1186 	if (cow & MAP_VN_WRITECOUNT)
1187 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1188 	if (cow & MAP_INHERIT_SHARE)
1189 		inheritance = VM_INHERIT_SHARE;
1190 	else
1191 		inheritance = VM_INHERIT_DEFAULT;
1192 
1193 	cred = NULL;
1194 	KASSERT((object != kmem_object && object != kernel_object) ||
1195 	    ((object == kmem_object || object == kernel_object) &&
1196 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1197 	    ("kmem or kernel object and cow"));
1198 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1199 		goto charged;
1200 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1201 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1202 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1203 			return (KERN_RESOURCE_SHORTAGE);
1204 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1205 		    object->cred == NULL,
1206 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1207 		cred = curthread->td_ucred;
1208 		crhold(cred);
1209 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1210 			charge_prev_obj = TRUE;
1211 	}
1212 
1213 charged:
1214 	/* Expand the kernel pmap, if necessary. */
1215 	if (map == kernel_map && end > kernel_vm_end)
1216 		pmap_growkernel(end);
1217 	if (object != NULL) {
1218 		/*
1219 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1220 		 * is trivially proven to be the only mapping for any
1221 		 * of the object's pages.  (Object granularity
1222 		 * reference counting is insufficient to recognize
1223 		 * aliases with precision.)
1224 		 */
1225 		VM_OBJECT_LOCK(object);
1226 		if (object->ref_count > 1 || object->shadow_count != 0)
1227 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1228 		VM_OBJECT_UNLOCK(object);
1229 	}
1230 	else if ((prev_entry != &map->header) &&
1231 		 (prev_entry->eflags == protoeflags) &&
1232 		 (prev_entry->end == start) &&
1233 		 (prev_entry->wired_count == 0) &&
1234 		 (prev_entry->cred == cred ||
1235 		  (prev_entry->object.vm_object != NULL &&
1236 		   (prev_entry->object.vm_object->cred == cred))) &&
1237 		   vm_object_coalesce(prev_entry->object.vm_object,
1238 		       prev_entry->offset,
1239 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1240 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1241 		/*
1242 		 * We were able to extend the object.  Determine if we
1243 		 * can extend the previous map entry to include the
1244 		 * new range as well.
1245 		 */
1246 		if ((prev_entry->inheritance == inheritance) &&
1247 		    (prev_entry->protection == prot) &&
1248 		    (prev_entry->max_protection == max)) {
1249 			map->size += (end - prev_entry->end);
1250 			prev_entry->end = end;
1251 			vm_map_entry_resize_free(map, prev_entry);
1252 			vm_map_simplify_entry(map, prev_entry);
1253 			if (cred != NULL)
1254 				crfree(cred);
1255 			return (KERN_SUCCESS);
1256 		}
1257 
1258 		/*
1259 		 * If we can extend the object but cannot extend the
1260 		 * map entry, we have to create a new map entry.  We
1261 		 * must bump the ref count on the extended object to
1262 		 * account for it.  object may be NULL.
1263 		 */
1264 		object = prev_entry->object.vm_object;
1265 		offset = prev_entry->offset +
1266 			(prev_entry->end - prev_entry->start);
1267 		vm_object_reference(object);
1268 		if (cred != NULL && object != NULL && object->cred != NULL &&
1269 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1270 			/* Object already accounts for this uid. */
1271 			crfree(cred);
1272 			cred = NULL;
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1278 	 * in things like the buffer map where we manage kva but do not manage
1279 	 * backing objects.
1280 	 */
1281 
1282 	/*
1283 	 * Create a new entry
1284 	 */
1285 	new_entry = vm_map_entry_create(map);
1286 	new_entry->start = start;
1287 	new_entry->end = end;
1288 	new_entry->cred = NULL;
1289 
1290 	new_entry->eflags = protoeflags;
1291 	new_entry->object.vm_object = object;
1292 	new_entry->offset = offset;
1293 	new_entry->avail_ssize = 0;
1294 
1295 	new_entry->inheritance = inheritance;
1296 	new_entry->protection = prot;
1297 	new_entry->max_protection = max;
1298 	new_entry->wired_count = 0;
1299 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1300 	new_entry->next_read = OFF_TO_IDX(offset);
1301 
1302 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1303 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1304 	new_entry->cred = cred;
1305 
1306 	/*
1307 	 * Insert the new entry into the list
1308 	 */
1309 	vm_map_entry_link(map, prev_entry, new_entry);
1310 	map->size += new_entry->end - new_entry->start;
1311 
1312 	/*
1313 	 * It may be possible to merge the new entry with the next and/or
1314 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1315 	 * panic can result from merging such entries.
1316 	 */
1317 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1318 		vm_map_simplify_entry(map, new_entry);
1319 
1320 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1321 		vm_map_pmap_enter(map, start, prot,
1322 				    object, OFF_TO_IDX(offset), end - start,
1323 				    cow & MAP_PREFAULT_PARTIAL);
1324 	}
1325 
1326 	return (KERN_SUCCESS);
1327 }
1328 
1329 /*
1330  *	vm_map_findspace:
1331  *
1332  *	Find the first fit (lowest VM address) for "length" free bytes
1333  *	beginning at address >= start in the given map.
1334  *
1335  *	In a vm_map_entry, "adj_free" is the amount of free space
1336  *	adjacent (higher address) to this entry, and "max_free" is the
1337  *	maximum amount of contiguous free space in its subtree.  This
1338  *	allows finding a free region in one path down the tree, so
1339  *	O(log n) amortized with splay trees.
1340  *
1341  *	The map must be locked, and leaves it so.
1342  *
1343  *	Returns: 0 on success, and starting address in *addr,
1344  *		 1 if insufficient space.
1345  */
1346 int
1347 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1348     vm_offset_t *addr)	/* OUT */
1349 {
1350 	vm_map_entry_t entry;
1351 	vm_offset_t st;
1352 
1353 	/*
1354 	 * Request must fit within min/max VM address and must avoid
1355 	 * address wrap.
1356 	 */
1357 	if (start < map->min_offset)
1358 		start = map->min_offset;
1359 	if (start + length > map->max_offset || start + length < start)
1360 		return (1);
1361 
1362 	/* Empty tree means wide open address space. */
1363 	if (map->root == NULL) {
1364 		*addr = start;
1365 		return (0);
1366 	}
1367 
1368 	/*
1369 	 * After splay, if start comes before root node, then there
1370 	 * must be a gap from start to the root.
1371 	 */
1372 	map->root = vm_map_entry_splay(start, map->root);
1373 	if (start + length <= map->root->start) {
1374 		*addr = start;
1375 		return (0);
1376 	}
1377 
1378 	/*
1379 	 * Root is the last node that might begin its gap before
1380 	 * start, and this is the last comparison where address
1381 	 * wrap might be a problem.
1382 	 */
1383 	st = (start > map->root->end) ? start : map->root->end;
1384 	if (length <= map->root->end + map->root->adj_free - st) {
1385 		*addr = st;
1386 		return (0);
1387 	}
1388 
1389 	/* With max_free, can immediately tell if no solution. */
1390 	entry = map->root->right;
1391 	if (entry == NULL || length > entry->max_free)
1392 		return (1);
1393 
1394 	/*
1395 	 * Search the right subtree in the order: left subtree, root,
1396 	 * right subtree (first fit).  The previous splay implies that
1397 	 * all regions in the right subtree have addresses > start.
1398 	 */
1399 	while (entry != NULL) {
1400 		if (entry->left != NULL && entry->left->max_free >= length)
1401 			entry = entry->left;
1402 		else if (entry->adj_free >= length) {
1403 			*addr = entry->end;
1404 			return (0);
1405 		} else
1406 			entry = entry->right;
1407 	}
1408 
1409 	/* Can't get here, so panic if we do. */
1410 	panic("vm_map_findspace: max_free corrupt");
1411 }
1412 
1413 int
1414 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1415     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1416     vm_prot_t max, int cow)
1417 {
1418 	vm_offset_t end;
1419 	int result;
1420 
1421 	end = start + length;
1422 	vm_map_lock(map);
1423 	VM_MAP_RANGE_CHECK(map, start, end);
1424 	(void) vm_map_delete(map, start, end);
1425 	result = vm_map_insert(map, object, offset, start, end, prot,
1426 	    max, cow);
1427 	vm_map_unlock(map);
1428 	return (result);
1429 }
1430 
1431 /*
1432  *	vm_map_find finds an unallocated region in the target address
1433  *	map with the given length.  The search is defined to be
1434  *	first-fit from the specified address; the region found is
1435  *	returned in the same parameter.
1436  *
1437  *	If object is non-NULL, ref count must be bumped by caller
1438  *	prior to making call to account for the new entry.
1439  */
1440 int
1441 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1442 	    vm_offset_t *addr,	/* IN/OUT */
1443 	    vm_size_t length, int find_space, vm_prot_t prot,
1444 	    vm_prot_t max, int cow)
1445 {
1446 	vm_offset_t start;
1447 	int result;
1448 
1449 	start = *addr;
1450 	vm_map_lock(map);
1451 	do {
1452 		if (find_space != VMFS_NO_SPACE) {
1453 			if (vm_map_findspace(map, start, length, addr)) {
1454 				vm_map_unlock(map);
1455 				return (KERN_NO_SPACE);
1456 			}
1457 			switch (find_space) {
1458 			case VMFS_ALIGNED_SPACE:
1459 				pmap_align_superpage(object, offset, addr,
1460 				    length);
1461 				break;
1462 #ifdef VMFS_TLB_ALIGNED_SPACE
1463 			case VMFS_TLB_ALIGNED_SPACE:
1464 				pmap_align_tlb(addr);
1465 				break;
1466 #endif
1467 			default:
1468 				break;
1469 			}
1470 
1471 			start = *addr;
1472 		}
1473 		result = vm_map_insert(map, object, offset, start, start +
1474 		    length, prot, max, cow);
1475 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1476 #ifdef VMFS_TLB_ALIGNED_SPACE
1477 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1478 #endif
1479 	    ));
1480 	vm_map_unlock(map);
1481 	return (result);
1482 }
1483 
1484 /*
1485  *	vm_map_simplify_entry:
1486  *
1487  *	Simplify the given map entry by merging with either neighbor.  This
1488  *	routine also has the ability to merge with both neighbors.
1489  *
1490  *	The map must be locked.
1491  *
1492  *	This routine guarentees that the passed entry remains valid (though
1493  *	possibly extended).  When merging, this routine may delete one or
1494  *	both neighbors.
1495  */
1496 void
1497 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1498 {
1499 	vm_map_entry_t next, prev;
1500 	vm_size_t prevsize, esize;
1501 
1502 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1503 		return;
1504 
1505 	prev = entry->prev;
1506 	if (prev != &map->header) {
1507 		prevsize = prev->end - prev->start;
1508 		if ( (prev->end == entry->start) &&
1509 		     (prev->object.vm_object == entry->object.vm_object) &&
1510 		     (!prev->object.vm_object ||
1511 			(prev->offset + prevsize == entry->offset)) &&
1512 		     (prev->eflags == entry->eflags) &&
1513 		     (prev->protection == entry->protection) &&
1514 		     (prev->max_protection == entry->max_protection) &&
1515 		     (prev->inheritance == entry->inheritance) &&
1516 		     (prev->wired_count == entry->wired_count) &&
1517 		     (prev->cred == entry->cred)) {
1518 			vm_map_entry_unlink(map, prev);
1519 			entry->start = prev->start;
1520 			entry->offset = prev->offset;
1521 			if (entry->prev != &map->header)
1522 				vm_map_entry_resize_free(map, entry->prev);
1523 
1524 			/*
1525 			 * If the backing object is a vnode object,
1526 			 * vm_object_deallocate() calls vrele().
1527 			 * However, vrele() does not lock the vnode
1528 			 * because the vnode has additional
1529 			 * references.  Thus, the map lock can be kept
1530 			 * without causing a lock-order reversal with
1531 			 * the vnode lock.
1532 			 *
1533 			 * Since we count the number of virtual page
1534 			 * mappings in object->un_pager.vnp.writemappings,
1535 			 * the writemappings value should not be adjusted
1536 			 * when the entry is disposed of.
