1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.14 1995/02/14 04:00:17 davidg Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_page.h> 77 #include <vm/vm_object.h> 78 #include <vm/vm_kern.h> 79 80 /* 81 * Virtual memory maps provide for the mapping, protection, 82 * and sharing of virtual memory objects. In addition, 83 * this module provides for an efficient virtual copy of 84 * memory from one map to another. 85 * 86 * Synchronization is required prior to most operations. 87 * 88 * Maps consist of an ordered doubly-linked list of simple 89 * entries; a single hint is used to speed up lookups. 90 * 91 * In order to properly represent the sharing of virtual 92 * memory regions among maps, the map structure is bi-level. 93 * Top-level ("address") maps refer to regions of sharable 94 * virtual memory. These regions are implemented as 95 * ("sharing") maps, which then refer to the actual virtual 96 * memory objects. When two address maps "share" memory, 97 * their top-level maps both have references to the same 98 * sharing map. When memory is virtual-copied from one 99 * address map to another, the references in the sharing 100 * maps are actually copied -- no copying occurs at the 101 * virtual memory object level. 102 * 103 * Since portions of maps are specified by start/end addreses, 104 * which may not align with existing map entries, all 105 * routines merely "clip" entries to these start/end values. 106 * [That is, an entry is split into two, bordering at a 107 * start or end value.] Note that these clippings may not 108 * always be necessary (as the two resulting entries are then 109 * not changed); however, the clipping is done for convenience. 110 * No attempt is currently made to "glue back together" two 111 * abutting entries. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one sharing map to 115 * another, and then marking both regions as copy-on-write. 116 * It is important to note that only one writeable reference 117 * to a VM object region exists in any map -- this means that 118 * shadow object creation can be delayed until a write operation 119 * occurs. 120 */ 121 122 /* 123 * vm_map_startup: 124 * 125 * Initialize the vm_map module. Must be called before 126 * any other vm_map routines. 127 * 128 * Map and entry structures are allocated from the general 129 * purpose memory pool with some exceptions: 130 * 131 * - The kernel map and kmem submap are allocated statically. 132 * - Kernel map entries are allocated out of a static pool. 133 * 134 * These restrictions are necessary since malloc() uses the 135 * maps and requires map entries. 136 */ 137 138 vm_offset_t kentry_data; 139 vm_size_t kentry_data_size; 140 vm_map_entry_t kentry_free; 141 vm_map_t kmap_free; 142 143 int kentry_count; 144 static vm_offset_t mapvm_start = 0, mapvm = 0, mapvmmax; 145 static int mapvmpgcnt = 0; 146 147 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 148 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 149 150 void 151 vm_map_startup() 152 { 153 register int i; 154 register vm_map_entry_t mep; 155 vm_map_t mp; 156 157 /* 158 * Static map structures for allocation before initialization of 159 * kernel map or kmem map. vm_map_create knows how to deal with them. 160 */ 161 kmap_free = mp = (vm_map_t) kentry_data; 162 i = MAX_KMAP; 163 while (--i > 0) { 164 mp->header.next = (vm_map_entry_t) (mp + 1); 165 mp++; 166 } 167 mp++->header.next = NULL; 168 169 /* 170 * Form a free list of statically allocated kernel map entries with 171 * the rest. 172 */ 173 kentry_free = mep = (vm_map_entry_t) mp; 174 kentry_count = i = (kentry_data_size - MAX_KMAP * sizeof *mp) / sizeof *mep; 175 while (--i > 0) { 176 mep->next = mep + 1; 177 mep++; 178 } 179 mep->next = NULL; 180 } 181 182 /* 183 * Allocate a vmspace structure, including a vm_map and pmap, 184 * and initialize those structures. The refcnt is set to 1. 185 * The remaining fields must be initialized by the caller. 186 */ 187 struct vmspace * 188 vmspace_alloc(min, max, pageable) 189 vm_offset_t min, max; 190 int pageable; 191 { 192 register struct vmspace *vm; 193 194 if (mapvmpgcnt == 0 && mapvm == 0) { 195 int s; 196 197 mapvmpgcnt = (cnt.v_page_count * sizeof(struct vm_map_entry) + PAGE_SIZE - 1) / PAGE_SIZE; 198 s = splhigh(); 199 mapvm_start = mapvm = kmem_alloc_pageable(kmem_map, mapvmpgcnt * PAGE_SIZE); 200 mapvmmax = mapvm_start + mapvmpgcnt * PAGE_SIZE; 201 splx(s); 202 if (!mapvm) 203 mapvmpgcnt = 0; 204 } 205 MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK); 206 bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm); 207 vm_map_init(&vm->vm_map, min, max, pageable); 208 pmap_pinit(&vm->vm_pmap); 209 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 210 vm->vm_refcnt = 1; 211 return (vm); 212 } 213 214 void 215 vmspace_free(vm) 216 register struct vmspace *vm; 217 { 218 219 if (vm->vm_refcnt == 0) 220 panic("vmspace_free: attempt to free already freed vmspace"); 221 222 if (--vm->vm_refcnt == 0) { 223 /* 224 * Lock the map, to wait out all other references to it. 225 * Delete all of the mappings and pages they hold, then call 226 * the pmap module to reclaim anything left. 227 */ 228 vm_map_lock(&vm->vm_map); 229 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 230 vm->vm_map.max_offset); 231 vm_map_unlock(&vm->vm_map); 232 while( vm->vm_map.ref_count != 1) 233 tsleep(&vm->vm_map.ref_count, PVM, "vmsfre", 0); 234 --vm->vm_map.ref_count; 235 pmap_release(&vm->vm_pmap); 236 FREE(vm, M_VMMAP); 237 } 238 } 239 240 /* 241 * vm_map_create: 242 * 243 * Creates and returns a new empty VM map with 244 * the given physical map structure, and having 245 * the given lower and upper address bounds. 