1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/swap_pager.h> 96 #include <vm/uma.h> 97 98 /* 99 * Virtual memory maps provide for the mapping, protection, 100 * and sharing of virtual memory objects. In addition, 101 * this module provides for an efficient virtual copy of 102 * memory from one map to another. 103 * 104 * Synchronization is required prior to most operations. 105 * 106 * Maps consist of an ordered doubly-linked list of simple 107 * entries; a self-adjusting binary search tree of these 108 * entries is used to speed up lookups. 109 * 110 * Since portions of maps are specified by start/end addresses, 111 * which may not align with existing map entries, all 112 * routines merely "clip" entries to these start/end values. 113 * [That is, an entry is split into two, bordering at a 114 * start or end value.] Note that these clippings may not 115 * always be necessary (as the two resulting entries are then 116 * not changed); however, the clipping is done for convenience. 117 * 118 * As mentioned above, virtual copy operations are performed 119 * by copying VM object references from one map to 120 * another, and then marking both regions as copy-on-write. 121 */ 122 123 static struct mtx map_sleep_mtx; 124 static uma_zone_t mapentzone; 125 static uma_zone_t kmapentzone; 126 static uma_zone_t mapzone; 127 static uma_zone_t vmspace_zone; 128 static struct vm_object kmapentobj; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 uma_prealloc(kmapentzone, MAX_KMAPENT); 201 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 202 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 203 } 204 205 static void 206 vmspace_zfini(void *mem, int size) 207 { 208 struct vmspace *vm; 209 210 vm = (struct vmspace *)mem; 211 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 212 } 213 214 static int 215 vmspace_zinit(void *mem, int size, int flags) 216 { 217 struct vmspace *vm; 218 219 vm = (struct vmspace *)mem; 220 221 vm->vm_map.pmap = NULL; 222 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 223 return (0); 224 } 225 226 static void 227 vm_map_zfini(void *mem, int size) 228 { 229 vm_map_t map; 230 231 map = (vm_map_t)mem; 232 mtx_destroy(&map->system_mtx); 233 sx_destroy(&map->lock); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 map->nentries = 0; 243 map->size = 0; 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 */ 278 struct vmspace * 279 vmspace_alloc(min, max) 280 vm_offset_t min, max; 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 void 304 vm_init2(void) 305 { 306 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 307 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 308 maxproc * 2 + maxfiles); 309 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 310 #ifdef INVARIANTS 311 vmspace_zdtor, 312 #else 313 NULL, 314 #endif 315 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 316 } 317 318 static void 319 vmspace_container_reset(struct proc *p) 320 { 321 322 #ifdef RACCT 323 PROC_LOCK(p); 324 racct_set(p, RACCT_DATA, 0); 325 racct_set(p, RACCT_STACK, 0); 326 racct_set(p, RACCT_RSS, 0); 327 racct_set(p, RACCT_MEMLOCK, 0); 328 racct_set(p, RACCT_VMEM, 0); 329 PROC_UNLOCK(p); 330 #endif 331 } 332 333 static inline void 334 vmspace_dofree(struct vmspace *vm) 335 { 336 337 CTR1(KTR_VM, "vmspace_free: %p", vm); 338 339 /* 340 * Make sure any SysV shm is freed, it might not have been in 341 * exit1(). 342 */ 343 shmexit(vm); 344 345 /* 346 * Lock the map, to wait out all other references to it. 347 * Delete all of the mappings and pages they hold, then call 348 * the pmap module to reclaim anything left. 349 */ 350 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 351 vm->vm_map.max_offset); 352 353 pmap_release(vmspace_pmap(vm)); 354 vm->vm_map.pmap = NULL; 355 uma_zfree(vmspace_zone, vm); 356 } 357 358 void 359 vmspace_free(struct vmspace *vm) 360 { 361 362 if (vm->vm_refcnt == 0) 363 panic("vmspace_free: attempt to free already freed vmspace"); 364 365 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 366 vmspace_dofree(vm); 367 } 368 369 void 370 vmspace_exitfree(struct proc *p) 371 { 372 struct vmspace *vm; 373 374 PROC_VMSPACE_LOCK(p); 375 vm = p->p_vmspace; 376 p->p_vmspace = NULL; 377 PROC_VMSPACE_UNLOCK(p); 378 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 379 vmspace_free(vm); 380 } 381 382 void 383 vmspace_exit(struct thread *td) 384 { 385 int refcnt; 386 struct vmspace *vm; 387 struct proc *p; 388 389 /* 390 * Release user portion of address space. 391 * This releases references to vnodes, 392 * which could cause I/O if the file has been unlinked. 393 * Need to do this early enough that we can still sleep. 394 * 395 * The last exiting process to reach this point releases as 396 * much of the environment as it can. vmspace_dofree() is the 397 * slower fallback in case another process had a temporary 398 * reference to the vmspace. 399 */ 400 401 p = td->td_proc; 402 vm = p->p_vmspace; 403 atomic_add_int(&vmspace0.vm_refcnt, 1); 404 do { 405 refcnt = vm->vm_refcnt; 406 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 407 /* Switch now since other proc might free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 414 if (refcnt == 1) { 415 if (p->p_vmspace != vm) { 416 /* vmspace not yet freed, switch back */ 417 PROC_VMSPACE_LOCK(p); 418 p->p_vmspace = vm; 419 PROC_VMSPACE_UNLOCK(p); 420 pmap_activate(td); 421 } 422 pmap_remove_pages(vmspace_pmap(vm)); 423 /* Switch now since this proc will free vmspace */ 424 PROC_VMSPACE_LOCK(p); 425 p->p_vmspace = &vmspace0; 426 PROC_VMSPACE_UNLOCK(p); 427 pmap_activate(td); 428 vmspace_dofree(vm); 429 } 430 vmspace_container_reset(p); 431 } 432 433 /* Acquire reference to vmspace owned by another process. */ 434 435 struct vmspace * 436 vmspace_acquire_ref(struct proc *p) 437 { 438 struct vmspace *vm; 439 int refcnt; 440 441 PROC_VMSPACE_LOCK(p); 442 vm = p->p_vmspace; 443 if (vm == NULL) { 444 PROC_VMSPACE_UNLOCK(p); 445 return (NULL); 446 } 447 do { 448 refcnt = vm->vm_refcnt; 449 if (refcnt <= 0) { /* Avoid 0->1 transition */ 450 PROC_VMSPACE_UNLOCK(p); 451 return (NULL); 452 } 453 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 454 if (vm != p->p_vmspace) { 455 PROC_VMSPACE_UNLOCK(p); 456 vmspace_free(vm); 457 return (NULL); 458 } 459 PROC_VMSPACE_UNLOCK(p); 460 return (vm); 461 } 462 463 void 464 _vm_map_lock(vm_map_t map, const char *file, int line) 465 { 466 467 if (map->system_map) 468 mtx_lock_flags_(&map->system_mtx, 0, file, line); 469 else 470 sx_xlock_(&map->lock, file, line); 471 map->timestamp++; 472 } 473 474 static void 475 vm_map_process_deferred(void) 476 { 477 struct thread *td; 478 vm_map_entry_t entry, next; 479 vm_object_t object; 480 481 td = curthread; 482 entry = td->td_map_def_user; 483 td->td_map_def_user = NULL; 484 while (entry != NULL) { 485 next = entry->next; 486 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 487 /* 488 * Decrement the object's writemappings and 489 * possibly the vnode's v_writecount. 490 */ 491 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 492 ("Submap with writecount")); 493 object = entry->object.vm_object; 494 KASSERT(object != NULL, ("No object for writecount")); 495 vnode_pager_release_writecount(object, entry->start, 496 entry->end); 497 } 498 vm_map_entry_deallocate(entry, FALSE); 499 entry = next; 500 } 501 } 502 503 void 504 _vm_map_unlock(vm_map_t map, const char *file, int line) 505 { 506 507 if (map->system_map) 508 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 509 else { 510 sx_xunlock_(&map->lock, file, line); 511 vm_map_process_deferred(); 512 } 513 } 514 515 void 516 _vm_map_lock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_lock_flags_(&map->system_mtx, 0, file, line); 521 else 522 sx_slock_(&map->lock, file, line); 523 } 524 525 void 526 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 527 { 528 529 if (map->system_map) 530 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 531 else { 532 sx_sunlock_(&map->lock, file, line); 533 vm_map_process_deferred(); 534 } 535 } 536 537 int 538 _vm_map_trylock(vm_map_t map, const char *file, int line) 539 { 540 int error; 541 542 error = map->system_map ? 543 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 544 !sx_try_xlock_(&map->lock, file, line); 545 if (error == 0) 546 map->timestamp++; 547 return (error == 0); 548 } 549 550 int 551 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 552 { 553 int error; 554 555 error = map->system_map ? 556 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 557 !sx_try_slock_(&map->lock, file, line); 558 return (error == 0); 559 } 560 561 /* 562 * _vm_map_lock_upgrade: [ internal use only ] 563 * 564 * Tries to upgrade a read (shared) lock on the specified map to a write 565 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 566 * non-zero value if the upgrade fails. If the upgrade fails, the map is 567 * returned without a read or write lock held. 568 * 569 * Requires that the map be read locked. 570 */ 571 int 572 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 573 { 574 unsigned int last_timestamp; 575 576 if (map->system_map) { 577 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 578 } else { 579 if (!sx_try_upgrade_(&map->lock, file, line)) { 580 last_timestamp = map->timestamp; 581 sx_sunlock_(&map->lock, file, line); 582 vm_map_process_deferred(); 583 /* 584 * If the map's timestamp does not change while the 585 * map is unlocked, then the upgrade succeeds. 586 */ 587 sx_xlock_(&map->lock, file, line); 588 if (last_timestamp != map->timestamp) { 589 sx_xunlock_(&map->lock, file, line); 590 return (1); 591 } 592 } 593 } 594 map->timestamp++; 595 return (0); 596 } 597 598 void 599 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 600 { 601 602 if (map->system_map) { 603 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 604 } else 605 sx_downgrade_(&map->lock, file, line); 606 } 607 608 /* 609 * vm_map_locked: 610 * 611 * Returns a non-zero value if the caller holds a write (exclusive) lock 612 * on the specified map and the value "0" otherwise. 613 */ 614 int 615 vm_map_locked(vm_map_t map) 616 { 617 618 if (map->system_map) 619 return (mtx_owned(&map->system_mtx)); 620 else 621 return (sx_xlocked(&map->lock)); 622 } 623 624 #ifdef INVARIANTS 625 static void 626 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 627 { 628 629 if (map->system_map) 630 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 631 else 632 sx_assert_(&map->lock, SA_XLOCKED, file, line); 633 } 634 635 #define VM_MAP_ASSERT_LOCKED(map) \ 636 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 637 #else 638 #define VM_MAP_ASSERT_LOCKED(map) 639 #endif 640 641 /* 642 * _vm_map_unlock_and_wait: 643 * 644 * Atomically releases the lock on the specified map and puts the calling 645 * thread to sleep. The calling thread will remain asleep until either 646 * vm_map_wakeup() is performed on the map or the specified timeout is 647 * exceeded. 648 * 649 * WARNING! This function does not perform deferred deallocations of 650 * objects and map entries. Therefore, the calling thread is expected to 651 * reacquire the map lock after reawakening and later perform an ordinary 652 * unlock operation, such as vm_map_unlock(), before completing its 653 * operation on the map. 654 */ 655 int 656 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 657 { 658 659 mtx_lock(&map_sleep_mtx); 660 if (map->system_map) 661 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 662 else 663 sx_xunlock_(&map->lock, file, line); 664 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 665 timo)); 666 } 667 668 /* 669 * vm_map_wakeup: 670 * 671 * Awaken any threads that have slept on the map using 672 * vm_map_unlock_and_wait(). 673 */ 674 void 675 vm_map_wakeup(vm_map_t map) 676 { 677 678 /* 679 * Acquire and release map_sleep_mtx to prevent a wakeup() 680 * from being performed (and lost) between the map unlock 681 * and the msleep() in _vm_map_unlock_and_wait(). 682 */ 683 mtx_lock(&map_sleep_mtx); 684 mtx_unlock(&map_sleep_mtx); 685 wakeup(&map->root); 686 } 687 688 void 689 vm_map_busy(vm_map_t map) 690 { 691 692 VM_MAP_ASSERT_LOCKED(map); 693 map->busy++; 694 } 695 696 void 697 vm_map_unbusy(vm_map_t map) 698 { 699 700 VM_MAP_ASSERT_LOCKED(map); 701 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 702 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 703 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 704 wakeup(&map->busy); 705 } 706 } 707 708 void 709 vm_map_wait_busy(vm_map_t map) 710 { 711 712 VM_MAP_ASSERT_LOCKED(map); 713 while (map->busy) { 714 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 715 if (map->system_map) 716 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 717 else 718 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 719 } 720 map->timestamp++; 721 } 722 723 long 724 vmspace_resident_count(struct vmspace *vmspace) 725 { 726 return pmap_resident_count(vmspace_pmap(vmspace)); 727 } 728 729 long 730 vmspace_wired_count(struct vmspace *vmspace) 731 { 732 return pmap_wired_count(vmspace_pmap(vmspace)); 733 } 734 735 /* 736 * vm_map_create: 737 * 738 * Creates and returns a new empty VM map with 739 * the given physical map structure, and having 740 * the given lower and upper address bounds. 741 */ 742 vm_map_t 743 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 744 { 745 vm_map_t result; 746 747 result = uma_zalloc(mapzone, M_WAITOK); 748 CTR1(KTR_VM, "vm_map_create: %p", result); 749 _vm_map_init(result, pmap, min, max); 750 return (result); 751 } 752 753 /* 754 * Initialize an existing vm_map structure 755 * such as that in the vmspace structure. 756 */ 757 static void 758 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 759 { 760 761 map->header.next = map->header.prev = &map->header; 762 map->needs_wakeup = FALSE; 763 map->system_map = 0; 764 map->pmap = pmap; 765 map->min_offset = min; 766 map->max_offset = max; 767 map->flags = 0; 768 map->root = NULL; 769 map->timestamp = 0; 770 map->busy = 0; 771 } 772 773 void 774 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 775 { 776 777 _vm_map_init(map, pmap, min, max); 778 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 779 sx_init(&map->lock, "user map"); 780 } 781 782 /* 783 * vm_map_entry_dispose: [ internal use only ] 784 * 785 * Inverse of vm_map_entry_create. 