1537 			 */
1538 			if (prev->object.vm_object)
1539 				vm_object_deallocate(prev->object.vm_object);
1540 			if (prev->cred != NULL)
1541 				crfree(prev->cred);
1542 			vm_map_entry_dispose(map, prev);
1543 		}
1544 	}
1545 
1546 	next = entry->next;
1547 	if (next != &map->header) {
1548 		esize = entry->end - entry->start;
1549 		if ((entry->end == next->start) &&
1550 		    (next->object.vm_object == entry->object.vm_object) &&
1551 		     (!entry->object.vm_object ||
1552 			(entry->offset + esize == next->offset)) &&
1553 		    (next->eflags == entry->eflags) &&
1554 		    (next->protection == entry->protection) &&
1555 		    (next->max_protection == entry->max_protection) &&
1556 		    (next->inheritance == entry->inheritance) &&
1557 		    (next->wired_count == entry->wired_count) &&
1558 		    (next->cred == entry->cred)) {
1559 			vm_map_entry_unlink(map, next);
1560 			entry->end = next->end;
1561 			vm_map_entry_resize_free(map, entry);
1562 
1563 			/*
1564 			 * See comment above.
1565 			 */
1566 			if (next->object.vm_object)
1567 				vm_object_deallocate(next->object.vm_object);
1568 			if (next->cred != NULL)
1569 				crfree(next->cred);
1570 			vm_map_entry_dispose(map, next);
1571 		}
1572 	}
1573 }
1574 /*
1575  *	vm_map_clip_start:	[ internal use only ]
1576  *
1577  *	Asserts that the given entry begins at or after
1578  *	the specified address; if necessary,
1579  *	it splits the entry into two.
1580  */
1581 #define vm_map_clip_start(map, entry, startaddr) \
1582 { \
1583 	if (startaddr > entry->start) \
1584 		_vm_map_clip_start(map, entry, startaddr); \
1585 }
1586 
1587 /*
1588  *	This routine is called only when it is known that
1589  *	the entry must be split.
1590  */
1591 static void
1592 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1593 {
1594 	vm_map_entry_t new_entry;
1595 
1596 	VM_MAP_ASSERT_LOCKED(map);
1597 
1598 	/*
1599 	 * Split off the front portion -- note that we must insert the new
1600 	 * entry BEFORE this one, so that this entry has the specified
1601 	 * starting address.
1602 	 */
1603 	vm_map_simplify_entry(map, entry);
1604 
1605 	/*
1606 	 * If there is no object backing this entry, we might as well create
1607 	 * one now.  If we defer it, an object can get created after the map
1608 	 * is clipped, and individual objects will be created for the split-up
1609 	 * map.  This is a bit of a hack, but is also about the best place to
1610 	 * put this improvement.
1611 	 */
1612 	if (entry->object.vm_object == NULL && !map->system_map) {
1613 		vm_object_t object;
1614 		object = vm_object_allocate(OBJT_DEFAULT,
1615 				atop(entry->end - entry->start));
1616 		entry->object.vm_object = object;
1617 		entry->offset = 0;
1618 		if (entry->cred != NULL) {
1619 			object->cred = entry->cred;
1620 			object->charge = entry->end - entry->start;
1621 			entry->cred = NULL;
1622 		}
1623 	} else if (entry->object.vm_object != NULL &&
1624 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1625 		   entry->cred != NULL) {
1626 		VM_OBJECT_LOCK(entry->object.vm_object);
1627 		KASSERT(entry->object.vm_object->cred == NULL,
1628 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1629 		entry->object.vm_object->cred = entry->cred;
1630 		entry->object.vm_object->charge = entry->end - entry->start;
1631 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1632 		entry->cred = NULL;
1633 	}
1634 
1635 	new_entry = vm_map_entry_create(map);
1636 	*new_entry = *entry;
1637 
1638 	new_entry->end = start;
1639 	entry->offset += (start - entry->start);
1640 	entry->start = start;
1641 	if (new_entry->cred != NULL)
1642 		crhold(entry->cred);
1643 
1644 	vm_map_entry_link(map, entry->prev, new_entry);
1645 
1646 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1647 		vm_object_reference(new_entry->object.vm_object);
1648 		/*
1649 		 * The object->un_pager.vnp.writemappings for the
1650 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1651 		 * kept as is here.  The virtual pages are
1652 		 * re-distributed among the clipped entries, so the sum is
1653 		 * left the same.
1654 		 */
1655 	}
1656 }
1657 
1658 /*
1659  *	vm_map_clip_end:	[ internal use only ]
1660  *
1661  *	Asserts that the given entry ends at or before
1662  *	the specified address; if necessary,
1663  *	it splits the entry into two.
1664  */
1665 #define vm_map_clip_end(map, entry, endaddr) \
1666 { \
1667 	if ((endaddr) < (entry->end)) \
1668 		_vm_map_clip_end((map), (entry), (endaddr)); \
1669 }
1670 
1671 /*
1672  *	This routine is called only when it is known that
1673  *	the entry must be split.
1674  */
1675 static void
1676 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1677 {
1678 	vm_map_entry_t new_entry;
1679 
1680 	VM_MAP_ASSERT_LOCKED(map);
1681 
1682 	/*
1683 	 * If there is no object backing this entry, we might as well create
1684 	 * one now.  If we defer it, an object can get created after the map
1685 	 * is clipped, and individual objects will be created for the split-up
1686 	 * map.  This is a bit of a hack, but is also about the best place to
1687 	 * put this improvement.
1688 	 */
1689 	if (entry->object.vm_object == NULL && !map->system_map) {
1690 		vm_object_t object;
1691 		object = vm_object_allocate(OBJT_DEFAULT,
1692 				atop(entry->end - entry->start));
1693 		entry->object.vm_object = object;
1694 		entry->offset = 0;
1695 		if (entry->cred != NULL) {
1696 			object->cred = entry->cred;
1697 			object->charge = entry->end - entry->start;
1698 			entry->cred = NULL;
1699 		}
1700 	} else if (entry->object.vm_object != NULL &&
1701 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1702 		   entry->cred != NULL) {
1703 		VM_OBJECT_LOCK(entry->object.vm_object);
1704 		KASSERT(entry->object.vm_object->cred == NULL,
1705 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1706 		entry->object.vm_object->cred = entry->cred;
1707 		entry->object.vm_object->charge = entry->end - entry->start;
1708 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1709 		entry->cred = NULL;
1710 	}
1711 
1712 	/*
1713 	 * Create a new entry and insert it AFTER the specified entry
1714 	 */
1715 	new_entry = vm_map_entry_create(map);
1716 	*new_entry = *entry;
1717 
1718 	new_entry->start = entry->end = end;
1719 	new_entry->offset += (end - entry->start);
1720 	if (new_entry->cred != NULL)
1721 		crhold(entry->cred);
1722 
1723 	vm_map_entry_link(map, entry, new_entry);
1724 
1725 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1726 		vm_object_reference(new_entry->object.vm_object);
1727 	}
1728 }
1729 
1730 /*
1731  *	vm_map_submap:		[ kernel use only ]
1732  *
1733  *	Mark the given range as handled by a subordinate map.
1734  *
1735  *	This range must have been created with vm_map_find,
1736  *	and no other operations may have been performed on this
1737  *	range prior to calling vm_map_submap.
1738  *
1739  *	Only a limited number of operations can be performed
1740  *	within this rage after calling vm_map_submap:
1741  *		vm_fault
1742  *	[Don't try vm_map_copy!]
1743  *
1744  *	To remove a submapping, one must first remove the
1745  *	range from the superior map, and then destroy the
1746  *	submap (if desired).  [Better yet, don't try it.]
1747  */
1748 int
1749 vm_map_submap(
1750 	vm_map_t map,
1751 	vm_offset_t start,
1752 	vm_offset_t end,
1753 	vm_map_t submap)
1754 {
1755 	vm_map_entry_t entry;
1756 	int result = KERN_INVALID_ARGUMENT;
1757 
1758 	vm_map_lock(map);
1759 
1760 	VM_MAP_RANGE_CHECK(map, start, end);
1761 
1762 	if (vm_map_lookup_entry(map, start, &entry)) {
1763 		vm_map_clip_start(map, entry, start);
1764 	} else
1765 		entry = entry->next;
1766 
1767 	vm_map_clip_end(map, entry, end);
1768 
1769 	if ((entry->start == start) && (entry->end == end) &&
1770 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1771 	    (entry->object.vm_object == NULL)) {
1772 		entry->object.sub_map = submap;
1773 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1774 		result = KERN_SUCCESS;
1775 	}
1776 	vm_map_unlock(map);
1777 
1778 	return (result);
1779 }
1780 
1781 /*
1782  * The maximum number of pages to map
1783  */
1784 #define	MAX_INIT_PT	96
1785 
1786 /*
1787  *	vm_map_pmap_enter:
1788  *
1789  *	Preload read-only mappings for the specified object's resident pages
1790  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1791  *	the resident pages within the address range [addr, addr + ulmin(size,
1792  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1793  *	the specified address range are mapped.  This eliminates many soft
1794  *	faults on process startup and immediately after an mmap(2).  Because
1795  *	these are speculative mappings, cached pages are not reactivated and
1796  *	mapped.
1797  */
1798 void
1799 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1800     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1801 {
1802 	vm_offset_t start;
1803 	vm_page_t p, p_start;
1804 	vm_pindex_t psize, tmpidx;
1805 
1806 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1807 		return;
1808 	VM_OBJECT_LOCK(object);
1809 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1810 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1811 		goto unlock_return;
1812 	}
1813 
1814 	psize = atop(size);
1815 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816 		psize = MAX_INIT_PT;
1817 	if (psize + pindex > object->size) {
1818 		if (object->size < pindex)
1819 			goto unlock_return;
1820 		psize = object->size - pindex;
1821 	}
1822 
1823 	start = 0;
1824 	p_start = NULL;
1825 
1826 	p = vm_page_find_least(object, pindex);
1827 	/*
1828 	 * Assert: the variable p is either (1) the page with the
1829 	 * least pindex greater than or equal to the parameter pindex
1830 	 * or (2) NULL.
1831 	 */
1832 	for (;
1833 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1834 	     p = TAILQ_NEXT(p, listq)) {
1835 		/*
1836 		 * don't allow an madvise to blow away our really
1837 		 * free pages allocating pv entries.
1838 		 */
1839 		if ((flags & MAP_PREFAULT_MADVISE) &&
1840 		    cnt.v_free_count < cnt.v_free_reserved) {
1841 			psize = tmpidx;
1842 			break;
1843 		}
1844 		if (p->valid == VM_PAGE_BITS_ALL) {
1845 			if (p_start == NULL) {
1846 				start = addr + ptoa(tmpidx);
1847 				p_start = p;
1848 			}
1849 		} else if (p_start != NULL) {
1850 			pmap_enter_object(map->pmap, start, addr +
1851 			    ptoa(tmpidx), p_start, prot);
1852 			p_start = NULL;
1853 		}
1854 	}
1855 	if (p_start != NULL)
1856 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1857 		    p_start, prot);
1858 unlock_return:
1859 	VM_OBJECT_UNLOCK(object);
1860 }
1861 
1862 /*
1863  *	vm_map_protect:
1864  *
1865  *	Sets the protection of the specified address
1866  *	region in the target map.  If "set_max" is
1867  *	specified, the maximum protection is to be set;
1868  *	otherwise, only the current protection is affected.
1869  */
1870 int
1871 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872 	       vm_prot_t new_prot, boolean_t set_max)
1873 {
1874 	vm_map_entry_t current, entry;
1875 	vm_object_t obj;
1876 	struct ucred *cred;
1877 	vm_prot_t old_prot;
1878 
1879 	vm_map_lock(map);
1880 
1881 	VM_MAP_RANGE_CHECK(map, start, end);
1882 
1883 	if (vm_map_lookup_entry(map, start, &entry)) {
1884 		vm_map_clip_start(map, entry, start);
1885 	} else {
1886 		entry = entry->next;
1887 	}
1888 
1889 	/*
1890 	 * Make a first pass to check for protection violations.