246 */ 247 vm_map_t 248 vm_map_create(pmap, min, max, pageable) 249 pmap_t pmap; 250 vm_offset_t min, max; 251 boolean_t pageable; 252 { 253 register vm_map_t result; 254 255 if (kmem_map == NULL) { 256 result = kmap_free; 257 kmap_free = (vm_map_t) result->header.next; 258 if (result == NULL) 259 panic("vm_map_create: out of maps"); 260 } else 261 MALLOC(result, vm_map_t, sizeof(struct vm_map), 262 M_VMMAP, M_WAITOK); 263 264 vm_map_init(result, min, max, pageable); 265 result->pmap = pmap; 266 return (result); 267 } 268 269 /* 270 * Initialize an existing vm_map structure 271 * such as that in the vmspace structure. 272 * The pmap is set elsewhere. 273 */ 274 void 275 vm_map_init(map, min, max, pageable) 276 register struct vm_map *map; 277 vm_offset_t min, max; 278 boolean_t pageable; 279 { 280 map->header.next = map->header.prev = &map->header; 281 map->nentries = 0; 282 map->size = 0; 283 map->ref_count = 1; 284 map->is_main_map = TRUE; 285 map->min_offset = min; 286 map->max_offset = max; 287 map->entries_pageable = pageable; 288 map->first_free = &map->header; 289 map->hint = &map->header; 290 map->timestamp = 0; 291 lock_init(&map->lock, TRUE); 292 simple_lock_init(&map->ref_lock); 293 simple_lock_init(&map->hint_lock); 294 } 295 296 /* 297 * vm_map_entry_create: [ internal use only ] 298 * 299 * Allocates a VM map entry for insertion. 300 * No entry fields are filled in. This routine is 301 */ 302 static struct vm_map_entry *mappool; 303 static int mappoolcnt; 304 305 vm_map_entry_t 306 vm_map_entry_create(map) 307 vm_map_t map; 308 { 309 vm_map_entry_t entry; 310 int i; 311 312 #define KENTRY_LOW_WATER 64 313 #define MAPENTRY_LOW_WATER 128 314 315 /* 316 * This is a *very* nasty (and sort of incomplete) hack!!!! 317 */ 318 if (kentry_count < KENTRY_LOW_WATER) { 319 if (mapvmpgcnt && mapvm) { 320 vm_page_t m; 321 322 m = vm_page_alloc(kmem_object, 323 mapvm - vm_map_min(kmem_map), 324 (map == kmem_map) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL); 325 if (m) { 326 int newentries; 327 328 newentries = (NBPG / sizeof(struct vm_map_entry)); 329 vm_page_wire(m); 330 m->flags &= ~PG_BUSY; 331 m->valid = VM_PAGE_BITS_ALL; 332 pmap_enter(vm_map_pmap(kmem_map), mapvm, 333 VM_PAGE_TO_PHYS(m), VM_PROT_DEFAULT, 1); 334 335 entry = (vm_map_entry_t) mapvm; 336 mapvm += NBPG; 337 --mapvmpgcnt; 338 339 for (i = 0; i < newentries; i++) { 340 vm_map_entry_dispose(kernel_map, entry); 341 entry++; 342 } 343 } 344 } 345 } 346 if (map == kernel_map || map == kmem_map || map == pager_map) { 347 348 entry = kentry_free; 349 if (entry) { 350 kentry_free = entry->next; 351 --kentry_count; 352 return entry; 353 } 354 entry = mappool; 355 if (entry) { 356 mappool = entry->next; 357 --mappoolcnt; 358 return entry; 359 } 360 } else { 361 entry = mappool; 362 if (entry) { 363 mappool = entry->next; 364 --mappoolcnt; 365 return entry; 366 } 367 MALLOC(entry, vm_map_entry_t, sizeof(struct vm_map_entry), 368 M_VMMAPENT, M_WAITOK); 369 } 370 if (entry == NULL) 371 panic("vm_map_entry_create: out of map entries"); 372 373 return (entry); 374 } 375 376 /* 377 * vm_map_entry_dispose: [ internal use only ] 378 * 379 * Inverse of vm_map_entry_create. 380 */ 381 void 382 vm_map_entry_dispose(map, entry) 383 vm_map_t map; 384 vm_map_entry_t entry; 385 { 386 if ((kentry_count < KENTRY_LOW_WATER) || 387 ((vm_offset_t) entry >= kentry_data && (vm_offset_t) entry < (kentry_data + kentry_data_size)) || 388 ((vm_offset_t) entry >= mapvm_start && (vm_offset_t) entry < mapvmmax)) { 389 entry->next = kentry_free; 390 kentry_free = entry; 391 ++kentry_count; 392 return; 393 } else { 394 if (mappoolcnt < MAPENTRY_LOW_WATER) { 395 entry->next = mappool; 396 mappool = entry; 397 ++mappoolcnt; 398 return; 399 } 400 FREE(entry, M_VMMAPENT); 401 } 402 } 403 404 /* 405 * vm_map_entry_{un,}link: 406 * 407 * Insert/remove entries from maps. 408 */ 409 #define vm_map_entry_link(map, after_where, entry) \ 410 { \ 411 (map)->nentries++; \ 412 (entry)->prev = (after_where); \ 413 (entry)->next = (after_where)->next; \ 414 (entry)->prev->next = (entry); \ 415 (entry)->next->prev = (entry); \ 416 } 417 #define vm_map_entry_unlink(map, entry) \ 418 { \ 419 (map)->nentries--; \ 420 (entry)->next->prev = (entry)->prev; \ 421 (entry)->prev->next = (entry)->next; \ 422 } 423 424 /* 425 * vm_map_reference: 426 * 427 * Creates another valid reference to the given map. 428 * 429 */ 430 void 431 vm_map_reference(map) 432 register vm_map_t map; 433 { 434 if (map == NULL) 435 return; 436 437 simple_lock(&map->ref_lock); 438 map->ref_count++; 439 simple_unlock(&map->ref_lock); 440 } 441 442 /* 443 * vm_map_deallocate: 444 * 445 * Removes a reference from the specified map, 446 * destroying it if no references remain. 447 * The map should not be locked. 448 */ 449 void 450 vm_map_deallocate(map) 451 register vm_map_t map; 452 { 453 register int c; 454 455 if (map == NULL) 456 return; 457 458 simple_lock(&map->ref_lock); 459 c = map->ref_count; 460 simple_unlock(&map->ref_lock); 461 462 if (c == 0) 463 panic("vm_map_deallocate: deallocating already freed map"); 464 465 if (c != 1) { 466 --map->ref_count; 467 wakeup((caddr_t) &map->ref_count); 468 return; 469 } 470 /* 471 * Lock the map, to wait out all other references to it. 472 */ 473 474 vm_map_lock(map); 475 (void) vm_map_delete(map, map->min_offset, map->max_offset); 476 --map->ref_count; 477 if( map->ref_count != 0) { 478 vm_map_unlock(map); 479 return; 480 } 481 482 pmap_destroy(map->pmap); 483 FREE(map, M_VMMAP); 484 } 485 486 /* 487 * vm_map_insert: 488 * 489 * Inserts the given whole VM object into the target 490 * map at the specified address range. The object's 491 * size should match that of the address range. 492 * 493 * Requires that the map be locked, and leaves it so. 494 */ 495 int 496 vm_map_insert(map, object, offset, start, end) 497 vm_map_t map; 498 vm_object_t object; 499 vm_offset_t offset; 500 vm_offset_t start; 501 vm_offset_t end; 502 { 503 register vm_map_entry_t new_entry; 504 register vm_map_entry_t prev_entry; 505 vm_map_entry_t temp_entry; 506 507 /* 508 * Check that the start and end points are not bogus. 