1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t mapzone; 127 static uma_zone_t vmspace_zone; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void vmspace_zfini(void *mem, int size); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void vm_map_zfini(void *mem, int size); 132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 133 vm_offset_t max); 134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 136 #ifdef INVARIANTS 137 static void vm_map_zdtor(void *mem, int size, void *arg); 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 141 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 142 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 143 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 144 145 /* 146 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 147 * stable. 148 */ 149 #define PROC_VMSPACE_LOCK(p) do { } while (0) 150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 151 152 /* 153 * VM_MAP_RANGE_CHECK: [ internal use only ] 154 * 155 * Asserts that the starting and ending region 156 * addresses fall within the valid range of the map. 157 */ 158 #define VM_MAP_RANGE_CHECK(map, start, end) \ 159 { \ 160 if (start < vm_map_min(map)) \ 161 start = vm_map_min(map); \ 162 if (end > vm_map_max(map)) \ 163 end = vm_map_max(map); \ 164 if (start > end) \ 165 start = end; \ 166 } 167 168 /* 169 * vm_map_startup: 170 * 171 * Initialize the vm_map module. Must be called before 172 * any other vm_map routines. 173 * 174 * Map and entry structures are allocated from the general 175 * purpose memory pool with some exceptions: 176 * 177 * - The kernel map and kmem submap are allocated statically. 178 * - Kernel map entries are allocated out of a static pool. 179 * 180 * These restrictions are necessary since malloc() uses the 181 * maps and requires map entries. 182 */ 183 184 void 185 vm_map_startup(void) 186 { 187 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 188 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 189 #ifdef INVARIANTS 190 vm_map_zdtor, 191 #else 192 NULL, 193 #endif 194 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 195 uma_prealloc(mapzone, MAX_KMAP); 196 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 198 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 199 uma_prealloc(kmapentzone, MAX_KMAPENT); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 } 203 204 static void 205 vmspace_zfini(void *mem, int size) 206 { 207 struct vmspace *vm; 208 209 vm = (struct vmspace *)mem; 210 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 211 } 212 213 static int 214 vmspace_zinit(void *mem, int size, int flags) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm->vm_map.pmap = NULL; 221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 222 return (0); 223 } 224 225 static void 226 vm_map_zfini(void *mem, int size) 227 { 228 vm_map_t map; 229 230 map = (vm_map_t)mem; 231 mtx_destroy(&map->system_mtx); 232 sx_destroy(&map->lock); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 map->nentries = 0; 242 map->size = 0; 243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "vm map (user)"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 */ 277 struct vmspace * 278 vmspace_alloc(min, max) 279 vm_offset_t min, max; 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 285 uma_zfree(vmspace_zone, vm); 286 return (NULL); 287 } 288 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 290 vm->vm_refcnt = 1; 291 vm->vm_shm = NULL; 292 vm->vm_swrss = 0; 293 vm->vm_tsize = 0; 294 vm->vm_dsize = 0; 295 vm->vm_ssize = 0; 296 vm->vm_taddr = 0; 297 vm->vm_daddr = 0; 298 vm->vm_maxsaddr = 0; 299 return (vm); 300 } 301 302 void 303 vm_init2(void) 304 { 305 uma_zone_reserve_kva(kmapentzone, lmin(cnt.v_page_count, 306 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 307 maxproc * 2 + maxfiles); 308 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 309 #ifdef INVARIANTS 310 vmspace_zdtor, 311 #else 312 NULL, 313 #endif 314 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 } 316 317 static void 318 vmspace_container_reset(struct proc *p) 319 { 320 321 #ifdef RACCT 322 PROC_LOCK(p); 323 racct_set(p, RACCT_DATA, 0); 324 racct_set(p, RACCT_STACK, 0); 325 racct_set(p, RACCT_RSS, 0); 326 racct_set(p, RACCT_MEMLOCK, 0); 327 racct_set(p, RACCT_VMEM, 0); 328 PROC_UNLOCK(p); 329 #endif 330 } 331 332 static inline void 333 vmspace_dofree(struct vmspace *vm) 334 { 335 336 CTR1(KTR_VM, "vmspace_free: %p", vm); 337 338 /* 339 * Make sure any SysV shm is freed, it might not have been in 340 * exit1(). 341 */ 342 shmexit(vm); 343 344 /* 345 * Lock the map, to wait out all other references to it. 346 * Delete all of the mappings and pages they hold, then call 347 * the pmap module to reclaim anything left. 348 */ 349 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 350 vm->vm_map.max_offset); 351 352 pmap_release(vmspace_pmap(vm)); 353 vm->vm_map.pmap = NULL; 354 uma_zfree(vmspace_zone, vm); 355 } 356 357 void 358 vmspace_free(struct vmspace *vm) 359 { 360 361 if (vm->vm_refcnt == 0) 362 panic("vmspace_free: attempt to free already freed vmspace"); 363 364 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 365 vmspace_dofree(vm); 366 } 367 368 void 369 vmspace_exitfree(struct proc *p) 370 { 371 struct vmspace *vm; 372 373 PROC_VMSPACE_LOCK(p); 374 vm = p->p_vmspace; 375 p->p_vmspace = NULL; 376 PROC_VMSPACE_UNLOCK(p); 377 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 378 vmspace_free(vm); 379 } 380 381 void 382 vmspace_exit(struct thread *td) 383 { 384 int refcnt; 385 struct vmspace *vm; 386 struct proc *p; 387 388 /* 389 * Release user portion of address space. 390 * This releases references to vnodes, 391 * which could cause I/O if the file has been unlinked. 392 * Need to do this early enough that we can still sleep. 393 * 394 * The last exiting process to reach this point releases as 395 * much of the environment as it can. vmspace_dofree() is the 396 * slower fallback in case another process had a temporary 397 * reference to the vmspace. 398 */ 399 400 p = td->td_proc; 401 vm = p->p_vmspace; 402 atomic_add_int(&vmspace0.vm_refcnt, 1); 403 do { 404 refcnt = vm->vm_refcnt; 405 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 406 /* Switch now since other proc might free vmspace */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = &vmspace0; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 413 if (refcnt == 1) { 414 if (p->p_vmspace != vm) { 415 /* vmspace not yet freed, switch back */ 416 PROC_VMSPACE_LOCK(p); 417 p->p_vmspace = vm; 418 PROC_VMSPACE_UNLOCK(p); 419 pmap_activate(td); 420 } 421 pmap_remove_pages(vmspace_pmap(vm)); 422 /* Switch now since this proc will free vmspace */ 423 PROC_VMSPACE_LOCK(p); 424 p->p_vmspace = &vmspace0; 425 PROC_VMSPACE_UNLOCK(p); 426 pmap_activate(td); 427 vmspace_dofree(vm); 428 } 429 vmspace_container_reset(p); 430 } 431 432 /* Acquire reference to vmspace owned by another process. */ 433 434 struct vmspace * 435 vmspace_acquire_ref(struct proc *p) 436 { 437 struct vmspace *vm; 438 int refcnt; 439 440 PROC_VMSPACE_LOCK(p); 441 vm = p->p_vmspace; 442 if (vm == NULL) { 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 do { 447 refcnt = vm->vm_refcnt; 448 if (refcnt <= 0) { /* Avoid 0->1 transition */ 449 PROC_VMSPACE_UNLOCK(p); 450 return (NULL); 451 } 452 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 453 if (vm != p->p_vmspace) { 454 PROC_VMSPACE_UNLOCK(p); 455 vmspace_free(vm); 456 return (NULL); 457 } 458 PROC_VMSPACE_UNLOCK(p); 459 return (vm); 460 } 461 462 void 463 _vm_map_lock(vm_map_t map, const char *file, int line) 464 { 465 466 if (map->system_map) 467 mtx_lock_flags_(&map->system_mtx, 0, file, line); 468 else 469 sx_xlock_(&map->lock, file, line); 470 map->timestamp++; 471 } 472 473 static void 474 vm_map_process_deferred(void) 475 { 476 struct thread *td; 477 vm_map_entry_t entry, next; 478 vm_object_t object; 479 480 td = curthread; 481 entry = td->td_map_def_user; 482 td->td_map_def_user = NULL; 483 while (entry != NULL) { 484 next = entry->next; 485 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 486 /* 487 * Decrement the object's writemappings and 488 * possibly the vnode's v_writecount. 489 */ 490 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 491 ("Submap with writecount")); 492 object = entry->object.vm_object; 493 KASSERT(object != NULL, ("No object for writecount")); 494 vnode_pager_release_writecount(object, entry->start, 495 entry->end); 496 } 497 vm_map_entry_deallocate(entry, FALSE); 498 entry = next; 499 } 500 } 501 502 void 503 _vm_map_unlock(vm_map_t map, const char *file, int line) 504 { 505 506 if (map->system_map) 507 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 508 else { 509 sx_xunlock_(&map->lock, file, line); 510 vm_map_process_deferred(); 511 } 512 } 513 514 void 515 _vm_map_lock_read(vm_map_t map, const char *file, int line) 516 { 517 518 if (map->system_map) 519 mtx_lock_flags_(&map->system_mtx, 0, file, line); 520 else 521 sx_slock_(&map->lock, file, line); 522 } 523 524 void 525 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 526 { 527 528 if (map->system_map) 529 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 530 else { 531 sx_sunlock_(&map->lock, file, line); 532 vm_map_process_deferred(); 533 } 534 } 535 536 int 537 _vm_map_trylock(vm_map_t map, const char *file, int line) 538 { 539 int error; 540 541 error = map->system_map ? 542 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 543 !sx_try_xlock_(&map->lock, file, line); 544 if (error == 0) 545 map->timestamp++; 546 return (error == 0); 547 } 548 549 int 550 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 551 { 552 int error; 553 554 error = map->system_map ? 555 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 556 !sx_try_slock_(&map->lock, file, line); 557 return (error == 0); 558 } 559 560 /* 561 * _vm_map_lock_upgrade: [ internal use only ] 562 * 563 * Tries to upgrade a read (shared) lock on the specified map to a write 564 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 565 * non-zero value if the upgrade fails. If the upgrade fails, the map is 566 * returned without a read or write lock held. 567 * 568 * Requires that the map be read locked. 569 */ 570 int 571 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 572 { 573 unsigned int last_timestamp; 574 575 if (map->system_map) { 576 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 577 } else { 578 if (!sx_try_upgrade_(&map->lock, file, line)) { 579 last_timestamp = map->timestamp; 580 sx_sunlock_(&map->lock, file, line); 581 vm_map_process_deferred(); 582 /* 583 * If the map's timestamp does not change while the 584 * map is unlocked, then the upgrade succeeds. 585 */ 586 sx_xlock_(&map->lock, file, line); 587 if (last_timestamp != map->timestamp) { 588 sx_xunlock_(&map->lock, file, line); 589 return (1); 590 } 591 } 592 } 593 map->timestamp++; 594 return (0); 595 } 596 597 void 598 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 599 { 600 601 if (map->system_map) { 602 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 603 } else 604 sx_downgrade_(&map->lock, file, line); 605 } 606 607 /* 608 * vm_map_locked: 609 * 610 * Returns a non-zero value if the caller holds a write (exclusive) lock 611 * on the specified map and the value "0" otherwise. 612 */ 613 int 614 vm_map_locked(vm_map_t map) 615 { 616 617 if (map->system_map) 618 return (mtx_owned(&map->system_mtx)); 619 else 620 return (sx_xlocked(&map->lock)); 621 } 622 623 #ifdef INVARIANTS 624 static void 625 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 626 { 627 628 if (map->system_map) 629 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 630 else 631 sx_assert_(&map->lock, SA_XLOCKED, file, line); 632 } 633 634 #define VM_MAP_ASSERT_LOCKED(map) \ 635 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 636 #else 637 #define VM_MAP_ASSERT_LOCKED(map) 638 #endif 639 640 /* 641 * _vm_map_unlock_and_wait: 642 * 643 * Atomically releases the lock on the specified map and puts the calling 644 * thread to sleep. The calling thread will remain asleep until either 645 * vm_map_wakeup() is performed on the map or the specified timeout is 646 * exceeded. 647 * 648 * WARNING! This function does not perform deferred deallocations of 649 * objects and map entries. Therefore, the calling thread is expected to 650 * reacquire the map lock after reawakening and later perform an ordinary 651 * unlock operation, such as vm_map_unlock(), before completing its 652 * operation on the map. 653 */ 654 int 655 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 656 { 657 658 mtx_lock(&map_sleep_mtx); 659 if (map->system_map) 660 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 661 else 662 sx_xunlock_(&map->lock, file, line); 663 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 664 timo)); 665 } 666 667 /* 668 * vm_map_wakeup: 669 * 670 * Awaken any threads that have slept on the map using 671 * vm_map_unlock_and_wait(). 672 */ 673 void 674 vm_map_wakeup(vm_map_t map) 675 { 676 677 /* 678 * Acquire and release map_sleep_mtx to prevent a wakeup() 679 * from being performed (and lost) between the map unlock 680 * and the msleep() in _vm_map_unlock_and_wait(). 681 */ 682 mtx_lock(&map_sleep_mtx); 683 mtx_unlock(&map_sleep_mtx); 684 wakeup(&map->root); 685 } 686 687 void 688 vm_map_busy(vm_map_t map) 689 { 690 691 VM_MAP_ASSERT_LOCKED(map); 692 map->busy++; 693 } 694 695 void 696 vm_map_unbusy(vm_map_t map) 697 { 698 699 VM_MAP_ASSERT_LOCKED(map); 700 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 701 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 702 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 703 wakeup(&map->busy); 704 } 705 } 706 707 void 708 vm_map_wait_busy(vm_map_t map) 709 { 710 711 VM_MAP_ASSERT_LOCKED(map); 712 while (map->busy) { 713 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 714 if (map->system_map) 715 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 716 else 717 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 718 } 719 map->timestamp++; 720 } 721 722 long 723 vmspace_resident_count(struct vmspace *vmspace) 724 { 725 return pmap_resident_count(vmspace_pmap(vmspace)); 726 } 727 728 /* 729 * vm_map_create: 730 * 731 * Creates and returns a new empty VM map with 732 * the given physical map structure, and having 733 * the given lower and upper address bounds. 