786 */ 787 static void 788 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 789 { 790 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 791 } 792 793 /* 794 * vm_map_entry_create: [ internal use only ] 795 * 796 * Allocates a VM map entry for insertion. 797 * No entry fields are filled in. 798 */ 799 static vm_map_entry_t 800 vm_map_entry_create(vm_map_t map) 801 { 802 vm_map_entry_t new_entry; 803 804 if (map->system_map) 805 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 806 else 807 new_entry = uma_zalloc(mapentzone, M_WAITOK); 808 if (new_entry == NULL) 809 panic("vm_map_entry_create: kernel resources exhausted"); 810 return (new_entry); 811 } 812 813 /* 814 * vm_map_entry_set_behavior: 815 * 816 * Set the expected access behavior, either normal, random, or 817 * sequential. 818 */ 819 static inline void 820 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 821 { 822 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 823 (behavior & MAP_ENTRY_BEHAV_MASK); 824 } 825 826 /* 827 * vm_map_entry_set_max_free: 828 * 829 * Set the max_free field in a vm_map_entry. 830 */ 831 static inline void 832 vm_map_entry_set_max_free(vm_map_entry_t entry) 833 { 834 835 entry->max_free = entry->adj_free; 836 if (entry->left != NULL && entry->left->max_free > entry->max_free) 837 entry->max_free = entry->left->max_free; 838 if (entry->right != NULL && entry->right->max_free > entry->max_free) 839 entry->max_free = entry->right->max_free; 840 } 841 842 /* 843 * vm_map_entry_splay: 844 * 845 * The Sleator and Tarjan top-down splay algorithm with the 846 * following variation. Max_free must be computed bottom-up, so 847 * on the downward pass, maintain the left and right spines in 848 * reverse order. Then, make a second pass up each side to fix 849 * the pointers and compute max_free. The time bound is O(log n) 850 * amortized. 851 * 852 * The new root is the vm_map_entry containing "addr", or else an 853 * adjacent entry (lower or higher) if addr is not in the tree. 854 * 855 * The map must be locked, and leaves it so. 856 * 857 * Returns: the new root. 858 */ 859 static vm_map_entry_t 860 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 861 { 862 vm_map_entry_t llist, rlist; 863 vm_map_entry_t ltree, rtree; 864 vm_map_entry_t y; 865 866 /* Special case of empty tree. */ 867 if (root == NULL) 868 return (root); 869 870 /* 871 * Pass One: Splay down the tree until we find addr or a NULL 872 * pointer where addr would go. llist and rlist are the two 873 * sides in reverse order (bottom-up), with llist linked by 874 * the right pointer and rlist linked by the left pointer in 875 * the vm_map_entry. Wait until Pass Two to set max_free on 876 * the two spines. 877 */ 878 llist = NULL; 879 rlist = NULL; 880 for (;;) { 881 /* root is never NULL in here. */ 882 if (addr < root->start) { 883 y = root->left; 884 if (y == NULL) 885 break; 886 if (addr < y->start && y->left != NULL) { 887 /* Rotate right and put y on rlist. */ 888 root->left = y->right; 889 y->right = root; 890 vm_map_entry_set_max_free(root); 891 root = y->left; 892 y->left = rlist; 893 rlist = y; 894 } else { 895 /* Put root on rlist. */ 896 root->left = rlist; 897 rlist = root; 898 root = y; 899 } 900 } else if (addr >= root->end) { 901 y = root->right; 902 if (y == NULL) 903 break; 904 if (addr >= y->end && y->right != NULL) { 905 /* Rotate left and put y on llist. */ 906 root->right = y->left; 907 y->left = root; 908 vm_map_entry_set_max_free(root); 909 root = y->right; 910 y->right = llist; 911 llist = y; 912 } else { 913 /* Put root on llist. */ 914 root->right = llist; 915 llist = root; 916 root = y; 917 } 918 } else 919 break; 920 } 921 922 /* 923 * Pass Two: Walk back up the two spines, flip the pointers 924 * and set max_free. The subtrees of the root go at the 925 * bottom of llist and rlist. 926 */ 927 ltree = root->left; 928 while (llist != NULL) { 929 y = llist->right; 930 llist->right = ltree; 931 vm_map_entry_set_max_free(llist); 932 ltree = llist; 933 llist = y; 934 } 935 rtree = root->right; 936 while (rlist != NULL) { 937 y = rlist->left; 938 rlist->left = rtree; 939 vm_map_entry_set_max_free(rlist); 940 rtree = rlist; 941 rlist = y; 942 } 943 944 /* 945 * Final assembly: add ltree and rtree as subtrees of root. 946 */ 947 root->left = ltree; 948 root->right = rtree; 949 vm_map_entry_set_max_free(root); 950 951 return (root); 952 } 953 954 /* 955 * vm_map_entry_{un,}link: 956 * 957 * Insert/remove entries from maps. 958 */ 959 static void 960 vm_map_entry_link(vm_map_t map, 961 vm_map_entry_t after_where, 962 vm_map_entry_t entry) 963 { 964 965 CTR4(KTR_VM, 966 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 967 map->nentries, entry, after_where); 968 VM_MAP_ASSERT_LOCKED(map); 969 map->nentries++; 970 entry->prev = after_where; 971 entry->next = after_where->next; 972 entry->next->prev = entry; 973 after_where->next = entry; 974 975 if (after_where != &map->header) { 976 if (after_where != map->root) 977 vm_map_entry_splay(after_where->start, map->root); 978 entry->right = after_where->right; 979 entry->left = after_where; 980 after_where->right = NULL; 981 after_where->adj_free = entry->start - after_where->end; 982 vm_map_entry_set_max_free(after_where); 983 } else { 984 entry->right = map->root; 985 entry->left = NULL; 986 } 987 entry->adj_free = (entry->next == &map->header ? map->max_offset : 988 entry->next->start) - entry->end; 989 vm_map_entry_set_max_free(entry); 990 map->root = entry; 991 } 992 993 static void 994 vm_map_entry_unlink(vm_map_t map, 995 vm_map_entry_t entry) 996 { 997 vm_map_entry_t next, prev, root; 998 999 VM_MAP_ASSERT_LOCKED(map); 1000 if (entry != map->root) 1001 vm_map_entry_splay(entry->start, map->root); 1002 if (entry->left == NULL) 1003 root = entry->right; 1004 else { 1005 root = vm_map_entry_splay(entry->start, entry->left); 1006 root->right = entry->right; 1007 root->adj_free = (entry->next == &map->header ? map->max_offset : 1008 entry->next->start) - root->end; 1009 vm_map_entry_set_max_free(root); 1010 } 1011 map->root = root; 1012 1013 prev = entry->prev; 1014 next = entry->next; 1015 next->prev = prev; 1016 prev->next = next; 1017 map->nentries--; 1018 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1019 map->nentries, entry); 1020 } 1021 1022 /* 1023 * vm_map_entry_resize_free: 1024 * 1025 * Recompute the amount of free space following a vm_map_entry 1026 * and propagate that value up the tree. Call this function after 1027 * resizing a map entry in-place, that is, without a call to 1028 * vm_map_entry_link() or _unlink(). 1029 * 1030 * The map must be locked, and leaves it so. 1031 */ 1032 static void 1033 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1034 { 1035 1036 /* 1037 * Using splay trees without parent pointers, propagating 1038 * max_free up the tree is done by moving the entry to the 1039 * root and making the change there. 1040 */ 1041 if (entry != map->root) 1042 map->root = vm_map_entry_splay(entry->start, map->root); 1043 1044 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1045 entry->next->start) - entry->end; 1046 vm_map_entry_set_max_free(entry); 1047 } 1048 1049 /* 1050 * vm_map_lookup_entry: [ internal use only ] 1051 * 1052 * Finds the map entry containing (or 1053 * immediately preceding) the specified address 1054 * in the given map; the entry is returned 1055 * in the "entry" parameter. The boolean 1056 * result indicates whether the address is 1057 * actually contained in the map. 1058 */ 1059 boolean_t 1060 vm_map_lookup_entry( 1061 vm_map_t map, 1062 vm_offset_t address, 1063 vm_map_entry_t *entry) /* OUT */ 1064 { 1065 vm_map_entry_t cur; 1066 boolean_t locked; 1067 1068 /* 1069 * If the map is empty, then the map entry immediately preceding 1070 * "address" is the map's header. 1071 */ 1072 cur = map->root; 1073 if (cur == NULL) 1074 *entry = &map->header; 1075 else if (address >= cur->start && cur->end > address) { 1076 *entry = cur; 1077 return (TRUE); 1078 } else if ((locked = vm_map_locked(map)) || 1079 sx_try_upgrade(&map->lock)) { 1080 /* 1081 * Splay requires a write lock on the map. However, it only 1082 * restructures the binary search tree; it does not otherwise 1083 * change the map. Thus, the map's timestamp need not change 1084 * on a temporary upgrade. 1085 */ 1086 map->root = cur = vm_map_entry_splay(address, cur); 1087 if (!locked) 1088 sx_downgrade(&map->lock); 1089 1090 /* 1091 * If "address" is contained within a map entry, the new root 1092 * is that map entry. Otherwise, the new root is a map entry 1093 * immediately before or after "address". 1094 */ 1095 if (address >= cur->start) { 1096 *entry = cur; 1097 if (cur->end > address) 1098 return (TRUE); 1099 } else 1100 *entry = cur->prev; 1101 } else 1102 /* 1103 * Since the map is only locked for read access, perform a 1104 * standard binary search tree lookup for "address". 1105 */ 1106 for (;;) { 1107 if (address < cur->start) { 1108 if (cur->left == NULL) { 1109 *entry = cur->prev; 1110 break; 1111 } 1112 cur = cur->left; 1113 } else if (cur->end > address) { 1114 *entry = cur; 1115 return (TRUE); 1116 } else { 1117 if (cur->right == NULL) { 1118 *entry = cur; 1119 break; 1120 } 1121 cur = cur->right; 1122 } 1123 } 1124 return (FALSE); 1125 } 1126 1127 /* 1128 * vm_map_insert: 1129 * 1130 * Inserts the given whole VM object into the target 1131 * map at the specified address range. The object's 1132 * size should match that of the address range. 1133 * 1134 * Requires that the map be locked, and leaves it so. 1135 * 1136 * If object is non-NULL, ref count must be bumped by caller 1137 * prior to making call to account for the new entry. 1138 */ 1139 int 1140 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1141 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1142 int cow) 1143 { 1144 vm_map_entry_t new_entry; 1145 vm_map_entry_t prev_entry; 1146 vm_map_entry_t temp_entry; 1147 vm_eflags_t protoeflags; 1148 struct ucred *cred; 1149 vm_inherit_t inheritance; 1150 boolean_t charge_prev_obj; 1151 1152 VM_MAP_ASSERT_LOCKED(map); 1153 1154 /* 1155 * Check that the start and end points are not bogus. 1156 */ 1157 if ((start < map->min_offset) || (end > map->max_offset) || 1158 (start >= end)) 1159 return (KERN_INVALID_ADDRESS); 1160 1161 /* 1162 * Find the entry prior to the proposed starting address; if it's part 1163 * of an existing entry, this range is bogus. 1164 */ 1165 if (vm_map_lookup_entry(map, start, &temp_entry)) 1166 return (KERN_NO_SPACE); 1167 1168 prev_entry = temp_entry; 1169 1170 /* 1171 * Assert that the next entry doesn't overlap the end point. 1172 */ 1173 if ((prev_entry->next != &map->header) && 1174 (prev_entry->next->start < end)) 1175 return (KERN_NO_SPACE); 1176 1177 protoeflags = 0; 1178 charge_prev_obj = FALSE; 1179 1180 if (cow & MAP_COPY_ON_WRITE) 1181 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1182 1183 if (cow & MAP_NOFAULT) { 1184 protoeflags |= MAP_ENTRY_NOFAULT; 1185 1186 KASSERT(object == NULL, 1187 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1188 } 1189 if (cow & MAP_DISABLE_SYNCER) 1190 protoeflags |= MAP_ENTRY_NOSYNC; 1191 if (cow & MAP_DISABLE_COREDUMP) 1192 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1193 if (cow & MAP_VN_WRITECOUNT) 1194 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1195 if (cow & MAP_INHERIT_SHARE) 1196 inheritance = VM_INHERIT_SHARE; 1197 else 1198 inheritance = VM_INHERIT_DEFAULT; 1199 1200 cred = NULL; 1201 KASSERT((object != kmem_object && object != kernel_object) || 1202 ((object == kmem_object || object == kernel_object) && 1203 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1204 ("kmem or kernel object and cow")); 1205 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1206 goto charged; 1207 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1208 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1209 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1210 return (KERN_RESOURCE_SHORTAGE); 1211 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1212 object->cred == NULL, 1213 ("OVERCOMMIT: vm_map_insert o %p", object)); 1214 cred = curthread->td_ucred; 1215 crhold(cred); 1216 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1217 charge_prev_obj = TRUE; 1218 } 1219 1220 charged: 1221 /* Expand the kernel pmap, if necessary. */ 1222 if (map == kernel_map && end > kernel_vm_end) 1223 pmap_growkernel(end); 1224 if (object != NULL) { 1225 /* 1226 * OBJ_ONEMAPPING must be cleared unless this mapping 1227 * is trivially proven to be the only mapping for any 1228 * of the object's pages. (Object granularity 1229 * reference counting is insufficient to recognize 1230 * aliases with precision.) 1231 */ 1232 VM_OBJECT_LOCK(object); 1233 if (object->ref_count > 1 || object->shadow_count != 0) 1234 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1235 VM_OBJECT_UNLOCK(object); 1236 } 1237 else if ((prev_entry != &map->header) && 1238 (prev_entry->eflags == protoeflags) && 1239 (prev_entry->end == start) && 1240 (prev_entry->wired_count == 0) && 1241 (prev_entry->cred == cred || 1242 (prev_entry->object.vm_object != NULL && 1243 (prev_entry->object.vm_object->cred == cred))) && 1244 vm_object_coalesce(prev_entry->object.vm_object, 1245 prev_entry->offset, 1246 (vm_size_t)(prev_entry->end - prev_entry->start), 1247 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1248 /* 1249 * We were able to extend the object. Determine if we 1250 * can extend the previous map entry to include the 1251 * new range as well. 1252 */ 1253 if ((prev_entry->inheritance == inheritance) && 1254 (prev_entry->protection == prot) && 1255 (prev_entry->max_protection == max)) { 1256 map->size += (end - prev_entry->end); 1257 prev_entry->end = end; 1258 vm_map_entry_resize_free(map, prev_entry); 1259 vm_map_simplify_entry(map, prev_entry); 1260 if (cred != NULL) 1261 crfree(cred); 1262 return (KERN_SUCCESS); 1263 } 1264 1265 /* 1266 * If we can extend the object but cannot extend the 1267 * map entry, we have to create a new map entry. We 1268 * must bump the ref count on the extended object to 1269 * account for it. object may be NULL. 1270 */ 1271 object = prev_entry->object.vm_object; 1272 offset = prev_entry->offset + 1273 (prev_entry->end - prev_entry->start); 1274 vm_object_reference(object); 1275 if (cred != NULL && object != NULL && object->cred != NULL && 1276 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1277 /* Object already accounts for this uid. */ 1278 crfree(cred); 1279 cred = NULL; 1280 } 1281 } 1282 1283 /* 1284 * NOTE: if conditionals fail, object can be NULL here. This occurs 1285 * in things like the buffer map where we manage kva but do not manage 1286 * backing objects. 