1891 	 */
1892 	current = entry;
1893 	while ((current != &map->header) && (current->start < end)) {
1894 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1895 			vm_map_unlock(map);
1896 			return (KERN_INVALID_ARGUMENT);
1897 		}
1898 		if ((new_prot & current->max_protection) != new_prot) {
1899 			vm_map_unlock(map);
1900 			return (KERN_PROTECTION_FAILURE);
1901 		}
1902 		current = current->next;
1903 	}
1904 
1905 
1906 	/*
1907 	 * Do an accounting pass for private read-only mappings that
1908 	 * now will do cow due to allowed write (e.g. debugger sets
1909 	 * breakpoint on text segment)
1910 	 */
1911 	for (current = entry; (current != &map->header) &&
1912 	     (current->start < end); current = current->next) {
1913 
1914 		vm_map_clip_end(map, current, end);
1915 
1916 		if (set_max ||
1917 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1918 		    ENTRY_CHARGED(current)) {
1919 			continue;
1920 		}
1921 
1922 		cred = curthread->td_ucred;
1923 		obj = current->object.vm_object;
1924 
1925 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1926 			if (!swap_reserve(current->end - current->start)) {
1927 				vm_map_unlock(map);
1928 				return (KERN_RESOURCE_SHORTAGE);
1929 			}
1930 			crhold(cred);
1931 			current->cred = cred;
1932 			continue;
1933 		}
1934 
1935 		VM_OBJECT_LOCK(obj);
1936 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1937 			VM_OBJECT_UNLOCK(obj);
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * Charge for the whole object allocation now, since
1943 		 * we cannot distinguish between non-charged and
1944 		 * charged clipped mapping of the same object later.
1945 		 */
1946 		KASSERT(obj->charge == 0,
1947 		    ("vm_map_protect: object %p overcharged\n", obj));
1948 		if (!swap_reserve(ptoa(obj->size))) {
1949 			VM_OBJECT_UNLOCK(obj);
1950 			vm_map_unlock(map);
1951 			return (KERN_RESOURCE_SHORTAGE);
1952 		}
1953 
1954 		crhold(cred);
1955 		obj->cred = cred;
1956 		obj->charge = ptoa(obj->size);
1957 		VM_OBJECT_UNLOCK(obj);
1958 	}
1959 
1960 	/*
1961 	 * Go back and fix up protections. [Note that clipping is not
1962 	 * necessary the second time.]
1963 	 */
1964 	current = entry;
1965 	while ((current != &map->header) && (current->start < end)) {
1966 		old_prot = current->protection;
1967 
1968 		if (set_max)
1969 			current->protection =
1970 			    (current->max_protection = new_prot) &
1971 			    old_prot;
1972 		else
1973 			current->protection = new_prot;
1974 
1975 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1976 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1977 		    (current->protection & VM_PROT_WRITE) != 0 &&
1978 		    (old_prot & VM_PROT_WRITE) == 0) {
1979 			vm_fault_copy_entry(map, map, current, current, NULL);
1980 		}
1981 
1982 		/*
1983 		 * When restricting access, update the physical map.  Worry
1984 		 * about copy-on-write here.
1985 		 */
1986 		if ((old_prot & ~current->protection) != 0) {
1987 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1988 							VM_PROT_ALL)
1989 			pmap_protect(map->pmap, current->start,
1990 			    current->end,
1991 			    current->protection & MASK(current));
1992 #undef	MASK
1993 		}
1994 		vm_map_simplify_entry(map, current);
1995 		current = current->next;
1996 	}
1997 	vm_map_unlock(map);
1998 	return (KERN_SUCCESS);
1999 }
2000 
2001 /*
2002  *	vm_map_madvise:
2003  *
2004  *	This routine traverses a processes map handling the madvise
2005  *	system call.  Advisories are classified as either those effecting
2006  *	the vm_map_entry structure, or those effecting the underlying
2007  *	objects.
2008  */
2009 int
2010 vm_map_madvise(
2011 	vm_map_t map,
2012 	vm_offset_t start,
2013 	vm_offset_t end,
2014 	int behav)
2015 {
2016 	vm_map_entry_t current, entry;
2017 	int modify_map = 0;
2018 
2019 	/*
2020 	 * Some madvise calls directly modify the vm_map_entry, in which case
2021 	 * we need to use an exclusive lock on the map and we need to perform
2022 	 * various clipping operations.  Otherwise we only need a read-lock
2023 	 * on the map.
2024 	 */
2025 	switch(behav) {
2026 	case MADV_NORMAL:
2027 	case MADV_SEQUENTIAL:
2028 	case MADV_RANDOM:
2029 	case MADV_NOSYNC:
2030 	case MADV_AUTOSYNC:
2031 	case MADV_NOCORE:
2032 	case MADV_CORE:
2033 		modify_map = 1;
2034 		vm_map_lock(map);
2035 		break;
2036 	case MADV_WILLNEED:
2037 	case MADV_DONTNEED:
2038 	case MADV_FREE:
2039 		vm_map_lock_read(map);
2040 		break;
2041 	default:
2042 		return (KERN_INVALID_ARGUMENT);
2043 	}
2044 
2045 	/*
2046 	 * Locate starting entry and clip if necessary.
2047 	 */
2048 	VM_MAP_RANGE_CHECK(map, start, end);
2049 
2050 	if (vm_map_lookup_entry(map, start, &entry)) {
2051 		if (modify_map)
2052 			vm_map_clip_start(map, entry, start);
2053 	} else {
2054 		entry = entry->next;
2055 	}
2056 
2057 	if (modify_map) {
2058 		/*
2059 		 * madvise behaviors that are implemented in the vm_map_entry.
2060 		 *
2061 		 * We clip the vm_map_entry so that behavioral changes are
2062 		 * limited to the specified address range.
2063 		 */
2064 		for (current = entry;
2065 		     (current != &map->header) && (current->start < end);
2066 		     current = current->next
2067 		) {
2068 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2069 				continue;
2070 
2071 			vm_map_clip_end(map, current, end);
2072 
2073 			switch (behav) {
2074 			case MADV_NORMAL:
2075 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2076 				break;
2077 			case MADV_SEQUENTIAL:
2078 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2079 				break;
2080 			case MADV_RANDOM:
2081 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2082 				break;
2083 			case MADV_NOSYNC:
2084 				current->eflags |= MAP_ENTRY_NOSYNC;
2085 				break;
2086 			case MADV_AUTOSYNC:
2087 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2088 				break;
2089 			case MADV_NOCORE:
2090 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2091 				break;
2092 			case MADV_CORE:
2093 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2094 				break;
2095 			default:
2096 				break;
2097 			}
2098 			vm_map_simplify_entry(map, current);
2099 		}
2100 		vm_map_unlock(map);
2101 	} else {
2102 		vm_pindex_t pstart, pend;
2103 
2104 		/*
2105 		 * madvise behaviors that are implemented in the underlying
2106 		 * vm_object.
2107 		 *
2108 		 * Since we don't clip the vm_map_entry, we have to clip
2109 		 * the vm_object pindex and count.
2110 		 */
2111 		for (current = entry;
2112 		     (current != &map->header) && (current->start < end);
2113 		     current = current->next
2114 		) {
2115 			vm_offset_t useStart;
2116 
2117 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118 				continue;
2119 
2120 			pstart = OFF_TO_IDX(current->offset);
2121 			pend = pstart + atop(current->end - current->start);
2122 			useStart = current->start;
2123 
2124 			if (current->start < start) {
2125 				pstart += atop(start - current->start);
2126 				useStart = start;
2127 			}
2128 			if (current->end > end)
2129 				pend -= atop(current->end - end);
2130 
2131 			if (pstart >= pend)
2132 				continue;
2133 
2134 			vm_object_madvise(current->object.vm_object, pstart,
2135 			    pend, behav);
2136 			if (behav == MADV_WILLNEED) {
2137 				vm_map_pmap_enter(map,
2138 				    useStart,
2139 				    current->protection,
2140 				    current->object.vm_object,
2141 				    pstart,
2142 				    ptoa(pend - pstart),
2143 				    MAP_PREFAULT_MADVISE
2144 				);
2145 			}
2146 		}
2147 		vm_map_unlock_read(map);
2148 	}
2149 	return (0);
2150 }
2151 
2152 
2153 /*
2154  *	vm_map_inherit:
2155  *
2156  *	Sets the inheritance of the specified address
2157  *	range in the target map.  Inheritance
2158  *	affects how the map will be shared with
2159  *	child maps at the time of vmspace_fork.
2160  */
2161 int
2162 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2163 	       vm_inherit_t new_inheritance)
2164 {
2165 	vm_map_entry_t entry;
2166 	vm_map_entry_t temp_entry;
2167 
2168 	switch (new_inheritance) {
2169 	case VM_INHERIT_NONE:
2170 	case VM_INHERIT_COPY:
2171 	case VM_INHERIT_SHARE:
2172 		break;
2173 	default:
2174 		return (KERN_INVALID_ARGUMENT);
2175 	}
2176 	vm_map_lock(map);
2177 	VM_MAP_RANGE_CHECK(map, start, end);
2178 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2179 		entry = temp_entry;
2180 		vm_map_clip_start(map, entry, start);
2181 	} else
2182 		entry = temp_entry->next;
2183 	while ((entry != &map->header) && (entry->start < end)) {
2184 		vm_map_clip_end(map, entry, end);
2185 		entry->inheritance = new_inheritance;
2186 		vm_map_simplify_entry(map, entry);
2187 		entry = entry->next;
2188 	}
2189 	vm_map_unlock(map);
2190 	return (KERN_SUCCESS);
2191 }
2192 
2193 /*
2194  *	vm_map_unwire:
2195  *
2196  *	Implements both kernel and user unwiring.
2197  */
2198 int
2199 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2200     int flags)
2201 {
2202 	vm_map_entry_t entry, first_entry, tmp_entry;
2203 	vm_offset_t saved_start;
2204 	unsigned int last_timestamp;
2205 	int rv;
2206 	boolean_t need_wakeup, result, user_unwire;
2207 
2208 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2209 	vm_map_lock(map);
2210 	VM_MAP_RANGE_CHECK(map, start, end);
2211 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2212 		if (flags & VM_MAP_WIRE_HOLESOK)
2213 			first_entry = first_entry->next;
2214 		else {
2215 			vm_map_unlock(map);
2216 			return (KERN_INVALID_ADDRESS);
2217 		}
2218 	}
2219 	last_timestamp = map->timestamp;
2220 	entry = first_entry;
2221 	while (entry != &map->header && entry->start < end) {
2222 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2223 			/*
2224 			 * We have not yet clipped the entry.
2225 			 */
2226 			saved_start = (start >= entry->start) ? start :
2227 			    entry->start;
2228 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2229 			if (vm_map_unlock_and_wait(map, 0)) {
2230 				/*
2231 				 * Allow interruption of user unwiring?
2232 				 */
2233 			}
2234 			vm_map_lock(map);
2235 			if (last_timestamp+1 != map->timestamp) {
2236 				/*
2237 				 * Look again for the entry because the map was
2238 				 * modified while it was unlocked.
2239 				 * Specifically, the entry may have been
2240 				 * clipped, merged, or deleted.
2241 				 */
2242 				if (!vm_map_lookup_entry(map, saved_start,
2243 				    &tmp_entry)) {
2244 					if (flags & VM_MAP_WIRE_HOLESOK)
2245 						tmp_entry = tmp_entry->next;
2246 					else {
2247 						if (saved_start == start) {
2248 							/*
2249 							 * First_entry has been deleted.
2250 							 */
2251 							vm_map_unlock(map);
2252 							return (KERN_INVALID_ADDRESS);
2253 						}
2254 						end = saved_start;
2255 						rv = KERN_INVALID_ADDRESS;
2256 						goto done;
2257 					}
2258 				}
2259 				if (entry == first_entry)
2260 					first_entry = tmp_entry;
2261 				else
2262 					first_entry = NULL;
2263 				entry = tmp_entry;
2264 			}
2265 			last_timestamp = map->timestamp;
2266 			continue;
2267 		}
2268 		vm_map_clip_start(map, entry, start);
2269 		vm_map_clip_end(map, entry, end);
2270 		/*
2271 		 * Mark the entry in case the map lock is released.  (See
2272 		 * above.)
2273 		 */
2274 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2275 		/*
2276 		 * Check the map for holes in the specified region.