734 */ 735 vm_map_t 736 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 737 { 738 vm_map_t result; 739 740 result = uma_zalloc(mapzone, M_WAITOK); 741 CTR1(KTR_VM, "vm_map_create: %p", result); 742 _vm_map_init(result, pmap, min, max); 743 return (result); 744 } 745 746 /* 747 * Initialize an existing vm_map structure 748 * such as that in the vmspace structure. 749 */ 750 static void 751 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 752 { 753 754 map->header.next = map->header.prev = &map->header; 755 map->needs_wakeup = FALSE; 756 map->system_map = 0; 757 map->pmap = pmap; 758 map->min_offset = min; 759 map->max_offset = max; 760 map->flags = 0; 761 map->root = NULL; 762 map->timestamp = 0; 763 map->busy = 0; 764 } 765 766 void 767 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 768 { 769 770 _vm_map_init(map, pmap, min, max); 771 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 772 sx_init(&map->lock, "user map"); 773 } 774 775 /* 776 * vm_map_entry_dispose: [ internal use only ] 777 * 778 * Inverse of vm_map_entry_create. 779 */ 780 static void 781 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 782 { 783 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 784 } 785 786 /* 787 * vm_map_entry_create: [ internal use only ] 788 * 789 * Allocates a VM map entry for insertion. 790 * No entry fields are filled in. 791 */ 792 static vm_map_entry_t 793 vm_map_entry_create(vm_map_t map) 794 { 795 vm_map_entry_t new_entry; 796 797 if (map->system_map) 798 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 799 else 800 new_entry = uma_zalloc(mapentzone, M_WAITOK); 801 if (new_entry == NULL) 802 panic("vm_map_entry_create: kernel resources exhausted"); 803 return (new_entry); 804 } 805 806 /* 807 * vm_map_entry_set_behavior: 808 * 809 * Set the expected access behavior, either normal, random, or 810 * sequential. 811 */ 812 static inline void 813 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 814 { 815 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 816 (behavior & MAP_ENTRY_BEHAV_MASK); 817 } 818 819 /* 820 * vm_map_entry_set_max_free: 821 * 822 * Set the max_free field in a vm_map_entry. 823 */ 824 static inline void 825 vm_map_entry_set_max_free(vm_map_entry_t entry) 826 { 827 828 entry->max_free = entry->adj_free; 829 if (entry->left != NULL && entry->left->max_free > entry->max_free) 830 entry->max_free = entry->left->max_free; 831 if (entry->right != NULL && entry->right->max_free > entry->max_free) 832 entry->max_free = entry->right->max_free; 833 } 834 835 /* 836 * vm_map_entry_splay: 837 * 838 * The Sleator and Tarjan top-down splay algorithm with the 839 * following variation. Max_free must be computed bottom-up, so 840 * on the downward pass, maintain the left and right spines in 841 * reverse order. Then, make a second pass up each side to fix 842 * the pointers and compute max_free. The time bound is O(log n) 843 * amortized. 844 * 845 * The new root is the vm_map_entry containing "addr", or else an 846 * adjacent entry (lower or higher) if addr is not in the tree. 847 * 848 * The map must be locked, and leaves it so. 849 * 850 * Returns: the new root. 851 */ 852 static vm_map_entry_t 853 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 854 { 855 vm_map_entry_t llist, rlist; 856 vm_map_entry_t ltree, rtree; 857 vm_map_entry_t y; 858 859 /* Special case of empty tree. */ 860 if (root == NULL) 861 return (root); 862 863 /* 864 * Pass One: Splay down the tree until we find addr or a NULL 865 * pointer where addr would go. llist and rlist are the two 866 * sides in reverse order (bottom-up), with llist linked by 867 * the right pointer and rlist linked by the left pointer in 868 * the vm_map_entry. Wait until Pass Two to set max_free on 869 * the two spines. 870 */ 871 llist = NULL; 872 rlist = NULL; 873 for (;;) { 874 /* root is never NULL in here. */ 875 if (addr < root->start) { 876 y = root->left; 877 if (y == NULL) 878 break; 879 if (addr < y->start && y->left != NULL) { 880 /* Rotate right and put y on rlist. */ 881 root->left = y->right; 882 y->right = root; 883 vm_map_entry_set_max_free(root); 884 root = y->left; 885 y->left = rlist; 886 rlist = y; 887 } else { 888 /* Put root on rlist. */ 889 root->left = rlist; 890 rlist = root; 891 root = y; 892 } 893 } else if (addr >= root->end) { 894 y = root->right; 895 if (y == NULL) 896 break; 897 if (addr >= y->end && y->right != NULL) { 898 /* Rotate left and put y on llist. */ 899 root->right = y->left; 900 y->left = root; 901 vm_map_entry_set_max_free(root); 902 root = y->right; 903 y->right = llist; 904 llist = y; 905 } else { 906 /* Put root on llist. */ 907 root->right = llist; 908 llist = root; 909 root = y; 910 } 911 } else 912 break; 913 } 914 915 /* 916 * Pass Two: Walk back up the two spines, flip the pointers 917 * and set max_free. The subtrees of the root go at the 918 * bottom of llist and rlist. 919 */ 920 ltree = root->left; 921 while (llist != NULL) { 922 y = llist->right; 923 llist->right = ltree; 924 vm_map_entry_set_max_free(llist); 925 ltree = llist; 926 llist = y; 927 } 928 rtree = root->right; 929 while (rlist != NULL) { 930 y = rlist->left; 931 rlist->left = rtree; 932 vm_map_entry_set_max_free(rlist); 933 rtree = rlist; 934 rlist = y; 935 } 936 937 /* 938 * Final assembly: add ltree and rtree as subtrees of root. 939 */ 940 root->left = ltree; 941 root->right = rtree; 942 vm_map_entry_set_max_free(root); 943 944 return (root); 945 } 946 947 /* 948 * vm_map_entry_{un,}link: 949 * 950 * Insert/remove entries from maps. 951 */ 952 static void 953 vm_map_entry_link(vm_map_t map, 954 vm_map_entry_t after_where, 955 vm_map_entry_t entry) 956 { 957 958 CTR4(KTR_VM, 959 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 960 map->nentries, entry, after_where); 961 VM_MAP_ASSERT_LOCKED(map); 962 map->nentries++; 963 entry->prev = after_where; 964 entry->next = after_where->next; 965 entry->next->prev = entry; 966 after_where->next = entry; 967 968 if (after_where != &map->header) { 969 if (after_where != map->root) 970 vm_map_entry_splay(after_where->start, map->root); 971 entry->right = after_where->right; 972 entry->left = after_where; 973 after_where->right = NULL; 974 after_where->adj_free = entry->start - after_where->end; 975 vm_map_entry_set_max_free(after_where); 976 } else { 977 entry->right = map->root; 978 entry->left = NULL; 979 } 980 entry->adj_free = (entry->next == &map->header ? map->max_offset : 981 entry->next->start) - entry->end; 982 vm_map_entry_set_max_free(entry); 983 map->root = entry; 984 } 985 986 static void 987 vm_map_entry_unlink(vm_map_t map, 988 vm_map_entry_t entry) 989 { 990 vm_map_entry_t next, prev, root; 991 992 VM_MAP_ASSERT_LOCKED(map); 993 if (entry != map->root) 994 vm_map_entry_splay(entry->start, map->root); 995 if (entry->left == NULL) 996 root = entry->right; 997 else { 998 root = vm_map_entry_splay(entry->start, entry->left); 999 root->right = entry->right; 1000 root->adj_free = (entry->next == &map->header ? map->max_offset : 1001 entry->next->start) - root->end; 1002 vm_map_entry_set_max_free(root); 1003 } 1004 map->root = root; 1005 1006 prev = entry->prev; 1007 next = entry->next; 1008 next->prev = prev; 1009 prev->next = next; 1010 map->nentries--; 1011 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1012 map->nentries, entry); 1013 } 1014 1015 /* 1016 * vm_map_entry_resize_free: 1017 * 1018 * Recompute the amount of free space following a vm_map_entry 1019 * and propagate that value up the tree. Call this function after 1020 * resizing a map entry in-place, that is, without a call to 1021 * vm_map_entry_link() or _unlink(). 1022 * 1023 * The map must be locked, and leaves it so. 1024 */ 1025 static void 1026 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1027 { 1028 1029 /* 1030 * Using splay trees without parent pointers, propagating 1031 * max_free up the tree is done by moving the entry to the 1032 * root and making the change there. 1033 */ 1034 if (entry != map->root) 1035 map->root = vm_map_entry_splay(entry->start, map->root); 1036 1037 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1038 entry->next->start) - entry->end; 1039 vm_map_entry_set_max_free(entry); 1040 } 1041 1042 /* 1043 * vm_map_lookup_entry: [ internal use only ] 1044 * 1045 * Finds the map entry containing (or 1046 * immediately preceding) the specified address 1047 * in the given map; the entry is returned 1048 * in the "entry" parameter. The boolean 1049 * result indicates whether the address is 1050 * actually contained in the map. 1051 */ 1052 boolean_t 1053 vm_map_lookup_entry( 1054 vm_map_t map, 1055 vm_offset_t address, 1056 vm_map_entry_t *entry) /* OUT */ 1057 { 1058 vm_map_entry_t cur; 1059 boolean_t locked; 1060 1061 /* 1062 * If the map is empty, then the map entry immediately preceding 1063 * "address" is the map's header. 1064 */ 1065 cur = map->root; 1066 if (cur == NULL) 1067 *entry = &map->header; 1068 else if (address >= cur->start && cur->end > address) { 1069 *entry = cur; 1070 return (TRUE); 1071 } else if ((locked = vm_map_locked(map)) || 1072 sx_try_upgrade(&map->lock)) { 1073 /* 1074 * Splay requires a write lock on the map. However, it only 1075 * restructures the binary search tree; it does not otherwise 1076 * change the map. Thus, the map's timestamp need not change 1077 * on a temporary upgrade. 1078 */ 1079 map->root = cur = vm_map_entry_splay(address, cur); 1080 if (!locked) 1081 sx_downgrade(&map->lock); 1082 1083 /* 1084 * If "address" is contained within a map entry, the new root 1085 * is that map entry. Otherwise, the new root is a map entry 1086 * immediately before or after "address". 1087 */ 1088 if (address >= cur->start) { 1089 *entry = cur; 1090 if (cur->end > address) 1091 return (TRUE); 1092 } else 1093 *entry = cur->prev; 1094 } else 1095 /* 1096 * Since the map is only locked for read access, perform a 1097 * standard binary search tree lookup for "address". 1098 */ 1099 for (;;) { 1100 if (address < cur->start) { 1101 if (cur->left == NULL) { 1102 *entry = cur->prev; 1103 break; 1104 } 1105 cur = cur->left; 1106 } else if (cur->end > address) { 1107 *entry = cur; 1108 return (TRUE); 1109 } else { 1110 if (cur->right == NULL) { 1111 *entry = cur; 1112 break; 1113 } 1114 cur = cur->right; 1115 } 1116 } 1117 return (FALSE); 1118 } 1119 1120 /* 1121 * vm_map_insert: 1122 * 1123 * Inserts the given whole VM object into the target 1124 * map at the specified address range. The object's 1125 * size should match that of the address range. 1126 * 1127 * Requires that the map be locked, and leaves it so. 1128 * 1129 * If object is non-NULL, ref count must be bumped by caller 1130 * prior to making call to account for the new entry. 1131 */ 1132 int 1133 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1134 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1135 int cow) 1136 { 1137 vm_map_entry_t new_entry; 1138 vm_map_entry_t prev_entry; 1139 vm_map_entry_t temp_entry; 1140 vm_eflags_t protoeflags; 1141 struct ucred *cred; 1142 vm_inherit_t inheritance; 1143 boolean_t charge_prev_obj; 1144 1145 VM_MAP_ASSERT_LOCKED(map); 1146 1147 /* 1148 * Check that the start and end points are not bogus. 1149 */ 1150 if ((start < map->min_offset) || (end > map->max_offset) || 1151 (start >= end)) 1152 return (KERN_INVALID_ADDRESS); 1153 1154 /* 1155 * Find the entry prior to the proposed starting address; if it's part 1156 * of an existing entry, this range is bogus. 1157 */ 1158 if (vm_map_lookup_entry(map, start, &temp_entry)) 1159 return (KERN_NO_SPACE); 1160 1161 prev_entry = temp_entry; 1162 1163 /* 1164 * Assert that the next entry doesn't overlap the end point. 1165 */ 1166 if ((prev_entry->next != &map->header) && 1167 (prev_entry->next->start < end)) 1168 return (KERN_NO_SPACE); 1169 1170 protoeflags = 0; 1171 charge_prev_obj = FALSE; 1172 1173 if (cow & MAP_COPY_ON_WRITE) 1174 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1175 1176 if (cow & MAP_NOFAULT) { 1177 protoeflags |= MAP_ENTRY_NOFAULT; 1178 1179 KASSERT(object == NULL, 1180 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1181 } 1182 if (cow & MAP_DISABLE_SYNCER) 1183 protoeflags |= MAP_ENTRY_NOSYNC; 1184 if (cow & MAP_DISABLE_COREDUMP) 1185 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1186 if (cow & MAP_VN_WRITECOUNT) 1187 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1188 if (cow & MAP_INHERIT_SHARE) 1189 inheritance = VM_INHERIT_SHARE; 1190 else 1191 inheritance = VM_INHERIT_DEFAULT; 1192 1193 cred = NULL; 1194 KASSERT((object != kmem_object && object != kernel_object) || 1195 ((object == kmem_object || object == kernel_object) && 1196 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1197 ("kmem or kernel object and cow")); 1198 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1199 goto charged; 1200 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1201 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1202 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1203 return (KERN_RESOURCE_SHORTAGE); 1204 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1205 object->cred == NULL, 1206 ("OVERCOMMIT: vm_map_insert o %p", object)); 1207 cred = curthread->td_ucred; 1208 crhold(cred); 1209 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1210 charge_prev_obj = TRUE; 1211 } 1212 1213 charged: 1214 /* Expand the kernel pmap, if necessary. */ 1215 if (map == kernel_map && end > kernel_vm_end) 1216 pmap_growkernel(end); 1217 if (object != NULL) { 1218 /* 1219 * OBJ_ONEMAPPING must be cleared unless this mapping 1220 * is trivially proven to be the only mapping for any 1221 * of the object's pages. (Object granularity 1222 * reference counting is insufficient to recognize 1223 * aliases with precision.) 