1287 */ 1288 1289 /* 1290 * Create a new entry 1291 */ 1292 new_entry = vm_map_entry_create(map); 1293 new_entry->start = start; 1294 new_entry->end = end; 1295 new_entry->cred = NULL; 1296 1297 new_entry->eflags = protoeflags; 1298 new_entry->object.vm_object = object; 1299 new_entry->offset = offset; 1300 new_entry->avail_ssize = 0; 1301 1302 new_entry->inheritance = inheritance; 1303 new_entry->protection = prot; 1304 new_entry->max_protection = max; 1305 new_entry->wired_count = 0; 1306 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1307 new_entry->next_read = OFF_TO_IDX(offset); 1308 1309 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1310 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1311 new_entry->cred = cred; 1312 1313 /* 1314 * Insert the new entry into the list 1315 */ 1316 vm_map_entry_link(map, prev_entry, new_entry); 1317 map->size += new_entry->end - new_entry->start; 1318 1319 /* 1320 * It may be possible to merge the new entry with the next and/or 1321 * previous entries. However, due to MAP_STACK_* being a hack, a 1322 * panic can result from merging such entries. 1323 */ 1324 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1325 vm_map_simplify_entry(map, new_entry); 1326 1327 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1328 vm_map_pmap_enter(map, start, prot, 1329 object, OFF_TO_IDX(offset), end - start, 1330 cow & MAP_PREFAULT_PARTIAL); 1331 } 1332 1333 return (KERN_SUCCESS); 1334 } 1335 1336 /* 1337 * vm_map_findspace: 1338 * 1339 * Find the first fit (lowest VM address) for "length" free bytes 1340 * beginning at address >= start in the given map. 1341 * 1342 * In a vm_map_entry, "adj_free" is the amount of free space 1343 * adjacent (higher address) to this entry, and "max_free" is the 1344 * maximum amount of contiguous free space in its subtree. This 1345 * allows finding a free region in one path down the tree, so 1346 * O(log n) amortized with splay trees. 1347 * 1348 * The map must be locked, and leaves it so. 1349 * 1350 * Returns: 0 on success, and starting address in *addr, 1351 * 1 if insufficient space. 1352 */ 1353 int 1354 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1355 vm_offset_t *addr) /* OUT */ 1356 { 1357 vm_map_entry_t entry; 1358 vm_offset_t st; 1359 1360 /* 1361 * Request must fit within min/max VM address and must avoid 1362 * address wrap. 1363 */ 1364 if (start < map->min_offset) 1365 start = map->min_offset; 1366 if (start + length > map->max_offset || start + length < start) 1367 return (1); 1368 1369 /* Empty tree means wide open address space. */ 1370 if (map->root == NULL) { 1371 *addr = start; 1372 return (0); 1373 } 1374 1375 /* 1376 * After splay, if start comes before root node, then there 1377 * must be a gap from start to the root. 1378 */ 1379 map->root = vm_map_entry_splay(start, map->root); 1380 if (start + length <= map->root->start) { 1381 *addr = start; 1382 return (0); 1383 } 1384 1385 /* 1386 * Root is the last node that might begin its gap before 1387 * start, and this is the last comparison where address 1388 * wrap might be a problem. 1389 */ 1390 st = (start > map->root->end) ? start : map->root->end; 1391 if (length <= map->root->end + map->root->adj_free - st) { 1392 *addr = st; 1393 return (0); 1394 } 1395 1396 /* With max_free, can immediately tell if no solution. */ 1397 entry = map->root->right; 1398 if (entry == NULL || length > entry->max_free) 1399 return (1); 1400 1401 /* 1402 * Search the right subtree in the order: left subtree, root, 1403 * right subtree (first fit). The previous splay implies that 1404 * all regions in the right subtree have addresses > start. 1405 */ 1406 while (entry != NULL) { 1407 if (entry->left != NULL && entry->left->max_free >= length) 1408 entry = entry->left; 1409 else if (entry->adj_free >= length) { 1410 *addr = entry->end; 1411 return (0); 1412 } else 1413 entry = entry->right; 1414 } 1415 1416 /* Can't get here, so panic if we do. */ 1417 panic("vm_map_findspace: max_free corrupt"); 1418 } 1419 1420 int 1421 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1422 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1423 vm_prot_t max, int cow) 1424 { 1425 vm_offset_t end; 1426 int result; 1427 1428 end = start + length; 1429 vm_map_lock(map); 1430 VM_MAP_RANGE_CHECK(map, start, end); 1431 (void) vm_map_delete(map, start, end); 1432 result = vm_map_insert(map, object, offset, start, end, prot, 1433 max, cow); 1434 vm_map_unlock(map); 1435 return (result); 1436 } 1437 1438 /* 1439 * vm_map_find finds an unallocated region in the target address 1440 * map with the given length. The search is defined to be 1441 * first-fit from the specified address; the region found is 1442 * returned in the same parameter. 1443 * 1444 * If object is non-NULL, ref count must be bumped by caller 1445 * prior to making call to account for the new entry. 1446 */ 1447 int 1448 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1449 vm_offset_t *addr, /* IN/OUT */ 1450 vm_size_t length, int find_space, vm_prot_t prot, 1451 vm_prot_t max, int cow) 1452 { 1453 vm_offset_t start; 1454 int result; 1455 1456 start = *addr; 1457 vm_map_lock(map); 1458 do { 1459 if (find_space != VMFS_NO_SPACE) { 1460 if (vm_map_findspace(map, start, length, addr)) { 1461 vm_map_unlock(map); 1462 return (KERN_NO_SPACE); 1463 } 1464 switch (find_space) { 1465 case VMFS_ALIGNED_SPACE: 1466 pmap_align_superpage(object, offset, addr, 1467 length); 1468 break; 1469 #ifdef VMFS_TLB_ALIGNED_SPACE 1470 case VMFS_TLB_ALIGNED_SPACE: 1471 pmap_align_tlb(addr); 1472 break; 1473 #endif 1474 default: 1475 break; 1476 } 1477 1478 start = *addr; 1479 } 1480 result = vm_map_insert(map, object, offset, start, start + 1481 length, prot, max, cow); 1482 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1483 #ifdef VMFS_TLB_ALIGNED_SPACE 1484 || find_space == VMFS_TLB_ALIGNED_SPACE 1485 #endif 1486 )); 1487 vm_map_unlock(map); 1488 return (result); 1489 } 1490 1491 /* 1492 * vm_map_simplify_entry: 1493 * 1494 * Simplify the given map entry by merging with either neighbor. This 1495 * routine also has the ability to merge with both neighbors. 1496 * 1497 * The map must be locked. 1498 * 1499 * This routine guarentees that the passed entry remains valid (though 1500 * possibly extended). When merging, this routine may delete one or 1501 * both neighbors. 1502 */ 1503 void 1504 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1505 { 1506 vm_map_entry_t next, prev; 1507 vm_size_t prevsize, esize; 1508 1509 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1510 return; 1511 1512 prev = entry->prev; 1513 if (prev != &map->header) { 1514 prevsize = prev->end - prev->start; 1515 if ( (prev->end == entry->start) && 1516 (prev->object.vm_object == entry->object.vm_object) && 1517 (!prev->object.vm_object || 1518 (prev->offset + prevsize == entry->offset)) && 1519 (prev->eflags == entry->eflags) && 1520 (prev->protection == entry->protection) && 1521 (prev->max_protection == entry->max_protection) && 1522 (prev->inheritance == entry->inheritance) && 1523 (prev->wired_count == entry->wired_count) && 1524 (prev->cred == entry->cred)) { 1525 vm_map_entry_unlink(map, prev); 1526 entry->start = prev->start; 1527 entry->offset = prev->offset; 1528 if (entry->prev != &map->header) 1529 vm_map_entry_resize_free(map, entry->prev); 1530 1531 /* 1532 * If the backing object is a vnode object, 1533 * vm_object_deallocate() calls vrele(). 1534 * However, vrele() does not lock the vnode 1535 * because the vnode has additional 1536 * references. Thus, the map lock can be kept 1537 * without causing a lock-order reversal with 1538 * the vnode lock. 1539 * 1540 * Since we count the number of virtual page 1541 * mappings in object->un_pager.vnp.writemappings, 1542 * the writemappings value should not be adjusted 1543 * when the entry is disposed of. 1544 */ 1545 if (prev->object.vm_object) 1546 vm_object_deallocate(prev->object.vm_object); 1547 if (prev->cred != NULL) 1548 crfree(prev->cred); 1549 vm_map_entry_dispose(map, prev); 1550 } 1551 } 1552 1553 next = entry->next; 1554 if (next != &map->header) { 1555 esize = entry->end - entry->start; 1556 if ((entry->end == next->start) && 1557 (next->object.vm_object == entry->object.vm_object) && 1558 (!entry->object.vm_object || 1559 (entry->offset + esize == next->offset)) && 1560 (next->eflags == entry->eflags) && 1561 (next->protection == entry->protection) && 1562 (next->max_protection == entry->max_protection) && 1563 (next->inheritance == entry->inheritance) && 1564 (next->wired_count == entry->wired_count) && 1565 (next->cred == entry->cred)) { 1566 vm_map_entry_unlink(map, next); 1567 entry->end = next->end; 1568 vm_map_entry_resize_free(map, entry); 1569 1570 /* 1571 * See comment above. 1572 */ 1573 if (next->object.vm_object) 1574 vm_object_deallocate(next->object.vm_object); 1575 if (next->cred != NULL) 1576 crfree(next->cred); 1577 vm_map_entry_dispose(map, next); 1578 } 1579 } 1580 } 1581 /* 1582 * vm_map_clip_start: [ internal use only ] 1583 * 1584 * Asserts that the given entry begins at or after 1585 * the specified address; if necessary, 1586 * it splits the entry into two. 1587 */ 1588 #define vm_map_clip_start(map, entry, startaddr) \ 1589 { \ 1590 if (startaddr > entry->start) \ 1591 _vm_map_clip_start(map, entry, startaddr); \ 1592 } 1593 1594 /* 1595 * This routine is called only when it is known that 1596 * the entry must be split. 1597 */ 1598 static void 1599 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1600 { 1601 vm_map_entry_t new_entry; 1602 1603 VM_MAP_ASSERT_LOCKED(map); 1604 1605 /* 1606 * Split off the front portion -- note that we must insert the new 1607 * entry BEFORE this one, so that this entry has the specified 1608 * starting address. 1609 */ 1610 vm_map_simplify_entry(map, entry); 1611 1612 /* 1613 * If there is no object backing this entry, we might as well create 1614 * one now. If we defer it, an object can get created after the map 1615 * is clipped, and individual objects will be created for the split-up 1616 * map. This is a bit of a hack, but is also about the best place to 1617 * put this improvement. 1618 */ 1619 if (entry->object.vm_object == NULL && !map->system_map) { 1620 vm_object_t object; 1621 object = vm_object_allocate(OBJT_DEFAULT, 1622 atop(entry->end - entry->start)); 1623 entry->object.vm_object = object; 1624 entry->offset = 0; 1625 if (entry->cred != NULL) { 1626 object->cred = entry->cred; 1627 object->charge = entry->end - entry->start; 1628 entry->cred = NULL; 1629 } 1630 } else if (entry->object.vm_object != NULL && 1631 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1632 entry->cred != NULL) { 1633 VM_OBJECT_LOCK(entry->object.vm_object); 1634 KASSERT(entry->object.vm_object->cred == NULL, 1635 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1636 entry->object.vm_object->cred = entry->cred; 1637 entry->object.vm_object->charge = entry->end - entry->start; 1638 VM_OBJECT_UNLOCK(entry->object.vm_object); 1639 entry->cred = NULL; 1640 } 1641 1642 new_entry = vm_map_entry_create(map); 1643 *new_entry = *entry; 1644 1645 new_entry->end = start; 1646 entry->offset += (start - entry->start); 1647 entry->start = start; 1648 if (new_entry->cred != NULL) 1649 crhold(entry->cred); 1650 1651 vm_map_entry_link(map, entry->prev, new_entry); 1652 1653 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1654 vm_object_reference(new_entry->object.vm_object); 1655 /* 1656 * The object->un_pager.vnp.writemappings for the 1657 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1658 * kept as is here. The virtual pages are 1659 * re-distributed among the clipped entries, so the sum is 1660 * left the same. 1661 */ 1662 } 1663 } 1664 1665 /* 1666 * vm_map_clip_end: [ internal use only ] 1667 * 1668 * Asserts that the given entry ends at or before 1669 * the specified address; if necessary, 1670 * it splits the entry into two. 1671 */ 1672 #define vm_map_clip_end(map, entry, endaddr) \ 1673 { \ 1674 if ((endaddr) < (entry->end)) \ 1675 _vm_map_clip_end((map), (entry), (endaddr)); \ 1676 } 1677 1678 /* 1679 * This routine is called only when it is known that 1680 * the entry must be split. 1681 */ 1682 static void 1683 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1684 { 1685 vm_map_entry_t new_entry; 1686 1687 VM_MAP_ASSERT_LOCKED(map); 1688 1689 /* 1690 * If there is no object backing this entry, we might as well create 1691 * one now. If we defer it, an object can get created after the map 1692 * is clipped, and individual objects will be created for the split-up 1693 * map. This is a bit of a hack, but is also about the best place to 1694 * put this improvement. 