2277 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2278 		 */
2279 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2280 		    (entry->end < end && (entry->next == &map->header ||
2281 		    entry->next->start > entry->end))) {
2282 			end = entry->end;
2283 			rv = KERN_INVALID_ADDRESS;
2284 			goto done;
2285 		}
2286 		/*
2287 		 * If system unwiring, require that the entry is system wired.
2288 		 */
2289 		if (!user_unwire &&
2290 		    vm_map_entry_system_wired_count(entry) == 0) {
2291 			end = entry->end;
2292 			rv = KERN_INVALID_ARGUMENT;
2293 			goto done;
2294 		}
2295 		entry = entry->next;
2296 	}
2297 	rv = KERN_SUCCESS;
2298 done:
2299 	need_wakeup = FALSE;
2300 	if (first_entry == NULL) {
2301 		result = vm_map_lookup_entry(map, start, &first_entry);
2302 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2303 			first_entry = first_entry->next;
2304 		else
2305 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2306 	}
2307 	entry = first_entry;
2308 	while (entry != &map->header && entry->start < end) {
2309 		if (rv == KERN_SUCCESS && (!user_unwire ||
2310 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2311 			if (user_unwire)
2312 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2313 			entry->wired_count--;
2314 			if (entry->wired_count == 0) {
2315 				/*
2316 				 * Retain the map lock.
2317 				 */
2318 				vm_fault_unwire(map, entry->start, entry->end,
2319 				    entry->object.vm_object != NULL &&
2320 				    (entry->object.vm_object->flags &
2321 				    OBJ_FICTITIOUS) != 0);
2322 			}
2323 		}
2324 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2325 			("vm_map_unwire: in-transition flag missing"));
2326 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2327 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2328 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2329 			need_wakeup = TRUE;
2330 		}
2331 		vm_map_simplify_entry(map, entry);
2332 		entry = entry->next;
2333 	}
2334 	vm_map_unlock(map);
2335 	if (need_wakeup)
2336 		vm_map_wakeup(map);
2337 	return (rv);
2338 }
2339 
2340 /*
2341  *	vm_map_wire:
2342  *
2343  *	Implements both kernel and user wiring.
2344  */
2345 int
2346 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2347     int flags)
2348 {
2349 	vm_map_entry_t entry, first_entry, tmp_entry;
2350 	vm_offset_t saved_end, saved_start;
2351 	unsigned int last_timestamp;
2352 	int rv;
2353 	boolean_t fictitious, need_wakeup, result, user_wire;
2354 	vm_prot_t prot;
2355 
2356 	prot = 0;
2357 	if (flags & VM_MAP_WIRE_WRITE)
2358 		prot |= VM_PROT_WRITE;
2359 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2360 	vm_map_lock(map);
2361 	VM_MAP_RANGE_CHECK(map, start, end);
2362 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2363 		if (flags & VM_MAP_WIRE_HOLESOK)
2364 			first_entry = first_entry->next;
2365 		else {
2366 			vm_map_unlock(map);
2367 			return (KERN_INVALID_ADDRESS);
2368 		}
2369 	}
2370 	last_timestamp = map->timestamp;
2371 	entry = first_entry;
2372 	while (entry != &map->header && entry->start < end) {
2373 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2374 			/*
2375 			 * We have not yet clipped the entry.
2376 			 */
2377 			saved_start = (start >= entry->start) ? start :
2378 			    entry->start;
2379 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2380 			if (vm_map_unlock_and_wait(map, 0)) {
2381 				/*
2382 				 * Allow interruption of user wiring?
2383 				 */
2384 			}
2385 			vm_map_lock(map);
2386 			if (last_timestamp + 1 != map->timestamp) {
2387 				/*
2388 				 * Look again for the entry because the map was
2389 				 * modified while it was unlocked.
2390 				 * Specifically, the entry may have been
2391 				 * clipped, merged, or deleted.
2392 				 */
2393 				if (!vm_map_lookup_entry(map, saved_start,
2394 				    &tmp_entry)) {
2395 					if (flags & VM_MAP_WIRE_HOLESOK)
2396 						tmp_entry = tmp_entry->next;
2397 					else {
2398 						if (saved_start == start) {
2399 							/*
2400 							 * first_entry has been deleted.
2401 							 */
2402 							vm_map_unlock(map);
2403 							return (KERN_INVALID_ADDRESS);
2404 						}
2405 						end = saved_start;
2406 						rv = KERN_INVALID_ADDRESS;
2407 						goto done;
2408 					}
2409 				}
2410 				if (entry == first_entry)
2411 					first_entry = tmp_entry;
2412 				else
2413 					first_entry = NULL;
2414 				entry = tmp_entry;
2415 			}
2416 			last_timestamp = map->timestamp;
2417 			continue;
2418 		}
2419 		vm_map_clip_start(map, entry, start);
2420 		vm_map_clip_end(map, entry, end);
2421 		/*
2422 		 * Mark the entry in case the map lock is released.  (See
2423 		 * above.)
2424 		 */
2425 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2426 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2427 		    || (entry->protection & prot) != prot) {
2428 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2429 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2430 				end = entry->end;
2431 				rv = KERN_INVALID_ADDRESS;
2432 				goto done;
2433 			}
2434 			goto next_entry;
2435 		}
2436 		if (entry->wired_count == 0) {
2437 			entry->wired_count++;
2438 			saved_start = entry->start;
2439 			saved_end = entry->end;
2440 			fictitious = entry->object.vm_object != NULL &&
2441 			    (entry->object.vm_object->flags &
2442 			    OBJ_FICTITIOUS) != 0;
2443 			/*
2444 			 * Release the map lock, relying on the in-transition
2445 			 * mark.  Mark the map busy for fork.
2446 			 */
2447 			vm_map_busy(map);
2448 			vm_map_unlock(map);
2449 			rv = vm_fault_wire(map, saved_start, saved_end,
2450 			    fictitious);
2451 			vm_map_lock(map);
2452 			vm_map_unbusy(map);
2453 			if (last_timestamp + 1 != map->timestamp) {
2454 				/*
2455 				 * Look again for the entry because the map was
2456 				 * modified while it was unlocked.  The entry
2457 				 * may have been clipped, but NOT merged or
2458 				 * deleted.
2459 				 */
2460 				result = vm_map_lookup_entry(map, saved_start,
2461 				    &tmp_entry);
2462 				KASSERT(result, ("vm_map_wire: lookup failed"));
2463 				if (entry == first_entry)
2464 					first_entry = tmp_entry;
2465 				else
2466 					first_entry = NULL;
2467 				entry = tmp_entry;
2468 				while (entry->end < saved_end) {
2469 					if (rv != KERN_SUCCESS) {
2470 						KASSERT(entry->wired_count == 1,
2471 						    ("vm_map_wire: bad count"));
2472 						entry->wired_count = -1;
2473 					}
2474 					entry = entry->next;
2475 				}
2476 			}
2477 			last_timestamp = map->timestamp;
2478 			if (rv != KERN_SUCCESS) {
2479 				KASSERT(entry->wired_count == 1,
2480 				    ("vm_map_wire: bad count"));
2481 				/*
2482 				 * Assign an out-of-range value to represent
2483 				 * the failure to wire this entry.
2484 				 */
2485 				entry->wired_count = -1;
2486 				end = entry->end;
2487 				goto done;
2488 			}
2489 		} else if (!user_wire ||
2490 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2491 			entry->wired_count++;
2492 		}
2493 		/*
2494 		 * Check the map for holes in the specified region.
2495 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2496 		 */
2497 	next_entry:
2498 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2499 		    (entry->end < end && (entry->next == &map->header ||
2500 		    entry->next->start > entry->end))) {
2501 			end = entry->end;
2502 			rv = KERN_INVALID_ADDRESS;
2503 			goto done;
2504 		}
2505 		entry = entry->next;
2506 	}
2507 	rv = KERN_SUCCESS;
2508 done:
2509 	need_wakeup = FALSE;
2510 	if (first_entry == NULL) {
2511 		result = vm_map_lookup_entry(map, start, &first_entry);
2512 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2513 			first_entry = first_entry->next;
2514 		else
2515 			KASSERT(result, ("vm_map_wire: lookup failed"));
2516 	}
2517 	entry = first_entry;
2518 	while (entry != &map->header && entry->start < end) {
2519 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2520 			goto next_entry_done;
2521 		if (rv == KERN_SUCCESS) {
2522 			if (user_wire)
2523 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2524 		} else if (entry->wired_count == -1) {
2525 			/*
2526 			 * Wiring failed on this entry.  Thus, unwiring is
2527 			 * unnecessary.
2528 			 */
2529 			entry->wired_count = 0;
2530 		} else {
2531 			if (!user_wire ||
2532 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2533 				entry->wired_count--;
2534 			if (entry->wired_count == 0) {
2535 				/*
2536 				 * Retain the map lock.
2537 				 */
2538 				vm_fault_unwire(map, entry->start, entry->end,
2539 				    entry->object.vm_object != NULL &&
2540 				    (entry->object.vm_object->flags &
2541 				    OBJ_FICTITIOUS) != 0);
2542 			}
2543 		}
2544 	next_entry_done:
2545 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2546 			("vm_map_wire: in-transition flag missing"));
2547 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2548 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2549 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2550 			need_wakeup = TRUE;
2551 		}
2552 		vm_map_simplify_entry(map, entry);
2553 		entry = entry->next;
2554 	}
2555 	vm_map_unlock(map);
2556 	if (need_wakeup)
2557 		vm_map_wakeup(map);
2558 	return (rv);
2559 }
2560 
2561 /*
2562  * vm_map_sync
2563  *
2564  * Push any dirty cached pages in the address range to their pager.
2565  * If syncio is TRUE, dirty pages are written synchronously.
2566  * If invalidate is TRUE, any cached pages are freed as well.
2567  *
2568  * If the size of the region from start to end is zero, we are
2569  * supposed to flush all modified pages within the region containing
2570  * start.  Unfortunately, a region can be split or coalesced with
2571  * neighboring regions, making it difficult to determine what the
2572  * original region was.  Therefore, we approximate this requirement by
2573  * flushing the current region containing start.
2574  *
2575  * Returns an error if any part of the specified range is not mapped.
2576  */
2577 int
2578 vm_map_sync(
2579 	vm_map_t map,
2580 	vm_offset_t start,
2581 	vm_offset_t end,
2582 	boolean_t syncio,
2583 	boolean_t invalidate)
2584 {
2585 	vm_map_entry_t current;
2586 	vm_map_entry_t entry;
2587 	vm_size_t size;
2588 	vm_object_t object;
2589 	vm_ooffset_t offset;
2590 	unsigned int last_timestamp;
2591 	boolean_t failed;
2592 
2593 	vm_map_lock_read(map);
2594 	VM_MAP_RANGE_CHECK(map, start, end);
2595 	if (!vm_map_lookup_entry(map, start, &entry)) {
2596 		vm_map_unlock_read(map);
2597 		return (KERN_INVALID_ADDRESS);
2598 	} else if (start == end) {
2599 		start = entry->start;
2600 		end = entry->end;
2601 	}
2602 	/*
2603 	 * Make a first pass to check for user-wired memory and holes.
2604 	 */
2605 	for (current = entry; current != &map->header && current->start < end;
2606 	    current = current->next) {
2607 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2608 			vm_map_unlock_read(map);
2609 			return (KERN_INVALID_ARGUMENT);
2610 		}
2611 		if (end > current->end &&
2612 		    (current->next == &map->header ||
2613 			current->end != current->next->start)) {
2614 			vm_map_unlock_read(map);
2615 			return (KERN_INVALID_ADDRESS);
2616 		}
2617 	}
2618 
2619 	if (invalidate)
2620 		pmap_remove(map->pmap, start, end);
2621 	failed = FALSE;
2622 
2623 	/*
2624 	 * Make a second pass, cleaning/uncaching pages from the indicated
2625 	 * objects as we go.