1224 */ 1225 VM_OBJECT_LOCK(object); 1226 if (object->ref_count > 1 || object->shadow_count != 0) 1227 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1228 VM_OBJECT_UNLOCK(object); 1229 } 1230 else if ((prev_entry != &map->header) && 1231 (prev_entry->eflags == protoeflags) && 1232 (prev_entry->end == start) && 1233 (prev_entry->wired_count == 0) && 1234 (prev_entry->cred == cred || 1235 (prev_entry->object.vm_object != NULL && 1236 (prev_entry->object.vm_object->cred == cred))) && 1237 vm_object_coalesce(prev_entry->object.vm_object, 1238 prev_entry->offset, 1239 (vm_size_t)(prev_entry->end - prev_entry->start), 1240 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1241 /* 1242 * We were able to extend the object. Determine if we 1243 * can extend the previous map entry to include the 1244 * new range as well. 1245 */ 1246 if ((prev_entry->inheritance == inheritance) && 1247 (prev_entry->protection == prot) && 1248 (prev_entry->max_protection == max)) { 1249 map->size += (end - prev_entry->end); 1250 prev_entry->end = end; 1251 vm_map_entry_resize_free(map, prev_entry); 1252 vm_map_simplify_entry(map, prev_entry); 1253 if (cred != NULL) 1254 crfree(cred); 1255 return (KERN_SUCCESS); 1256 } 1257 1258 /* 1259 * If we can extend the object but cannot extend the 1260 * map entry, we have to create a new map entry. We 1261 * must bump the ref count on the extended object to 1262 * account for it. object may be NULL. 1263 */ 1264 object = prev_entry->object.vm_object; 1265 offset = prev_entry->offset + 1266 (prev_entry->end - prev_entry->start); 1267 vm_object_reference(object); 1268 if (cred != NULL && object != NULL && object->cred != NULL && 1269 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1270 /* Object already accounts for this uid. */ 1271 crfree(cred); 1272 cred = NULL; 1273 } 1274 } 1275 1276 /* 1277 * NOTE: if conditionals fail, object can be NULL here. This occurs 1278 * in things like the buffer map where we manage kva but do not manage 1279 * backing objects. 1280 */ 1281 1282 /* 1283 * Create a new entry 1284 */ 1285 new_entry = vm_map_entry_create(map); 1286 new_entry->start = start; 1287 new_entry->end = end; 1288 new_entry->cred = NULL; 1289 1290 new_entry->eflags = protoeflags; 1291 new_entry->object.vm_object = object; 1292 new_entry->offset = offset; 1293 new_entry->avail_ssize = 0; 1294 1295 new_entry->inheritance = inheritance; 1296 new_entry->protection = prot; 1297 new_entry->max_protection = max; 1298 new_entry->wired_count = 0; 1299 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1300 new_entry->next_read = OFF_TO_IDX(offset); 1301 1302 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1303 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1304 new_entry->cred = cred; 1305 1306 /* 1307 * Insert the new entry into the list 1308 */ 1309 vm_map_entry_link(map, prev_entry, new_entry); 1310 map->size += new_entry->end - new_entry->start; 1311 1312 /* 1313 * It may be possible to merge the new entry with the next and/or 1314 * previous entries. However, due to MAP_STACK_* being a hack, a 1315 * panic can result from merging such entries. 1316 */ 1317 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1318 vm_map_simplify_entry(map, new_entry); 1319 1320 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1321 vm_map_pmap_enter(map, start, prot, 1322 object, OFF_TO_IDX(offset), end - start, 1323 cow & MAP_PREFAULT_PARTIAL); 1324 } 1325 1326 return (KERN_SUCCESS); 1327 } 1328 1329 /* 1330 * vm_map_findspace: 1331 * 1332 * Find the first fit (lowest VM address) for "length" free bytes 1333 * beginning at address >= start in the given map. 1334 * 1335 * In a vm_map_entry, "adj_free" is the amount of free space 1336 * adjacent (higher address) to this entry, and "max_free" is the 1337 * maximum amount of contiguous free space in its subtree. This 1338 * allows finding a free region in one path down the tree, so 1339 * O(log n) amortized with splay trees. 1340 * 1341 * The map must be locked, and leaves it so. 1342 * 1343 * Returns: 0 on success, and starting address in *addr, 1344 * 1 if insufficient space. 1345 */ 1346 int 1347 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1348 vm_offset_t *addr) /* OUT */ 1349 { 1350 vm_map_entry_t entry; 1351 vm_offset_t st; 1352 1353 /* 1354 * Request must fit within min/max VM address and must avoid 1355 * address wrap. 1356 */ 1357 if (start < map->min_offset) 1358 start = map->min_offset; 1359 if (start + length > map->max_offset || start + length < start) 1360 return (1); 1361 1362 /* Empty tree means wide open address space. */ 1363 if (map->root == NULL) { 1364 *addr = start; 1365 return (0); 1366 } 1367 1368 /* 1369 * After splay, if start comes before root node, then there 1370 * must be a gap from start to the root. 1371 */ 1372 map->root = vm_map_entry_splay(start, map->root); 1373 if (start + length <= map->root->start) { 1374 *addr = start; 1375 return (0); 1376 } 1377 1378 /* 1379 * Root is the last node that might begin its gap before 1380 * start, and this is the last comparison where address 1381 * wrap might be a problem. 1382 */ 1383 st = (start > map->root->end) ? start : map->root->end; 1384 if (length <= map->root->end + map->root->adj_free - st) { 1385 *addr = st; 1386 return (0); 1387 } 1388 1389 /* With max_free, can immediately tell if no solution. */ 1390 entry = map->root->right; 1391 if (entry == NULL || length > entry->max_free) 1392 return (1); 1393 1394 /* 1395 * Search the right subtree in the order: left subtree, root, 1396 * right subtree (first fit). The previous splay implies that 1397 * all regions in the right subtree have addresses > start. 1398 */ 1399 while (entry != NULL) { 1400 if (entry->left != NULL && entry->left->max_free >= length) 1401 entry = entry->left; 1402 else if (entry->adj_free >= length) { 1403 *addr = entry->end; 1404 return (0); 1405 } else 1406 entry = entry->right; 1407 } 1408 1409 /* Can't get here, so panic if we do. */ 1410 panic("vm_map_findspace: max_free corrupt"); 1411 } 1412 1413 int 1414 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1415 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1416 vm_prot_t max, int cow) 1417 { 1418 vm_offset_t end; 1419 int result; 1420 1421 end = start + length; 1422 vm_map_lock(map); 1423 VM_MAP_RANGE_CHECK(map, start, end); 1424 (void) vm_map_delete(map, start, end); 1425 result = vm_map_insert(map, object, offset, start, end, prot, 1426 max, cow); 1427 vm_map_unlock(map); 1428 return (result); 1429 } 1430 1431 /* 1432 * vm_map_find finds an unallocated region in the target address 1433 * map with the given length. The search is defined to be 1434 * first-fit from the specified address; the region found is 1435 * returned in the same parameter. 1436 * 1437 * If object is non-NULL, ref count must be bumped by caller 1438 * prior to making call to account for the new entry. 1439 */ 1440 int 1441 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1442 vm_offset_t *addr, /* IN/OUT */ 1443 vm_size_t length, int find_space, vm_prot_t prot, 1444 vm_prot_t max, int cow) 1445 { 1446 vm_offset_t start; 1447 int result; 1448 1449 start = *addr; 1450 vm_map_lock(map); 1451 do { 1452 if (find_space != VMFS_NO_SPACE) { 1453 if (vm_map_findspace(map, start, length, addr)) { 1454 vm_map_unlock(map); 1455 return (KERN_NO_SPACE); 1456 } 1457 switch (find_space) { 1458 case VMFS_ALIGNED_SPACE: 1459 pmap_align_superpage(object, offset, addr, 1460 length); 1461 break; 1462 #ifdef VMFS_TLB_ALIGNED_SPACE 1463 case VMFS_TLB_ALIGNED_SPACE: 1464 pmap_align_tlb(addr); 1465 break; 1466 #endif 1467 default: 1468 break; 1469 } 1470 1471 start = *addr; 1472 } 1473 result = vm_map_insert(map, object, offset, start, start + 1474 length, prot, max, cow); 1475 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1476 #ifdef VMFS_TLB_ALIGNED_SPACE 1477 || find_space == VMFS_TLB_ALIGNED_SPACE 1478 #endif 1479 )); 1480 vm_map_unlock(map); 1481 return (result); 1482 } 1483 1484 /* 1485 * vm_map_simplify_entry: 1486 * 1487 * Simplify the given map entry by merging with either neighbor. This 1488 * routine also has the ability to merge with both neighbors. 1489 * 1490 * The map must be locked. 1491 * 1492 * This routine guarentees that the passed entry remains valid (though 1493 * possibly extended). When merging, this routine may delete one or 1494 * both neighbors. 1495 */ 1496 void 1497 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1498 { 1499 vm_map_entry_t next, prev; 1500 vm_size_t prevsize, esize; 1501 1502 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1503 return; 1504 1505 prev = entry->prev; 1506 if (prev != &map->header) { 1507 prevsize = prev->end - prev->start; 1508 if ( (prev->end == entry->start) && 1509 (prev->object.vm_object == entry->object.vm_object) && 1510 (!prev->object.vm_object || 1511 (prev->offset + prevsize == entry->offset)) && 1512 (prev->eflags == entry->eflags) && 1513 (prev->protection == entry->protection) && 1514 (prev->max_protection == entry->max_protection) && 1515 (prev->inheritance == entry->inheritance) && 1516 (prev->wired_count == entry->wired_count) && 1517 (prev->cred == entry->cred)) { 1518 vm_map_entry_unlink(map, prev); 1519 entry->start = prev->start; 1520 entry->offset = prev->offset; 1521 if (entry->prev != &map->header) 1522 vm_map_entry_resize_free(map, entry->prev); 1523 1524 /* 1525 * If the backing object is a vnode object, 1526 * vm_object_deallocate() calls vrele(). 1527 * However, vrele() does not lock the vnode 1528 * because the vnode has additional 1529 * references. Thus, the map lock can be kept 1530 * without causing a lock-order reversal with 1531 * the vnode lock. 1532 * 1533 * Since we count the number of virtual page 1534 * mappings in object->un_pager.vnp.writemappings, 1535 * the writemappings value should not be adjusted 1536 * when the entry is disposed of. 1537 */ 1538 if (prev->object.vm_object) 1539 vm_object_deallocate(prev->object.vm_object); 1540 if (prev->cred != NULL) 1541 crfree(prev->cred); 1542 vm_map_entry_dispose(map, prev); 1543 } 1544 } 1545 1546 next = entry->next; 1547 if (next != &map->header) { 1548 esize = entry->end - entry->start; 1549 if ((entry->end == next->start) && 1550 (next->object.vm_object == entry->object.vm_object) && 1551 (!entry->object.vm_object || 1552 (entry->offset + esize == next->offset)) && 1553 (next->eflags == entry->eflags) && 1554 (next->protection == entry->protection) && 1555 (next->max_protection == entry->max_protection) && 1556 (next->inheritance == entry->inheritance) && 1557 (next->wired_count == entry->wired_count) && 1558 (next->cred == entry->cred)) { 1559 vm_map_entry_unlink(map, next); 1560 entry->end = next->end; 1561 vm_map_entry_resize_free(map, entry); 1562 1563 /* 1564 * See comment above. 1565 */ 1566 if (next->object.vm_object) 1567 vm_object_deallocate(next->object.vm_object); 1568 if (next->cred != NULL) 1569 crfree(next->cred); 1570 vm_map_entry_dispose(map, next); 1571 } 1572 } 1573 } 1574 /* 1575 * vm_map_clip_start: [ internal use only ] 1576 * 1577 * Asserts that the given entry begins at or after 1578 * the specified address; if necessary, 1579 * it splits the entry into two. 1580 */ 1581 #define vm_map_clip_start(map, entry, startaddr) \ 1582 { \ 1583 if (startaddr > entry->start) \ 1584 _vm_map_clip_start(map, entry, startaddr); \ 1585 } 1586 1587 /* 1588 * This routine is called only when it is known that 1589 * the entry must be split. 1590 */ 1591 static void 1592 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1593 { 1594 vm_map_entry_t new_entry; 1595 1596 VM_MAP_ASSERT_LOCKED(map); 1597 1598 /* 1599 * Split off the front portion -- note that we must insert the new 1600 * entry BEFORE this one, so that this entry has the specified 1601 * starting address. 1602 */ 1603 vm_map_simplify_entry(map, entry); 1604 1605 /* 1606 * If there is no object backing this entry, we might as well create 1607 * one now. If we defer it, an object can get created after the map 1608 * is clipped, and individual objects will be created for the split-up 1609 * map. This is a bit of a hack, but is also about the best place to 1610 * put this improvement. 1611 */ 1612 if (entry->object.vm_object == NULL && !map->system_map) { 1613 vm_object_t object; 1614 object = vm_object_allocate(OBJT_DEFAULT, 1615 atop(entry->end - entry->start)); 1616 entry->object.vm_object = object; 1617 entry->offset = 0; 1618 if (entry->cred != NULL) { 1619 object->cred = entry->cred; 1620 object->charge = entry->end - entry->start; 1621 entry->cred = NULL; 1622 } 1623 } else if (entry->object.vm_object != NULL && 1624 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1625 entry->cred != NULL) { 1626 VM_OBJECT_LOCK(entry->object.vm_object); 1627 KASSERT(entry->object.vm_object->cred == NULL, 1628 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1629 entry->object.vm_object->cred = entry->cred; 1630 entry->object.vm_object->charge = entry->end - entry->start; 1631 VM_OBJECT_UNLOCK(entry->object.vm_object); 1632 entry->cred = NULL; 1633 } 1634 1635 new_entry = vm_map_entry_create(map); 1636 *new_entry = *entry; 1637 1638 new_entry->end = start; 1639 entry->offset += (start - entry->start); 1640 entry->start = start; 1641 if (new_entry->cred != NULL) 1642 crhold(entry->cred); 1643 1644 vm_map_entry_link(map, entry->prev, new_entry); 1645 1646 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1647 vm_object_reference(new_entry->object.vm_object); 1648 /* 1649 * The object->un_pager.vnp.writemappings for the 1650 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1651 * kept as is here. The virtual pages are 1652 * re-distributed among the clipped entries, so the sum is 1653 * left the same. 1654 */ 1655 } 1656 } 1657 1658 /* 1659 * vm_map_clip_end: [ internal use only ] 1660 * 1661 * Asserts that the given entry ends at or before 1662 * the specified address; if necessary, 1663 * it splits the entry into two. 1664 */ 1665 #define vm_map_clip_end(map, entry, endaddr) \ 1666 { \ 1667 if ((endaddr) < (entry->end)) \ 1668 _vm_map_clip_end((map), (entry), (endaddr)); \ 1669 } 1670 1671 /* 1672 * This routine is called only when it is known that 1673 * the entry must be split. 1674 */ 1675 static void 1676 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1677 { 1678 vm_map_entry_t new_entry; 1679 1680 VM_MAP_ASSERT_LOCKED(map); 1681 1682 /* 1683 * If there is no object backing this entry, we might as well create 1684 * one now. If we defer it, an object can get created after the map 1685 * is clipped, and individual objects will be created for the split-up 1686 * map. This is a bit of a hack, but is also about the best place to 1687 * put this improvement. 