1695 */ 1696 if (entry->object.vm_object == NULL && !map->system_map) { 1697 vm_object_t object; 1698 object = vm_object_allocate(OBJT_DEFAULT, 1699 atop(entry->end - entry->start)); 1700 entry->object.vm_object = object; 1701 entry->offset = 0; 1702 if (entry->cred != NULL) { 1703 object->cred = entry->cred; 1704 object->charge = entry->end - entry->start; 1705 entry->cred = NULL; 1706 } 1707 } else if (entry->object.vm_object != NULL && 1708 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1709 entry->cred != NULL) { 1710 VM_OBJECT_LOCK(entry->object.vm_object); 1711 KASSERT(entry->object.vm_object->cred == NULL, 1712 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1713 entry->object.vm_object->cred = entry->cred; 1714 entry->object.vm_object->charge = entry->end - entry->start; 1715 VM_OBJECT_UNLOCK(entry->object.vm_object); 1716 entry->cred = NULL; 1717 } 1718 1719 /* 1720 * Create a new entry and insert it AFTER the specified entry 1721 */ 1722 new_entry = vm_map_entry_create(map); 1723 *new_entry = *entry; 1724 1725 new_entry->start = entry->end = end; 1726 new_entry->offset += (end - entry->start); 1727 if (new_entry->cred != NULL) 1728 crhold(entry->cred); 1729 1730 vm_map_entry_link(map, entry, new_entry); 1731 1732 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1733 vm_object_reference(new_entry->object.vm_object); 1734 } 1735 } 1736 1737 /* 1738 * vm_map_submap: [ kernel use only ] 1739 * 1740 * Mark the given range as handled by a subordinate map. 1741 * 1742 * This range must have been created with vm_map_find, 1743 * and no other operations may have been performed on this 1744 * range prior to calling vm_map_submap. 1745 * 1746 * Only a limited number of operations can be performed 1747 * within this rage after calling vm_map_submap: 1748 * vm_fault 1749 * [Don't try vm_map_copy!] 1750 * 1751 * To remove a submapping, one must first remove the 1752 * range from the superior map, and then destroy the 1753 * submap (if desired). [Better yet, don't try it.] 1754 */ 1755 int 1756 vm_map_submap( 1757 vm_map_t map, 1758 vm_offset_t start, 1759 vm_offset_t end, 1760 vm_map_t submap) 1761 { 1762 vm_map_entry_t entry; 1763 int result = KERN_INVALID_ARGUMENT; 1764 1765 vm_map_lock(map); 1766 1767 VM_MAP_RANGE_CHECK(map, start, end); 1768 1769 if (vm_map_lookup_entry(map, start, &entry)) { 1770 vm_map_clip_start(map, entry, start); 1771 } else 1772 entry = entry->next; 1773 1774 vm_map_clip_end(map, entry, end); 1775 1776 if ((entry->start == start) && (entry->end == end) && 1777 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1778 (entry->object.vm_object == NULL)) { 1779 entry->object.sub_map = submap; 1780 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1781 result = KERN_SUCCESS; 1782 } 1783 vm_map_unlock(map); 1784 1785 return (result); 1786 } 1787 1788 /* 1789 * The maximum number of pages to map 1790 */ 1791 #define MAX_INIT_PT 96 1792 1793 /* 1794 * vm_map_pmap_enter: 1795 * 1796 * Preload read-only mappings for the specified object's resident pages 1797 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1798 * the resident pages within the address range [addr, addr + ulmin(size, 1799 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1800 * the specified address range are mapped. This eliminates many soft 1801 * faults on process startup and immediately after an mmap(2). Because 1802 * these are speculative mappings, cached pages are not reactivated and 1803 * mapped. 1804 */ 1805 void 1806 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1807 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1808 { 1809 vm_offset_t start; 1810 vm_page_t p, p_start; 1811 vm_pindex_t psize, tmpidx; 1812 1813 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1814 return; 1815 VM_OBJECT_LOCK(object); 1816 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1817 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1818 goto unlock_return; 1819 } 1820 1821 psize = atop(size); 1822 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1823 psize = MAX_INIT_PT; 1824 if (psize + pindex > object->size) { 1825 if (object->size < pindex) 1826 goto unlock_return; 1827 psize = object->size - pindex; 1828 } 1829 1830 start = 0; 1831 p_start = NULL; 1832 1833 p = vm_page_find_least(object, pindex); 1834 /* 1835 * Assert: the variable p is either (1) the page with the 1836 * least pindex greater than or equal to the parameter pindex 1837 * or (2) NULL. 1838 */ 1839 for (; 1840 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1841 p = TAILQ_NEXT(p, listq)) { 1842 /* 1843 * don't allow an madvise to blow away our really 1844 * free pages allocating pv entries. 1845 */ 1846 if ((flags & MAP_PREFAULT_MADVISE) && 1847 cnt.v_free_count < cnt.v_free_reserved) { 1848 psize = tmpidx; 1849 break; 1850 } 1851 if (p->valid == VM_PAGE_BITS_ALL) { 1852 if (p_start == NULL) { 1853 start = addr + ptoa(tmpidx); 1854 p_start = p; 1855 } 1856 } else if (p_start != NULL) { 1857 pmap_enter_object(map->pmap, start, addr + 1858 ptoa(tmpidx), p_start, prot); 1859 p_start = NULL; 1860 } 1861 } 1862 if (p_start != NULL) 1863 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1864 p_start, prot); 1865 unlock_return: 1866 VM_OBJECT_UNLOCK(object); 1867 } 1868 1869 /* 1870 * vm_map_protect: 1871 * 1872 * Sets the protection of the specified address 1873 * region in the target map. If "set_max" is 1874 * specified, the maximum protection is to be set; 1875 * otherwise, only the current protection is affected. 1876 */ 1877 int 1878 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1879 vm_prot_t new_prot, boolean_t set_max) 1880 { 1881 vm_map_entry_t current, entry; 1882 vm_object_t obj; 1883 struct ucred *cred; 1884 vm_prot_t old_prot; 1885 1886 vm_map_lock(map); 1887 1888 VM_MAP_RANGE_CHECK(map, start, end); 1889 1890 if (vm_map_lookup_entry(map, start, &entry)) { 1891 vm_map_clip_start(map, entry, start); 1892 } else { 1893 entry = entry->next; 1894 } 1895 1896 /* 1897 * Make a first pass to check for protection violations. 1898 */ 1899 current = entry; 1900 while ((current != &map->header) && (current->start < end)) { 1901 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1902 vm_map_unlock(map); 1903 return (KERN_INVALID_ARGUMENT); 1904 } 1905 if ((new_prot & current->max_protection) != new_prot) { 1906 vm_map_unlock(map); 1907 return (KERN_PROTECTION_FAILURE); 1908 } 1909 current = current->next; 1910 } 1911 1912 1913 /* 1914 * Do an accounting pass for private read-only mappings that 1915 * now will do cow due to allowed write (e.g. debugger sets 1916 * breakpoint on text segment) 1917 */ 1918 for (current = entry; (current != &map->header) && 1919 (current->start < end); current = current->next) { 1920 1921 vm_map_clip_end(map, current, end); 1922 1923 if (set_max || 1924 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1925 ENTRY_CHARGED(current)) { 1926 continue; 1927 } 1928 1929 cred = curthread->td_ucred; 1930 obj = current->object.vm_object; 1931 1932 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1933 if (!swap_reserve(current->end - current->start)) { 1934 vm_map_unlock(map); 1935 return (KERN_RESOURCE_SHORTAGE); 1936 } 1937 crhold(cred); 1938 current->cred = cred; 1939 continue; 1940 } 1941 1942 VM_OBJECT_LOCK(obj); 1943 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1944 VM_OBJECT_UNLOCK(obj); 1945 continue; 1946 } 1947 1948 /* 1949 * Charge for the whole object allocation now, since 1950 * we cannot distinguish between non-charged and 1951 * charged clipped mapping of the same object later. 1952 */ 1953 KASSERT(obj->charge == 0, 1954 ("vm_map_protect: object %p overcharged\n", obj)); 1955 if (!swap_reserve(ptoa(obj->size))) { 1956 VM_OBJECT_UNLOCK(obj); 1957 vm_map_unlock(map); 1958 return (KERN_RESOURCE_SHORTAGE); 1959 } 1960 1961 crhold(cred); 1962 obj->cred = cred; 1963 obj->charge = ptoa(obj->size); 1964 VM_OBJECT_UNLOCK(obj); 1965 } 1966 1967 /* 1968 * Go back and fix up protections. [Note that clipping is not 1969 * necessary the second time.] 1970 */ 1971 current = entry; 1972 while ((current != &map->header) && (current->start < end)) { 1973 old_prot = current->protection; 1974 1975 if (set_max) 1976 current->protection = 1977 (current->max_protection = new_prot) & 1978 old_prot; 1979 else 1980 current->protection = new_prot; 1981 1982 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1983 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1984 (current->protection & VM_PROT_WRITE) != 0 && 1985 (old_prot & VM_PROT_WRITE) == 0) { 1986 vm_fault_copy_entry(map, map, current, current, NULL); 1987 } 1988 1989 /* 1990 * When restricting access, update the physical map. Worry 1991 * about copy-on-write here. 1992 */ 1993 if ((old_prot & ~current->protection) != 0) { 1994 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1995 VM_PROT_ALL) 1996 pmap_protect(map->pmap, current->start, 1997 current->end, 1998 current->protection & MASK(current)); 1999 #undef MASK 2000 } 2001 vm_map_simplify_entry(map, current); 2002 current = current->next; 2003 } 2004 vm_map_unlock(map); 2005 return (KERN_SUCCESS); 2006 } 2007 2008 /* 2009 * vm_map_madvise: 2010 * 2011 * This routine traverses a processes map handling the madvise 2012 * system call. Advisories are classified as either those effecting 2013 * the vm_map_entry structure, or those effecting the underlying 2014 * objects. 2015 */ 2016 int 2017 vm_map_madvise( 2018 vm_map_t map, 2019 vm_offset_t start, 2020 vm_offset_t end, 2021 int behav) 2022 { 2023 vm_map_entry_t current, entry; 2024 int modify_map = 0; 2025 2026 /* 2027 * Some madvise calls directly modify the vm_map_entry, in which case 2028 * we need to use an exclusive lock on the map and we need to perform 2029 * various clipping operations. Otherwise we only need a read-lock 2030 * on the map. 2031 */ 2032 switch(behav) { 2033 case MADV_NORMAL: 2034 case MADV_SEQUENTIAL: 2035 case MADV_RANDOM: 2036 case MADV_NOSYNC: 2037 case MADV_AUTOSYNC: 2038 case MADV_NOCORE: 2039 case MADV_CORE: 2040 modify_map = 1; 2041 vm_map_lock(map); 2042 break; 2043 case MADV_WILLNEED: 2044 case MADV_DONTNEED: 2045 case MADV_FREE: 2046 vm_map_lock_read(map); 2047 break; 2048 default: 2049 return (KERN_INVALID_ARGUMENT); 2050 } 2051 2052 /* 2053 * Locate starting entry and clip if necessary. 2054 */ 2055 VM_MAP_RANGE_CHECK(map, start, end); 2056 2057 if (vm_map_lookup_entry(map, start, &entry)) { 2058 if (modify_map) 2059 vm_map_clip_start(map, entry, start); 2060 } else { 2061 entry = entry->next; 2062 } 2063 2064 if (modify_map) { 2065 /* 2066 * madvise behaviors that are implemented in the vm_map_entry. 2067 * 2068 * We clip the vm_map_entry so that behavioral changes are 2069 * limited to the specified address range. 2070 */ 2071 for (current = entry; 2072 (current != &map->header) && (current->start < end); 2073 current = current->next 2074 ) { 2075 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2076 continue; 2077 2078 vm_map_clip_end(map, current, end); 2079 2080 switch (behav) { 2081 case MADV_NORMAL: 2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2083 break; 2084 case MADV_SEQUENTIAL: 2085 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2086 break; 2087 case MADV_RANDOM: 2088 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2089 break; 2090 case MADV_NOSYNC: 2091 current->eflags |= MAP_ENTRY_NOSYNC; 2092 break; 2093 case MADV_AUTOSYNC: 2094 current->eflags &= ~MAP_ENTRY_NOSYNC; 2095 break; 2096 case MADV_NOCORE: 2097 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2098 break; 2099 case MADV_CORE: 2100 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2101 break; 2102 default: 2103 break; 2104 } 2105 vm_map_simplify_entry(map, current); 2106 } 2107 vm_map_unlock(map); 2108 } else { 2109 vm_pindex_t pstart, pend; 2110 2111 /* 2112 * madvise behaviors that are implemented in the underlying 2113 * vm_object. 2114 * 2115 * Since we don't clip the vm_map_entry, we have to clip 2116 * the vm_object pindex and count. 2117 */ 2118 for (current = entry; 2119 (current != &map->header) && (current->start < end); 2120 current = current->next 2121 ) { 2122 vm_offset_t useStart; 2123 2124 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2125 continue; 2126 2127 pstart = OFF_TO_IDX(current->offset); 2128 pend = pstart + atop(current->end - current->start); 2129 useStart = current->start; 2130 2131 if (current->start < start) { 2132 pstart += atop(start - current->start); 2133 useStart = start; 2134 } 2135 if (current->end > end) 2136 pend -= atop(current->end - end); 2137 2138 if (pstart >= pend) 2139 continue; 2140 2141 vm_object_madvise(current->object.vm_object, pstart, 2142 pend, behav); 2143 if (behav == MADV_WILLNEED) { 2144 vm_map_pmap_enter(map, 2145 useStart, 2146 current->protection, 2147 current->object.vm_object, 2148 pstart, 2149 ptoa(pend - pstart), 2150 MAP_PREFAULT_MADVISE 2151 ); 2152 } 2153 } 2154 vm_map_unlock_read(map); 2155 } 2156 return (0); 2157 } 2158 2159 2160 /* 2161 * vm_map_inherit: 2162 * 2163 * Sets the inheritance of the specified address 2164 * range in the target map. Inheritance 2165 * affects how the map will be shared with 2166 * child maps at the time of vmspace_fork. 2167 */ 2168 int 2169 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2170 vm_inherit_t new_inheritance) 2171 { 2172 vm_map_entry_t entry; 2173 vm_map_entry_t temp_entry; 2174 2175 switch (new_inheritance) { 2176 case VM_INHERIT_NONE: 2177 case VM_INHERIT_COPY: 2178 case VM_INHERIT_SHARE: 2179 break; 2180 default: 2181 return (KERN_INVALID_ARGUMENT); 2182 } 2183 vm_map_lock(map); 2184 VM_MAP_RANGE_CHECK(map, start, end); 2185 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2186 entry = temp_entry; 2187 vm_map_clip_start(map, entry, start); 2188 } else 2189 entry = temp_entry->next; 2190 while ((entry != &map->header) && (entry->start < end)) { 2191 vm_map_clip_end(map, entry, end); 2192 entry->inheritance = new_inheritance; 2193 vm_map_simplify_entry(map, entry); 2194 entry = entry->next; 2195 } 2196 vm_map_unlock(map); 2197 return (KERN_SUCCESS); 2198 } 2199 2200 /* 2201 * vm_map_unwire: 2202 * 2203 * Implements both kernel and user unwiring. 2204 */ 2205 int 2206 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2207 int flags) 2208 { 2209 vm_map_entry_t entry, first_entry, tmp_entry; 2210 vm_offset_t saved_start; 2211 unsigned int last_timestamp; 2212 int rv; 2213 boolean_t need_wakeup, result, user_unwire; 2214 2215 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2216 vm_map_lock(map); 2217 VM_MAP_RANGE_CHECK(map, start, end); 2218 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2219 if (flags & VM_MAP_WIRE_HOLESOK) 2220 first_entry = first_entry->next; 2221 else { 2222 vm_map_unlock(map); 2223 return (KERN_INVALID_ADDRESS); 2224 } 2225 } 2226 last_timestamp = map->timestamp; 2227 entry = first_entry; 2228 while (entry != &map->header && entry->start < end) { 2229 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2230 /* 2231 * We have not yet clipped the entry. 