2626 	 */
2627 	for (current = entry; current != &map->header && current->start < end;) {
2628 		offset = current->offset + (start - current->start);
2629 		size = (end <= current->end ? end : current->end) - start;
2630 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2631 			vm_map_t smap;
2632 			vm_map_entry_t tentry;
2633 			vm_size_t tsize;
2634 
2635 			smap = current->object.sub_map;
2636 			vm_map_lock_read(smap);
2637 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2638 			tsize = tentry->end - offset;
2639 			if (tsize < size)
2640 				size = tsize;
2641 			object = tentry->object.vm_object;
2642 			offset = tentry->offset + (offset - tentry->start);
2643 			vm_map_unlock_read(smap);
2644 		} else {
2645 			object = current->object.vm_object;
2646 		}
2647 		vm_object_reference(object);
2648 		last_timestamp = map->timestamp;
2649 		vm_map_unlock_read(map);
2650 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2651 			failed = TRUE;
2652 		start += size;
2653 		vm_object_deallocate(object);
2654 		vm_map_lock_read(map);
2655 		if (last_timestamp == map->timestamp ||
2656 		    !vm_map_lookup_entry(map, start, &current))
2657 			current = current->next;
2658 	}
2659 
2660 	vm_map_unlock_read(map);
2661 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2662 }
2663 
2664 /*
2665  *	vm_map_entry_unwire:	[ internal use only ]
2666  *
2667  *	Make the region specified by this entry pageable.
2668  *
2669  *	The map in question should be locked.
2670  *	[This is the reason for this routine's existence.]
2671  */
2672 static void
2673 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2674 {
2675 	vm_fault_unwire(map, entry->start, entry->end,
2676 	    entry->object.vm_object != NULL &&
2677 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2678 	entry->wired_count = 0;
2679 }
2680 
2681 static void
2682 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2683 {
2684 
2685 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2686 		vm_object_deallocate(entry->object.vm_object);
2687 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2688 }
2689 
2690 /*
2691  *	vm_map_entry_delete:	[ internal use only ]
2692  *
2693  *	Deallocate the given entry from the target map.
2694  */
2695 static void
2696 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2697 {
2698 	vm_object_t object;
2699 	vm_pindex_t offidxstart, offidxend, count, size1;
2700 	vm_ooffset_t size;
2701 
2702 	vm_map_entry_unlink(map, entry);
2703 	object = entry->object.vm_object;
2704 	size = entry->end - entry->start;
2705 	map->size -= size;
2706 
2707 	if (entry->cred != NULL) {
2708 		swap_release_by_cred(size, entry->cred);
2709 		crfree(entry->cred);
2710 	}
2711 
2712 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2713 	    (object != NULL)) {
2714 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2715 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2716 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2717 		count = OFF_TO_IDX(size);
2718 		offidxstart = OFF_TO_IDX(entry->offset);
2719 		offidxend = offidxstart + count;
2720 		VM_OBJECT_LOCK(object);
2721 		if (object->ref_count != 1 &&
2722 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2723 		    object == kernel_object || object == kmem_object)) {
2724 			vm_object_collapse(object);
2725 
2726 			/*
2727 			 * The option OBJPR_NOTMAPPED can be passed here
2728 			 * because vm_map_delete() already performed
2729 			 * pmap_remove() on the only mapping to this range
2730 			 * of pages.
2731 			 */
2732 			vm_object_page_remove(object, offidxstart, offidxend,
2733 			    OBJPR_NOTMAPPED);
2734 			if (object->type == OBJT_SWAP)
2735 				swap_pager_freespace(object, offidxstart, count);
2736 			if (offidxend >= object->size &&
2737 			    offidxstart < object->size) {
2738 				size1 = object->size;
2739 				object->size = offidxstart;
2740 				if (object->cred != NULL) {
2741 					size1 -= object->size;
2742 					KASSERT(object->charge >= ptoa(size1),
2743 					    ("vm_map_entry_delete: object->charge < 0"));
2744 					swap_release_by_cred(ptoa(size1), object->cred);
2745 					object->charge -= ptoa(size1);
2746 				}
2747 			}
2748 		}
2749 		VM_OBJECT_UNLOCK(object);
2750 	} else
2751 		entry->object.vm_object = NULL;
2752 	if (map->system_map)
2753 		vm_map_entry_deallocate(entry, TRUE);
2754 	else {
2755 		entry->next = curthread->td_map_def_user;
2756 		curthread->td_map_def_user = entry;
2757 	}
2758 }
2759 
2760 /*
2761  *	vm_map_delete:	[ internal use only ]
2762  *
2763  *	Deallocates the given address range from the target
2764  *	map.
2765  */
2766 int
2767 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2768 {
2769 	vm_map_entry_t entry;
2770 	vm_map_entry_t first_entry;
2771 
2772 	VM_MAP_ASSERT_LOCKED(map);
2773 
2774 	/*
2775 	 * Find the start of the region, and clip it
2776 	 */
2777 	if (!vm_map_lookup_entry(map, start, &first_entry))
2778 		entry = first_entry->next;
2779 	else {
2780 		entry = first_entry;
2781 		vm_map_clip_start(map, entry, start);
2782 	}
2783 
2784 	/*
2785 	 * Step through all entries in this region
2786 	 */
2787 	while ((entry != &map->header) && (entry->start < end)) {
2788 		vm_map_entry_t next;
2789 
2790 		/*
2791 		 * Wait for wiring or unwiring of an entry to complete.
2792 		 * Also wait for any system wirings to disappear on
2793 		 * user maps.
2794 		 */
2795 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2796 		    (vm_map_pmap(map) != kernel_pmap &&
2797 		    vm_map_entry_system_wired_count(entry) != 0)) {
2798 			unsigned int last_timestamp;
2799 			vm_offset_t saved_start;
2800 			vm_map_entry_t tmp_entry;
2801 
2802 			saved_start = entry->start;
2803 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2804 			last_timestamp = map->timestamp;
2805 			(void) vm_map_unlock_and_wait(map, 0);
2806 			vm_map_lock(map);
2807 			if (last_timestamp + 1 != map->timestamp) {
2808 				/*
2809 				 * Look again for the entry because the map was
2810 				 * modified while it was unlocked.
2811 				 * Specifically, the entry may have been
2812 				 * clipped, merged, or deleted.
2813 				 */
2814 				if (!vm_map_lookup_entry(map, saved_start,
2815 							 &tmp_entry))
2816 					entry = tmp_entry->next;
2817 				else {
2818 					entry = tmp_entry;
2819 					vm_map_clip_start(map, entry,
2820 							  saved_start);
2821 				}
2822 			}
2823 			continue;
2824 		}
2825 		vm_map_clip_end(map, entry, end);
2826 
2827 		next = entry->next;
2828 
2829 		/*
2830 		 * Unwire before removing addresses from the pmap; otherwise,
2831 		 * unwiring will put the entries back in the pmap.
2832 		 */
2833 		if (entry->wired_count != 0) {
2834 			vm_map_entry_unwire(map, entry);
2835 		}
2836 
2837 		pmap_remove(map->pmap, entry->start, entry->end);
2838 
2839 		/*
2840 		 * Delete the entry only after removing all pmap
2841 		 * entries pointing to its pages.  (Otherwise, its
2842 		 * page frames may be reallocated, and any modify bits
2843 		 * will be set in the wrong object!)
2844 		 */
2845 		vm_map_entry_delete(map, entry);
2846 		entry = next;
2847 	}
2848 	return (KERN_SUCCESS);
2849 }
2850 
2851 /*
2852  *	vm_map_remove:
2853  *
2854  *	Remove the given address range from the target map.
2855  *	This is the exported form of vm_map_delete.
2856  */
2857 int
2858 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2859 {
2860 	int result;
2861 
2862 	vm_map_lock(map);
2863 	VM_MAP_RANGE_CHECK(map, start, end);
2864 	result = vm_map_delete(map, start, end);
2865 	vm_map_unlock(map);
2866 	return (result);
2867 }
2868 
2869 /*
2870  *	vm_map_check_protection:
2871  *
2872  *	Assert that the target map allows the specified privilege on the
2873  *	entire address region given.  The entire region must be allocated.
2874  *
2875  *	WARNING!  This code does not and should not check whether the
2876  *	contents of the region is accessible.  For example a smaller file
2877  *	might be mapped into a larger address space.
2878  *
2879  *	NOTE!  This code is also called by munmap().
2880  *
2881  *	The map must be locked.  A read lock is sufficient.
2882  */
2883 boolean_t
2884 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2885 			vm_prot_t protection)
2886 {
2887 	vm_map_entry_t entry;
2888 	vm_map_entry_t tmp_entry;
2889 
2890 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2891 		return (FALSE);
2892 	entry = tmp_entry;
2893 
2894 	while (start < end) {
2895 		if (entry == &map->header)
2896 			return (FALSE);
2897 		/*
2898 		 * No holes allowed!
2899 		 */
2900 		if (start < entry->start)
2901 			return (FALSE);
2902 		/*
2903 		 * Check protection associated with entry.
2904 		 */
2905 		if ((entry->protection & protection) != protection)
2906 			return (FALSE);
2907 		/* go to next entry */
2908 		start = entry->end;
2909 		entry = entry->next;
2910 	}
2911 	return (TRUE);
2912 }
2913 
2914 /*
2915  *	vm_map_copy_entry:
2916  *
2917  *	Copies the contents of the source entry to the destination
2918  *	entry.  The entries *must* be aligned properly.
2919  */
2920 static void
2921 vm_map_copy_entry(
2922 	vm_map_t src_map,
2923 	vm_map_t dst_map,
2924 	vm_map_entry_t src_entry,
2925 	vm_map_entry_t dst_entry,
2926 	vm_ooffset_t *fork_charge)
2927 {
2928 	vm_object_t src_object;
2929 	vm_map_entry_t fake_entry;
2930 	vm_offset_t size;
2931 	struct ucred *cred;
2932 	int charged;
2933 
2934 	VM_MAP_ASSERT_LOCKED(dst_map);
2935 
2936 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2937 		return;
2938 
2939 	if (src_entry->wired_count == 0) {
2940 
2941 		/*
2942 		 * If the source entry is marked needs_copy, it is already
2943 		 * write-protected.
2944 		 */
2945 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2946 			pmap_protect(src_map->pmap,
2947 			    src_entry->start,
2948 			    src_entry->end,
2949 			    src_entry->protection & ~VM_PROT_WRITE);
2950 		}
2951 
2952 		/*
2953 		 * Make a copy of the object.
2954 		 */
2955 		size = src_entry->end - src_entry->start;
2956 		if ((src_object = src_entry->object.vm_object) != NULL) {
2957 			VM_OBJECT_LOCK(src_object);
2958 			charged = ENTRY_CHARGED(src_entry);
2959 			if ((src_object->handle == NULL) &&
2960 				(src_object->type == OBJT_DEFAULT ||
2961 				 src_object->type == OBJT_SWAP)) {
2962 				vm_object_collapse(src_object);
2963 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2964 					vm_object_split(src_entry);
2965 					src_object = src_entry->object.vm_object;
2966 				}
2967 			}
2968 			vm_object_reference_locked(src_object);
2969 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2970 			if (src_entry->cred != NULL &&
2971 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2972 				KASSERT(src_object->cred == NULL,
2973 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2974 				     src_object));
2975 				src_object->cred = src_entry->cred;
2976 				src_object->charge = size;
2977 			}
2978 			VM_OBJECT_UNLOCK(src_object);
2979 			dst_entry->object.vm_object = src_object;
2980 			if (charged) {
2981 				cred = curthread->td_ucred;
2982 				crhold(cred);
2983 				dst_entry->cred = cred;
2984 				*fork_charge += size;
2985 				if (!(src_entry->eflags &
2986 				      MAP_ENTRY_NEEDS_COPY)) {
2987 					crhold(cred);
2988 					src_entry->cred = cred;
2989 					*fork_charge += size;
2990 				}
2991 			}
2992 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2993 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994 			dst_entry->offset = src_entry->offset;
2995 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
2996 				/*
2997 				 * MAP_ENTRY_VN_WRITECNT cannot
2998 				 * indicate write reference from
2999 				 * src_entry, since the entry is
3000 				 * marked as needs copy.  Allocate a
3001 				 * fake entry that is used to
3002 				 * decrement object->un_pager.vnp.writecount
3003 				 * at the appropriate time.  Attach
3004 				 * fake_entry to the deferred list.