1688 */ 1689 if (entry->object.vm_object == NULL && !map->system_map) { 1690 vm_object_t object; 1691 object = vm_object_allocate(OBJT_DEFAULT, 1692 atop(entry->end - entry->start)); 1693 entry->object.vm_object = object; 1694 entry->offset = 0; 1695 if (entry->cred != NULL) { 1696 object->cred = entry->cred; 1697 object->charge = entry->end - entry->start; 1698 entry->cred = NULL; 1699 } 1700 } else if (entry->object.vm_object != NULL && 1701 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1702 entry->cred != NULL) { 1703 VM_OBJECT_LOCK(entry->object.vm_object); 1704 KASSERT(entry->object.vm_object->cred == NULL, 1705 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1706 entry->object.vm_object->cred = entry->cred; 1707 entry->object.vm_object->charge = entry->end - entry->start; 1708 VM_OBJECT_UNLOCK(entry->object.vm_object); 1709 entry->cred = NULL; 1710 } 1711 1712 /* 1713 * Create a new entry and insert it AFTER the specified entry 1714 */ 1715 new_entry = vm_map_entry_create(map); 1716 *new_entry = *entry; 1717 1718 new_entry->start = entry->end = end; 1719 new_entry->offset += (end - entry->start); 1720 if (new_entry->cred != NULL) 1721 crhold(entry->cred); 1722 1723 vm_map_entry_link(map, entry, new_entry); 1724 1725 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1726 vm_object_reference(new_entry->object.vm_object); 1727 } 1728 } 1729 1730 /* 1731 * vm_map_submap: [ kernel use only ] 1732 * 1733 * Mark the given range as handled by a subordinate map. 1734 * 1735 * This range must have been created with vm_map_find, 1736 * and no other operations may have been performed on this 1737 * range prior to calling vm_map_submap. 1738 * 1739 * Only a limited number of operations can be performed 1740 * within this rage after calling vm_map_submap: 1741 * vm_fault 1742 * [Don't try vm_map_copy!] 1743 * 1744 * To remove a submapping, one must first remove the 1745 * range from the superior map, and then destroy the 1746 * submap (if desired). [Better yet, don't try it.] 1747 */ 1748 int 1749 vm_map_submap( 1750 vm_map_t map, 1751 vm_offset_t start, 1752 vm_offset_t end, 1753 vm_map_t submap) 1754 { 1755 vm_map_entry_t entry; 1756 int result = KERN_INVALID_ARGUMENT; 1757 1758 vm_map_lock(map); 1759 1760 VM_MAP_RANGE_CHECK(map, start, end); 1761 1762 if (vm_map_lookup_entry(map, start, &entry)) { 1763 vm_map_clip_start(map, entry, start); 1764 } else 1765 entry = entry->next; 1766 1767 vm_map_clip_end(map, entry, end); 1768 1769 if ((entry->start == start) && (entry->end == end) && 1770 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1771 (entry->object.vm_object == NULL)) { 1772 entry->object.sub_map = submap; 1773 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1774 result = KERN_SUCCESS; 1775 } 1776 vm_map_unlock(map); 1777 1778 return (result); 1779 } 1780 1781 /* 1782 * The maximum number of pages to map 1783 */ 1784 #define MAX_INIT_PT 96 1785 1786 /* 1787 * vm_map_pmap_enter: 1788 * 1789 * Preload read-only mappings for the specified object's resident pages 1790 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1791 * the resident pages within the address range [addr, addr + ulmin(size, 1792 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1793 * the specified address range are mapped. This eliminates many soft 1794 * faults on process startup and immediately after an mmap(2). Because 1795 * these are speculative mappings, cached pages are not reactivated and 1796 * mapped. 1797 */ 1798 void 1799 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1800 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1801 { 1802 vm_offset_t start; 1803 vm_page_t p, p_start; 1804 vm_pindex_t psize, tmpidx; 1805 1806 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1807 return; 1808 VM_OBJECT_LOCK(object); 1809 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1810 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1811 goto unlock_return; 1812 } 1813 1814 psize = atop(size); 1815 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1816 psize = MAX_INIT_PT; 1817 if (psize + pindex > object->size) { 1818 if (object->size < pindex) 1819 goto unlock_return; 1820 psize = object->size - pindex; 1821 } 1822 1823 start = 0; 1824 p_start = NULL; 1825 1826 p = vm_page_find_least(object, pindex); 1827 /* 1828 * Assert: the variable p is either (1) the page with the 1829 * least pindex greater than or equal to the parameter pindex 1830 * or (2) NULL. 1831 */ 1832 for (; 1833 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1834 p = TAILQ_NEXT(p, listq)) { 1835 /* 1836 * don't allow an madvise to blow away our really 1837 * free pages allocating pv entries. 1838 */ 1839 if ((flags & MAP_PREFAULT_MADVISE) && 1840 cnt.v_free_count < cnt.v_free_reserved) { 1841 psize = tmpidx; 1842 break; 1843 } 1844 if (p->valid == VM_PAGE_BITS_ALL) { 1845 if (p_start == NULL) { 1846 start = addr + ptoa(tmpidx); 1847 p_start = p; 1848 } 1849 } else if (p_start != NULL) { 1850 pmap_enter_object(map->pmap, start, addr + 1851 ptoa(tmpidx), p_start, prot); 1852 p_start = NULL; 1853 } 1854 } 1855 if (p_start != NULL) 1856 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1857 p_start, prot); 1858 unlock_return: 1859 VM_OBJECT_UNLOCK(object); 1860 } 1861 1862 /* 1863 * vm_map_protect: 1864 * 1865 * Sets the protection of the specified address 1866 * region in the target map. If "set_max" is 1867 * specified, the maximum protection is to be set; 1868 * otherwise, only the current protection is affected. 1869 */ 1870 int 1871 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1872 vm_prot_t new_prot, boolean_t set_max) 1873 { 1874 vm_map_entry_t current, entry; 1875 vm_object_t obj; 1876 struct ucred *cred; 1877 vm_prot_t old_prot; 1878 1879 vm_map_lock(map); 1880 1881 VM_MAP_RANGE_CHECK(map, start, end); 1882 1883 if (vm_map_lookup_entry(map, start, &entry)) { 1884 vm_map_clip_start(map, entry, start); 1885 } else { 1886 entry = entry->next; 1887 } 1888 1889 /* 1890 * Make a first pass to check for protection violations. 1891 */ 1892 current = entry; 1893 while ((current != &map->header) && (current->start < end)) { 1894 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1895 vm_map_unlock(map); 1896 return (KERN_INVALID_ARGUMENT); 1897 } 1898 if ((new_prot & current->max_protection) != new_prot) { 1899 vm_map_unlock(map); 1900 return (KERN_PROTECTION_FAILURE); 1901 } 1902 current = current->next; 1903 } 1904 1905 1906 /* 1907 * Do an accounting pass for private read-only mappings that 1908 * now will do cow due to allowed write (e.g. debugger sets 1909 * breakpoint on text segment) 1910 */ 1911 for (current = entry; (current != &map->header) && 1912 (current->start < end); current = current->next) { 1913 1914 vm_map_clip_end(map, current, end); 1915 1916 if (set_max || 1917 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1918 ENTRY_CHARGED(current)) { 1919 continue; 1920 } 1921 1922 cred = curthread->td_ucred; 1923 obj = current->object.vm_object; 1924 1925 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1926 if (!swap_reserve(current->end - current->start)) { 1927 vm_map_unlock(map); 1928 return (KERN_RESOURCE_SHORTAGE); 1929 } 1930 crhold(cred); 1931 current->cred = cred; 1932 continue; 1933 } 1934 1935 VM_OBJECT_LOCK(obj); 1936 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1937 VM_OBJECT_UNLOCK(obj); 1938 continue; 1939 } 1940 1941 /* 1942 * Charge for the whole object allocation now, since 1943 * we cannot distinguish between non-charged and 1944 * charged clipped mapping of the same object later. 1945 */ 1946 KASSERT(obj->charge == 0, 1947 ("vm_map_protect: object %p overcharged\n", obj)); 1948 if (!swap_reserve(ptoa(obj->size))) { 1949 VM_OBJECT_UNLOCK(obj); 1950 vm_map_unlock(map); 1951 return (KERN_RESOURCE_SHORTAGE); 1952 } 1953 1954 crhold(cred); 1955 obj->cred = cred; 1956 obj->charge = ptoa(obj->size); 1957 VM_OBJECT_UNLOCK(obj); 1958 } 1959 1960 /* 1961 * Go back and fix up protections. [Note that clipping is not 1962 * necessary the second time.] 1963 */ 1964 current = entry; 1965 while ((current != &map->header) && (current->start < end)) { 1966 old_prot = current->protection; 1967 1968 if (set_max) 1969 current->protection = 1970 (current->max_protection = new_prot) & 1971 old_prot; 1972 else 1973 current->protection = new_prot; 1974 1975 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1976 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1977 (current->protection & VM_PROT_WRITE) != 0 && 1978 (old_prot & VM_PROT_WRITE) == 0) { 1979 vm_fault_copy_entry(map, map, current, current, NULL); 1980 } 1981 1982 /* 1983 * When restricting access, update the physical map. Worry 1984 * about copy-on-write here. 1985 */ 1986 if ((old_prot & ~current->protection) != 0) { 1987 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1988 VM_PROT_ALL) 1989 pmap_protect(map->pmap, current->start, 1990 current->end, 1991 current->protection & MASK(current)); 1992 #undef MASK 1993 } 1994 vm_map_simplify_entry(map, current); 1995 current = current->next; 1996 } 1997 vm_map_unlock(map); 1998 return (KERN_SUCCESS); 1999 } 2000 2001 /* 2002 * vm_map_madvise: 2003 * 2004 * This routine traverses a processes map handling the madvise 2005 * system call. Advisories are classified as either those effecting 2006 * the vm_map_entry structure, or those effecting the underlying 2007 * objects. 2008 */ 2009 int 2010 vm_map_madvise( 2011 vm_map_t map, 2012 vm_offset_t start, 2013 vm_offset_t end, 2014 int behav) 2015 { 2016 vm_map_entry_t current, entry; 2017 int modify_map = 0; 2018 2019 /* 2020 * Some madvise calls directly modify the vm_map_entry, in which case 2021 * we need to use an exclusive lock on the map and we need to perform 2022 * various clipping operations. Otherwise we only need a read-lock 2023 * on the map. 2024 */ 2025 switch(behav) { 2026 case MADV_NORMAL: 2027 case MADV_SEQUENTIAL: 2028 case MADV_RANDOM: 2029 case MADV_NOSYNC: 2030 case MADV_AUTOSYNC: 2031 case MADV_NOCORE: 2032 case MADV_CORE: 2033 modify_map = 1; 2034 vm_map_lock(map); 2035 break; 2036 case MADV_WILLNEED: 2037 case MADV_DONTNEED: 2038 case MADV_FREE: 2039 vm_map_lock_read(map); 2040 break; 2041 default: 2042 return (KERN_INVALID_ARGUMENT); 2043 } 2044 2045 /* 2046 * Locate starting entry and clip if necessary. 2047 */ 2048 VM_MAP_RANGE_CHECK(map, start, end); 2049 2050 if (vm_map_lookup_entry(map, start, &entry)) { 2051 if (modify_map) 2052 vm_map_clip_start(map, entry, start); 2053 } else { 2054 entry = entry->next; 2055 } 2056 2057 if (modify_map) { 2058 /* 2059 * madvise behaviors that are implemented in the vm_map_entry. 2060 * 2061 * We clip the vm_map_entry so that behavioral changes are 2062 * limited to the specified address range. 2063 */ 2064 for (current = entry; 2065 (current != &map->header) && (current->start < end); 2066 current = current->next 2067 ) { 2068 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2069 continue; 2070 2071 vm_map_clip_end(map, current, end); 2072 2073 switch (behav) { 2074 case MADV_NORMAL: 2075 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2076 break; 2077 case MADV_SEQUENTIAL: 2078 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2079 break; 2080 case MADV_RANDOM: 2081 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2082 break; 2083 case MADV_NOSYNC: 2084 current->eflags |= MAP_ENTRY_NOSYNC; 2085 break; 2086 case MADV_AUTOSYNC: 2087 current->eflags &= ~MAP_ENTRY_NOSYNC; 2088 break; 2089 case MADV_NOCORE: 2090 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2091 break; 2092 case MADV_CORE: 2093 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2094 break; 2095 default: 2096 break; 2097 } 2098 vm_map_simplify_entry(map, current); 2099 } 2100 vm_map_unlock(map); 2101 } else { 2102 vm_pindex_t pstart, pend; 2103 2104 /* 2105 * madvise behaviors that are implemented in the underlying 2106 * vm_object. 2107 * 2108 * Since we don't clip the vm_map_entry, we have to clip 2109 * the vm_object pindex and count. 2110 */ 2111 for (current = entry; 2112 (current != &map->header) && (current->start < end); 2113 current = current->next 2114 ) { 2115 vm_offset_t useStart; 2116 2117 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2118 continue; 2119 2120 pstart = OFF_TO_IDX(current->offset); 2121 pend = pstart + atop(current->end - current->start); 2122 useStart = current->start; 2123 2124 if (current->start < start) { 2125 pstart += atop(start - current->start); 2126 useStart = start; 2127 } 2128 if (current->end > end) 2129 pend -= atop(current->end - end); 2130 2131 if (pstart >= pend) 2132 continue; 2133 2134 vm_object_madvise(current->object.vm_object, pstart, 2135 pend, behav); 2136 if (behav == MADV_WILLNEED) { 2137 vm_map_pmap_enter(map, 2138 useStart, 2139 current->protection, 2140 current->object.vm_object, 2141 pstart, 2142 ptoa(pend - pstart), 2143 MAP_PREFAULT_MADVISE 2144 ); 2145 } 2146 } 2147 vm_map_unlock_read(map); 2148 } 2149 return (0); 2150 } 2151 2152 2153 /* 2154 * vm_map_inherit: 2155 * 2156 * Sets the inheritance of the specified address 2157 * range in the target map. Inheritance 2158 * affects how the map will be shared with 2159 * child maps at the time of vmspace_fork. 2160 */ 2161 int 2162 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2163 vm_inherit_t new_inheritance) 2164 { 2165 vm_map_entry_t entry; 2166 vm_map_entry_t temp_entry; 2167 2168 switch (new_inheritance) { 2169 case VM_INHERIT_NONE: 2170 case VM_INHERIT_COPY: 2171 case VM_INHERIT_SHARE: 2172 break; 2173 default: 2174 return (KERN_INVALID_ARGUMENT); 2175 } 2176 vm_map_lock(map); 2177 VM_MAP_RANGE_CHECK(map, start, end); 2178 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2179 entry = temp_entry; 2180 vm_map_clip_start(map, entry, start); 2181 } else 2182 entry = temp_entry->next; 2183 while ((entry != &map->header) && (entry->start < end)) { 2184 vm_map_clip_end(map, entry, end); 2185 entry->inheritance = new_inheritance; 2186 vm_map_simplify_entry(map, entry); 2187 entry = entry->next; 2188 } 2189 vm_map_unlock(map); 2190 return (KERN_SUCCESS); 2191 } 2192 2193 /* 2194 * vm_map_unwire: 2195 * 2196 * Implements both kernel and user unwiring. 