509 */ 510 511 if ((start < map->min_offset) || (end > map->max_offset) || 512 (start >= end)) 513 return (KERN_INVALID_ADDRESS); 514 515 /* 516 * Find the entry prior to the proposed starting address; if it's part 517 * of an existing entry, this range is bogus. 518 */ 519 520 if (vm_map_lookup_entry(map, start, &temp_entry)) 521 return (KERN_NO_SPACE); 522 523 prev_entry = temp_entry; 524 525 /* 526 * Assert that the next entry doesn't overlap the end point. 527 */ 528 529 if ((prev_entry->next != &map->header) && 530 (prev_entry->next->start < end)) 531 return (KERN_NO_SPACE); 532 533 /* 534 * See if we can avoid creating a new entry by extending one of our 535 * neighbors. 536 */ 537 538 if (object == NULL) { 539 if ((prev_entry != &map->header) && 540 (prev_entry->end == start) && 541 (map->is_main_map) && 542 (prev_entry->is_a_map == FALSE) && 543 (prev_entry->is_sub_map == FALSE) && 544 (prev_entry->inheritance == VM_INHERIT_DEFAULT) && 545 (prev_entry->protection == VM_PROT_DEFAULT) && 546 (prev_entry->max_protection == VM_PROT_DEFAULT) && 547 (prev_entry->wired_count == 0)) { 548 549 if (vm_object_coalesce(prev_entry->object.vm_object, 550 NULL, 551 prev_entry->offset, 552 (vm_offset_t) 0, 553 (vm_size_t) (prev_entry->end 554 - prev_entry->start), 555 (vm_size_t) (end - prev_entry->end))) { 556 /* 557 * Coalesced the two objects - can extend the 558 * previous map entry to include the new 559 * range. 560 */ 561 map->size += (end - prev_entry->end); 562 prev_entry->end = end; 563 return (KERN_SUCCESS); 564 } 565 } 566 } 567 /* 568 * Create a new entry 569 */ 570 571 new_entry = vm_map_entry_create(map); 572 new_entry->start = start; 573 new_entry->end = end; 574 575 new_entry->is_a_map = FALSE; 576 new_entry->is_sub_map = FALSE; 577 new_entry->object.vm_object = object; 578 new_entry->offset = offset; 579 580 new_entry->copy_on_write = FALSE; 581 new_entry->needs_copy = FALSE; 582 583 if (map->is_main_map) { 584 new_entry->inheritance = VM_INHERIT_DEFAULT; 585 new_entry->protection = VM_PROT_DEFAULT; 586 new_entry->max_protection = VM_PROT_DEFAULT; 587 new_entry->wired_count = 0; 588 } 589 /* 590 * Insert the new entry into the list 591 */ 592 593 vm_map_entry_link(map, prev_entry, new_entry); 594 map->size += new_entry->end - new_entry->start; 595 596 /* 597 * Update the free space hint 598 */ 599 600 if ((map->first_free == prev_entry) && (prev_entry->end >= new_entry->start)) 601 map->first_free = new_entry; 602 603 return (KERN_SUCCESS); 604 } 605 606 /* 607 * SAVE_HINT: 608 * 609 * Saves the specified entry as the hint for 610 * future lookups. Performs necessary interlocks. 611 */ 612 #define SAVE_HINT(map,value) \ 613 simple_lock(&(map)->hint_lock); \ 614 (map)->hint = (value); \ 615 simple_unlock(&(map)->hint_lock); 616 617 /* 618 * vm_map_lookup_entry: [ internal use only ] 619 * 620 * Finds the map entry containing (or 621 * immediately preceding) the specified address 622 * in the given map; the entry is returned 623 * in the "entry" parameter. The boolean 624 * result indicates whether the address is 625 * actually contained in the map. 626 */ 627 boolean_t 628 vm_map_lookup_entry(map, address, entry) 629 register vm_map_t map; 630 register vm_offset_t address; 631 vm_map_entry_t *entry; /* OUT */ 632 { 633 register vm_map_entry_t cur; 634 register vm_map_entry_t last; 635 636 /* 637 * Start looking either from the head of the list, or from the hint. 638 */ 639 640 simple_lock(&map->hint_lock); 641 cur = map->hint; 642 simple_unlock(&map->hint_lock); 643 644 if (cur == &map->header) 645 cur = cur->next; 646 647 if (address >= cur->start) { 648 /* 649 * Go from hint to end of list. 650 * 651 * But first, make a quick check to see if we are already looking 652 * at the entry we want (which is usually the case). Note also 653 * that we don't need to save the hint here... it is the same 654 * hint (unless we are at the header, in which case the hint 655 * didn't buy us anything anyway). 656 */ 657 last = &map->header; 658 if ((cur != last) && (cur->end > address)) { 659 *entry = cur; 660 return (TRUE); 661 } 662 } else { 663 /* 664 * Go from start to hint, *inclusively* 665 */ 666 last = cur->next; 667 cur = map->header.next; 668 } 669 670 /* 671 * Search linearly 672 */ 673 674 while (cur != last) { 675 if (cur->end > address) { 676 if (address >= cur->start) { 677 /* 678 * Save this lookup for future hints, and 679 * return 680 */ 681 682 *entry = cur; 683 SAVE_HINT(map, cur); 684 return (TRUE); 685 } 686 break; 687 } 688 cur = cur->next; 689 } 690 *entry = cur->prev; 691 SAVE_HINT(map, *entry); 692 return (FALSE); 693 } 694 695 /* 696 * Find sufficient space for `length' bytes in the given map, starting at 697 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 698 */ 699 int 700 vm_map_findspace(map, start, length, addr) 701 register vm_map_t map; 702 register vm_offset_t start; 703 vm_size_t length; 704 vm_offset_t *addr; 705 { 706 register vm_map_entry_t entry, next; 707 register vm_offset_t end; 708 709 if (start < map->min_offset) 710 start = map->min_offset; 711 if (start > map->max_offset) 712 return (1); 713 714 /* 715 * Look for the first possible address; if there's already something 716 * at this address, we have to start after it. 717 */ 718 if (start == map->min_offset) { 719 if ((entry = map->first_free) != &map->header) 720 start = entry->end; 721 } else { 722 vm_map_entry_t tmp; 723 724 if (vm_map_lookup_entry(map, start, &tmp)) 725 start = tmp->end; 726 entry = tmp; 727 } 728 729 /* 730 * Look through the rest of the map, trying to fit a new region in the 731 * gap between existing regions, or after the very last region. 