2232 */ 2233 saved_start = (start >= entry->start) ? start : 2234 entry->start; 2235 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2236 if (vm_map_unlock_and_wait(map, 0)) { 2237 /* 2238 * Allow interruption of user unwiring? 2239 */ 2240 } 2241 vm_map_lock(map); 2242 if (last_timestamp+1 != map->timestamp) { 2243 /* 2244 * Look again for the entry because the map was 2245 * modified while it was unlocked. 2246 * Specifically, the entry may have been 2247 * clipped, merged, or deleted. 2248 */ 2249 if (!vm_map_lookup_entry(map, saved_start, 2250 &tmp_entry)) { 2251 if (flags & VM_MAP_WIRE_HOLESOK) 2252 tmp_entry = tmp_entry->next; 2253 else { 2254 if (saved_start == start) { 2255 /* 2256 * First_entry has been deleted. 2257 */ 2258 vm_map_unlock(map); 2259 return (KERN_INVALID_ADDRESS); 2260 } 2261 end = saved_start; 2262 rv = KERN_INVALID_ADDRESS; 2263 goto done; 2264 } 2265 } 2266 if (entry == first_entry) 2267 first_entry = tmp_entry; 2268 else 2269 first_entry = NULL; 2270 entry = tmp_entry; 2271 } 2272 last_timestamp = map->timestamp; 2273 continue; 2274 } 2275 vm_map_clip_start(map, entry, start); 2276 vm_map_clip_end(map, entry, end); 2277 /* 2278 * Mark the entry in case the map lock is released. (See 2279 * above.) 2280 */ 2281 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2282 /* 2283 * Check the map for holes in the specified region. 2284 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2285 */ 2286 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2287 (entry->end < end && (entry->next == &map->header || 2288 entry->next->start > entry->end))) { 2289 end = entry->end; 2290 rv = KERN_INVALID_ADDRESS; 2291 goto done; 2292 } 2293 /* 2294 * If system unwiring, require that the entry is system wired. 2295 */ 2296 if (!user_unwire && 2297 vm_map_entry_system_wired_count(entry) == 0) { 2298 end = entry->end; 2299 rv = KERN_INVALID_ARGUMENT; 2300 goto done; 2301 } 2302 entry = entry->next; 2303 } 2304 rv = KERN_SUCCESS; 2305 done: 2306 need_wakeup = FALSE; 2307 if (first_entry == NULL) { 2308 result = vm_map_lookup_entry(map, start, &first_entry); 2309 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2310 first_entry = first_entry->next; 2311 else 2312 KASSERT(result, ("vm_map_unwire: lookup failed")); 2313 } 2314 entry = first_entry; 2315 while (entry != &map->header && entry->start < end) { 2316 if (rv == KERN_SUCCESS && (!user_unwire || 2317 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2318 if (user_unwire) 2319 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2320 entry->wired_count--; 2321 if (entry->wired_count == 0) { 2322 /* 2323 * Retain the map lock. 2324 */ 2325 vm_fault_unwire(map, entry->start, entry->end, 2326 entry->object.vm_object != NULL && 2327 (entry->object.vm_object->flags & 2328 OBJ_FICTITIOUS) != 0); 2329 } 2330 } 2331 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2332 ("vm_map_unwire: in-transition flag missing")); 2333 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2334 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2335 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2336 need_wakeup = TRUE; 2337 } 2338 vm_map_simplify_entry(map, entry); 2339 entry = entry->next; 2340 } 2341 vm_map_unlock(map); 2342 if (need_wakeup) 2343 vm_map_wakeup(map); 2344 return (rv); 2345 } 2346 2347 /* 2348 * vm_map_wire: 2349 * 2350 * Implements both kernel and user wiring. 2351 */ 2352 int 2353 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2354 int flags) 2355 { 2356 vm_map_entry_t entry, first_entry, tmp_entry; 2357 vm_offset_t saved_end, saved_start; 2358 unsigned int last_timestamp; 2359 int rv; 2360 boolean_t fictitious, need_wakeup, result, user_wire; 2361 vm_prot_t prot; 2362 2363 prot = 0; 2364 if (flags & VM_MAP_WIRE_WRITE) 2365 prot |= VM_PROT_WRITE; 2366 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2367 vm_map_lock(map); 2368 VM_MAP_RANGE_CHECK(map, start, end); 2369 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2370 if (flags & VM_MAP_WIRE_HOLESOK) 2371 first_entry = first_entry->next; 2372 else { 2373 vm_map_unlock(map); 2374 return (KERN_INVALID_ADDRESS); 2375 } 2376 } 2377 last_timestamp = map->timestamp; 2378 entry = first_entry; 2379 while (entry != &map->header && entry->start < end) { 2380 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2381 /* 2382 * We have not yet clipped the entry. 2383 */ 2384 saved_start = (start >= entry->start) ? start : 2385 entry->start; 2386 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2387 if (vm_map_unlock_and_wait(map, 0)) { 2388 /* 2389 * Allow interruption of user wiring? 2390 */ 2391 } 2392 vm_map_lock(map); 2393 if (last_timestamp + 1 != map->timestamp) { 2394 /* 2395 * Look again for the entry because the map was 2396 * modified while it was unlocked. 2397 * Specifically, the entry may have been 2398 * clipped, merged, or deleted. 2399 */ 2400 if (!vm_map_lookup_entry(map, saved_start, 2401 &tmp_entry)) { 2402 if (flags & VM_MAP_WIRE_HOLESOK) 2403 tmp_entry = tmp_entry->next; 2404 else { 2405 if (saved_start == start) { 2406 /* 2407 * first_entry has been deleted. 2408 */ 2409 vm_map_unlock(map); 2410 return (KERN_INVALID_ADDRESS); 2411 } 2412 end = saved_start; 2413 rv = KERN_INVALID_ADDRESS; 2414 goto done; 2415 } 2416 } 2417 if (entry == first_entry) 2418 first_entry = tmp_entry; 2419 else 2420 first_entry = NULL; 2421 entry = tmp_entry; 2422 } 2423 last_timestamp = map->timestamp; 2424 continue; 2425 } 2426 vm_map_clip_start(map, entry, start); 2427 vm_map_clip_end(map, entry, end); 2428 /* 2429 * Mark the entry in case the map lock is released. (See 2430 * above.) 2431 */ 2432 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2433 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2434 || (entry->protection & prot) != prot) { 2435 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2436 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2437 end = entry->end; 2438 rv = KERN_INVALID_ADDRESS; 2439 goto done; 2440 } 2441 goto next_entry; 2442 } 2443 if (entry->wired_count == 0) { 2444 entry->wired_count++; 2445 saved_start = entry->start; 2446 saved_end = entry->end; 2447 fictitious = entry->object.vm_object != NULL && 2448 (entry->object.vm_object->flags & 2449 OBJ_FICTITIOUS) != 0; 2450 /* 2451 * Release the map lock, relying on the in-transition 2452 * mark. Mark the map busy for fork. 2453 */ 2454 vm_map_busy(map); 2455 vm_map_unlock(map); 2456 rv = vm_fault_wire(map, saved_start, saved_end, 2457 fictitious); 2458 vm_map_lock(map); 2459 vm_map_unbusy(map); 2460 if (last_timestamp + 1 != map->timestamp) { 2461 /* 2462 * Look again for the entry because the map was 2463 * modified while it was unlocked. The entry 2464 * may have been clipped, but NOT merged or 2465 * deleted. 2466 */ 2467 result = vm_map_lookup_entry(map, saved_start, 2468 &tmp_entry); 2469 KASSERT(result, ("vm_map_wire: lookup failed")); 2470 if (entry == first_entry) 2471 first_entry = tmp_entry; 2472 else 2473 first_entry = NULL; 2474 entry = tmp_entry; 2475 while (entry->end < saved_end) { 2476 if (rv != KERN_SUCCESS) { 2477 KASSERT(entry->wired_count == 1, 2478 ("vm_map_wire: bad count")); 2479 entry->wired_count = -1; 2480 } 2481 entry = entry->next; 2482 } 2483 } 2484 last_timestamp = map->timestamp; 2485 if (rv != KERN_SUCCESS) { 2486 KASSERT(entry->wired_count == 1, 2487 ("vm_map_wire: bad count")); 2488 /* 2489 * Assign an out-of-range value to represent 2490 * the failure to wire this entry. 2491 */ 2492 entry->wired_count = -1; 2493 end = entry->end; 2494 goto done; 2495 } 2496 } else if (!user_wire || 2497 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2498 entry->wired_count++; 2499 } 2500 /* 2501 * Check the map for holes in the specified region. 2502 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2503 */ 2504 next_entry: 2505 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2506 (entry->end < end && (entry->next == &map->header || 2507 entry->next->start > entry->end))) { 2508 end = entry->end; 2509 rv = KERN_INVALID_ADDRESS; 2510 goto done; 2511 } 2512 entry = entry->next; 2513 } 2514 rv = KERN_SUCCESS; 2515 done: 2516 need_wakeup = FALSE; 2517 if (first_entry == NULL) { 2518 result = vm_map_lookup_entry(map, start, &first_entry); 2519 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2520 first_entry = first_entry->next; 2521 else 2522 KASSERT(result, ("vm_map_wire: lookup failed")); 2523 } 2524 entry = first_entry; 2525 while (entry != &map->header && entry->start < end) { 2526 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2527 goto next_entry_done; 2528 if (rv == KERN_SUCCESS) { 2529 if (user_wire) 2530 entry->eflags |= MAP_ENTRY_USER_WIRED; 2531 } else if (entry->wired_count == -1) { 2532 /* 2533 * Wiring failed on this entry. Thus, unwiring is 2534 * unnecessary. 2535 */ 2536 entry->wired_count = 0; 2537 } else { 2538 if (!user_wire || 2539 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2540 entry->wired_count--; 2541 if (entry->wired_count == 0) { 2542 /* 2543 * Retain the map lock. 2544 */ 2545 vm_fault_unwire(map, entry->start, entry->end, 2546 entry->object.vm_object != NULL && 2547 (entry->object.vm_object->flags & 2548 OBJ_FICTITIOUS) != 0); 2549 } 2550 } 2551 next_entry_done: 2552 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2553 ("vm_map_wire: in-transition flag missing")); 2554 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2555 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2556 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2557 need_wakeup = TRUE; 2558 } 2559 vm_map_simplify_entry(map, entry); 2560 entry = entry->next; 2561 } 2562 vm_map_unlock(map); 2563 if (need_wakeup) 2564 vm_map_wakeup(map); 2565 return (rv); 2566 } 2567 2568 /* 2569 * vm_map_sync 2570 * 2571 * Push any dirty cached pages in the address range to their pager. 2572 * If syncio is TRUE, dirty pages are written synchronously. 2573 * If invalidate is TRUE, any cached pages are freed as well. 2574 * 2575 * If the size of the region from start to end is zero, we are 2576 * supposed to flush all modified pages within the region containing 2577 * start. Unfortunately, a region can be split or coalesced with 2578 * neighboring regions, making it difficult to determine what the 2579 * original region was. Therefore, we approximate this requirement by 2580 * flushing the current region containing start. 2581 * 2582 * Returns an error if any part of the specified range is not mapped. 2583 */ 2584 int 2585 vm_map_sync( 2586 vm_map_t map, 2587 vm_offset_t start, 2588 vm_offset_t end, 2589 boolean_t syncio, 2590 boolean_t invalidate) 2591 { 2592 vm_map_entry_t current; 2593 vm_map_entry_t entry; 2594 vm_size_t size; 2595 vm_object_t object; 2596 vm_ooffset_t offset; 2597 unsigned int last_timestamp; 2598 boolean_t failed; 2599 2600 vm_map_lock_read(map); 2601 VM_MAP_RANGE_CHECK(map, start, end); 2602 if (!vm_map_lookup_entry(map, start, &entry)) { 2603 vm_map_unlock_read(map); 2604 return (KERN_INVALID_ADDRESS); 2605 } else if (start == end) { 2606 start = entry->start; 2607 end = entry->end; 2608 } 2609 /* 2610 * Make a first pass to check for user-wired memory and holes. 2611 */ 2612 for (current = entry; current != &map->header && current->start < end; 2613 current = current->next) { 2614 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2615 vm_map_unlock_read(map); 2616 return (KERN_INVALID_ARGUMENT); 2617 } 2618 if (end > current->end && 2619 (current->next == &map->header || 2620 current->end != current->next->start)) { 2621 vm_map_unlock_read(map); 2622 return (KERN_INVALID_ADDRESS); 2623 } 2624 } 2625 2626 if (invalidate) 2627 pmap_remove(map->pmap, start, end); 2628 failed = FALSE; 2629 2630 /* 2631 * Make a second pass, cleaning/uncaching pages from the indicated 2632 * objects as we go. 2633 */ 2634 for (current = entry; current != &map->header && current->start < end;) { 2635 offset = current->offset + (start - current->start); 2636 size = (end <= current->end ? end : current->end) - start; 2637 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2638 vm_map_t smap; 2639 vm_map_entry_t tentry; 2640 vm_size_t tsize; 2641 2642 smap = current->object.sub_map; 2643 vm_map_lock_read(smap); 2644 (void) vm_map_lookup_entry(smap, offset, &tentry); 2645 tsize = tentry->end - offset; 2646 if (tsize < size) 2647 size = tsize; 2648 object = tentry->object.vm_object; 2649 offset = tentry->offset + (offset - tentry->start); 2650 vm_map_unlock_read(smap); 2651 } else { 2652 object = current->object.vm_object; 2653 } 2654 vm_object_reference(object); 2655 last_timestamp = map->timestamp; 2656 vm_map_unlock_read(map); 2657 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2658 failed = TRUE; 2659 start += size; 2660 vm_object_deallocate(object); 2661 vm_map_lock_read(map); 2662 if (last_timestamp == map->timestamp || 2663 !vm_map_lookup_entry(map, start, ¤t)) 2664 current = current->next; 2665 } 2666 2667 vm_map_unlock_read(map); 2668 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2669 } 2670 2671 /* 2672 * vm_map_entry_unwire: [ internal use only ] 2673 * 2674 * Make the region specified by this entry pageable. 2675 * 2676 * The map in question should be locked. 2677 * [This is the reason for this routine's existence.] 