2197 */ 2198 int 2199 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2200 int flags) 2201 { 2202 vm_map_entry_t entry, first_entry, tmp_entry; 2203 vm_offset_t saved_start; 2204 unsigned int last_timestamp; 2205 int rv; 2206 boolean_t need_wakeup, result, user_unwire; 2207 2208 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2209 vm_map_lock(map); 2210 VM_MAP_RANGE_CHECK(map, start, end); 2211 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2212 if (flags & VM_MAP_WIRE_HOLESOK) 2213 first_entry = first_entry->next; 2214 else { 2215 vm_map_unlock(map); 2216 return (KERN_INVALID_ADDRESS); 2217 } 2218 } 2219 last_timestamp = map->timestamp; 2220 entry = first_entry; 2221 while (entry != &map->header && entry->start < end) { 2222 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2223 /* 2224 * We have not yet clipped the entry. 2225 */ 2226 saved_start = (start >= entry->start) ? start : 2227 entry->start; 2228 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2229 if (vm_map_unlock_and_wait(map, 0)) { 2230 /* 2231 * Allow interruption of user unwiring? 2232 */ 2233 } 2234 vm_map_lock(map); 2235 if (last_timestamp+1 != map->timestamp) { 2236 /* 2237 * Look again for the entry because the map was 2238 * modified while it was unlocked. 2239 * Specifically, the entry may have been 2240 * clipped, merged, or deleted. 2241 */ 2242 if (!vm_map_lookup_entry(map, saved_start, 2243 &tmp_entry)) { 2244 if (flags & VM_MAP_WIRE_HOLESOK) 2245 tmp_entry = tmp_entry->next; 2246 else { 2247 if (saved_start == start) { 2248 /* 2249 * First_entry has been deleted. 2250 */ 2251 vm_map_unlock(map); 2252 return (KERN_INVALID_ADDRESS); 2253 } 2254 end = saved_start; 2255 rv = KERN_INVALID_ADDRESS; 2256 goto done; 2257 } 2258 } 2259 if (entry == first_entry) 2260 first_entry = tmp_entry; 2261 else 2262 first_entry = NULL; 2263 entry = tmp_entry; 2264 } 2265 last_timestamp = map->timestamp; 2266 continue; 2267 } 2268 vm_map_clip_start(map, entry, start); 2269 vm_map_clip_end(map, entry, end); 2270 /* 2271 * Mark the entry in case the map lock is released. (See 2272 * above.) 2273 */ 2274 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2275 /* 2276 * Check the map for holes in the specified region. 2277 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2278 */ 2279 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2280 (entry->end < end && (entry->next == &map->header || 2281 entry->next->start > entry->end))) { 2282 end = entry->end; 2283 rv = KERN_INVALID_ADDRESS; 2284 goto done; 2285 } 2286 /* 2287 * If system unwiring, require that the entry is system wired. 2288 */ 2289 if (!user_unwire && 2290 vm_map_entry_system_wired_count(entry) == 0) { 2291 end = entry->end; 2292 rv = KERN_INVALID_ARGUMENT; 2293 goto done; 2294 } 2295 entry = entry->next; 2296 } 2297 rv = KERN_SUCCESS; 2298 done: 2299 need_wakeup = FALSE; 2300 if (first_entry == NULL) { 2301 result = vm_map_lookup_entry(map, start, &first_entry); 2302 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2303 first_entry = first_entry->next; 2304 else 2305 KASSERT(result, ("vm_map_unwire: lookup failed")); 2306 } 2307 entry = first_entry; 2308 while (entry != &map->header && entry->start < end) { 2309 if (rv == KERN_SUCCESS && (!user_unwire || 2310 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2311 if (user_unwire) 2312 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2313 entry->wired_count--; 2314 if (entry->wired_count == 0) { 2315 /* 2316 * Retain the map lock. 2317 */ 2318 vm_fault_unwire(map, entry->start, entry->end, 2319 entry->object.vm_object != NULL && 2320 (entry->object.vm_object->flags & 2321 OBJ_FICTITIOUS) != 0); 2322 } 2323 } 2324 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2325 ("vm_map_unwire: in-transition flag missing")); 2326 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2327 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2328 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2329 need_wakeup = TRUE; 2330 } 2331 vm_map_simplify_entry(map, entry); 2332 entry = entry->next; 2333 } 2334 vm_map_unlock(map); 2335 if (need_wakeup) 2336 vm_map_wakeup(map); 2337 return (rv); 2338 } 2339 2340 /* 2341 * vm_map_wire: 2342 * 2343 * Implements both kernel and user wiring. 2344 */ 2345 int 2346 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2347 int flags) 2348 { 2349 vm_map_entry_t entry, first_entry, tmp_entry; 2350 vm_offset_t saved_end, saved_start; 2351 unsigned int last_timestamp; 2352 int rv; 2353 boolean_t fictitious, need_wakeup, result, user_wire; 2354 vm_prot_t prot; 2355 2356 prot = 0; 2357 if (flags & VM_MAP_WIRE_WRITE) 2358 prot |= VM_PROT_WRITE; 2359 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2360 vm_map_lock(map); 2361 VM_MAP_RANGE_CHECK(map, start, end); 2362 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2363 if (flags & VM_MAP_WIRE_HOLESOK) 2364 first_entry = first_entry->next; 2365 else { 2366 vm_map_unlock(map); 2367 return (KERN_INVALID_ADDRESS); 2368 } 2369 } 2370 last_timestamp = map->timestamp; 2371 entry = first_entry; 2372 while (entry != &map->header && entry->start < end) { 2373 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2374 /* 2375 * We have not yet clipped the entry. 2376 */ 2377 saved_start = (start >= entry->start) ? start : 2378 entry->start; 2379 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2380 if (vm_map_unlock_and_wait(map, 0)) { 2381 /* 2382 * Allow interruption of user wiring? 2383 */ 2384 } 2385 vm_map_lock(map); 2386 if (last_timestamp + 1 != map->timestamp) { 2387 /* 2388 * Look again for the entry because the map was 2389 * modified while it was unlocked. 2390 * Specifically, the entry may have been 2391 * clipped, merged, or deleted. 2392 */ 2393 if (!vm_map_lookup_entry(map, saved_start, 2394 &tmp_entry)) { 2395 if (flags & VM_MAP_WIRE_HOLESOK) 2396 tmp_entry = tmp_entry->next; 2397 else { 2398 if (saved_start == start) { 2399 /* 2400 * first_entry has been deleted. 2401 */ 2402 vm_map_unlock(map); 2403 return (KERN_INVALID_ADDRESS); 2404 } 2405 end = saved_start; 2406 rv = KERN_INVALID_ADDRESS; 2407 goto done; 2408 } 2409 } 2410 if (entry == first_entry) 2411 first_entry = tmp_entry; 2412 else 2413 first_entry = NULL; 2414 entry = tmp_entry; 2415 } 2416 last_timestamp = map->timestamp; 2417 continue; 2418 } 2419 vm_map_clip_start(map, entry, start); 2420 vm_map_clip_end(map, entry, end); 2421 /* 2422 * Mark the entry in case the map lock is released. (See 2423 * above.) 2424 */ 2425 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2426 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2427 || (entry->protection & prot) != prot) { 2428 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2429 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2430 end = entry->end; 2431 rv = KERN_INVALID_ADDRESS; 2432 goto done; 2433 } 2434 goto next_entry; 2435 } 2436 if (entry->wired_count == 0) { 2437 entry->wired_count++; 2438 saved_start = entry->start; 2439 saved_end = entry->end; 2440 fictitious = entry->object.vm_object != NULL && 2441 (entry->object.vm_object->flags & 2442 OBJ_FICTITIOUS) != 0; 2443 /* 2444 * Release the map lock, relying on the in-transition 2445 * mark. Mark the map busy for fork. 2446 */ 2447 vm_map_busy(map); 2448 vm_map_unlock(map); 2449 rv = vm_fault_wire(map, saved_start, saved_end, 2450 fictitious); 2451 vm_map_lock(map); 2452 vm_map_unbusy(map); 2453 if (last_timestamp + 1 != map->timestamp) { 2454 /* 2455 * Look again for the entry because the map was 2456 * modified while it was unlocked. The entry 2457 * may have been clipped, but NOT merged or 2458 * deleted. 2459 */ 2460 result = vm_map_lookup_entry(map, saved_start, 2461 &tmp_entry); 2462 KASSERT(result, ("vm_map_wire: lookup failed")); 2463 if (entry == first_entry) 2464 first_entry = tmp_entry; 2465 else 2466 first_entry = NULL; 2467 entry = tmp_entry; 2468 while (entry->end < saved_end) { 2469 if (rv != KERN_SUCCESS) { 2470 KASSERT(entry->wired_count == 1, 2471 ("vm_map_wire: bad count")); 2472 entry->wired_count = -1; 2473 } 2474 entry = entry->next; 2475 } 2476 } 2477 last_timestamp = map->timestamp; 2478 if (rv != KERN_SUCCESS) { 2479 KASSERT(entry->wired_count == 1, 2480 ("vm_map_wire: bad count")); 2481 /* 2482 * Assign an out-of-range value to represent 2483 * the failure to wire this entry. 2484 */ 2485 entry->wired_count = -1; 2486 end = entry->end; 2487 goto done; 2488 } 2489 } else if (!user_wire || 2490 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2491 entry->wired_count++; 2492 } 2493 /* 2494 * Check the map for holes in the specified region. 2495 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2496 */ 2497 next_entry: 2498 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2499 (entry->end < end && (entry->next == &map->header || 2500 entry->next->start > entry->end))) { 2501 end = entry->end; 2502 rv = KERN_INVALID_ADDRESS; 2503 goto done; 2504 } 2505 entry = entry->next; 2506 } 2507 rv = KERN_SUCCESS; 2508 done: 2509 need_wakeup = FALSE; 2510 if (first_entry == NULL) { 2511 result = vm_map_lookup_entry(map, start, &first_entry); 2512 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2513 first_entry = first_entry->next; 2514 else 2515 KASSERT(result, ("vm_map_wire: lookup failed")); 2516 } 2517 entry = first_entry; 2518 while (entry != &map->header && entry->start < end) { 2519 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2520 goto next_entry_done; 2521 if (rv == KERN_SUCCESS) { 2522 if (user_wire) 2523 entry->eflags |= MAP_ENTRY_USER_WIRED; 2524 } else if (entry->wired_count == -1) { 2525 /* 2526 * Wiring failed on this entry. Thus, unwiring is 2527 * unnecessary. 2528 */ 2529 entry->wired_count = 0; 2530 } else { 2531 if (!user_wire || 2532 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2533 entry->wired_count--; 2534 if (entry->wired_count == 0) { 2535 /* 2536 * Retain the map lock. 2537 */ 2538 vm_fault_unwire(map, entry->start, entry->end, 2539 entry->object.vm_object != NULL && 2540 (entry->object.vm_object->flags & 2541 OBJ_FICTITIOUS) != 0); 2542 } 2543 } 2544 next_entry_done: 2545 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2546 ("vm_map_wire: in-transition flag missing")); 2547 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2548 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2549 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2550 need_wakeup = TRUE; 2551 } 2552 vm_map_simplify_entry(map, entry); 2553 entry = entry->next; 2554 } 2555 vm_map_unlock(map); 2556 if (need_wakeup) 2557 vm_map_wakeup(map); 2558 return (rv); 2559 } 2560 2561 /* 2562 * vm_map_sync 2563 * 2564 * Push any dirty cached pages in the address range to their pager. 2565 * If syncio is TRUE, dirty pages are written synchronously. 2566 * If invalidate is TRUE, any cached pages are freed as well. 2567 * 2568 * If the size of the region from start to end is zero, we are 2569 * supposed to flush all modified pages within the region containing 2570 * start. Unfortunately, a region can be split or coalesced with 2571 * neighboring regions, making it difficult to determine what the 2572 * original region was. Therefore, we approximate this requirement by 2573 * flushing the current region containing start. 2574 * 2575 * Returns an error if any part of the specified range is not mapped. 2576 */ 2577 int 2578 vm_map_sync( 2579 vm_map_t map, 2580 vm_offset_t start, 2581 vm_offset_t end, 2582 boolean_t syncio, 2583 boolean_t invalidate) 2584 { 2585 vm_map_entry_t current; 2586 vm_map_entry_t entry; 2587 vm_size_t size; 2588 vm_object_t object; 2589 vm_ooffset_t offset; 2590 unsigned int last_timestamp; 2591 boolean_t failed; 2592 2593 vm_map_lock_read(map); 2594 VM_MAP_RANGE_CHECK(map, start, end); 2595 if (!vm_map_lookup_entry(map, start, &entry)) { 2596 vm_map_unlock_read(map); 2597 return (KERN_INVALID_ADDRESS); 2598 } else if (start == end) { 2599 start = entry->start; 2600 end = entry->end; 2601 } 2602 /* 2603 * Make a first pass to check for user-wired memory and holes. 2604 */ 2605 for (current = entry; current != &map->header && current->start < end; 2606 current = current->next) { 2607 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2608 vm_map_unlock_read(map); 2609 return (KERN_INVALID_ARGUMENT); 2610 } 2611 if (end > current->end && 2612 (current->next == &map->header || 2613 current->end != current->next->start)) { 2614 vm_map_unlock_read(map); 2615 return (KERN_INVALID_ADDRESS); 2616 } 2617 } 2618 2619 if (invalidate) 2620 pmap_remove(map->pmap, start, end); 2621 failed = FALSE; 2622 2623 /* 2624 * Make a second pass, cleaning/uncaching pages from the indicated 2625 * objects as we go. 2626 */ 2627 for (current = entry; current != &map->header && current->start < end;) { 2628 offset = current->offset + (start - current->start); 2629 size = (end <= current->end ? end : current->end) - start; 2630 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2631 vm_map_t smap; 2632 vm_map_entry_t tentry; 2633 vm_size_t tsize; 2634 2635 smap = current->object.sub_map; 2636 vm_map_lock_read(smap); 2637 (void) vm_map_lookup_entry(smap, offset, &tentry); 2638 tsize = tentry->end - offset; 2639 if (tsize < size) 2640 size = tsize; 2641 object = tentry->object.vm_object; 2642 offset = tentry->offset + (offset - tentry->start); 2643 vm_map_unlock_read(smap); 2644 } else { 2645 object = current->object.vm_object; 2646 } 2647 vm_object_reference(object); 2648 last_timestamp = map->timestamp; 2649 vm_map_unlock_read(map); 2650 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2651 failed = TRUE; 2652 start += size; 2653 vm_object_deallocate(object); 2654 vm_map_lock_read(map); 2655 if (last_timestamp == map->timestamp || 2656 !vm_map_lookup_entry(map, start, ¤t)) 2657 current = current->next; 2658 } 2659 2660 vm_map_unlock_read(map); 2661 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2662 } 2663 2664 /* 2665 * vm_map_entry_unwire: [ internal use only ] 2666 * 2667 * Make the region specified by this entry pageable. 2668 * 2669 * The map in question should be locked. 2670 * [This is the reason for this routine's existence.] 