732 */ 733 for (;; start = (entry = next)->end) { 734 /* 735 * Find the end of the proposed new region. Be sure we didn't 736 * go beyond the end of the map, or wrap around the address; 737 * if so, we lose. Otherwise, if this is the last entry, or 738 * if the proposed new region fits before the next entry, we 739 * win. 740 */ 741 end = start + length; 742 if (end > map->max_offset || end < start) 743 return (1); 744 next = entry->next; 745 if (next == &map->header || next->start >= end) 746 break; 747 } 748 SAVE_HINT(map, entry); 749 *addr = start; 750 if (map == kernel_map && round_page(start + length) > kernel_vm_end) 751 pmap_growkernel(round_page(start + length)); 752 return (0); 753 } 754 755 /* 756 * vm_map_find finds an unallocated region in the target address 757 * map with the given length. The search is defined to be 758 * first-fit from the specified address; the region found is 759 * returned in the same parameter. 760 * 761 */ 762 int 763 vm_map_find(map, object, offset, addr, length, find_space) 764 vm_map_t map; 765 vm_object_t object; 766 vm_offset_t offset; 767 vm_offset_t *addr; /* IN/OUT */ 768 vm_size_t length; 769 boolean_t find_space; 770 { 771 register vm_offset_t start; 772 int result, s = 0; 773 774 start = *addr; 775 vm_map_lock(map); 776 777 if (map == kmem_map) 778 s = splhigh(); 779 780 if (find_space) { 781 if (vm_map_findspace(map, start, length, addr)) { 782 vm_map_unlock(map); 783 if (map == kmem_map) 784 splx(s); 785 return (KERN_NO_SPACE); 786 } 787 start = *addr; 788 } 789 result = vm_map_insert(map, object, offset, start, start + length); 790 vm_map_unlock(map); 791 792 if (map == kmem_map) 793 splx(s); 794 795 return (result); 796 } 797 798 /* 799 * vm_map_simplify_entry: [ internal use only ] 800 * 801 * Simplify the given map entry by: 802 * removing extra sharing maps 803 * [XXX maybe later] merging with a neighbor 804 */ 805 void 806 vm_map_simplify_entry(map, entry) 807 vm_map_t map; 808 vm_map_entry_t entry; 809 { 810 #ifdef lint 811 map++; 812 #endif 813 814 /* 815 * If this entry corresponds to a sharing map, then see if we can 816 * remove the level of indirection. If it's not a sharing map, then it 817 * points to a VM object, so see if we can merge with either of our 818 * neighbors. 819 */ 820 821 if (entry->is_sub_map) 822 return; 823 if (entry->is_a_map) { 824 #if 0 825 vm_map_t my_share_map; 826 int count; 827 828 my_share_map = entry->object.share_map; 829 simple_lock(&my_share_map->ref_lock); 830 count = my_share_map->ref_count; 831 simple_unlock(&my_share_map->ref_lock); 832 833 if (count == 1) { 834 /* 835 * Can move the region from entry->start to entry->end 836 * (+ entry->offset) in my_share_map into place of 837 * entry. Later. 838 */ 839 } 840 #endif 841 } else { 842 /* 843 * Try to merge with our neighbors. 844 * 845 * Conditions for merge are: 846 * 847 * 1. entries are adjacent. 2. both entries point to objects 848 * with null pagers. 849 * 850 * If a merge is possible, we replace the two entries with a 851 * single entry, then merge the two objects into a single 852 * object. 853 * 854 * Now, all that is left to do is write the code! 855 */ 856 } 857 } 858 859 /* 860 * vm_map_clip_start: [ internal use only ] 861 * 862 * Asserts that the given entry begins at or after 863 * the specified address; if necessary, 864 * it splits the entry into two. 865 */ 866 #define vm_map_clip_start(map, entry, startaddr) \ 867 { \ 868 if (startaddr > entry->start) \ 869 _vm_map_clip_start(map, entry, startaddr); \ 870 } 871 872 /* 873 * This routine is called only when it is known that 874 * the entry must be split. 875 */ 876 static void 877 _vm_map_clip_start(map, entry, start) 878 register vm_map_t map; 879 register vm_map_entry_t entry; 880 register vm_offset_t start; 881 { 882 register vm_map_entry_t new_entry; 883 884 /* 885 * See if we can simplify this entry first 886 */ 887 888 /* vm_map_simplify_entry(map, entry); */ 889 890 /* 891 * Split off the front portion -- note that we must insert the new 892 * entry BEFORE this one, so that this entry has the specified 893 * starting address. 894 */ 895 896 new_entry = vm_map_entry_create(map); 897 *new_entry = *entry; 898 899 new_entry->end = start; 900 entry->offset += (start - entry->start); 901 entry->start = start; 902 903 vm_map_entry_link(map, entry->prev, new_entry); 904 905 if (entry->is_a_map || entry->is_sub_map) 906 vm_map_reference(new_entry->object.share_map); 907 else 908 vm_object_reference(new_entry->object.vm_object); 909 } 910 911 /* 912 * vm_map_clip_end: [ internal use only ] 913 * 914 * Asserts that the given entry ends at or before 915 * the specified address; if necessary, 916 * it splits the entry into two. 917 */ 918 919 #define vm_map_clip_end(map, entry, endaddr) \ 920 { \ 921 if (endaddr < entry->end) \ 922 _vm_map_clip_end(map, entry, endaddr); \ 923 } 924 925 /* 926 * This routine is called only when it is known that 927 * the entry must be split. 928 */ 929 static void 930 _vm_map_clip_end(map, entry, end) 931 register vm_map_t map; 932 register vm_map_entry_t entry; 933 register vm_offset_t end; 934 { 935 register vm_map_entry_t new_entry; 936 937 /* 938 * Create a new entry and insert it AFTER the specified entry 939 */ 940 941 new_entry = vm_map_entry_create(map); 942 *new_entry = *entry; 943 944 new_entry->start = entry->end = end; 945 new_entry->offset += (end - entry->start); 946 947 vm_map_entry_link(map, entry, new_entry); 948 949 if (entry->is_a_map || entry->is_sub_map) 950 vm_map_reference(new_entry->object.share_map); 951 else 952 vm_object_reference(new_entry->object.vm_object); 953 } 954 955 /* 956 * VM_MAP_RANGE_CHECK: [ internal use only ] 957 * 958 * Asserts that the starting and ending region 959 * addresses fall within the valid range of the map. 960 */ 961 #define VM_MAP_RANGE_CHECK(map, start, end) \ 962 { \ 963 if (start < vm_map_min(map)) \ 964 start = vm_map_min(map); \ 965 if (end > vm_map_max(map)) \ 966 end = vm_map_max(map); \ 967 if (start > end) \ 968 start = end; \ 969 } 970 971 /* 972 * vm_map_submap: [ kernel use only ] 973 * 974 * Mark the given range as handled by a subordinate map. 975 * 976 * This range must have been created with vm_map_find, 977 * and no other operations may have been performed on this 978 * range prior to calling vm_map_submap. 