3005 				 */
3006 				fake_entry = vm_map_entry_create(dst_map);
3007 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3008 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3009 				vm_object_reference(src_object);
3010 				fake_entry->object.vm_object = src_object;
3011 				fake_entry->start = src_entry->start;
3012 				fake_entry->end = src_entry->end;
3013 				fake_entry->next = curthread->td_map_def_user;
3014 				curthread->td_map_def_user = fake_entry;
3015 			}
3016 		} else {
3017 			dst_entry->object.vm_object = NULL;
3018 			dst_entry->offset = 0;
3019 			if (src_entry->cred != NULL) {
3020 				dst_entry->cred = curthread->td_ucred;
3021 				crhold(dst_entry->cred);
3022 				*fork_charge += size;
3023 			}
3024 		}
3025 
3026 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3027 		    dst_entry->end - dst_entry->start, src_entry->start);
3028 	} else {
3029 		/*
3030 		 * Of course, wired down pages can't be set copy-on-write.
3031 		 * Cause wired pages to be copied into the new map by
3032 		 * simulating faults (the new pages are pageable)
3033 		 */
3034 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3035 		    fork_charge);
3036 	}
3037 }
3038 
3039 /*
3040  * vmspace_map_entry_forked:
3041  * Update the newly-forked vmspace each time a map entry is inherited
3042  * or copied.  The values for vm_dsize and vm_tsize are approximate
3043  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3044  */
3045 static void
3046 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3047     vm_map_entry_t entry)
3048 {
3049 	vm_size_t entrysize;
3050 	vm_offset_t newend;
3051 
3052 	entrysize = entry->end - entry->start;
3053 	vm2->vm_map.size += entrysize;
3054 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3055 		vm2->vm_ssize += btoc(entrysize);
3056 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3057 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3058 		newend = MIN(entry->end,
3059 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3060 		vm2->vm_dsize += btoc(newend - entry->start);
3061 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3062 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3063 		newend = MIN(entry->end,
3064 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3065 		vm2->vm_tsize += btoc(newend - entry->start);
3066 	}
3067 }
3068 
3069 /*
3070  * vmspace_fork:
3071  * Create a new process vmspace structure and vm_map
3072  * based on those of an existing process.  The new map
3073  * is based on the old map, according to the inheritance
3074  * values on the regions in that map.
3075  *
3076  * XXX It might be worth coalescing the entries added to the new vmspace.
3077  *
3078  * The source map must not be locked.
3079  */
3080 struct vmspace *
3081 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3082 {
3083 	struct vmspace *vm2;
3084 	vm_map_t new_map, old_map;
3085 	vm_map_entry_t new_entry, old_entry;
3086 	vm_object_t object;
3087 	int locked;
3088 
3089 	old_map = &vm1->vm_map;
3090 	/* Copy immutable fields of vm1 to vm2. */
3091 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3092 	if (vm2 == NULL)
3093 		return (NULL);
3094 	vm2->vm_taddr = vm1->vm_taddr;
3095 	vm2->vm_daddr = vm1->vm_daddr;
3096 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3097 	vm_map_lock(old_map);
3098 	if (old_map->busy)
3099 		vm_map_wait_busy(old_map);
3100 	new_map = &vm2->vm_map;
3101 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3102 	KASSERT(locked, ("vmspace_fork: lock failed"));
3103 
3104 	old_entry = old_map->header.next;
3105 
3106 	while (old_entry != &old_map->header) {
3107 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3108 			panic("vm_map_fork: encountered a submap");
3109 
3110 		switch (old_entry->inheritance) {
3111 		case VM_INHERIT_NONE:
3112 			break;
3113 
3114 		case VM_INHERIT_SHARE:
3115 			/*
3116 			 * Clone the entry, creating the shared object if necessary.
3117 			 */
3118 			object = old_entry->object.vm_object;
3119 			if (object == NULL) {
3120 				object = vm_object_allocate(OBJT_DEFAULT,
3121 					atop(old_entry->end - old_entry->start));
3122 				old_entry->object.vm_object = object;
3123 				old_entry->offset = 0;
3124 				if (old_entry->cred != NULL) {
3125 					object->cred = old_entry->cred;
3126 					object->charge = old_entry->end -
3127 					    old_entry->start;
3128 					old_entry->cred = NULL;
3129 				}
3130 			}
3131 
3132 			/*
3133 			 * Add the reference before calling vm_object_shadow
3134 			 * to insure that a shadow object is created.
3135 			 */
3136 			vm_object_reference(object);
3137 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3138 				vm_object_shadow(&old_entry->object.vm_object,
3139 				    &old_entry->offset,
3140 				    old_entry->end - old_entry->start);
3141 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3142 				/* Transfer the second reference too. */
3143 				vm_object_reference(
3144 				    old_entry->object.vm_object);
3145 
3146 				/*
3147 				 * As in vm_map_simplify_entry(), the
3148 				 * vnode lock will not be acquired in
3149 				 * this call to vm_object_deallocate().
3150 				 */
3151 				vm_object_deallocate(object);
3152 				object = old_entry->object.vm_object;
3153 			}
3154 			VM_OBJECT_LOCK(object);
3155 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3156 			if (old_entry->cred != NULL) {
3157 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3158 				object->cred = old_entry->cred;
3159 				object->charge = old_entry->end - old_entry->start;
3160 				old_entry->cred = NULL;
3161 			}
3162 			VM_OBJECT_UNLOCK(object);
3163 
3164 			/*
3165 			 * Clone the entry, referencing the shared object.
3166 			 */
3167 			new_entry = vm_map_entry_create(new_map);
3168 			*new_entry = *old_entry;
3169 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3170 			    MAP_ENTRY_IN_TRANSITION);
3171 			new_entry->wired_count = 0;
3172 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3173 				object = new_entry->object.vm_object;
3174 				KASSERT(((struct vnode *)object->handle)->
3175 				    v_writecount > 0,
3176 				    ("vmspace_fork: v_writecount"));
3177 				KASSERT(object->un_pager.vnp.writemappings > 0,
3178 				    ("vmspace_fork: vnp.writecount"));
3179 				vnode_pager_update_writecount(object,
3180 				    new_entry->start, new_entry->end);
3181 			}
3182 
3183 			/*
3184 			 * Insert the entry into the new map -- we know we're
3185 			 * inserting at the end of the new map.
3186 			 */
3187 			vm_map_entry_link(new_map, new_map->header.prev,
3188 			    new_entry);
3189 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3190 
3191 			/*
3192 			 * Update the physical map
3193 			 */
3194 			pmap_copy(new_map->pmap, old_map->pmap,
3195 			    new_entry->start,
3196 			    (old_entry->end - old_entry->start),
3197 			    old_entry->start);
3198 			break;
3199 
3200 		case VM_INHERIT_COPY:
3201 			/*
3202 			 * Clone the entry and link into the map.
3203 			 */
3204 			new_entry = vm_map_entry_create(new_map);
3205 			*new_entry = *old_entry;
3206 			/*
3207 			 * Copied entry is COW over the old object.
3208 			 */
3209 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3210 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3211 			new_entry->wired_count = 0;
3212 			new_entry->object.vm_object = NULL;
3213 			new_entry->cred = NULL;
3214 			vm_map_entry_link(new_map, new_map->header.prev,
3215 			    new_entry);
3216 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3217 			vm_map_copy_entry(old_map, new_map, old_entry,
3218 			    new_entry, fork_charge);
3219 			break;
3220 		}
3221 		old_entry = old_entry->next;
3222 	}
3223 	/*
3224 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3225 	 * map entries, which cannot be done until both old_map and
3226 	 * new_map locks are released.
3227 	 */
3228 	sx_xunlock(&old_map->lock);
3229 	sx_xunlock(&new_map->lock);
3230 	vm_map_process_deferred();
3231 
3232 	return (vm2);
3233 }
3234 
3235 int
3236 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3237     vm_prot_t prot, vm_prot_t max, int cow)
3238 {
3239 	vm_map_entry_t new_entry, prev_entry;
3240 	vm_offset_t bot, top;
3241 	vm_size_t growsize, init_ssize;
3242 	int orient, rv;
3243 	rlim_t lmemlim, vmemlim;
3244 
3245 	/*
3246 	 * The stack orientation is piggybacked with the cow argument.
3247 	 * Extract it into orient and mask the cow argument so that we
3248 	 * don't pass it around further.
3249 	 * NOTE: We explicitly allow bi-directional stacks.
3250 	 */
3251 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3252 	cow &= ~orient;
3253 	KASSERT(orient != 0, ("No stack grow direction"));
3254 
3255 	if (addrbos < vm_map_min(map) ||
3256 	    addrbos > vm_map_max(map) ||
3257 	    addrbos + max_ssize < addrbos)
3258 		return (KERN_NO_SPACE);
3259 
3260 	growsize = sgrowsiz;
3261 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3262 
3263 	PROC_LOCK(curproc);
3264 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3265 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3266 	PROC_UNLOCK(curproc);
3267 
3268 	vm_map_lock(map);
3269 
3270 	/* If addr is already mapped, no go */
3271 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3272 		vm_map_unlock(map);
3273 		return (KERN_NO_SPACE);
3274 	}
3275 
3276 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3277 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3278 			vm_map_unlock(map);
3279 			return (KERN_NO_SPACE);
3280 		}
3281 	}
3282 
3283 	/* If we would blow our VMEM resource limit, no go */
3284 	if (map->size + init_ssize > vmemlim) {
3285 		vm_map_unlock(map);
3286 		return (KERN_NO_SPACE);
3287 	}
3288 
3289 	/*
3290 	 * If we can't accomodate max_ssize in the current mapping, no go.
3291 	 * However, we need to be aware that subsequent user mappings might
3292 	 * map into the space we have reserved for stack, and currently this
3293 	 * space is not protected.
3294 	 *
3295 	 * Hopefully we will at least detect this condition when we try to
3296 	 * grow the stack.
3297 	 */
3298 	if ((prev_entry->next != &map->header) &&
3299 	    (prev_entry->next->start < addrbos + max_ssize)) {
3300 		vm_map_unlock(map);
3301 		return (KERN_NO_SPACE);
3302 	}
3303 
3304 	/*
3305 	 * We initially map a stack of only init_ssize.  We will grow as
3306 	 * needed later.  Depending on the orientation of the stack (i.e.
3307 	 * the grow direction) we either map at the top of the range, the
3308 	 * bottom of the range or in the middle.
3309 	 *
3310 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3311 	 * and cow to be 0.  Possibly we should eliminate these as input
3312 	 * parameters, and just pass these values here in the insert call.
3313 	 */
3314 	if (orient == MAP_STACK_GROWS_DOWN)
3315 		bot = addrbos + max_ssize - init_ssize;
3316 	else if (orient == MAP_STACK_GROWS_UP)
3317 		bot = addrbos;
3318 	else
3319 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3320 	top = bot + init_ssize;
3321 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3322 
3323 	/* Now set the avail_ssize amount. */
3324 	if (rv == KERN_SUCCESS) {
3325 		if (prev_entry != &map->header)
3326 			vm_map_clip_end(map, prev_entry, bot);
3327 		new_entry = prev_entry->next;
3328 		if (new_entry->end != top || new_entry->start != bot)
3329 			panic("Bad entry start/end for new stack entry");
3330 
3331 		new_entry->avail_ssize = max_ssize - init_ssize;
3332 		if (orient & MAP_STACK_GROWS_DOWN)
3333 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3334 		if (orient & MAP_STACK_GROWS_UP)
3335 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3336 	}
3337 
3338 	vm_map_unlock(map);
3339 	return (rv);
3340 }
3341 
3342 static int stack_guard_page = 0;
3343 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3344 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3345     &stack_guard_page, 0,
3346     "Insert stack guard page ahead of the growable segments.");
3347 
3348 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3349  * desired address is already mapped, or if we successfully grow
3350  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3351  * stack range (this is strange, but preserves compatibility with
3352  * the grow function in vm_machdep.c).