2678 */ 2679 static void 2680 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2681 { 2682 vm_fault_unwire(map, entry->start, entry->end, 2683 entry->object.vm_object != NULL && 2684 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2685 entry->wired_count = 0; 2686 } 2687 2688 static void 2689 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2690 { 2691 2692 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2693 vm_object_deallocate(entry->object.vm_object); 2694 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2695 } 2696 2697 /* 2698 * vm_map_entry_delete: [ internal use only ] 2699 * 2700 * Deallocate the given entry from the target map. 2701 */ 2702 static void 2703 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2704 { 2705 vm_object_t object; 2706 vm_pindex_t offidxstart, offidxend, count, size1; 2707 vm_ooffset_t size; 2708 2709 vm_map_entry_unlink(map, entry); 2710 object = entry->object.vm_object; 2711 size = entry->end - entry->start; 2712 map->size -= size; 2713 2714 if (entry->cred != NULL) { 2715 swap_release_by_cred(size, entry->cred); 2716 crfree(entry->cred); 2717 } 2718 2719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2720 (object != NULL)) { 2721 KASSERT(entry->cred == NULL || object->cred == NULL || 2722 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2723 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2724 count = OFF_TO_IDX(size); 2725 offidxstart = OFF_TO_IDX(entry->offset); 2726 offidxend = offidxstart + count; 2727 VM_OBJECT_LOCK(object); 2728 if (object->ref_count != 1 && 2729 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2730 object == kernel_object || object == kmem_object)) { 2731 vm_object_collapse(object); 2732 2733 /* 2734 * The option OBJPR_NOTMAPPED can be passed here 2735 * because vm_map_delete() already performed 2736 * pmap_remove() on the only mapping to this range 2737 * of pages. 2738 */ 2739 vm_object_page_remove(object, offidxstart, offidxend, 2740 OBJPR_NOTMAPPED); 2741 if (object->type == OBJT_SWAP) 2742 swap_pager_freespace(object, offidxstart, count); 2743 if (offidxend >= object->size && 2744 offidxstart < object->size) { 2745 size1 = object->size; 2746 object->size = offidxstart; 2747 if (object->cred != NULL) { 2748 size1 -= object->size; 2749 KASSERT(object->charge >= ptoa(size1), 2750 ("vm_map_entry_delete: object->charge < 0")); 2751 swap_release_by_cred(ptoa(size1), object->cred); 2752 object->charge -= ptoa(size1); 2753 } 2754 } 2755 } 2756 VM_OBJECT_UNLOCK(object); 2757 } else 2758 entry->object.vm_object = NULL; 2759 if (map->system_map) 2760 vm_map_entry_deallocate(entry, TRUE); 2761 else { 2762 entry->next = curthread->td_map_def_user; 2763 curthread->td_map_def_user = entry; 2764 } 2765 } 2766 2767 /* 2768 * vm_map_delete: [ internal use only ] 2769 * 2770 * Deallocates the given address range from the target 2771 * map. 2772 */ 2773 int 2774 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2775 { 2776 vm_map_entry_t entry; 2777 vm_map_entry_t first_entry; 2778 2779 VM_MAP_ASSERT_LOCKED(map); 2780 2781 /* 2782 * Find the start of the region, and clip it 2783 */ 2784 if (!vm_map_lookup_entry(map, start, &first_entry)) 2785 entry = first_entry->next; 2786 else { 2787 entry = first_entry; 2788 vm_map_clip_start(map, entry, start); 2789 } 2790 2791 /* 2792 * Step through all entries in this region 2793 */ 2794 while ((entry != &map->header) && (entry->start < end)) { 2795 vm_map_entry_t next; 2796 2797 /* 2798 * Wait for wiring or unwiring of an entry to complete. 2799 * Also wait for any system wirings to disappear on 2800 * user maps. 2801 */ 2802 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2803 (vm_map_pmap(map) != kernel_pmap && 2804 vm_map_entry_system_wired_count(entry) != 0)) { 2805 unsigned int last_timestamp; 2806 vm_offset_t saved_start; 2807 vm_map_entry_t tmp_entry; 2808 2809 saved_start = entry->start; 2810 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2811 last_timestamp = map->timestamp; 2812 (void) vm_map_unlock_and_wait(map, 0); 2813 vm_map_lock(map); 2814 if (last_timestamp + 1 != map->timestamp) { 2815 /* 2816 * Look again for the entry because the map was 2817 * modified while it was unlocked. 2818 * Specifically, the entry may have been 2819 * clipped, merged, or deleted. 2820 */ 2821 if (!vm_map_lookup_entry(map, saved_start, 2822 &tmp_entry)) 2823 entry = tmp_entry->next; 2824 else { 2825 entry = tmp_entry; 2826 vm_map_clip_start(map, entry, 2827 saved_start); 2828 } 2829 } 2830 continue; 2831 } 2832 vm_map_clip_end(map, entry, end); 2833 2834 next = entry->next; 2835 2836 /* 2837 * Unwire before removing addresses from the pmap; otherwise, 2838 * unwiring will put the entries back in the pmap. 2839 */ 2840 if (entry->wired_count != 0) { 2841 vm_map_entry_unwire(map, entry); 2842 } 2843 2844 pmap_remove(map->pmap, entry->start, entry->end); 2845 2846 /* 2847 * Delete the entry only after removing all pmap 2848 * entries pointing to its pages. (Otherwise, its 2849 * page frames may be reallocated, and any modify bits 2850 * will be set in the wrong object!) 2851 */ 2852 vm_map_entry_delete(map, entry); 2853 entry = next; 2854 } 2855 return (KERN_SUCCESS); 2856 } 2857 2858 /* 2859 * vm_map_remove: 2860 * 2861 * Remove the given address range from the target map. 2862 * This is the exported form of vm_map_delete. 2863 */ 2864 int 2865 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2866 { 2867 int result; 2868 2869 vm_map_lock(map); 2870 VM_MAP_RANGE_CHECK(map, start, end); 2871 result = vm_map_delete(map, start, end); 2872 vm_map_unlock(map); 2873 return (result); 2874 } 2875 2876 /* 2877 * vm_map_check_protection: 2878 * 2879 * Assert that the target map allows the specified privilege on the 2880 * entire address region given. The entire region must be allocated. 2881 * 2882 * WARNING! This code does not and should not check whether the 2883 * contents of the region is accessible. For example a smaller file 2884 * might be mapped into a larger address space. 2885 * 2886 * NOTE! This code is also called by munmap(). 2887 * 2888 * The map must be locked. A read lock is sufficient. 2889 */ 2890 boolean_t 2891 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2892 vm_prot_t protection) 2893 { 2894 vm_map_entry_t entry; 2895 vm_map_entry_t tmp_entry; 2896 2897 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2898 return (FALSE); 2899 entry = tmp_entry; 2900 2901 while (start < end) { 2902 if (entry == &map->header) 2903 return (FALSE); 2904 /* 2905 * No holes allowed! 2906 */ 2907 if (start < entry->start) 2908 return (FALSE); 2909 /* 2910 * Check protection associated with entry. 2911 */ 2912 if ((entry->protection & protection) != protection) 2913 return (FALSE); 2914 /* go to next entry */ 2915 start = entry->end; 2916 entry = entry->next; 2917 } 2918 return (TRUE); 2919 } 2920 2921 /* 2922 * vm_map_copy_entry: 2923 * 2924 * Copies the contents of the source entry to the destination 2925 * entry. The entries *must* be aligned properly. 2926 */ 2927 static void 2928 vm_map_copy_entry( 2929 vm_map_t src_map, 2930 vm_map_t dst_map, 2931 vm_map_entry_t src_entry, 2932 vm_map_entry_t dst_entry, 2933 vm_ooffset_t *fork_charge) 2934 { 2935 vm_object_t src_object; 2936 vm_map_entry_t fake_entry; 2937 vm_offset_t size; 2938 struct ucred *cred; 2939 int charged; 2940 2941 VM_MAP_ASSERT_LOCKED(dst_map); 2942 2943 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2944 return; 2945 2946 if (src_entry->wired_count == 0) { 2947 2948 /* 2949 * If the source entry is marked needs_copy, it is already 2950 * write-protected. 2951 */ 2952 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2953 pmap_protect(src_map->pmap, 2954 src_entry->start, 2955 src_entry->end, 2956 src_entry->protection & ~VM_PROT_WRITE); 2957 } 2958 2959 /* 2960 * Make a copy of the object. 2961 */ 2962 size = src_entry->end - src_entry->start; 2963 if ((src_object = src_entry->object.vm_object) != NULL) { 2964 VM_OBJECT_LOCK(src_object); 2965 charged = ENTRY_CHARGED(src_entry); 2966 if ((src_object->handle == NULL) && 2967 (src_object->type == OBJT_DEFAULT || 2968 src_object->type == OBJT_SWAP)) { 2969 vm_object_collapse(src_object); 2970 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2971 vm_object_split(src_entry); 2972 src_object = src_entry->object.vm_object; 2973 } 2974 } 2975 vm_object_reference_locked(src_object); 2976 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2977 if (src_entry->cred != NULL && 2978 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2979 KASSERT(src_object->cred == NULL, 2980 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2981 src_object)); 2982 src_object->cred = src_entry->cred; 2983 src_object->charge = size; 2984 } 2985 VM_OBJECT_UNLOCK(src_object); 2986 dst_entry->object.vm_object = src_object; 2987 if (charged) { 2988 cred = curthread->td_ucred; 2989 crhold(cred); 2990 dst_entry->cred = cred; 2991 *fork_charge += size; 2992 if (!(src_entry->eflags & 2993 MAP_ENTRY_NEEDS_COPY)) { 2994 crhold(cred); 2995 src_entry->cred = cred; 2996 *fork_charge += size; 2997 } 2998 } 2999 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3000 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3001 dst_entry->offset = src_entry->offset; 3002 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3003 /* 3004 * MAP_ENTRY_VN_WRITECNT cannot 3005 * indicate write reference from 3006 * src_entry, since the entry is 3007 * marked as needs copy. Allocate a 3008 * fake entry that is used to 3009 * decrement object->un_pager.vnp.writecount 3010 * at the appropriate time. Attach 3011 * fake_entry to the deferred list. 3012 */ 3013 fake_entry = vm_map_entry_create(dst_map); 3014 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3015 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3016 vm_object_reference(src_object); 3017 fake_entry->object.vm_object = src_object; 3018 fake_entry->start = src_entry->start; 3019 fake_entry->end = src_entry->end; 3020 fake_entry->next = curthread->td_map_def_user; 3021 curthread->td_map_def_user = fake_entry; 3022 } 3023 } else { 3024 dst_entry->object.vm_object = NULL; 3025 dst_entry->offset = 0; 3026 if (src_entry->cred != NULL) { 3027 dst_entry->cred = curthread->td_ucred; 3028 crhold(dst_entry->cred); 3029 *fork_charge += size; 3030 } 3031 } 3032 3033 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3034 dst_entry->end - dst_entry->start, src_entry->start); 3035 } else { 3036 /* 3037 * Of course, wired down pages can't be set copy-on-write. 3038 * Cause wired pages to be copied into the new map by 3039 * simulating faults (the new pages are pageable) 3040 */ 3041 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3042 fork_charge); 3043 } 3044 } 3045 3046 /* 3047 * vmspace_map_entry_forked: 3048 * Update the newly-forked vmspace each time a map entry is inherited 3049 * or copied. The values for vm_dsize and vm_tsize are approximate 3050 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3051 */ 3052 static void 3053 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3054 vm_map_entry_t entry) 3055 { 3056 vm_size_t entrysize; 3057 vm_offset_t newend; 3058 3059 entrysize = entry->end - entry->start; 3060 vm2->vm_map.size += entrysize; 3061 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3062 vm2->vm_ssize += btoc(entrysize); 3063 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3064 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3065 newend = MIN(entry->end, 3066 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3067 vm2->vm_dsize += btoc(newend - entry->start); 3068 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3069 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3070 newend = MIN(entry->end, 3071 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3072 vm2->vm_tsize += btoc(newend - entry->start); 3073 } 3074 } 3075 3076 /* 3077 * vmspace_fork: 3078 * Create a new process vmspace structure and vm_map 3079 * based on those of an existing process. The new map 3080 * is based on the old map, according to the inheritance 3081 * values on the regions in that map. 3082 * 3083 * XXX It might be worth coalescing the entries added to the new vmspace. 3084 * 3085 * The source map must not be locked. 3086 */ 3087 struct vmspace * 3088 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3089 { 3090 struct vmspace *vm2; 3091 vm_map_t new_map, old_map; 3092 vm_map_entry_t new_entry, old_entry; 3093 vm_object_t object; 3094 int locked; 3095 3096 old_map = &vm1->vm_map; 3097 /* Copy immutable fields of vm1 to vm2. */ 3098 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3099 if (vm2 == NULL) 3100 return (NULL); 3101 vm2->vm_taddr = vm1->vm_taddr; 3102 vm2->vm_daddr = vm1->vm_daddr; 3103 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3104 vm_map_lock(old_map); 3105 if (old_map->busy) 3106 vm_map_wait_busy(old_map); 3107 new_map = &vm2->vm_map; 3108 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3109 KASSERT(locked, ("vmspace_fork: lock failed")); 3110 3111 old_entry = old_map->header.next; 3112 3113 while (old_entry != &old_map->header) { 3114 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3115 panic("vm_map_fork: encountered a submap"); 3116 3117 switch (old_entry->inheritance) { 3118 case VM_INHERIT_NONE: 3119 break; 3120 3121 case VM_INHERIT_SHARE: 3122 /* 3123 * Clone the entry, creating the shared object if necessary. 3124 */ 3125 object = old_entry->object.vm_object; 3126 if (object == NULL) { 3127 object = vm_object_allocate(OBJT_DEFAULT, 3128 atop(old_entry->end - old_entry->start)); 3129 old_entry->object.vm_object = object; 3130 old_entry->offset = 0; 3131 if (old_entry->cred != NULL) { 3132 object->cred = old_entry->cred; 3133 object->charge = old_entry->end - 3134 old_entry->start; 3135 old_entry->cred = NULL; 3136 } 3137 } 3138 3139 /* 3140 * Add the reference before calling vm_object_shadow 3141 * to insure that a shadow object is created. 3142 */ 3143 vm_object_reference(object); 3144 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3145 vm_object_shadow(&old_entry->object.vm_object, 3146 &old_entry->offset, 3147 old_entry->end - old_entry->start); 3148 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3149 /* Transfer the second reference too. */ 3150 vm_object_reference( 3151 old_entry->object.vm_object); 3152 3153 /* 3154 * As in vm_map_simplify_entry(), the 3155 * vnode lock will not be acquired in 3156 * this call to vm_object_deallocate(). 