979 * 980 * Only a limited number of operations can be performed 981 * within this rage after calling vm_map_submap: 982 * vm_fault 983 * [Don't try vm_map_copy!] 984 * 985 * To remove a submapping, one must first remove the 986 * range from the superior map, and then destroy the 987 * submap (if desired). [Better yet, don't try it.] 988 */ 989 int 990 vm_map_submap(map, start, end, submap) 991 register vm_map_t map; 992 register vm_offset_t start; 993 register vm_offset_t end; 994 vm_map_t submap; 995 { 996 vm_map_entry_t entry; 997 register int result = KERN_INVALID_ARGUMENT; 998 999 vm_map_lock(map); 1000 1001 VM_MAP_RANGE_CHECK(map, start, end); 1002 1003 if (vm_map_lookup_entry(map, start, &entry)) { 1004 vm_map_clip_start(map, entry, start); 1005 } else 1006 entry = entry->next; 1007 1008 vm_map_clip_end(map, entry, end); 1009 1010 if ((entry->start == start) && (entry->end == end) && 1011 (!entry->is_a_map) && 1012 (entry->object.vm_object == NULL) && 1013 (!entry->copy_on_write)) { 1014 entry->is_a_map = FALSE; 1015 entry->is_sub_map = TRUE; 1016 vm_map_reference(entry->object.sub_map = submap); 1017 result = KERN_SUCCESS; 1018 } 1019 vm_map_unlock(map); 1020 1021 return (result); 1022 } 1023 1024 /* 1025 * vm_map_protect: 1026 * 1027 * Sets the protection of the specified address 1028 * region in the target map. If "set_max" is 1029 * specified, the maximum protection is to be set; 1030 * otherwise, only the current protection is affected. 1031 */ 1032 int 1033 vm_map_protect(map, start, end, new_prot, set_max) 1034 register vm_map_t map; 1035 register vm_offset_t start; 1036 register vm_offset_t end; 1037 register vm_prot_t new_prot; 1038 register boolean_t set_max; 1039 { 1040 register vm_map_entry_t current; 1041 vm_map_entry_t entry; 1042 1043 vm_map_lock(map); 1044 1045 VM_MAP_RANGE_CHECK(map, start, end); 1046 1047 if (vm_map_lookup_entry(map, start, &entry)) { 1048 vm_map_clip_start(map, entry, start); 1049 } else 1050 entry = entry->next; 1051 1052 /* 1053 * Make a first pass to check for protection violations. 1054 */ 1055 1056 current = entry; 1057 while ((current != &map->header) && (current->start < end)) { 1058 if (current->is_sub_map) { 1059 vm_map_unlock(map); 1060 return (KERN_INVALID_ARGUMENT); 1061 } 1062 if ((new_prot & current->max_protection) != new_prot) { 1063 vm_map_unlock(map); 1064 return (KERN_PROTECTION_FAILURE); 1065 } 1066 current = current->next; 1067 } 1068 1069 /* 1070 * Go back and fix up protections. [Note that clipping is not 1071 * necessary the second time.] 1072 */ 1073 1074 current = entry; 1075 1076 while ((current != &map->header) && (current->start < end)) { 1077 vm_prot_t old_prot; 1078 1079 vm_map_clip_end(map, current, end); 1080 1081 old_prot = current->protection; 1082 if (set_max) 1083 current->protection = 1084 (current->max_protection = new_prot) & 1085 old_prot; 1086 else 1087 current->protection = new_prot; 1088 1089 /* 1090 * Update physical map if necessary. Worry about copy-on-write 1091 * here -- CHECK THIS XXX 1092 */ 1093 1094 if (current->protection != old_prot) { 1095 1096 #define MASK(entry) ((entry)->copy_on_write ? ~VM_PROT_WRITE : \ 1097 VM_PROT_ALL) 1098 #define max(a,b) ((a) > (b) ? (a) : (b)) 1099 1100 if (current->is_a_map) { 1101 vm_map_entry_t share_entry; 1102 vm_offset_t share_end; 1103 1104 vm_map_lock(current->object.share_map); 1105 (void) vm_map_lookup_entry( 1106 current->object.share_map, 1107 current->offset, 1108 &share_entry); 1109 share_end = current->offset + 1110 (current->end - current->start); 1111 while ((share_entry != 1112 ¤t->object.share_map->header) && 1113 (share_entry->start < share_end)) { 1114 1115 pmap_protect(map->pmap, 1116 (max(share_entry->start, 1117 current->offset) - 1118 current->offset + 1119 current->start), 1120 min(share_entry->end, 1121 share_end) - 1122 current->offset + 1123 current->start, 1124 current->protection & 1125 MASK(share_entry)); 1126 1127 share_entry = share_entry->next; 1128 } 1129 vm_map_unlock(current->object.share_map); 1130 } else 1131 pmap_protect(map->pmap, current->start, 1132 current->end, 1133 current->protection & MASK(entry)); 1134 #undef max 1135 #undef MASK 1136 } 1137 current = current->next; 1138 } 1139 1140 vm_map_unlock(map); 1141 return (KERN_SUCCESS); 1142 } 1143 1144 /* 1145 * vm_map_inherit: 1146 * 1147 * Sets the inheritance of the specified address 1148 * range in the target map. Inheritance 1149 * affects how the map will be shared with 1150 * child maps at the time of vm_map_fork. 1151 */ 1152 int 1153 vm_map_inherit(map, start, end, new_inheritance) 1154 register vm_map_t map; 1155 register vm_offset_t start; 1156 register vm_offset_t end; 1157 register vm_inherit_t new_inheritance; 1158 { 1159 register vm_map_entry_t entry; 1160 vm_map_entry_t temp_entry; 1161 1162 switch (new_inheritance) { 1163 case VM_INHERIT_NONE: 1164 case VM_INHERIT_COPY: 1165 case VM_INHERIT_SHARE: 1166 break; 1167 default: 1168 return (KERN_INVALID_ARGUMENT); 1169 } 1170 1171 vm_map_lock(map); 1172 1173 VM_MAP_RANGE_CHECK(map, start, end); 1174 1175 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1176 entry = temp_entry; 1177 vm_map_clip_start(map, entry, start); 1178 } else 1179 entry = temp_entry->next; 1180 1181 while ((entry != &map->header) && (entry->start < end)) { 1182 vm_map_clip_end(map, entry, end); 1183 1184 entry->inheritance = new_inheritance; 1185 1186 entry = entry->next; 1187 } 1188 1189 vm_map_unlock(map); 1190 return (KERN_SUCCESS); 1191 } 1192 1193 /* 1194 * vm_map_pageable: 1195 * 1196 * Sets the pageability of the specified address 1197 * range in the target map. Regions specified 1198 * as not pageable require locked-down physical 1199 * memory and physical page maps. 1200 * 1201 * The map must not be locked, but a reference 1202 * must remain to the map throughout the call. 1203 */ 1204 int 1205 vm_map_pageable(map, start, end, new_pageable) 1206 register vm_map_t map; 1207 register vm_offset_t start; 1208 register vm_offset_t end; 1209 register boolean_t new_pageable; 1210 { 1211 register vm_map_entry_t entry; 1212 vm_map_entry_t start_entry; 1213 register vm_offset_t failed = 0; 1214 int rv; 1215 1216 vm_map_lock(map); 1217 1218 VM_MAP_RANGE_CHECK(map, start, end); 1219 1220 /* 1221 * Only one pageability change may take place at one time, since 1222 * vm_fault assumes it will be called only once for each 1223 * wiring/unwiring. Therefore, we have to make sure we're actually 1224 * changing the pageability for the entire region. We do so before 1225 * making any changes. 1226 */ 1227 1228 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1229 vm_map_unlock(map); 1230 return (KERN_INVALID_ADDRESS); 1231 } 1232 entry = start_entry; 1233 1234 /* 1235 * Actions are rather different for wiring and unwiring, so we have 1236 * two separate cases. 1237 */ 1238 1239 if (new_pageable) { 1240 1241 vm_map_clip_start(map, entry, start); 1242 1243 /* 1244 * Unwiring. First ensure that the range to be unwired is 1245 * really wired down and that there are no holes. 1246 */ 1247 while ((entry != &map->header) && (entry->start < end)) { 1248 1249 if (entry->wired_count == 0 || 1250 (entry->end < end && 1251 (entry->next == &map->header || 1252 entry->next->start > entry->end))) { 1253 vm_map_unlock(map); 1254 return (KERN_INVALID_ARGUMENT); 1255 } 1256 entry = entry->next; 1257 } 1258 1259 /* 1260 * Now decrement the wiring count for each region. If a region 1261 * becomes completely unwired, unwire its physical pages and 1262 * mappings. 1263 */ 1264 lock_set_recursive(&map->lock); 1265 1266 entry = start_entry; 1267 while ((entry != &map->header) && (entry->start < end)) { 1268 vm_map_clip_end(map, entry, end); 1269 1270 entry->wired_count--; 1271 if (entry->wired_count == 0) 1272 vm_fault_unwire(map, entry->start, entry->end); 1273 1274 entry = entry->next; 1275 } 1276 lock_clear_recursive(&map->lock); 1277 } else { 1278 /* 1279 * Wiring. We must do this in two passes: 1280 * 1281 * 1. Holding the write lock, we create any shadow or zero-fill 1282 * objects that need to be created. Then we clip each map 1283 * entry to the region to be wired and increment its wiring 1284 * count. We create objects before clipping the map entries 1285 * to avoid object proliferation. 1286 * 1287 * 2. We downgrade to a read lock, and call vm_fault_wire to 1288 * fault in the pages for any newly wired area (wired_count is 1289 * 1). 1290 * 1291 * Downgrading to a read lock for vm_fault_wire avoids a possible 1292 * deadlock with another thread that may have faulted on one 1293 * of the pages to be wired (it would mark the page busy, 1294 * blocking us, then in turn block on the map lock that we 1295 * hold). Because of problems in the recursive lock package, 1296 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1297 * any actions that require the write lock must be done 1298 * beforehand. Because we keep the read lock on the map, the 1299 * copy-on-write status of the entries we modify here cannot 1300 * change. 1301 */ 1302 1303 /* 1304 * Pass 1. 1305 */ 1306 while ((entry != &map->header) && (entry->start < end)) { 1307 if (entry->wired_count == 0) { 1308 1309 /* 1310 * Perform actions of vm_map_lookup that need 1311 * the write lock on the map: create a shadow 1312 * object for a copy-on-write region, or an 1313 * object for a zero-fill region. 1314 * 1315 * We don't have to do this for entries that 1316 * point to sharing maps, because we won't 1317 * hold the lock on the sharing map. 1318 */ 1319 if (!entry->is_a_map && !entry->is_sub_map) { 1320 if (entry->needs_copy && 1321 ((entry->protection & VM_PROT_WRITE) != 0)) { 1322 1323 vm_object_shadow(&entry->object.vm_object, 1324 &entry->offset, 1325 (vm_size_t) (entry->end 1326 - entry->start)); 1327 entry->needs_copy = FALSE; 1328 } else if (entry->object.vm_object == NULL) { 1329 entry->object.vm_object = 1330 vm_object_allocate((vm_size_t) (entry->end 1331 - entry->start)); 1332 entry->offset = (vm_offset_t) 0; 1333 } 1334 } 1335 } 1336 vm_map_clip_start(map, entry, start); 1337 vm_map_clip_end(map, entry, end); 1338 entry->wired_count++; 1339 1340 /* 1341 * Check for holes 1342 */ 1343 if (entry->end < end && 1344 (entry->next == &map->header || 1345 entry->next->start > entry->end)) { 1346 /* 1347 * Found one. Object creation actions do not 1348 * need to be undone, but the wired counts 1349 * need to be restored. 1350 */ 1351 while (entry != &map->header && entry->end > start) { 1352 entry->wired_count--; 1353 entry = entry->prev; 1354 } 1355 vm_map_unlock(map); 1356 return (KERN_INVALID_ARGUMENT); 1357 } 1358 entry = entry->next; 1359 } 1360 1361 /* 1362 * Pass 2. 