2671 */ 2672 static void 2673 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2674 { 2675 vm_fault_unwire(map, entry->start, entry->end, 2676 entry->object.vm_object != NULL && 2677 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2678 entry->wired_count = 0; 2679 } 2680 2681 static void 2682 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2683 { 2684 2685 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2686 vm_object_deallocate(entry->object.vm_object); 2687 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2688 } 2689 2690 /* 2691 * vm_map_entry_delete: [ internal use only ] 2692 * 2693 * Deallocate the given entry from the target map. 2694 */ 2695 static void 2696 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2697 { 2698 vm_object_t object; 2699 vm_pindex_t offidxstart, offidxend, count, size1; 2700 vm_ooffset_t size; 2701 2702 vm_map_entry_unlink(map, entry); 2703 object = entry->object.vm_object; 2704 size = entry->end - entry->start; 2705 map->size -= size; 2706 2707 if (entry->cred != NULL) { 2708 swap_release_by_cred(size, entry->cred); 2709 crfree(entry->cred); 2710 } 2711 2712 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2713 (object != NULL)) { 2714 KASSERT(entry->cred == NULL || object->cred == NULL || 2715 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2716 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2717 count = OFF_TO_IDX(size); 2718 offidxstart = OFF_TO_IDX(entry->offset); 2719 offidxend = offidxstart + count; 2720 VM_OBJECT_LOCK(object); 2721 if (object->ref_count != 1 && 2722 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2723 object == kernel_object || object == kmem_object)) { 2724 vm_object_collapse(object); 2725 2726 /* 2727 * The option OBJPR_NOTMAPPED can be passed here 2728 * because vm_map_delete() already performed 2729 * pmap_remove() on the only mapping to this range 2730 * of pages. 2731 */ 2732 vm_object_page_remove(object, offidxstart, offidxend, 2733 OBJPR_NOTMAPPED); 2734 if (object->type == OBJT_SWAP) 2735 swap_pager_freespace(object, offidxstart, count); 2736 if (offidxend >= object->size && 2737 offidxstart < object->size) { 2738 size1 = object->size; 2739 object->size = offidxstart; 2740 if (object->cred != NULL) { 2741 size1 -= object->size; 2742 KASSERT(object->charge >= ptoa(size1), 2743 ("vm_map_entry_delete: object->charge < 0")); 2744 swap_release_by_cred(ptoa(size1), object->cred); 2745 object->charge -= ptoa(size1); 2746 } 2747 } 2748 } 2749 VM_OBJECT_UNLOCK(object); 2750 } else 2751 entry->object.vm_object = NULL; 2752 if (map->system_map) 2753 vm_map_entry_deallocate(entry, TRUE); 2754 else { 2755 entry->next = curthread->td_map_def_user; 2756 curthread->td_map_def_user = entry; 2757 } 2758 } 2759 2760 /* 2761 * vm_map_delete: [ internal use only ] 2762 * 2763 * Deallocates the given address range from the target 2764 * map. 2765 */ 2766 int 2767 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2768 { 2769 vm_map_entry_t entry; 2770 vm_map_entry_t first_entry; 2771 2772 VM_MAP_ASSERT_LOCKED(map); 2773 2774 /* 2775 * Find the start of the region, and clip it 2776 */ 2777 if (!vm_map_lookup_entry(map, start, &first_entry)) 2778 entry = first_entry->next; 2779 else { 2780 entry = first_entry; 2781 vm_map_clip_start(map, entry, start); 2782 } 2783 2784 /* 2785 * Step through all entries in this region 2786 */ 2787 while ((entry != &map->header) && (entry->start < end)) { 2788 vm_map_entry_t next; 2789 2790 /* 2791 * Wait for wiring or unwiring of an entry to complete. 2792 * Also wait for any system wirings to disappear on 2793 * user maps. 2794 */ 2795 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2796 (vm_map_pmap(map) != kernel_pmap && 2797 vm_map_entry_system_wired_count(entry) != 0)) { 2798 unsigned int last_timestamp; 2799 vm_offset_t saved_start; 2800 vm_map_entry_t tmp_entry; 2801 2802 saved_start = entry->start; 2803 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2804 last_timestamp = map->timestamp; 2805 (void) vm_map_unlock_and_wait(map, 0); 2806 vm_map_lock(map); 2807 if (last_timestamp + 1 != map->timestamp) { 2808 /* 2809 * Look again for the entry because the map was 2810 * modified while it was unlocked. 2811 * Specifically, the entry may have been 2812 * clipped, merged, or deleted. 2813 */ 2814 if (!vm_map_lookup_entry(map, saved_start, 2815 &tmp_entry)) 2816 entry = tmp_entry->next; 2817 else { 2818 entry = tmp_entry; 2819 vm_map_clip_start(map, entry, 2820 saved_start); 2821 } 2822 } 2823 continue; 2824 } 2825 vm_map_clip_end(map, entry, end); 2826 2827 next = entry->next; 2828 2829 /* 2830 * Unwire before removing addresses from the pmap; otherwise, 2831 * unwiring will put the entries back in the pmap. 2832 */ 2833 if (entry->wired_count != 0) { 2834 vm_map_entry_unwire(map, entry); 2835 } 2836 2837 pmap_remove(map->pmap, entry->start, entry->end); 2838 2839 /* 2840 * Delete the entry only after removing all pmap 2841 * entries pointing to its pages. (Otherwise, its 2842 * page frames may be reallocated, and any modify bits 2843 * will be set in the wrong object!) 2844 */ 2845 vm_map_entry_delete(map, entry); 2846 entry = next; 2847 } 2848 return (KERN_SUCCESS); 2849 } 2850 2851 /* 2852 * vm_map_remove: 2853 * 2854 * Remove the given address range from the target map. 2855 * This is the exported form of vm_map_delete. 2856 */ 2857 int 2858 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2859 { 2860 int result; 2861 2862 vm_map_lock(map); 2863 VM_MAP_RANGE_CHECK(map, start, end); 2864 result = vm_map_delete(map, start, end); 2865 vm_map_unlock(map); 2866 return (result); 2867 } 2868 2869 /* 2870 * vm_map_check_protection: 2871 * 2872 * Assert that the target map allows the specified privilege on the 2873 * entire address region given. The entire region must be allocated. 2874 * 2875 * WARNING! This code does not and should not check whether the 2876 * contents of the region is accessible. For example a smaller file 2877 * might be mapped into a larger address space. 2878 * 2879 * NOTE! This code is also called by munmap(). 2880 * 2881 * The map must be locked. A read lock is sufficient. 2882 */ 2883 boolean_t 2884 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2885 vm_prot_t protection) 2886 { 2887 vm_map_entry_t entry; 2888 vm_map_entry_t tmp_entry; 2889 2890 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2891 return (FALSE); 2892 entry = tmp_entry; 2893 2894 while (start < end) { 2895 if (entry == &map->header) 2896 return (FALSE); 2897 /* 2898 * No holes allowed! 2899 */ 2900 if (start < entry->start) 2901 return (FALSE); 2902 /* 2903 * Check protection associated with entry. 2904 */ 2905 if ((entry->protection & protection) != protection) 2906 return (FALSE); 2907 /* go to next entry */ 2908 start = entry->end; 2909 entry = entry->next; 2910 } 2911 return (TRUE); 2912 } 2913 2914 /* 2915 * vm_map_copy_entry: 2916 * 2917 * Copies the contents of the source entry to the destination 2918 * entry. The entries *must* be aligned properly. 2919 */ 2920 static void 2921 vm_map_copy_entry( 2922 vm_map_t src_map, 2923 vm_map_t dst_map, 2924 vm_map_entry_t src_entry, 2925 vm_map_entry_t dst_entry, 2926 vm_ooffset_t *fork_charge) 2927 { 2928 vm_object_t src_object; 2929 vm_map_entry_t fake_entry; 2930 vm_offset_t size; 2931 struct ucred *cred; 2932 int charged; 2933 2934 VM_MAP_ASSERT_LOCKED(dst_map); 2935 2936 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2937 return; 2938 2939 if (src_entry->wired_count == 0) { 2940 2941 /* 2942 * If the source entry is marked needs_copy, it is already 2943 * write-protected. 2944 */ 2945 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2946 pmap_protect(src_map->pmap, 2947 src_entry->start, 2948 src_entry->end, 2949 src_entry->protection & ~VM_PROT_WRITE); 2950 } 2951 2952 /* 2953 * Make a copy of the object. 2954 */ 2955 size = src_entry->end - src_entry->start; 2956 if ((src_object = src_entry->object.vm_object) != NULL) { 2957 VM_OBJECT_LOCK(src_object); 2958 charged = ENTRY_CHARGED(src_entry); 2959 if ((src_object->handle == NULL) && 2960 (src_object->type == OBJT_DEFAULT || 2961 src_object->type == OBJT_SWAP)) { 2962 vm_object_collapse(src_object); 2963 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2964 vm_object_split(src_entry); 2965 src_object = src_entry->object.vm_object; 2966 } 2967 } 2968 vm_object_reference_locked(src_object); 2969 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2970 if (src_entry->cred != NULL && 2971 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2972 KASSERT(src_object->cred == NULL, 2973 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2974 src_object)); 2975 src_object->cred = src_entry->cred; 2976 src_object->charge = size; 2977 } 2978 VM_OBJECT_UNLOCK(src_object); 2979 dst_entry->object.vm_object = src_object; 2980 if (charged) { 2981 cred = curthread->td_ucred; 2982 crhold(cred); 2983 dst_entry->cred = cred; 2984 *fork_charge += size; 2985 if (!(src_entry->eflags & 2986 MAP_ENTRY_NEEDS_COPY)) { 2987 crhold(cred); 2988 src_entry->cred = cred; 2989 *fork_charge += size; 2990 } 2991 } 2992 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2993 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2994 dst_entry->offset = src_entry->offset; 2995 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 2996 /* 2997 * MAP_ENTRY_VN_WRITECNT cannot 2998 * indicate write reference from 2999 * src_entry, since the entry is 3000 * marked as needs copy. Allocate a 3001 * fake entry that is used to 3002 * decrement object->un_pager.vnp.writecount 3003 * at the appropriate time. Attach 3004 * fake_entry to the deferred list. 3005 */ 3006 fake_entry = vm_map_entry_create(dst_map); 3007 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3008 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3009 vm_object_reference(src_object); 3010 fake_entry->object.vm_object = src_object; 3011 fake_entry->start = src_entry->start; 3012 fake_entry->end = src_entry->end; 3013 fake_entry->next = curthread->td_map_def_user; 3014 curthread->td_map_def_user = fake_entry; 3015 } 3016 } else { 3017 dst_entry->object.vm_object = NULL; 3018 dst_entry->offset = 0; 3019 if (src_entry->cred != NULL) { 3020 dst_entry->cred = curthread->td_ucred; 3021 crhold(dst_entry->cred); 3022 *fork_charge += size; 3023 } 3024 } 3025 3026 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3027 dst_entry->end - dst_entry->start, src_entry->start); 3028 } else { 3029 /* 3030 * Of course, wired down pages can't be set copy-on-write. 3031 * Cause wired pages to be copied into the new map by 3032 * simulating faults (the new pages are pageable) 3033 */ 3034 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3035 fork_charge); 3036 } 3037 } 3038 3039 /* 3040 * vmspace_map_entry_forked: 3041 * Update the newly-forked vmspace each time a map entry is inherited 3042 * or copied. The values for vm_dsize and vm_tsize are approximate 3043 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3044 */ 3045 static void 3046 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3047 vm_map_entry_t entry) 3048 { 3049 vm_size_t entrysize; 3050 vm_offset_t newend; 3051 3052 entrysize = entry->end - entry->start; 3053 vm2->vm_map.size += entrysize; 3054 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3055 vm2->vm_ssize += btoc(entrysize); 3056 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3057 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3058 newend = MIN(entry->end, 3059 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3060 vm2->vm_dsize += btoc(newend - entry->start); 3061 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3062 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3063 newend = MIN(entry->end, 3064 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3065 vm2->vm_tsize += btoc(newend - entry->start); 3066 } 3067 } 3068 3069 /* 3070 * vmspace_fork: 3071 * Create a new process vmspace structure and vm_map 3072 * based on those of an existing process. The new map 3073 * is based on the old map, according to the inheritance 3074 * values on the regions in that map. 3075 * 3076 * XXX It might be worth coalescing the entries added to the new vmspace. 3077 * 3078 * The source map must not be locked. 3079 */ 3080 struct vmspace * 3081 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3082 { 3083 struct vmspace *vm2; 3084 vm_map_t new_map, old_map; 3085 vm_map_entry_t new_entry, old_entry; 3086 vm_object_t object; 3087 int locked; 3088 3089 old_map = &vm1->vm_map; 3090 /* Copy immutable fields of vm1 to vm2. */ 3091 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3092 if (vm2 == NULL) 3093 return (NULL); 3094 vm2->vm_taddr = vm1->vm_taddr; 3095 vm2->vm_daddr = vm1->vm_daddr; 3096 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3097 vm_map_lock(old_map); 3098 if (old_map->busy) 3099 vm_map_wait_busy(old_map); 3100 new_map = &vm2->vm_map; 3101 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3102 KASSERT(locked, ("vmspace_fork: lock failed")); 3103 3104 old_entry = old_map->header.next; 3105 3106 while (old_entry != &old_map->header) { 3107 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3108 panic("vm_map_fork: encountered a submap"); 3109 3110 switch (old_entry->inheritance) { 3111 case VM_INHERIT_NONE: 3112 break; 3113 3114 case VM_INHERIT_SHARE: 3115 /* 3116 * Clone the entry, creating the shared object if necessary. 3117 */ 3118 object = old_entry->object.vm_object; 3119 if (object == NULL) { 3120 object = vm_object_allocate(OBJT_DEFAULT, 3121 atop(old_entry->end - old_entry->start)); 3122 old_entry->object.vm_object = object; 3123 old_entry->offset = 0; 3124 if (old_entry->cred != NULL) { 3125 object->cred = old_entry->cred; 3126 object->charge = old_entry->end - 3127 old_entry->start; 3128 old_entry->cred = NULL; 3129 } 3130 } 3131 3132 /* 3133 * Add the reference before calling vm_object_shadow 3134 * to insure that a shadow object is created. 3135 */ 3136 vm_object_reference(object); 3137 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3138 vm_object_shadow(&old_entry->object.vm_object, 3139 &old_entry->offset, 3140 old_entry->end - old_entry->start); 3141 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3142 /* Transfer the second reference too. */ 3143 vm_object_reference( 3144 old_entry->object.vm_object); 3145 3146 /* 3147 * As in vm_map_simplify_entry(), the 3148 * vnode lock will not be acquired in 3149 * this call to vm_object_deallocate(). 