3353  */
3354 int
3355 vm_map_growstack(struct proc *p, vm_offset_t addr)
3356 {
3357 	vm_map_entry_t next_entry, prev_entry;
3358 	vm_map_entry_t new_entry, stack_entry;
3359 	struct vmspace *vm = p->p_vmspace;
3360 	vm_map_t map = &vm->vm_map;
3361 	vm_offset_t end;
3362 	vm_size_t growsize;
3363 	size_t grow_amount, max_grow;
3364 	rlim_t lmemlim, stacklim, vmemlim;
3365 	int is_procstack, rv;
3366 	struct ucred *cred;
3367 #ifdef notyet
3368 	uint64_t limit;
3369 #endif
3370 #ifdef RACCT
3371 	int error;
3372 #endif
3373 
3374 Retry:
3375 	PROC_LOCK(p);
3376 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3377 	stacklim = lim_cur(p, RLIMIT_STACK);
3378 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3379 	PROC_UNLOCK(p);
3380 
3381 	vm_map_lock_read(map);
3382 
3383 	/* If addr is already in the entry range, no need to grow.*/
3384 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3385 		vm_map_unlock_read(map);
3386 		return (KERN_SUCCESS);
3387 	}
3388 
3389 	next_entry = prev_entry->next;
3390 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3391 		/*
3392 		 * This entry does not grow upwards. Since the address lies
3393 		 * beyond this entry, the next entry (if one exists) has to
3394 		 * be a downward growable entry. The entry list header is
3395 		 * never a growable entry, so it suffices to check the flags.
3396 		 */
3397 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3398 			vm_map_unlock_read(map);
3399 			return (KERN_SUCCESS);
3400 		}
3401 		stack_entry = next_entry;
3402 	} else {
3403 		/*
3404 		 * This entry grows upward. If the next entry does not at
3405 		 * least grow downwards, this is the entry we need to grow.
3406 		 * otherwise we have two possible choices and we have to
3407 		 * select one.
3408 		 */
3409 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3410 			/*
3411 			 * We have two choices; grow the entry closest to
3412 			 * the address to minimize the amount of growth.
3413 			 */
3414 			if (addr - prev_entry->end <= next_entry->start - addr)
3415 				stack_entry = prev_entry;
3416 			else
3417 				stack_entry = next_entry;
3418 		} else
3419 			stack_entry = prev_entry;
3420 	}
3421 
3422 	if (stack_entry == next_entry) {
3423 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3424 		KASSERT(addr < stack_entry->start, ("foo"));
3425 		end = (prev_entry != &map->header) ? prev_entry->end :
3426 		    stack_entry->start - stack_entry->avail_ssize;
3427 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3428 		max_grow = stack_entry->start - end;
3429 	} else {
3430 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3431 		KASSERT(addr >= stack_entry->end, ("foo"));
3432 		end = (next_entry != &map->header) ? next_entry->start :
3433 		    stack_entry->end + stack_entry->avail_ssize;
3434 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3435 		max_grow = end - stack_entry->end;
3436 	}
3437 
3438 	if (grow_amount > stack_entry->avail_ssize) {
3439 		vm_map_unlock_read(map);
3440 		return (KERN_NO_SPACE);
3441 	}
3442 
3443 	/*
3444 	 * If there is no longer enough space between the entries nogo, and
3445 	 * adjust the available space.  Note: this  should only happen if the
3446 	 * user has mapped into the stack area after the stack was created,
3447 	 * and is probably an error.
3448 	 *
3449 	 * This also effectively destroys any guard page the user might have
3450 	 * intended by limiting the stack size.
3451 	 */
3452 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3453 		if (vm_map_lock_upgrade(map))
3454 			goto Retry;
3455 
3456 		stack_entry->avail_ssize = max_grow;
3457 
3458 		vm_map_unlock(map);
3459 		return (KERN_NO_SPACE);
3460 	}
3461 
3462 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3463 
3464 	/*
3465 	 * If this is the main process stack, see if we're over the stack
3466 	 * limit.
3467 	 */
3468 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3469 		vm_map_unlock_read(map);
3470 		return (KERN_NO_SPACE);
3471 	}
3472 #ifdef RACCT
3473 	PROC_LOCK(p);
3474 	if (is_procstack &&
3475 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3476 		PROC_UNLOCK(p);
3477 		vm_map_unlock_read(map);
3478 		return (KERN_NO_SPACE);
3479 	}
3480 	PROC_UNLOCK(p);
3481 #endif
3482 
3483 	/* Round up the grow amount modulo sgrowsiz */
3484 	growsize = sgrowsiz;
3485 	grow_amount = roundup(grow_amount, growsize);
3486 	if (grow_amount > stack_entry->avail_ssize)
3487 		grow_amount = stack_entry->avail_ssize;
3488 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3489 		grow_amount = trunc_page((vm_size_t)stacklim) -
3490 		    ctob(vm->vm_ssize);
3491 	}
3492 #ifdef notyet
3493 	PROC_LOCK(p);
3494 	limit = racct_get_available(p, RACCT_STACK);
3495 	PROC_UNLOCK(p);
3496 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3497 		grow_amount = limit - ctob(vm->vm_ssize);
3498 #endif
3499 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3500 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3501 			vm_map_unlock_read(map);
3502 			rv = KERN_NO_SPACE;
3503 			goto out;
3504 		}
3505 #ifdef RACCT
3506 		PROC_LOCK(p);
3507 		if (racct_set(p, RACCT_MEMLOCK,
3508 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3509 			PROC_UNLOCK(p);
3510 			vm_map_unlock_read(map);
3511 			rv = KERN_NO_SPACE;
3512 			goto out;
3513 		}
3514 		PROC_UNLOCK(p);
3515 #endif
3516 	}
3517 	/* If we would blow our VMEM resource limit, no go */
3518 	if (map->size + grow_amount > vmemlim) {
3519 		vm_map_unlock_read(map);
3520 		rv = KERN_NO_SPACE;
3521 		goto out;
3522 	}
3523 #ifdef RACCT
3524 	PROC_LOCK(p);
3525 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3526 		PROC_UNLOCK(p);
3527 		vm_map_unlock_read(map);
3528 		rv = KERN_NO_SPACE;
3529 		goto out;
3530 	}
3531 	PROC_UNLOCK(p);
3532 #endif
3533 
3534 	if (vm_map_lock_upgrade(map))
3535 		goto Retry;
3536 
3537 	if (stack_entry == next_entry) {
3538 		/*
3539 		 * Growing downward.
3540 		 */
3541 		/* Get the preliminary new entry start value */
3542 		addr = stack_entry->start - grow_amount;
3543 
3544 		/*
3545 		 * If this puts us into the previous entry, cut back our
3546 		 * growth to the available space. Also, see the note above.
3547 		 */
3548 		if (addr < end) {
3549 			stack_entry->avail_ssize = max_grow;
3550 			addr = end;
3551 			if (stack_guard_page)
3552 				addr += PAGE_SIZE;
3553 		}
3554 
3555 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3556 		    next_entry->protection, next_entry->max_protection, 0);
3557 
3558 		/* Adjust the available stack space by the amount we grew. */
3559 		if (rv == KERN_SUCCESS) {
3560 			if (prev_entry != &map->header)
3561 				vm_map_clip_end(map, prev_entry, addr);
3562 			new_entry = prev_entry->next;
3563 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3564 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3565 			KASSERT(new_entry->start == addr, ("foo"));
3566 			grow_amount = new_entry->end - new_entry->start;
3567 			new_entry->avail_ssize = stack_entry->avail_ssize -
3568 			    grow_amount;
3569 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3570 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3571 		}
3572 	} else {
3573 		/*
3574 		 * Growing upward.
3575 		 */
3576 		addr = stack_entry->end + grow_amount;
3577 
3578 		/*
3579 		 * If this puts us into the next entry, cut back our growth
3580 		 * to the available space. Also, see the note above.
3581 		 */
3582 		if (addr > end) {
3583 			stack_entry->avail_ssize = end - stack_entry->end;
3584 			addr = end;
3585 			if (stack_guard_page)
3586 				addr -= PAGE_SIZE;
3587 		}
3588 
3589 		grow_amount = addr - stack_entry->end;
3590 		cred = stack_entry->cred;
3591 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3592 			cred = stack_entry->object.vm_object->cred;
3593 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3594 			rv = KERN_NO_SPACE;
3595 		/* Grow the underlying object if applicable. */
3596 		else if (stack_entry->object.vm_object == NULL ||
3597 			 vm_object_coalesce(stack_entry->object.vm_object,
3598 			 stack_entry->offset,
3599 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3600 			 (vm_size_t)grow_amount, cred != NULL)) {
3601 			map->size += (addr - stack_entry->end);
3602 			/* Update the current entry. */
3603 			stack_entry->end = addr;
3604 			stack_entry->avail_ssize -= grow_amount;
3605 			vm_map_entry_resize_free(map, stack_entry);
3606 			rv = KERN_SUCCESS;
3607 
3608 			if (next_entry != &map->header)
3609 				vm_map_clip_start(map, next_entry, addr);
3610 		} else
3611 			rv = KERN_FAILURE;
3612 	}
3613 
3614 	if (rv == KERN_SUCCESS && is_procstack)
3615 		vm->vm_ssize += btoc(grow_amount);
3616 
3617 	vm_map_unlock(map);
3618 
3619 	/*
3620 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3621 	 */
3622 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3623 		vm_map_wire(map,
3624 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3625 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3626 		    (p->p_flag & P_SYSTEM)
3627 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3628 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3629 	}
3630 
3631 out:
3632 #ifdef RACCT
3633 	if (rv != KERN_SUCCESS) {
3634 		PROC_LOCK(p);
3635 		error = racct_set(p, RACCT_VMEM, map->size);
3636 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3637 		if (!old_mlock) {
3638 			error = racct_set(p, RACCT_MEMLOCK,
3639 			    ptoa(pmap_wired_count(map->pmap)));
3640 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3641 		}
3642 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3643 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3644 		PROC_UNLOCK(p);
3645 	}
3646 #endif
3647 
3648 	return (rv);
3649 }
3650 
3651 /*
3652  * Unshare the specified VM space for exec.  If other processes are
3653  * mapped to it, then create a new one.  The new vmspace is null.
3654  */
3655 int
3656 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3657 {
3658 	struct vmspace *oldvmspace = p->p_vmspace;
3659 	struct vmspace *newvmspace;
3660 
3661 	newvmspace = vmspace_alloc(minuser, maxuser);
3662 	if (newvmspace == NULL)
3663 		return (ENOMEM);
3664 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3665 	/*
3666 	 * This code is written like this for prototype purposes.  The
3667 	 * goal is to avoid running down the vmspace here, but let the
3668 	 * other process's that are still using the vmspace to finally
3669 	 * run it down.  Even though there is little or no chance of blocking
3670 	 * here, it is a good idea to keep this form for future mods.
3671 	 */
3672 	PROC_VMSPACE_LOCK(p);
3673 	p->p_vmspace = newvmspace;
3674 	PROC_VMSPACE_UNLOCK(p);
3675 	if (p == curthread->td_proc)
3676 		pmap_activate(curthread);
3677 	vmspace_free(oldvmspace);
3678 	return (0);
3679 }
3680 
3681 /*
3682  * Unshare the specified VM space for forcing COW.  This
3683  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3684  */
3685 int
3686 vmspace_unshare(struct proc *p)
3687 {
3688 	struct vmspace *oldvmspace = p->p_vmspace;
3689 	struct vmspace *newvmspace;
3690 	vm_ooffset_t fork_charge;
3691 
3692 	if (oldvmspace->vm_refcnt == 1)
3693 		return (0);
3694 	fork_charge = 0;
3695 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3696 	if (newvmspace == NULL)
3697 		return (ENOMEM);
3698 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3699 		vmspace_free(newvmspace);
3700 		return (ENOMEM);
3701 	}
3702 	PROC_VMSPACE_LOCK(p);
3703 	p->p_vmspace = newvmspace;
3704 	PROC_VMSPACE_UNLOCK(p);
3705 	if (p == curthread->td_proc)
3706 		pmap_activate(curthread);
3707 	vmspace_free(oldvmspace);
3708 	return (0);
3709 }
3710 
3711 /*
3712  *	vm_map_lookup:
3713  *
3714  *	Finds the VM object, offset, and
3715  *	protection for a given virtual address in the
3716  *	specified map, assuming a page fault of the
3717  *	type specified.
3718  *
3719  *	Leaves the map in question locked for read; return
3720  *	values are guaranteed until a vm_map_lookup_done
3721  *	call is performed.  Note that the map argument
3722  *	is in/out; the returned map must be used in
3723  *	the call to vm_map_lookup_done.