1363 */ 1364 1365 /* 1366 * HACK HACK HACK HACK 1367 * 1368 * If we are wiring in the kernel map or a submap of it, unlock 1369 * the map to avoid deadlocks. We trust that the kernel 1370 * threads are well-behaved, and therefore will not do 1371 * anything destructive to this region of the map while we 1372 * have it unlocked. We cannot trust user threads to do the 1373 * same. 1374 * 1375 * HACK HACK HACK HACK 1376 */ 1377 if (vm_map_pmap(map) == kernel_pmap) { 1378 vm_map_unlock(map); /* trust me ... */ 1379 } else { 1380 lock_set_recursive(&map->lock); 1381 lock_write_to_read(&map->lock); 1382 } 1383 1384 rv = 0; 1385 entry = start_entry; 1386 while (entry != &map->header && entry->start < end) { 1387 /* 1388 * If vm_fault_wire fails for any page we need to undo 1389 * what has been done. We decrement the wiring count 1390 * for those pages which have not yet been wired (now) 1391 * and unwire those that have (later). 1392 * 1393 * XXX this violates the locking protocol on the map, 1394 * needs to be fixed. 1395 */ 1396 if (rv) 1397 entry->wired_count--; 1398 else if (entry->wired_count == 1) { 1399 rv = vm_fault_wire(map, entry->start, entry->end); 1400 if (rv) { 1401 failed = entry->start; 1402 entry->wired_count--; 1403 } 1404 } 1405 entry = entry->next; 1406 } 1407 1408 if (vm_map_pmap(map) == kernel_pmap) { 1409 vm_map_lock(map); 1410 } else { 1411 lock_clear_recursive(&map->lock); 1412 } 1413 if (rv) { 1414 vm_map_unlock(map); 1415 (void) vm_map_pageable(map, start, failed, TRUE); 1416 return (rv); 1417 } 1418 } 1419 1420 vm_map_unlock(map); 1421 1422 return (KERN_SUCCESS); 1423 } 1424 1425 /* 1426 * vm_map_clean 1427 * 1428 * Push any dirty cached pages in the address range to their pager. 1429 * If syncio is TRUE, dirty pages are written synchronously. 1430 * If invalidate is TRUE, any cached pages are freed as well. 1431 * 1432 * Returns an error if any part of the specified range is not mapped. 1433 */ 1434 int 1435 vm_map_clean(map, start, end, syncio, invalidate) 1436 vm_map_t map; 1437 vm_offset_t start; 1438 vm_offset_t end; 1439 boolean_t syncio; 1440 boolean_t invalidate; 1441 { 1442 register vm_map_entry_t current; 1443 vm_map_entry_t entry; 1444 vm_size_t size; 1445 vm_object_t object; 1446 vm_offset_t offset; 1447 1448 vm_map_lock_read(map); 1449 VM_MAP_RANGE_CHECK(map, start, end); 1450 if (!vm_map_lookup_entry(map, start, &entry)) { 1451 vm_map_unlock_read(map); 1452 return (KERN_INVALID_ADDRESS); 1453 } 1454 /* 1455 * Make a first pass to check for holes. 1456 */ 1457 for (current = entry; current->start < end; current = current->next) { 1458 if (current->is_sub_map) { 1459 vm_map_unlock_read(map); 1460 return (KERN_INVALID_ARGUMENT); 1461 } 1462 if (end > current->end && 1463 (current->next == &map->header || 1464 current->end != current->next->start)) { 1465 vm_map_unlock_read(map); 1466 return (KERN_INVALID_ADDRESS); 1467 } 1468 } 1469 1470 /* 1471 * Make a second pass, cleaning/uncaching pages from the indicated 1472 * objects as we go. 1473 */ 1474 for (current = entry; current->start < end; current = current->next) { 1475 offset = current->offset + (start - current->start); 1476 size = (end <= current->end ? end : current->end) - start; 1477 if (current->is_a_map || current->is_sub_map) { 1478 register vm_map_t smap; 1479 vm_map_entry_t tentry; 1480 vm_size_t tsize; 1481 1482 smap = current->object.share_map; 1483 vm_map_lock_read(smap); 1484 (void) vm_map_lookup_entry(smap, offset, &tentry); 1485 tsize = tentry->end - offset; 1486 if (tsize < size) 1487 size = tsize; 1488 object = tentry->object.vm_object; 1489 offset = tentry->offset + (offset - tentry->start); 1490 vm_map_unlock_read(smap); 1491 } else { 1492 object = current->object.vm_object; 1493 } 1494 if (object && (object->pager != NULL) && 1495 (object->pager->pg_type == PG_VNODE)) { 1496 vm_object_lock(object); 1497 /* 1498 * Flush pages if writing is allowed. XXX should we continue 1499 * on an error? 1500 */ 1501 if ((current->protection & VM_PROT_WRITE) && 1502 !vm_object_page_clean(object, offset, offset + size, 1503 syncio, FALSE)) { 1504 vm_object_unlock(object); 1505 vm_map_unlock_read(map); 1506 return (KERN_FAILURE); 1507 } 1508 if (invalidate) 1509 vm_object_page_remove(object, offset, offset + size); 1510 vm_object_unlock(object); 1511 } 1512 start += size; 1513 } 1514 1515 vm_map_unlock_read(map); 1516 return (KERN_SUCCESS); 1517 } 1518 1519 /* 1520 * vm_map_entry_unwire: [ internal use only ] 1521 * 1522 * Make the region specified by this entry pageable. 1523 * 1524 * The map in question should be locked. 1525 * [This is the reason for this routine's existence.] 1526 */ 1527 void 1528 vm_map_entry_unwire(map, entry) 1529 vm_map_t map; 1530 register vm_map_entry_t entry; 1531 { 1532 vm_fault_unwire(map, entry->start, entry->end); 1533 entry->wired_count = 0; 1534 } 1535 1536 /* 1537 * vm_map_entry_delete: [ internal use only ] 1538 * 1539 * Deallocate the given entry from the target map. 1540 */ 1541 void 1542 vm_map_entry_delete(map, entry) 1543 register vm_map_t map; 1544 register vm_map_entry_t entry; 1545 { 1546 if (entry->wired_count != 0) 1547 vm_map_entry_unwire(map, entry); 1548 1549 vm_map_entry_unlink(map, entry); 1550 map->size -= entry->end - entry->start; 1551 1552 if (entry->is_a_map || entry->is_sub_map) 1553 vm_map_deallocate(entry->object.share_map); 1554 else 1555 vm_object_deallocate(entry->object.vm_object); 1556 1557 vm_map_entry_dispose(map, entry); 1558 } 1559 1560 /* 1561 * vm_map_delete: [ internal use only ] 1562 * 1563 * Deallocates the given address range from the target 1564 * map. 1565 * 1566 * When called with a sharing map, removes pages from 1567 * that region from all physical maps. 1568 */ 1569 int 1570 vm_map_delete(map, start, end) 1571 register vm_map_t map; 1572 vm_offset_t start; 1573 register vm_offset_t end; 1574 { 1575 register vm_map_entry_t entry; 1576 vm_map_entry_t first_entry; 1577 1578 /* 1579 * Find the start of the region, and clip it 1580 */ 1581 1582 if (!vm_map_lookup_entry(map, start, &first_entry)) 1583 entry = first_entry->next; 1584 else { 1585 entry = first_entry; 1586 vm_map_clip_start(map, entry, start); 