3150 */ 3151 vm_object_deallocate(object); 3152 object = old_entry->object.vm_object; 3153 } 3154 VM_OBJECT_LOCK(object); 3155 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3156 if (old_entry->cred != NULL) { 3157 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3158 object->cred = old_entry->cred; 3159 object->charge = old_entry->end - old_entry->start; 3160 old_entry->cred = NULL; 3161 } 3162 VM_OBJECT_UNLOCK(object); 3163 3164 /* 3165 * Clone the entry, referencing the shared object. 3166 */ 3167 new_entry = vm_map_entry_create(new_map); 3168 *new_entry = *old_entry; 3169 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3170 MAP_ENTRY_IN_TRANSITION); 3171 new_entry->wired_count = 0; 3172 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3173 object = new_entry->object.vm_object; 3174 KASSERT(((struct vnode *)object->handle)-> 3175 v_writecount > 0, 3176 ("vmspace_fork: v_writecount")); 3177 KASSERT(object->un_pager.vnp.writemappings > 0, 3178 ("vmspace_fork: vnp.writecount")); 3179 vnode_pager_update_writecount(object, 3180 new_entry->start, new_entry->end); 3181 } 3182 3183 /* 3184 * Insert the entry into the new map -- we know we're 3185 * inserting at the end of the new map. 3186 */ 3187 vm_map_entry_link(new_map, new_map->header.prev, 3188 new_entry); 3189 vmspace_map_entry_forked(vm1, vm2, new_entry); 3190 3191 /* 3192 * Update the physical map 3193 */ 3194 pmap_copy(new_map->pmap, old_map->pmap, 3195 new_entry->start, 3196 (old_entry->end - old_entry->start), 3197 old_entry->start); 3198 break; 3199 3200 case VM_INHERIT_COPY: 3201 /* 3202 * Clone the entry and link into the map. 3203 */ 3204 new_entry = vm_map_entry_create(new_map); 3205 *new_entry = *old_entry; 3206 /* 3207 * Copied entry is COW over the old object. 3208 */ 3209 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3210 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3211 new_entry->wired_count = 0; 3212 new_entry->object.vm_object = NULL; 3213 new_entry->cred = NULL; 3214 vm_map_entry_link(new_map, new_map->header.prev, 3215 new_entry); 3216 vmspace_map_entry_forked(vm1, vm2, new_entry); 3217 vm_map_copy_entry(old_map, new_map, old_entry, 3218 new_entry, fork_charge); 3219 break; 3220 } 3221 old_entry = old_entry->next; 3222 } 3223 /* 3224 * Use inlined vm_map_unlock() to postpone handling the deferred 3225 * map entries, which cannot be done until both old_map and 3226 * new_map locks are released. 3227 */ 3228 sx_xunlock(&old_map->lock); 3229 sx_xunlock(&new_map->lock); 3230 vm_map_process_deferred(); 3231 3232 return (vm2); 3233 } 3234 3235 int 3236 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3237 vm_prot_t prot, vm_prot_t max, int cow) 3238 { 3239 vm_map_entry_t new_entry, prev_entry; 3240 vm_offset_t bot, top; 3241 vm_size_t growsize, init_ssize; 3242 int orient, rv; 3243 rlim_t lmemlim, vmemlim; 3244 3245 /* 3246 * The stack orientation is piggybacked with the cow argument. 3247 * Extract it into orient and mask the cow argument so that we 3248 * don't pass it around further. 3249 * NOTE: We explicitly allow bi-directional stacks. 3250 */ 3251 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3252 cow &= ~orient; 3253 KASSERT(orient != 0, ("No stack grow direction")); 3254 3255 if (addrbos < vm_map_min(map) || 3256 addrbos > vm_map_max(map) || 3257 addrbos + max_ssize < addrbos) 3258 return (KERN_NO_SPACE); 3259 3260 growsize = sgrowsiz; 3261 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3262 3263 PROC_LOCK(curproc); 3264 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3265 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3266 PROC_UNLOCK(curproc); 3267 3268 vm_map_lock(map); 3269 3270 /* If addr is already mapped, no go */ 3271 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3272 vm_map_unlock(map); 3273 return (KERN_NO_SPACE); 3274 } 3275 3276 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3277 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3278 vm_map_unlock(map); 3279 return (KERN_NO_SPACE); 3280 } 3281 } 3282 3283 /* If we would blow our VMEM resource limit, no go */ 3284 if (map->size + init_ssize > vmemlim) { 3285 vm_map_unlock(map); 3286 return (KERN_NO_SPACE); 3287 } 3288 3289 /* 3290 * If we can't accomodate max_ssize in the current mapping, no go. 3291 * However, we need to be aware that subsequent user mappings might 3292 * map into the space we have reserved for stack, and currently this 3293 * space is not protected. 3294 * 3295 * Hopefully we will at least detect this condition when we try to 3296 * grow the stack. 3297 */ 3298 if ((prev_entry->next != &map->header) && 3299 (prev_entry->next->start < addrbos + max_ssize)) { 3300 vm_map_unlock(map); 3301 return (KERN_NO_SPACE); 3302 } 3303 3304 /* 3305 * We initially map a stack of only init_ssize. We will grow as 3306 * needed later. Depending on the orientation of the stack (i.e. 3307 * the grow direction) we either map at the top of the range, the 3308 * bottom of the range or in the middle. 3309 * 3310 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3311 * and cow to be 0. Possibly we should eliminate these as input 3312 * parameters, and just pass these values here in the insert call. 3313 */ 3314 if (orient == MAP_STACK_GROWS_DOWN) 3315 bot = addrbos + max_ssize - init_ssize; 3316 else if (orient == MAP_STACK_GROWS_UP) 3317 bot = addrbos; 3318 else 3319 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3320 top = bot + init_ssize; 3321 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3322 3323 /* Now set the avail_ssize amount. */ 3324 if (rv == KERN_SUCCESS) { 3325 if (prev_entry != &map->header) 3326 vm_map_clip_end(map, prev_entry, bot); 3327 new_entry = prev_entry->next; 3328 if (new_entry->end != top || new_entry->start != bot) 3329 panic("Bad entry start/end for new stack entry"); 3330 3331 new_entry->avail_ssize = max_ssize - init_ssize; 3332 if (orient & MAP_STACK_GROWS_DOWN) 3333 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3334 if (orient & MAP_STACK_GROWS_UP) 3335 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3336 } 3337 3338 vm_map_unlock(map); 3339 return (rv); 3340 } 3341 3342 static int stack_guard_page = 0; 3343 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3344 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3345 &stack_guard_page, 0, 3346 "Insert stack guard page ahead of the growable segments."); 3347 3348 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3349 * desired address is already mapped, or if we successfully grow 3350 * the stack. Also returns KERN_SUCCESS if addr is outside the 3351 * stack range (this is strange, but preserves compatibility with 3352 * the grow function in vm_machdep.c). 3353 */ 3354 int 3355 vm_map_growstack(struct proc *p, vm_offset_t addr) 3356 { 3357 vm_map_entry_t next_entry, prev_entry; 3358 vm_map_entry_t new_entry, stack_entry; 3359 struct vmspace *vm = p->p_vmspace; 3360 vm_map_t map = &vm->vm_map; 3361 vm_offset_t end; 3362 vm_size_t growsize; 3363 size_t grow_amount, max_grow; 3364 rlim_t lmemlim, stacklim, vmemlim; 3365 int is_procstack, rv; 3366 struct ucred *cred; 3367 #ifdef notyet 3368 uint64_t limit; 3369 #endif 3370 #ifdef RACCT 3371 int error; 3372 #endif 3373 3374 Retry: 3375 PROC_LOCK(p); 3376 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3377 stacklim = lim_cur(p, RLIMIT_STACK); 3378 vmemlim = lim_cur(p, RLIMIT_VMEM); 3379 PROC_UNLOCK(p); 3380 3381 vm_map_lock_read(map); 3382 3383 /* If addr is already in the entry range, no need to grow.*/ 3384 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3385 vm_map_unlock_read(map); 3386 return (KERN_SUCCESS); 3387 } 3388 3389 next_entry = prev_entry->next; 3390 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3391 /* 3392 * This entry does not grow upwards. Since the address lies 3393 * beyond this entry, the next entry (if one exists) has to 3394 * be a downward growable entry. The entry list header is 3395 * never a growable entry, so it suffices to check the flags. 3396 */ 3397 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3398 vm_map_unlock_read(map); 3399 return (KERN_SUCCESS); 3400 } 3401 stack_entry = next_entry; 3402 } else { 3403 /* 3404 * This entry grows upward. If the next entry does not at 3405 * least grow downwards, this is the entry we need to grow. 3406 * otherwise we have two possible choices and we have to 3407 * select one. 3408 */ 3409 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3410 /* 3411 * We have two choices; grow the entry closest to 3412 * the address to minimize the amount of growth. 3413 */ 3414 if (addr - prev_entry->end <= next_entry->start - addr) 3415 stack_entry = prev_entry; 3416 else 3417 stack_entry = next_entry; 3418 } else 3419 stack_entry = prev_entry; 3420 } 3421 3422 if (stack_entry == next_entry) { 3423 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3424 KASSERT(addr < stack_entry->start, ("foo")); 3425 end = (prev_entry != &map->header) ? prev_entry->end : 3426 stack_entry->start - stack_entry->avail_ssize; 3427 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3428 max_grow = stack_entry->start - end; 3429 } else { 3430 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3431 KASSERT(addr >= stack_entry->end, ("foo")); 3432 end = (next_entry != &map->header) ? next_entry->start : 3433 stack_entry->end + stack_entry->avail_ssize; 3434 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3435 max_grow = end - stack_entry->end; 3436 } 3437 3438 if (grow_amount > stack_entry->avail_ssize) { 3439 vm_map_unlock_read(map); 3440 return (KERN_NO_SPACE); 3441 } 3442 3443 /* 3444 * If there is no longer enough space between the entries nogo, and 3445 * adjust the available space. Note: this should only happen if the 3446 * user has mapped into the stack area after the stack was created, 3447 * and is probably an error. 3448 * 3449 * This also effectively destroys any guard page the user might have 3450 * intended by limiting the stack size. 3451 */ 3452 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3453 if (vm_map_lock_upgrade(map)) 3454 goto Retry; 3455 3456 stack_entry->avail_ssize = max_grow; 3457 3458 vm_map_unlock(map); 3459 return (KERN_NO_SPACE); 3460 } 3461 3462 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3463 3464 /* 3465 * If this is the main process stack, see if we're over the stack 3466 * limit. 3467 */ 3468 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3469 vm_map_unlock_read(map); 3470 return (KERN_NO_SPACE); 3471 } 3472 #ifdef RACCT 3473 PROC_LOCK(p); 3474 if (is_procstack && 3475 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3476 PROC_UNLOCK(p); 3477 vm_map_unlock_read(map); 3478 return (KERN_NO_SPACE); 3479 } 3480 PROC_UNLOCK(p); 3481 #endif 3482 3483 /* Round up the grow amount modulo sgrowsiz */ 3484 growsize = sgrowsiz; 3485 grow_amount = roundup(grow_amount, growsize); 3486 if (grow_amount > stack_entry->avail_ssize) 3487 grow_amount = stack_entry->avail_ssize; 3488 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3489 grow_amount = trunc_page((vm_size_t)stacklim) - 3490 ctob(vm->vm_ssize); 3491 } 3492 #ifdef notyet 3493 PROC_LOCK(p); 3494 limit = racct_get_available(p, RACCT_STACK); 3495 PROC_UNLOCK(p); 3496 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3497 grow_amount = limit - ctob(vm->vm_ssize); 3498 #endif 3499 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3500 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3501 vm_map_unlock_read(map); 3502 rv = KERN_NO_SPACE; 3503 goto out; 3504 } 3505 #ifdef RACCT 3506 PROC_LOCK(p); 3507 if (racct_set(p, RACCT_MEMLOCK, 3508 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3509 PROC_UNLOCK(p); 3510 vm_map_unlock_read(map); 3511 rv = KERN_NO_SPACE; 3512 goto out; 3513 } 3514 PROC_UNLOCK(p); 3515 #endif 3516 } 3517 /* If we would blow our VMEM resource limit, no go */ 3518 if (map->size + grow_amount > vmemlim) { 3519 vm_map_unlock_read(map); 3520 rv = KERN_NO_SPACE; 3521 goto out; 3522 } 3523 #ifdef RACCT 3524 PROC_LOCK(p); 3525 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3526 PROC_UNLOCK(p); 3527 vm_map_unlock_read(map); 3528 rv = KERN_NO_SPACE; 3529 goto out; 3530 } 3531 PROC_UNLOCK(p); 3532 #endif 3533 3534 if (vm_map_lock_upgrade(map)) 3535 goto Retry; 3536 3537 if (stack_entry == next_entry) { 3538 /* 3539 * Growing downward. 3540 */ 3541 /* Get the preliminary new entry start value */ 3542 addr = stack_entry->start - grow_amount; 3543 3544 /* 3545 * If this puts us into the previous entry, cut back our 3546 * growth to the available space. Also, see the note above. 3547 */ 3548 if (addr < end) { 3549 stack_entry->avail_ssize = max_grow; 3550 addr = end; 3551 if (stack_guard_page) 3552 addr += PAGE_SIZE; 3553 } 3554 3555 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3556 next_entry->protection, next_entry->max_protection, 0); 3557 3558 /* Adjust the available stack space by the amount we grew. */ 3559 if (rv == KERN_SUCCESS) { 3560 if (prev_entry != &map->header) 3561 vm_map_clip_end(map, prev_entry, addr); 3562 new_entry = prev_entry->next; 3563 KASSERT(new_entry == stack_entry->prev, ("foo")); 3564 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3565 KASSERT(new_entry->start == addr, ("foo")); 3566 grow_amount = new_entry->end - new_entry->start; 3567 new_entry->avail_ssize = stack_entry->avail_ssize - 3568 grow_amount; 3569 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3570 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3571 } 3572 } else { 3573 /* 3574 * Growing upward. 3575 */ 3576 addr = stack_entry->end + grow_amount; 3577 3578 /* 3579 * If this puts us into the next entry, cut back our growth 3580 * to the available space. Also, see the note above. 