3724  *
3725  *	A handle (out_entry) is returned for use in
3726  *	vm_map_lookup_done, to make that fast.
3727  *
3728  *	If a lookup is requested with "write protection"
3729  *	specified, the map may be changed to perform virtual
3730  *	copying operations, although the data referenced will
3731  *	remain the same.
3732  */
3733 int
3734 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3735 	      vm_offset_t vaddr,
3736 	      vm_prot_t fault_typea,
3737 	      vm_map_entry_t *out_entry,	/* OUT */
3738 	      vm_object_t *object,		/* OUT */
3739 	      vm_pindex_t *pindex,		/* OUT */
3740 	      vm_prot_t *out_prot,		/* OUT */
3741 	      boolean_t *wired)			/* OUT */
3742 {
3743 	vm_map_entry_t entry;
3744 	vm_map_t map = *var_map;
3745 	vm_prot_t prot;
3746 	vm_prot_t fault_type = fault_typea;
3747 	vm_object_t eobject;
3748 	vm_size_t size;
3749 	struct ucred *cred;
3750 
3751 RetryLookup:;
3752 
3753 	vm_map_lock_read(map);
3754 
3755 	/*
3756 	 * Lookup the faulting address.
3757 	 */
3758 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3759 		vm_map_unlock_read(map);
3760 		return (KERN_INVALID_ADDRESS);
3761 	}
3762 
3763 	entry = *out_entry;
3764 
3765 	/*
3766 	 * Handle submaps.
3767 	 */
3768 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3769 		vm_map_t old_map = map;
3770 
3771 		*var_map = map = entry->object.sub_map;
3772 		vm_map_unlock_read(old_map);
3773 		goto RetryLookup;
3774 	}
3775 
3776 	/*
3777 	 * Check whether this task is allowed to have this page.
3778 	 */
3779 	prot = entry->protection;
3780 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3781 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3782 		vm_map_unlock_read(map);
3783 		return (KERN_PROTECTION_FAILURE);
3784 	}
3785 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3786 	    (entry->eflags & MAP_ENTRY_COW) &&
3787 	    (fault_type & VM_PROT_WRITE)) {
3788 		vm_map_unlock_read(map);
3789 		return (KERN_PROTECTION_FAILURE);
3790 	}
3791 
3792 	/*
3793 	 * If this page is not pageable, we have to get it for all possible
3794 	 * accesses.
3795 	 */
3796 	*wired = (entry->wired_count != 0);
3797 	if (*wired)
3798 		fault_type = entry->protection;
3799 	size = entry->end - entry->start;
3800 	/*
3801 	 * If the entry was copy-on-write, we either ...
3802 	 */
3803 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3804 		/*
3805 		 * If we want to write the page, we may as well handle that
3806 		 * now since we've got the map locked.
3807 		 *
3808 		 * If we don't need to write the page, we just demote the
3809 		 * permissions allowed.
3810 		 */
3811 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3812 		    (fault_typea & VM_PROT_COPY) != 0) {
3813 			/*
3814 			 * Make a new object, and place it in the object
3815 			 * chain.  Note that no new references have appeared
3816 			 * -- one just moved from the map to the new
3817 			 * object.
3818 			 */
3819 			if (vm_map_lock_upgrade(map))
3820 				goto RetryLookup;
3821 
3822 			if (entry->cred == NULL) {
3823 				/*
3824 				 * The debugger owner is charged for
3825 				 * the memory.
3826 				 */
3827 				cred = curthread->td_ucred;
3828 				crhold(cred);
3829 				if (!swap_reserve_by_cred(size, cred)) {
3830 					crfree(cred);
3831 					vm_map_unlock(map);
3832 					return (KERN_RESOURCE_SHORTAGE);
3833 				}
3834 				entry->cred = cred;
3835 			}
3836 			vm_object_shadow(&entry->object.vm_object,
3837 			    &entry->offset, size);
3838 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3839 			eobject = entry->object.vm_object;
3840 			if (eobject->cred != NULL) {
3841 				/*
3842 				 * The object was not shadowed.
3843 				 */
3844 				swap_release_by_cred(size, entry->cred);
3845 				crfree(entry->cred);
3846 				entry->cred = NULL;
3847 			} else if (entry->cred != NULL) {
3848 				VM_OBJECT_LOCK(eobject);
3849 				eobject->cred = entry->cred;
3850 				eobject->charge = size;
3851 				VM_OBJECT_UNLOCK(eobject);
3852 				entry->cred = NULL;
3853 			}
3854 
3855 			vm_map_lock_downgrade(map);
3856 		} else {
3857 			/*
3858 			 * We're attempting to read a copy-on-write page --
3859 			 * don't allow writes.
3860 			 */
3861 			prot &= ~VM_PROT_WRITE;
3862 		}
3863 	}
3864 
3865 	/*
3866 	 * Create an object if necessary.
3867 	 */
3868 	if (entry->object.vm_object == NULL &&
3869 	    !map->system_map) {
3870 		if (vm_map_lock_upgrade(map))
3871 			goto RetryLookup;
3872 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3873 		    atop(size));
3874 		entry->offset = 0;
3875 		if (entry->cred != NULL) {
3876 			VM_OBJECT_LOCK(entry->object.vm_object);
3877 			entry->object.vm_object->cred = entry->cred;
3878 			entry->object.vm_object->charge = size;
3879 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3880 			entry->cred = NULL;
3881 		}
3882 		vm_map_lock_downgrade(map);
3883 	}
3884 
3885 	/*
3886 	 * Return the object/offset from this entry.  If the entry was
3887 	 * copy-on-write or empty, it has been fixed up.
3888 	 */
3889 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3890 	*object = entry->object.vm_object;
3891 
3892 	*out_prot = prot;
3893 	return (KERN_SUCCESS);
3894 }
3895 
3896 /*
3897  *	vm_map_lookup_locked:
3898  *
3899  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3900  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3901  */
3902 int
3903 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3904 		     vm_offset_t vaddr,
3905 		     vm_prot_t fault_typea,
3906 		     vm_map_entry_t *out_entry,	/* OUT */
3907 		     vm_object_t *object,	/* OUT */
3908 		     vm_pindex_t *pindex,	/* OUT */
3909 		     vm_prot_t *out_prot,	/* OUT */
3910 		     boolean_t *wired)		/* OUT */
3911 {
3912 	vm_map_entry_t entry;
3913 	vm_map_t map = *var_map;
3914 	vm_prot_t prot;
3915 	vm_prot_t fault_type = fault_typea;
3916 
3917 	/*
3918 	 * Lookup the faulting address.
3919 	 */
3920 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3921 		return (KERN_INVALID_ADDRESS);
3922 
3923 	entry = *out_entry;
3924 
3925 	/*
3926 	 * Fail if the entry refers to a submap.
3927 	 */
3928 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3929 		return (KERN_FAILURE);
3930 
3931 	/*
3932 	 * Check whether this task is allowed to have this page.
3933 	 */
3934 	prot = entry->protection;
3935 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3936 	if ((fault_type & prot) != fault_type)
3937 		return (KERN_PROTECTION_FAILURE);
3938 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3939 	    (entry->eflags & MAP_ENTRY_COW) &&
3940 	    (fault_type & VM_PROT_WRITE))
3941 		return (KERN_PROTECTION_FAILURE);
3942 
3943 	/*
3944 	 * If this page is not pageable, we have to get it for all possible
3945 	 * accesses.
3946 	 */
3947 	*wired = (entry->wired_count != 0);
3948 	if (*wired)
3949 		fault_type = entry->protection;
3950 
3951 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3952 		/*
3953 		 * Fail if the entry was copy-on-write for a write fault.
3954 		 */
3955 		if (fault_type & VM_PROT_WRITE)
3956 			return (KERN_FAILURE);
3957 		/*
3958 		 * We're attempting to read a copy-on-write page --
3959 		 * don't allow writes.
3960 		 */
3961 		prot &= ~VM_PROT_WRITE;
3962 	}
3963 
3964 	/*
3965 	 * Fail if an object should be created.
3966 	 */
3967 	if (entry->object.vm_object == NULL && !map->system_map)
3968 		return (KERN_FAILURE);
3969 
3970 	/*
3971 	 * Return the object/offset from this entry.  If the entry was
3972 	 * copy-on-write or empty, it has been fixed up.
3973 	 */
3974 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3975 	*object = entry->object.vm_object;
3976 
3977 	*out_prot = prot;
3978 	return (KERN_SUCCESS);
3979 }
3980 
3981 /*
3982  *	vm_map_lookup_done:
3983  *
3984  *	Releases locks acquired by a vm_map_lookup
3985  *	(according to the handle returned by that lookup).
3986  */
3987 void
3988 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3989 {
3990 	/*
3991 	 * Unlock the main-level map
3992 	 */
3993 	vm_map_unlock_read(map);
3994 }
3995 
3996 #include "opt_ddb.h"
3997 #ifdef DDB
3998 #include <sys/kernel.h>
3999 
4000 #include <ddb/ddb.h>
4001 
4002 static void
4003 vm_map_print(vm_map_t map)
4004 {
4005 	vm_map_entry_t entry;
4006 
4007 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4008 	    (void *)map,
4009 	    (void *)map->pmap, map->nentries, map->timestamp);
4010 
4011 	db_indent += 2;
4012 	for (entry = map->header.next; entry != &map->header;
4013 	    entry = entry->next) {
4014 		db_iprintf("map entry %p: start=%p, end=%p\n",
4015 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4016 		{
4017 			static char *inheritance_name[4] =
4018 			{"share", "copy", "none", "donate_copy"};
4019 
4020 			db_iprintf(" prot=%x/%x/%s",
4021 			    entry->protection,
4022 			    entry->max_protection,
4023 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4024 			if (entry->wired_count != 0)
4025 				db_printf(", wired");
4026 		}
4027 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4028 			db_printf(", share=%p, offset=0x%jx\n",
4029 			    (void *)entry->object.sub_map,
4030 			    (uintmax_t)entry->offset);
4031 			if ((entry->prev == &map->header) ||
4032 			    (entry->prev->object.sub_map !=
4033 				entry->object.sub_map)) {
4034 				db_indent += 2;
4035 				vm_map_print((vm_map_t)entry->object.sub_map);
4036 				db_indent -= 2;
4037 			}
4038 		} else {
4039 			if (entry->cred != NULL)
4040 				db_printf(", ruid %d", entry->cred->cr_ruid);
4041 			db_printf(", object=%p, offset=0x%jx",
4042 			    (void *)entry->object.vm_object,
4043 			    (uintmax_t)entry->offset);
4044 			if (entry->object.vm_object && entry->object.vm_object->cred)
4045 				db_printf(", obj ruid %d charge %jx",
4046 				    entry->object.vm_object->cred->cr_ruid,
4047 				    (uintmax_t)entry->object.vm_object->charge);
4048 			if (entry->eflags & MAP_ENTRY_COW)
4049 				db_printf(", copy (%s)",
4050 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4051 			db_printf("\n");
4052 
4053 			if ((entry->prev == &map->header) ||
4054 			    (entry->prev->object.vm_object !=
4055 				entry->object.vm_object)) {
4056 				db_indent += 2;
4057 				vm_object_print((db_expr_t)(intptr_t)
4058 						entry->object.vm_object,
4059 						1, 0, (char *)0);
4060 				db_indent -= 2;
4061 			}
4062 		}
4063 	}
4064 	db_indent -= 2;
4065 }
4066 
4067 DB_SHOW_COMMAND(map, map)
4068 {
4069 
4070 	if (!have_addr) {
4071 		db_printf("usage: show map <addr>\n");
4072 		return;
4073 	}
4074 	vm_map_print((vm_map_t)addr);
4075 }
4076 
4077 DB_SHOW_COMMAND(procvm, procvm)
4078 {
4079 	struct proc *p;
4080 
4081 	if (have_addr) {
4082 		p = (struct proc *) addr;
4083 	} else {
4084 		p = curproc;
4085 	}
4086 
4087 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4088 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4089 	    (void *)vmspace_pmap(p->p_vmspace));
4090 
4091 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4092 }
4093 
4094 #endif /* DDB */
4095