3157 */ 3158 vm_object_deallocate(object); 3159 object = old_entry->object.vm_object; 3160 } 3161 VM_OBJECT_LOCK(object); 3162 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3163 if (old_entry->cred != NULL) { 3164 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3165 object->cred = old_entry->cred; 3166 object->charge = old_entry->end - old_entry->start; 3167 old_entry->cred = NULL; 3168 } 3169 VM_OBJECT_UNLOCK(object); 3170 3171 /* 3172 * Clone the entry, referencing the shared object. 3173 */ 3174 new_entry = vm_map_entry_create(new_map); 3175 *new_entry = *old_entry; 3176 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3177 MAP_ENTRY_IN_TRANSITION); 3178 new_entry->wired_count = 0; 3179 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3180 object = new_entry->object.vm_object; 3181 KASSERT(((struct vnode *)object->handle)-> 3182 v_writecount > 0, 3183 ("vmspace_fork: v_writecount")); 3184 KASSERT(object->un_pager.vnp.writemappings > 0, 3185 ("vmspace_fork: vnp.writecount")); 3186 vnode_pager_update_writecount(object, 3187 new_entry->start, new_entry->end); 3188 } 3189 3190 /* 3191 * Insert the entry into the new map -- we know we're 3192 * inserting at the end of the new map. 3193 */ 3194 vm_map_entry_link(new_map, new_map->header.prev, 3195 new_entry); 3196 vmspace_map_entry_forked(vm1, vm2, new_entry); 3197 3198 /* 3199 * Update the physical map 3200 */ 3201 pmap_copy(new_map->pmap, old_map->pmap, 3202 new_entry->start, 3203 (old_entry->end - old_entry->start), 3204 old_entry->start); 3205 break; 3206 3207 case VM_INHERIT_COPY: 3208 /* 3209 * Clone the entry and link into the map. 3210 */ 3211 new_entry = vm_map_entry_create(new_map); 3212 *new_entry = *old_entry; 3213 /* 3214 * Copied entry is COW over the old object. 3215 */ 3216 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3217 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3218 new_entry->wired_count = 0; 3219 new_entry->object.vm_object = NULL; 3220 new_entry->cred = NULL; 3221 vm_map_entry_link(new_map, new_map->header.prev, 3222 new_entry); 3223 vmspace_map_entry_forked(vm1, vm2, new_entry); 3224 vm_map_copy_entry(old_map, new_map, old_entry, 3225 new_entry, fork_charge); 3226 break; 3227 } 3228 old_entry = old_entry->next; 3229 } 3230 /* 3231 * Use inlined vm_map_unlock() to postpone handling the deferred 3232 * map entries, which cannot be done until both old_map and 3233 * new_map locks are released. 3234 */ 3235 sx_xunlock(&old_map->lock); 3236 sx_xunlock(&new_map->lock); 3237 vm_map_process_deferred(); 3238 3239 return (vm2); 3240 } 3241 3242 int 3243 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3244 vm_prot_t prot, vm_prot_t max, int cow) 3245 { 3246 vm_map_entry_t new_entry, prev_entry; 3247 vm_offset_t bot, top; 3248 vm_size_t growsize, init_ssize; 3249 int orient, rv; 3250 rlim_t lmemlim, vmemlim; 3251 3252 /* 3253 * The stack orientation is piggybacked with the cow argument. 3254 * Extract it into orient and mask the cow argument so that we 3255 * don't pass it around further. 3256 * NOTE: We explicitly allow bi-directional stacks. 3257 */ 3258 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3259 cow &= ~orient; 3260 KASSERT(orient != 0, ("No stack grow direction")); 3261 3262 if (addrbos < vm_map_min(map) || 3263 addrbos > vm_map_max(map) || 3264 addrbos + max_ssize < addrbos) 3265 return (KERN_NO_SPACE); 3266 3267 growsize = sgrowsiz; 3268 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3269 3270 PROC_LOCK(curproc); 3271 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3272 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3273 PROC_UNLOCK(curproc); 3274 3275 vm_map_lock(map); 3276 3277 /* If addr is already mapped, no go */ 3278 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3279 vm_map_unlock(map); 3280 return (KERN_NO_SPACE); 3281 } 3282 3283 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3284 if (ptoa(vmspace_wired_count(curproc->p_vmspace)) + 3285 init_ssize > lmemlim) { 3286 vm_map_unlock(map); 3287 return (KERN_NO_SPACE); 3288 } 3289 } 3290 3291 /* If we would blow our VMEM resource limit, no go */ 3292 if (map->size + init_ssize > vmemlim) { 3293 vm_map_unlock(map); 3294 return (KERN_NO_SPACE); 3295 } 3296 3297 /* 3298 * If we can't accomodate max_ssize in the current mapping, no go. 3299 * However, we need to be aware that subsequent user mappings might 3300 * map into the space we have reserved for stack, and currently this 3301 * space is not protected. 3302 * 3303 * Hopefully we will at least detect this condition when we try to 3304 * grow the stack. 3305 */ 3306 if ((prev_entry->next != &map->header) && 3307 (prev_entry->next->start < addrbos + max_ssize)) { 3308 vm_map_unlock(map); 3309 return (KERN_NO_SPACE); 3310 } 3311 3312 /* 3313 * We initially map a stack of only init_ssize. We will grow as 3314 * needed later. Depending on the orientation of the stack (i.e. 3315 * the grow direction) we either map at the top of the range, the 3316 * bottom of the range or in the middle. 3317 * 3318 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3319 * and cow to be 0. Possibly we should eliminate these as input 3320 * parameters, and just pass these values here in the insert call. 3321 */ 3322 if (orient == MAP_STACK_GROWS_DOWN) 3323 bot = addrbos + max_ssize - init_ssize; 3324 else if (orient == MAP_STACK_GROWS_UP) 3325 bot = addrbos; 3326 else 3327 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3328 top = bot + init_ssize; 3329 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3330 3331 /* Now set the avail_ssize amount. */ 3332 if (rv == KERN_SUCCESS) { 3333 if (prev_entry != &map->header) 3334 vm_map_clip_end(map, prev_entry, bot); 3335 new_entry = prev_entry->next; 3336 if (new_entry->end != top || new_entry->start != bot) 3337 panic("Bad entry start/end for new stack entry"); 3338 3339 new_entry->avail_ssize = max_ssize - init_ssize; 3340 if (orient & MAP_STACK_GROWS_DOWN) 3341 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3342 if (orient & MAP_STACK_GROWS_UP) 3343 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3344 } 3345 3346 vm_map_unlock(map); 3347 return (rv); 3348 } 3349 3350 static int stack_guard_page = 0; 3351 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3352 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3353 &stack_guard_page, 0, 3354 "Insert stack guard page ahead of the growable segments."); 3355 3356 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3357 * desired address is already mapped, or if we successfully grow 3358 * the stack. Also returns KERN_SUCCESS if addr is outside the 3359 * stack range (this is strange, but preserves compatibility with 3360 * the grow function in vm_machdep.c). 3361 */ 3362 int 3363 vm_map_growstack(struct proc *p, vm_offset_t addr) 3364 { 3365 vm_map_entry_t next_entry, prev_entry; 3366 vm_map_entry_t new_entry, stack_entry; 3367 struct vmspace *vm = p->p_vmspace; 3368 vm_map_t map = &vm->vm_map; 3369 vm_offset_t end; 3370 vm_size_t growsize; 3371 size_t grow_amount, max_grow; 3372 rlim_t lmemlim, stacklim, vmemlim; 3373 int is_procstack, rv; 3374 struct ucred *cred; 3375 #ifdef notyet 3376 uint64_t limit; 3377 #endif 3378 #ifdef RACCT 3379 int error; 3380 #endif 3381 3382 Retry: 3383 PROC_LOCK(p); 3384 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3385 stacklim = lim_cur(p, RLIMIT_STACK); 3386 vmemlim = lim_cur(p, RLIMIT_VMEM); 3387 PROC_UNLOCK(p); 3388 3389 vm_map_lock_read(map); 3390 3391 /* If addr is already in the entry range, no need to grow.*/ 3392 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3393 vm_map_unlock_read(map); 3394 return (KERN_SUCCESS); 3395 } 3396 3397 next_entry = prev_entry->next; 3398 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3399 /* 3400 * This entry does not grow upwards. Since the address lies 3401 * beyond this entry, the next entry (if one exists) has to 3402 * be a downward growable entry. The entry list header is 3403 * never a growable entry, so it suffices to check the flags. 3404 */ 3405 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3406 vm_map_unlock_read(map); 3407 return (KERN_SUCCESS); 3408 } 3409 stack_entry = next_entry; 3410 } else { 3411 /* 3412 * This entry grows upward. If the next entry does not at 3413 * least grow downwards, this is the entry we need to grow. 3414 * otherwise we have two possible choices and we have to 3415 * select one. 3416 */ 3417 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3418 /* 3419 * We have two choices; grow the entry closest to 3420 * the address to minimize the amount of growth. 3421 */ 3422 if (addr - prev_entry->end <= next_entry->start - addr) 3423 stack_entry = prev_entry; 3424 else 3425 stack_entry = next_entry; 3426 } else 3427 stack_entry = prev_entry; 3428 } 3429 3430 if (stack_entry == next_entry) { 3431 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3432 KASSERT(addr < stack_entry->start, ("foo")); 3433 end = (prev_entry != &map->header) ? prev_entry->end : 3434 stack_entry->start - stack_entry->avail_ssize; 3435 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3436 max_grow = stack_entry->start - end; 3437 } else { 3438 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3439 KASSERT(addr >= stack_entry->end, ("foo")); 3440 end = (next_entry != &map->header) ? next_entry->start : 3441 stack_entry->end + stack_entry->avail_ssize; 3442 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3443 max_grow = end - stack_entry->end; 3444 } 3445 3446 if (grow_amount > stack_entry->avail_ssize) { 3447 vm_map_unlock_read(map); 3448 return (KERN_NO_SPACE); 3449 } 3450 3451 /* 3452 * If there is no longer enough space between the entries nogo, and 3453 * adjust the available space. Note: this should only happen if the 3454 * user has mapped into the stack area after the stack was created, 3455 * and is probably an error. 3456 * 3457 * This also effectively destroys any guard page the user might have 3458 * intended by limiting the stack size. 3459 */ 3460 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3461 if (vm_map_lock_upgrade(map)) 3462 goto Retry; 3463 3464 stack_entry->avail_ssize = max_grow; 3465 3466 vm_map_unlock(map); 3467 return (KERN_NO_SPACE); 3468 } 3469 3470 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3471 3472 /* 3473 * If this is the main process stack, see if we're over the stack 3474 * limit. 3475 */ 3476 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3477 vm_map_unlock_read(map); 3478 return (KERN_NO_SPACE); 3479 } 3480 #ifdef RACCT 3481 PROC_LOCK(p); 3482 if (is_procstack && 3483 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3484 PROC_UNLOCK(p); 3485 vm_map_unlock_read(map); 3486 return (KERN_NO_SPACE); 3487 } 3488 PROC_UNLOCK(p); 3489 #endif 3490 3491 /* Round up the grow amount modulo sgrowsiz */ 3492 growsize = sgrowsiz; 3493 grow_amount = roundup(grow_amount, growsize); 3494 if (grow_amount > stack_entry->avail_ssize) 3495 grow_amount = stack_entry->avail_ssize; 3496 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3497 grow_amount = trunc_page((vm_size_t)stacklim) - 3498 ctob(vm->vm_ssize); 3499 } 3500 #ifdef notyet 3501 PROC_LOCK(p); 3502 limit = racct_get_available(p, RACCT_STACK); 3503 PROC_UNLOCK(p); 3504 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3505 grow_amount = limit - ctob(vm->vm_ssize); 3506 #endif 3507 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3508 if (ptoa(vmspace_wired_count(p->p_vmspace)) + grow_amount > 3509 lmemlim) { 3510 vm_map_unlock_read(map); 3511 rv = KERN_NO_SPACE; 3512 goto out; 3513 } 3514 #ifdef RACCT 3515 PROC_LOCK(p); 3516 if (racct_set(p, RACCT_MEMLOCK, 3517 ptoa(vmspace_wired_count(p->p_vmspace)) + grow_amount)) { 3518 PROC_UNLOCK(p); 3519 vm_map_unlock_read(map); 3520 rv = KERN_NO_SPACE; 3521 goto out; 3522 } 3523 PROC_UNLOCK(p); 3524 #endif 3525 } 3526 /* If we would blow our VMEM resource limit, no go */ 3527 if (map->size + grow_amount > vmemlim) { 3528 vm_map_unlock_read(map); 3529 rv = KERN_NO_SPACE; 3530 goto out; 3531 } 3532 #ifdef RACCT 3533 PROC_LOCK(p); 3534 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3535 PROC_UNLOCK(p); 3536 vm_map_unlock_read(map); 3537 rv = KERN_NO_SPACE; 3538 goto out; 3539 } 3540 PROC_UNLOCK(p); 3541 #endif 3542 3543 if (vm_map_lock_upgrade(map)) 3544 goto Retry; 3545 3546 if (stack_entry == next_entry) { 3547 /* 3548 * Growing downward. 3549 */ 3550 /* Get the preliminary new entry start value */ 3551 addr = stack_entry->start - grow_amount; 3552 3553 /* 3554 * If this puts us into the previous entry, cut back our 3555 * growth to the available space. Also, see the note above. 3556 */ 3557 if (addr < end) { 3558 stack_entry->avail_ssize = max_grow; 3559 addr = end; 3560 if (stack_guard_page) 3561 addr += PAGE_SIZE; 3562 } 3563 3564 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3565 next_entry->protection, next_entry->max_protection, 0); 3566 3567 /* Adjust the available stack space by the amount we grew. */ 3568 if (rv == KERN_SUCCESS) { 3569 if (prev_entry != &map->header) 3570 vm_map_clip_end(map, prev_entry, addr); 3571 new_entry = prev_entry->next; 3572 KASSERT(new_entry == stack_entry->prev, ("foo")); 3573 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3574 KASSERT(new_entry->start == addr, ("foo")); 3575 grow_amount = new_entry->end - new_entry->start; 3576 new_entry->avail_ssize = stack_entry->avail_ssize - 3577 grow_amount; 3578 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3579 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3580 } 3581 } else { 3582 /* 3583 * Growing upward. 3584 */ 3585 addr = stack_entry->end + grow_amount; 3586 3587 /* 3588 * If this puts us into the next entry, cut back our growth 3589 * to the available space. Also, see the note above. 