3581 */ 3582 if (addr > end) { 3583 stack_entry->avail_ssize = end - stack_entry->end; 3584 addr = end; 3585 if (stack_guard_page) 3586 addr -= PAGE_SIZE; 3587 } 3588 3589 grow_amount = addr - stack_entry->end; 3590 cred = stack_entry->cred; 3591 if (cred == NULL && stack_entry->object.vm_object != NULL) 3592 cred = stack_entry->object.vm_object->cred; 3593 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3594 rv = KERN_NO_SPACE; 3595 /* Grow the underlying object if applicable. */ 3596 else if (stack_entry->object.vm_object == NULL || 3597 vm_object_coalesce(stack_entry->object.vm_object, 3598 stack_entry->offset, 3599 (vm_size_t)(stack_entry->end - stack_entry->start), 3600 (vm_size_t)grow_amount, cred != NULL)) { 3601 map->size += (addr - stack_entry->end); 3602 /* Update the current entry. */ 3603 stack_entry->end = addr; 3604 stack_entry->avail_ssize -= grow_amount; 3605 vm_map_entry_resize_free(map, stack_entry); 3606 rv = KERN_SUCCESS; 3607 3608 if (next_entry != &map->header) 3609 vm_map_clip_start(map, next_entry, addr); 3610 } else 3611 rv = KERN_FAILURE; 3612 } 3613 3614 if (rv == KERN_SUCCESS && is_procstack) 3615 vm->vm_ssize += btoc(grow_amount); 3616 3617 vm_map_unlock(map); 3618 3619 /* 3620 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3621 */ 3622 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3623 vm_map_wire(map, 3624 (stack_entry == next_entry) ? addr : addr - grow_amount, 3625 (stack_entry == next_entry) ? stack_entry->start : addr, 3626 (p->p_flag & P_SYSTEM) 3627 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3628 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3629 } 3630 3631 out: 3632 #ifdef RACCT 3633 if (rv != KERN_SUCCESS) { 3634 PROC_LOCK(p); 3635 error = racct_set(p, RACCT_VMEM, map->size); 3636 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3637 if (!old_mlock) { 3638 error = racct_set(p, RACCT_MEMLOCK, 3639 ptoa(pmap_wired_count(map->pmap))); 3640 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3641 } 3642 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3643 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3644 PROC_UNLOCK(p); 3645 } 3646 #endif 3647 3648 return (rv); 3649 } 3650 3651 /* 3652 * Unshare the specified VM space for exec. If other processes are 3653 * mapped to it, then create a new one. The new vmspace is null. 3654 */ 3655 int 3656 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3657 { 3658 struct vmspace *oldvmspace = p->p_vmspace; 3659 struct vmspace *newvmspace; 3660 3661 newvmspace = vmspace_alloc(minuser, maxuser); 3662 if (newvmspace == NULL) 3663 return (ENOMEM); 3664 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3665 /* 3666 * This code is written like this for prototype purposes. The 3667 * goal is to avoid running down the vmspace here, but let the 3668 * other process's that are still using the vmspace to finally 3669 * run it down. Even though there is little or no chance of blocking 3670 * here, it is a good idea to keep this form for future mods. 3671 */ 3672 PROC_VMSPACE_LOCK(p); 3673 p->p_vmspace = newvmspace; 3674 PROC_VMSPACE_UNLOCK(p); 3675 if (p == curthread->td_proc) 3676 pmap_activate(curthread); 3677 vmspace_free(oldvmspace); 3678 return (0); 3679 } 3680 3681 /* 3682 * Unshare the specified VM space for forcing COW. This 3683 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3684 */ 3685 int 3686 vmspace_unshare(struct proc *p) 3687 { 3688 struct vmspace *oldvmspace = p->p_vmspace; 3689 struct vmspace *newvmspace; 3690 vm_ooffset_t fork_charge; 3691 3692 if (oldvmspace->vm_refcnt == 1) 3693 return (0); 3694 fork_charge = 0; 3695 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3696 if (newvmspace == NULL) 3697 return (ENOMEM); 3698 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3699 vmspace_free(newvmspace); 3700 return (ENOMEM); 3701 } 3702 PROC_VMSPACE_LOCK(p); 3703 p->p_vmspace = newvmspace; 3704 PROC_VMSPACE_UNLOCK(p); 3705 if (p == curthread->td_proc) 3706 pmap_activate(curthread); 3707 vmspace_free(oldvmspace); 3708 return (0); 3709 } 3710 3711 /* 3712 * vm_map_lookup: 3713 * 3714 * Finds the VM object, offset, and 3715 * protection for a given virtual address in the 3716 * specified map, assuming a page fault of the 3717 * type specified. 3718 * 3719 * Leaves the map in question locked for read; return 3720 * values are guaranteed until a vm_map_lookup_done 3721 * call is performed. Note that the map argument 3722 * is in/out; the returned map must be used in 3723 * the call to vm_map_lookup_done. 3724 * 3725 * A handle (out_entry) is returned for use in 3726 * vm_map_lookup_done, to make that fast. 3727 * 3728 * If a lookup is requested with "write protection" 3729 * specified, the map may be changed to perform virtual 3730 * copying operations, although the data referenced will 3731 * remain the same. 3732 */ 3733 int 3734 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3735 vm_offset_t vaddr, 3736 vm_prot_t fault_typea, 3737 vm_map_entry_t *out_entry, /* OUT */ 3738 vm_object_t *object, /* OUT */ 3739 vm_pindex_t *pindex, /* OUT */ 3740 vm_prot_t *out_prot, /* OUT */ 3741 boolean_t *wired) /* OUT */ 3742 { 3743 vm_map_entry_t entry; 3744 vm_map_t map = *var_map; 3745 vm_prot_t prot; 3746 vm_prot_t fault_type = fault_typea; 3747 vm_object_t eobject; 3748 vm_size_t size; 3749 struct ucred *cred; 3750 3751 RetryLookup:; 3752 3753 vm_map_lock_read(map); 3754 3755 /* 3756 * Lookup the faulting address. 3757 */ 3758 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3759 vm_map_unlock_read(map); 3760 return (KERN_INVALID_ADDRESS); 3761 } 3762 3763 entry = *out_entry; 3764 3765 /* 3766 * Handle submaps. 3767 */ 3768 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3769 vm_map_t old_map = map; 3770 3771 *var_map = map = entry->object.sub_map; 3772 vm_map_unlock_read(old_map); 3773 goto RetryLookup; 3774 } 3775 3776 /* 3777 * Check whether this task is allowed to have this page. 3778 */ 3779 prot = entry->protection; 3780 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3781 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3782 vm_map_unlock_read(map); 3783 return (KERN_PROTECTION_FAILURE); 3784 } 3785 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3786 (entry->eflags & MAP_ENTRY_COW) && 3787 (fault_type & VM_PROT_WRITE)) { 3788 vm_map_unlock_read(map); 3789 return (KERN_PROTECTION_FAILURE); 3790 } 3791 3792 /* 3793 * If this page is not pageable, we have to get it for all possible 3794 * accesses. 3795 */ 3796 *wired = (entry->wired_count != 0); 3797 if (*wired) 3798 fault_type = entry->protection; 3799 size = entry->end - entry->start; 3800 /* 3801 * If the entry was copy-on-write, we either ... 3802 */ 3803 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3804 /* 3805 * If we want to write the page, we may as well handle that 3806 * now since we've got the map locked. 3807 * 3808 * If we don't need to write the page, we just demote the 3809 * permissions allowed. 3810 */ 3811 if ((fault_type & VM_PROT_WRITE) != 0 || 3812 (fault_typea & VM_PROT_COPY) != 0) { 3813 /* 3814 * Make a new object, and place it in the object 3815 * chain. Note that no new references have appeared 3816 * -- one just moved from the map to the new 3817 * object. 3818 */ 3819 if (vm_map_lock_upgrade(map)) 3820 goto RetryLookup; 3821 3822 if (entry->cred == NULL) { 3823 /* 3824 * The debugger owner is charged for 3825 * the memory. 3826 */ 3827 cred = curthread->td_ucred; 3828 crhold(cred); 3829 if (!swap_reserve_by_cred(size, cred)) { 3830 crfree(cred); 3831 vm_map_unlock(map); 3832 return (KERN_RESOURCE_SHORTAGE); 3833 } 3834 entry->cred = cred; 3835 } 3836 vm_object_shadow(&entry->object.vm_object, 3837 &entry->offset, size); 3838 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3839 eobject = entry->object.vm_object; 3840 if (eobject->cred != NULL) { 3841 /* 3842 * The object was not shadowed. 3843 */ 3844 swap_release_by_cred(size, entry->cred); 3845 crfree(entry->cred); 3846 entry->cred = NULL; 3847 } else if (entry->cred != NULL) { 3848 VM_OBJECT_LOCK(eobject); 3849 eobject->cred = entry->cred; 3850 eobject->charge = size; 3851 VM_OBJECT_UNLOCK(eobject); 3852 entry->cred = NULL; 3853 } 3854 3855 vm_map_lock_downgrade(map); 3856 } else { 3857 /* 3858 * We're attempting to read a copy-on-write page -- 3859 * don't allow writes. 3860 */ 3861 prot &= ~VM_PROT_WRITE; 3862 } 3863 } 3864 3865 /* 3866 * Create an object if necessary. 3867 */ 3868 if (entry->object.vm_object == NULL && 3869 !map->system_map) { 3870 if (vm_map_lock_upgrade(map)) 3871 goto RetryLookup; 3872 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3873 atop(size)); 3874 entry->offset = 0; 3875 if (entry->cred != NULL) { 3876 VM_OBJECT_LOCK(entry->object.vm_object); 3877 entry->object.vm_object->cred = entry->cred; 3878 entry->object.vm_object->charge = size; 3879 VM_OBJECT_UNLOCK(entry->object.vm_object); 3880 entry->cred = NULL; 3881 } 3882 vm_map_lock_downgrade(map); 3883 } 3884 3885 /* 3886 * Return the object/offset from this entry. If the entry was 3887 * copy-on-write or empty, it has been fixed up. 3888 */ 3889 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3890 *object = entry->object.vm_object; 3891 3892 *out_prot = prot; 3893 return (KERN_SUCCESS); 3894 } 3895 3896 /* 3897 * vm_map_lookup_locked: 3898 * 3899 * Lookup the faulting address. A version of vm_map_lookup that returns 3900 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3901 */ 3902 int 3903 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3904 vm_offset_t vaddr, 3905 vm_prot_t fault_typea, 3906 vm_map_entry_t *out_entry, /* OUT */ 3907 vm_object_t *object, /* OUT */ 3908 vm_pindex_t *pindex, /* OUT */ 3909 vm_prot_t *out_prot, /* OUT */ 3910 boolean_t *wired) /* OUT */ 3911 { 3912 vm_map_entry_t entry; 3913 vm_map_t map = *var_map; 3914 vm_prot_t prot; 3915 vm_prot_t fault_type = fault_typea; 3916 3917 /* 3918 * Lookup the faulting address. 3919 */ 3920 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3921 return (KERN_INVALID_ADDRESS); 3922 3923 entry = *out_entry; 3924 3925 /* 3926 * Fail if the entry refers to a submap. 3927 */ 3928 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3929 return (KERN_FAILURE); 3930 3931 /* 3932 * Check whether this task is allowed to have this page. 3933 */ 3934 prot = entry->protection; 3935 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3936 if ((fault_type & prot) != fault_type) 3937 return (KERN_PROTECTION_FAILURE); 3938 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3939 (entry->eflags & MAP_ENTRY_COW) && 3940 (fault_type & VM_PROT_WRITE)) 3941 return (KERN_PROTECTION_FAILURE); 3942 3943 /* 3944 * If this page is not pageable, we have to get it for all possible 3945 * accesses. 3946 */ 3947 *wired = (entry->wired_count != 0); 3948 if (*wired) 3949 fault_type = entry->protection; 3950 3951 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3952 /* 3953 * Fail if the entry was copy-on-write for a write fault. 3954 */ 3955 if (fault_type & VM_PROT_WRITE) 3956 return (KERN_FAILURE); 3957 /* 3958 * We're attempting to read a copy-on-write page -- 3959 * don't allow writes. 3960 */ 3961 prot &= ~VM_PROT_WRITE; 3962 } 3963 3964 /* 3965 * Fail if an object should be created. 3966 */ 3967 if (entry->object.vm_object == NULL && !map->system_map) 3968 return (KERN_FAILURE); 3969 3970 /* 3971 * Return the object/offset from this entry. If the entry was 3972 * copy-on-write or empty, it has been fixed up. 3973 */ 3974 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3975 *object = entry->object.vm_object; 3976 3977 *out_prot = prot; 3978 return (KERN_SUCCESS); 3979 } 3980 3981 /* 3982 * vm_map_lookup_done: 3983 * 3984 * Releases locks acquired by a vm_map_lookup 3985 * (according to the handle returned by that lookup). 3986 */ 3987 void 3988 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3989 { 3990 /* 3991 * Unlock the main-level map 3992 */ 3993 vm_map_unlock_read(map); 3994 } 3995 3996 #include "opt_ddb.h" 3997 #ifdef DDB 3998 #include <sys/kernel.h> 3999 4000 #include <ddb/ddb.h> 4001 4002 static void 4003 vm_map_print(vm_map_t map) 4004 { 4005 vm_map_entry_t entry; 4006 4007 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4008 (void *)map, 4009 (void *)map->pmap, map->nentries, map->timestamp); 4010 4011 db_indent += 2; 4012 for (entry = map->header.next; entry != &map->header; 4013 entry = entry->next) { 4014 db_iprintf("map entry %p: start=%p, end=%p\n", 4015 (void *)entry, (void *)entry->start, (void *)entry->end); 4016 { 4017 static char *inheritance_name[4] = 4018 {"share", "copy", "none", "donate_copy"}; 4019 4020 db_iprintf(" prot=%x/%x/%s", 4021 entry->protection, 4022 entry->max_protection, 4023 inheritance_name[(int)(unsigned char)entry->inheritance]); 4024 if (entry->wired_count != 0) 4025 db_printf(", wired"); 4026 } 4027 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4028 db_printf(", share=%p, offset=0x%jx\n", 4029 (void *)entry->object.sub_map, 4030 (uintmax_t)entry->offset); 4031 if ((entry->prev == &map->header) || 4032 (entry->prev->object.sub_map != 4033 entry->object.sub_map)) { 4034 db_indent += 2; 4035 vm_map_print((vm_map_t)entry->object.sub_map); 4036 db_indent -= 2; 4037 } 4038 } else { 4039 if (entry->cred != NULL) 4040 db_printf(", ruid %d", entry->cred->cr_ruid); 4041 db_printf(", object=%p, offset=0x%jx", 4042 (void *)entry->object.vm_object, 4043 (uintmax_t)entry->offset); 4044 if (entry->object.vm_object && entry->object.vm_object->cred) 4045 db_printf(", obj ruid %d charge %jx", 4046 entry->object.vm_object->cred->cr_ruid, 4047 (uintmax_t)entry->object.vm_object->charge); 4048 if (entry->eflags & MAP_ENTRY_COW) 4049 db_printf(", copy (%s)", 4050 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4051 db_printf("\n"); 4052 4053 if ((entry->prev == &map->header) || 4054 (entry->prev->object.vm_object != 4055 entry->object.vm_object)) { 4056 db_indent += 2; 4057 vm_object_print((db_expr_t)(intptr_t) 4058 entry->object.vm_object, 4059 1, 0, (char *)0); 4060 db_indent -= 2; 4061 } 4062 } 4063 } 4064 db_indent -= 2; 4065 } 4066 4067 DB_SHOW_COMMAND(map, map) 4068 { 4069 4070 if (!have_addr) { 4071 db_printf("usage: show map <addr>\n"); 4072 return; 4073 } 4074 vm_map_print((vm_map_t)addr); 4075 } 4076 4077 DB_SHOW_COMMAND(procvm, procvm) 4078 { 4079 struct proc *p; 4080 4081 if (have_addr) { 4082 p = (struct proc *) addr; 4083 } else { 4084 p = curproc; 4085 } 4086 4087 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4088 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4089 (void *)vmspace_pmap(p->p_vmspace)); 4090 4091 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4092 } 4093 4094 #endif /* DDB */ 4095