3590 */ 3591 if (addr > end) { 3592 stack_entry->avail_ssize = end - stack_entry->end; 3593 addr = end; 3594 if (stack_guard_page) 3595 addr -= PAGE_SIZE; 3596 } 3597 3598 grow_amount = addr - stack_entry->end; 3599 cred = stack_entry->cred; 3600 if (cred == NULL && stack_entry->object.vm_object != NULL) 3601 cred = stack_entry->object.vm_object->cred; 3602 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3603 rv = KERN_NO_SPACE; 3604 /* Grow the underlying object if applicable. */ 3605 else if (stack_entry->object.vm_object == NULL || 3606 vm_object_coalesce(stack_entry->object.vm_object, 3607 stack_entry->offset, 3608 (vm_size_t)(stack_entry->end - stack_entry->start), 3609 (vm_size_t)grow_amount, cred != NULL)) { 3610 map->size += (addr - stack_entry->end); 3611 /* Update the current entry. */ 3612 stack_entry->end = addr; 3613 stack_entry->avail_ssize -= grow_amount; 3614 vm_map_entry_resize_free(map, stack_entry); 3615 rv = KERN_SUCCESS; 3616 3617 if (next_entry != &map->header) 3618 vm_map_clip_start(map, next_entry, addr); 3619 } else 3620 rv = KERN_FAILURE; 3621 } 3622 3623 if (rv == KERN_SUCCESS && is_procstack) 3624 vm->vm_ssize += btoc(grow_amount); 3625 3626 vm_map_unlock(map); 3627 3628 /* 3629 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3630 */ 3631 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3632 vm_map_wire(map, 3633 (stack_entry == next_entry) ? addr : addr - grow_amount, 3634 (stack_entry == next_entry) ? stack_entry->start : addr, 3635 (p->p_flag & P_SYSTEM) 3636 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3637 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3638 } 3639 3640 out: 3641 #ifdef RACCT 3642 if (rv != KERN_SUCCESS) { 3643 PROC_LOCK(p); 3644 error = racct_set(p, RACCT_VMEM, map->size); 3645 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3646 if (!old_mlock) { 3647 error = racct_set(p, RACCT_MEMLOCK, 3648 ptoa(vmspace_wired_count(p->p_vmspace))); 3649 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3650 } 3651 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3652 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3653 PROC_UNLOCK(p); 3654 } 3655 #endif 3656 3657 return (rv); 3658 } 3659 3660 /* 3661 * Unshare the specified VM space for exec. If other processes are 3662 * mapped to it, then create a new one. The new vmspace is null. 3663 */ 3664 int 3665 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3666 { 3667 struct vmspace *oldvmspace = p->p_vmspace; 3668 struct vmspace *newvmspace; 3669 3670 newvmspace = vmspace_alloc(minuser, maxuser); 3671 if (newvmspace == NULL) 3672 return (ENOMEM); 3673 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3674 /* 3675 * This code is written like this for prototype purposes. The 3676 * goal is to avoid running down the vmspace here, but let the 3677 * other process's that are still using the vmspace to finally 3678 * run it down. Even though there is little or no chance of blocking 3679 * here, it is a good idea to keep this form for future mods. 3680 */ 3681 PROC_VMSPACE_LOCK(p); 3682 p->p_vmspace = newvmspace; 3683 PROC_VMSPACE_UNLOCK(p); 3684 if (p == curthread->td_proc) 3685 pmap_activate(curthread); 3686 vmspace_free(oldvmspace); 3687 return (0); 3688 } 3689 3690 /* 3691 * Unshare the specified VM space for forcing COW. This 3692 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3693 */ 3694 int 3695 vmspace_unshare(struct proc *p) 3696 { 3697 struct vmspace *oldvmspace = p->p_vmspace; 3698 struct vmspace *newvmspace; 3699 vm_ooffset_t fork_charge; 3700 3701 if (oldvmspace->vm_refcnt == 1) 3702 return (0); 3703 fork_charge = 0; 3704 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3705 if (newvmspace == NULL) 3706 return (ENOMEM); 3707 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3708 vmspace_free(newvmspace); 3709 return (ENOMEM); 3710 } 3711 PROC_VMSPACE_LOCK(p); 3712 p->p_vmspace = newvmspace; 3713 PROC_VMSPACE_UNLOCK(p); 3714 if (p == curthread->td_proc) 3715 pmap_activate(curthread); 3716 vmspace_free(oldvmspace); 3717 return (0); 3718 } 3719 3720 /* 3721 * vm_map_lookup: 3722 * 3723 * Finds the VM object, offset, and 3724 * protection for a given virtual address in the 3725 * specified map, assuming a page fault of the 3726 * type specified. 3727 * 3728 * Leaves the map in question locked for read; return 3729 * values are guaranteed until a vm_map_lookup_done 3730 * call is performed. Note that the map argument 3731 * is in/out; the returned map must be used in 3732 * the call to vm_map_lookup_done. 3733 * 3734 * A handle (out_entry) is returned for use in 3735 * vm_map_lookup_done, to make that fast. 3736 * 3737 * If a lookup is requested with "write protection" 3738 * specified, the map may be changed to perform virtual 3739 * copying operations, although the data referenced will 3740 * remain the same. 3741 */ 3742 int 3743 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3744 vm_offset_t vaddr, 3745 vm_prot_t fault_typea, 3746 vm_map_entry_t *out_entry, /* OUT */ 3747 vm_object_t *object, /* OUT */ 3748 vm_pindex_t *pindex, /* OUT */ 3749 vm_prot_t *out_prot, /* OUT */ 3750 boolean_t *wired) /* OUT */ 3751 { 3752 vm_map_entry_t entry; 3753 vm_map_t map = *var_map; 3754 vm_prot_t prot; 3755 vm_prot_t fault_type = fault_typea; 3756 vm_object_t eobject; 3757 vm_size_t size; 3758 struct ucred *cred; 3759 3760 RetryLookup:; 3761 3762 vm_map_lock_read(map); 3763 3764 /* 3765 * Lookup the faulting address. 3766 */ 3767 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3768 vm_map_unlock_read(map); 3769 return (KERN_INVALID_ADDRESS); 3770 } 3771 3772 entry = *out_entry; 3773 3774 /* 3775 * Handle submaps. 3776 */ 3777 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3778 vm_map_t old_map = map; 3779 3780 *var_map = map = entry->object.sub_map; 3781 vm_map_unlock_read(old_map); 3782 goto RetryLookup; 3783 } 3784 3785 /* 3786 * Check whether this task is allowed to have this page. 3787 */ 3788 prot = entry->protection; 3789 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3790 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3791 vm_map_unlock_read(map); 3792 return (KERN_PROTECTION_FAILURE); 3793 } 3794 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3795 (entry->eflags & MAP_ENTRY_COW) && 3796 (fault_type & VM_PROT_WRITE)) { 3797 vm_map_unlock_read(map); 3798 return (KERN_PROTECTION_FAILURE); 3799 } 3800 3801 /* 3802 * If this page is not pageable, we have to get it for all possible 3803 * accesses. 3804 */ 3805 *wired = (entry->wired_count != 0); 3806 if (*wired) 3807 fault_type = entry->protection; 3808 size = entry->end - entry->start; 3809 /* 3810 * If the entry was copy-on-write, we either ... 3811 */ 3812 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3813 /* 3814 * If we want to write the page, we may as well handle that 3815 * now since we've got the map locked. 3816 * 3817 * If we don't need to write the page, we just demote the 3818 * permissions allowed. 3819 */ 3820 if ((fault_type & VM_PROT_WRITE) != 0 || 3821 (fault_typea & VM_PROT_COPY) != 0) { 3822 /* 3823 * Make a new object, and place it in the object 3824 * chain. Note that no new references have appeared 3825 * -- one just moved from the map to the new 3826 * object. 3827 */ 3828 if (vm_map_lock_upgrade(map)) 3829 goto RetryLookup; 3830 3831 if (entry->cred == NULL) { 3832 /* 3833 * The debugger owner is charged for 3834 * the memory. 3835 */ 3836 cred = curthread->td_ucred; 3837 crhold(cred); 3838 if (!swap_reserve_by_cred(size, cred)) { 3839 crfree(cred); 3840 vm_map_unlock(map); 3841 return (KERN_RESOURCE_SHORTAGE); 3842 } 3843 entry->cred = cred; 3844 } 3845 vm_object_shadow(&entry->object.vm_object, 3846 &entry->offset, size); 3847 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3848 eobject = entry->object.vm_object; 3849 if (eobject->cred != NULL) { 3850 /* 3851 * The object was not shadowed. 3852 */ 3853 swap_release_by_cred(size, entry->cred); 3854 crfree(entry->cred); 3855 entry->cred = NULL; 3856 } else if (entry->cred != NULL) { 3857 VM_OBJECT_LOCK(eobject); 3858 eobject->cred = entry->cred; 3859 eobject->charge = size; 3860 VM_OBJECT_UNLOCK(eobject); 3861 entry->cred = NULL; 3862 } 3863 3864 vm_map_lock_downgrade(map); 3865 } else { 3866 /* 3867 * We're attempting to read a copy-on-write page -- 3868 * don't allow writes. 3869 */ 3870 prot &= ~VM_PROT_WRITE; 3871 } 3872 } 3873 3874 /* 3875 * Create an object if necessary. 3876 */ 3877 if (entry->object.vm_object == NULL && 3878 !map->system_map) { 3879 if (vm_map_lock_upgrade(map)) 3880 goto RetryLookup; 3881 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3882 atop(size)); 3883 entry->offset = 0; 3884 if (entry->cred != NULL) { 3885 VM_OBJECT_LOCK(entry->object.vm_object); 3886 entry->object.vm_object->cred = entry->cred; 3887 entry->object.vm_object->charge = size; 3888 VM_OBJECT_UNLOCK(entry->object.vm_object); 3889 entry->cred = NULL; 3890 } 3891 vm_map_lock_downgrade(map); 3892 } 3893 3894 /* 3895 * Return the object/offset from this entry. If the entry was 3896 * copy-on-write or empty, it has been fixed up. 3897 */ 3898 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3899 *object = entry->object.vm_object; 3900 3901 *out_prot = prot; 3902 return (KERN_SUCCESS); 3903 } 3904 3905 /* 3906 * vm_map_lookup_locked: 3907 * 3908 * Lookup the faulting address. A version of vm_map_lookup that returns 3909 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3910 */ 3911 int 3912 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3913 vm_offset_t vaddr, 3914 vm_prot_t fault_typea, 3915 vm_map_entry_t *out_entry, /* OUT */ 3916 vm_object_t *object, /* OUT */ 3917 vm_pindex_t *pindex, /* OUT */ 3918 vm_prot_t *out_prot, /* OUT */ 3919 boolean_t *wired) /* OUT */ 3920 { 3921 vm_map_entry_t entry; 3922 vm_map_t map = *var_map; 3923 vm_prot_t prot; 3924 vm_prot_t fault_type = fault_typea; 3925 3926 /* 3927 * Lookup the faulting address. 3928 */ 3929 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3930 return (KERN_INVALID_ADDRESS); 3931 3932 entry = *out_entry; 3933 3934 /* 3935 * Fail if the entry refers to a submap. 3936 */ 3937 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3938 return (KERN_FAILURE); 3939 3940 /* 3941 * Check whether this task is allowed to have this page. 3942 */ 3943 prot = entry->protection; 3944 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3945 if ((fault_type & prot) != fault_type) 3946 return (KERN_PROTECTION_FAILURE); 3947 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3948 (entry->eflags & MAP_ENTRY_COW) && 3949 (fault_type & VM_PROT_WRITE)) 3950 return (KERN_PROTECTION_FAILURE); 3951 3952 /* 3953 * If this page is not pageable, we have to get it for all possible 3954 * accesses. 3955 */ 3956 *wired = (entry->wired_count != 0); 3957 if (*wired) 3958 fault_type = entry->protection; 3959 3960 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3961 /* 3962 * Fail if the entry was copy-on-write for a write fault. 3963 */ 3964 if (fault_type & VM_PROT_WRITE) 3965 return (KERN_FAILURE); 3966 /* 3967 * We're attempting to read a copy-on-write page -- 3968 * don't allow writes. 3969 */ 3970 prot &= ~VM_PROT_WRITE; 3971 } 3972 3973 /* 3974 * Fail if an object should be created. 3975 */ 3976 if (entry->object.vm_object == NULL && !map->system_map) 3977 return (KERN_FAILURE); 3978 3979 /* 3980 * Return the object/offset from this entry. If the entry was 3981 * copy-on-write or empty, it has been fixed up. 3982 */ 3983 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3984 *object = entry->object.vm_object; 3985 3986 *out_prot = prot; 3987 return (KERN_SUCCESS); 3988 } 3989 3990 /* 3991 * vm_map_lookup_done: 3992 * 3993 * Releases locks acquired by a vm_map_lookup 3994 * (according to the handle returned by that lookup). 3995 */ 3996 void 3997 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3998 { 3999 /* 4000 * Unlock the main-level map 4001 */ 4002 vm_map_unlock_read(map); 4003 } 4004 4005 #include "opt_ddb.h" 4006 #ifdef DDB 4007 #include <sys/kernel.h> 4008 4009 #include <ddb/ddb.h> 4010 4011 static void 4012 vm_map_print(vm_map_t map) 4013 { 4014 vm_map_entry_t entry; 4015 4016 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4017 (void *)map, 4018 (void *)map->pmap, map->nentries, map->timestamp); 4019 4020 db_indent += 2; 4021 for (entry = map->header.next; entry != &map->header; 4022 entry = entry->next) { 4023 db_iprintf("map entry %p: start=%p, end=%p\n", 4024 (void *)entry, (void *)entry->start, (void *)entry->end); 4025 { 4026 static char *inheritance_name[4] = 4027 {"share", "copy", "none", "donate_copy"}; 4028 4029 db_iprintf(" prot=%x/%x/%s", 4030 entry->protection, 4031 entry->max_protection, 4032 inheritance_name[(int)(unsigned char)entry->inheritance]); 4033 if (entry->wired_count != 0) 4034 db_printf(", wired"); 4035 } 4036 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4037 db_printf(", share=%p, offset=0x%jx\n", 4038 (void *)entry->object.sub_map, 4039 (uintmax_t)entry->offset); 4040 if ((entry->prev == &map->header) || 4041 (entry->prev->object.sub_map != 4042 entry->object.sub_map)) { 4043 db_indent += 2; 4044 vm_map_print((vm_map_t)entry->object.sub_map); 4045 db_indent -= 2; 4046 } 4047 } else { 4048 if (entry->cred != NULL) 4049 db_printf(", ruid %d", entry->cred->cr_ruid); 4050 db_printf(", object=%p, offset=0x%jx", 4051 (void *)entry->object.vm_object, 4052 (uintmax_t)entry->offset); 4053 if (entry->object.vm_object && entry->object.vm_object->cred) 4054 db_printf(", obj ruid %d charge %jx", 4055 entry->object.vm_object->cred->cr_ruid, 4056 (uintmax_t)entry->object.vm_object->charge); 4057 if (entry->eflags & MAP_ENTRY_COW) 4058 db_printf(", copy (%s)", 4059 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4060 db_printf("\n"); 4061 4062 if ((entry->prev == &map->header) || 4063 (entry->prev->object.vm_object != 4064 entry->object.vm_object)) { 4065 db_indent += 2; 4066 vm_object_print((db_expr_t)(intptr_t) 4067 entry->object.vm_object, 4068 1, 0, (char *)0); 4069 db_indent -= 2; 4070 } 4071 } 4072 } 4073 db_indent -= 2; 4074 } 4075 4076 DB_SHOW_COMMAND(map, map) 4077 { 4078 4079 if (!have_addr) { 4080 db_printf("usage: show map <addr>\n"); 4081 return; 4082 } 4083 vm_map_print((vm_map_t)addr); 4084 } 4085 4086 DB_SHOW_COMMAND(procvm, procvm) 4087 { 4088 struct proc *p; 4089 4090 if (have_addr) { 4091 p = (struct proc *) addr; 4092 } else { 4093 p = curproc; 4094 } 4095 4096 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4097 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4098 (void *)vmspace_pmap(p->p_vmspace)); 4099 4100 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4101 } 4102 4103 #endif /* DDB */ 4104