1587 1588 /* 1589 * Fix the lookup hint now, rather than each time though the 1590 * loop. 1591 */ 1592 1593 SAVE_HINT(map, entry->prev); 1594 } 1595 1596 /* 1597 * Save the free space hint 1598 */ 1599 1600 if (map->first_free->start >= start) 1601 map->first_free = entry->prev; 1602 1603 /* 1604 * Step through all entries in this region 1605 */ 1606 1607 while ((entry != &map->header) && (entry->start < end)) { 1608 vm_map_entry_t next; 1609 register vm_offset_t s, e; 1610 register vm_object_t object; 1611 1612 vm_map_clip_end(map, entry, end); 1613 1614 next = entry->next; 1615 s = entry->start; 1616 e = entry->end; 1617 1618 /* 1619 * Unwire before removing addresses from the pmap; otherwise, 1620 * unwiring will put the entries back in the pmap. 1621 */ 1622 1623 object = entry->object.vm_object; 1624 if (entry->wired_count != 0) 1625 vm_map_entry_unwire(map, entry); 1626 1627 /* 1628 * If this is a sharing map, we must remove *all* references 1629 * to this data, since we can't find all of the physical maps 1630 * which are sharing it. 1631 */ 1632 1633 if (object == kernel_object || object == kmem_object) 1634 vm_object_page_remove(object, entry->offset, 1635 entry->offset + (e - s)); 1636 else if (!map->is_main_map) 1637 vm_object_pmap_remove(object, 1638 entry->offset, 1639 entry->offset + (e - s)); 1640 else 1641 pmap_remove(map->pmap, s, e); 1642 1643 /* 1644 * Delete the entry (which may delete the object) only after 1645 * removing all pmap entries pointing to its pages. 1646 * (Otherwise, its page frames may be reallocated, and any 1647 * modify bits will be set in the wrong object!) 1648 */ 1649 1650 vm_map_entry_delete(map, entry); 1651 entry = next; 1652 } 1653 return (KERN_SUCCESS); 1654 } 1655 1656 /* 1657 * vm_map_remove: 1658 * 1659 * Remove the given address range from the target map. 1660 * This is the exported form of vm_map_delete. 1661 */ 1662 int 1663 vm_map_remove(map, start, end) 1664 register vm_map_t map; 1665 register vm_offset_t start; 1666 register vm_offset_t end; 1667 { 1668 register int result, s = 0; 1669 1670 if (map == kmem_map) 1671 s = splhigh(); 1672 1673 vm_map_lock(map); 1674 VM_MAP_RANGE_CHECK(map, start, end); 1675 result = vm_map_delete(map, start, end); 1676 vm_map_unlock(map); 1677 1678 if (map == kmem_map) 1679 splx(s); 1680 1681 return (result); 1682 } 1683 1684 /* 1685 * vm_map_check_protection: 1686 * 1687 * Assert that the target map allows the specified 1688 * privilege on the entire address region given. 1689 * The entire region must be allocated. 1690 */ 1691 boolean_t 1692 vm_map_check_protection(map, start, end, protection) 1693 register vm_map_t map; 1694 register vm_offset_t start; 1695 register vm_offset_t end; 1696 register vm_prot_t protection; 1697 { 1698 register vm_map_entry_t entry; 1699 vm_map_entry_t tmp_entry; 1700 1701 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1702 return (FALSE); 1703 } 1704 entry = tmp_entry; 1705 1706 while (start < end) { 1707 if (entry == &map->header) { 1708 return (FALSE); 1709 } 1710 /* 1711 * No holes allowed! 1712 */ 1713 1714 if (start < entry->start) { 1715 return (FALSE); 1716 } 1717 /* 1718 * Check protection associated with entry. 1719 */ 1720 1721 if ((entry->protection & protection) != protection) { 1722 return (FALSE); 1723 } 1724 /* go to next entry */ 1725 1726 start = entry->end; 1727 entry = entry->next; 1728 } 1729 return (TRUE); 1730 } 1731 1732 /* 1733 * vm_map_copy_entry: 1734 * 1735 * Copies the contents of the source entry to the destination 1736 * entry. The entries *must* be aligned properly. 1737 */ 1738 void 1739 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1740 vm_map_t src_map, dst_map; 1741 register vm_map_entry_t src_entry, dst_entry; 1742 { 1743 vm_object_t temp_object; 1744 1745 if (src_entry->is_sub_map || dst_entry->is_sub_map) 1746 return; 1747 1748 if (dst_entry->object.vm_object != NULL && 1749 (dst_entry->object.vm_object->flags & OBJ_INTERNAL) == 0) 1750 printf("vm_map_copy_entry: copying over permanent data!\n"); 1751 1752 /* 1753 * If our destination map was wired down, unwire it now. 1754 */ 1755 1756 if (dst_entry->wired_count != 0) 1757 vm_map_entry_unwire(dst_map, dst_entry); 1758 1759 /* 1760 * If we're dealing with a sharing map, we must remove the destination 1761 * pages from all maps (since we cannot know which maps this sharing 1762 * map belongs in). 1763 */ 1764 1765 if (dst_map->is_main_map) 1766 pmap_remove(dst_map->pmap, dst_entry->start, dst_entry->end); 1767 else 1768 vm_object_pmap_remove(dst_entry->object.vm_object, 1769 dst_entry->offset, 1770 dst_entry->offset + 1771 (dst_entry->end - dst_entry->start)); 1772 1773 if (src_entry->wired_count == 0) { 1774 1775 boolean_t src_needs_copy; 1776 1777 /* 1778 * If the source entry is marked needs_copy, it is already 1779 * write-protected. 1780 */ 1781 if (!src_entry->needs_copy) { 1782 1783 boolean_t su; 1784 1785 /* 1786 * If the source entry has only one mapping, we can 1787 * just protect the virtual address range. 1788 */ 1789 if (!(su = src_map->is_main_map)) { 1790 simple_lock(&src_map->ref_lock); 1791 su = (src_map->ref_count == 1); 1792 simple_unlock(&src_map->ref_lock); 1793 } 1794 if (su) { 1795 pmap_protect(src_map->pmap, 1796 src_entry->start, 1797 src_entry->end, 1798 src_entry->protection & ~VM_PROT_WRITE); 1799 } else { 1800 vm_object_pmap_copy(src_entry->object.vm_object, 1801 src_entry->offset, 1802 src_entry->offset + (src_entry->end 1803 - src_entry->start)); 1804 } 1805 } 1806 /* 1807 * Make a copy of the object. 1808 */ 1809 temp_object = dst_entry->object.vm_object; 1810 vm_object_copy(src_entry->object.vm_object, 1811 src_entry->offset, 1812 (vm_size_t) (src_entry->end - 1813 src_entry->start), 1814 &dst_entry->object.vm_object, 1815 &dst_entry->offset, 1816 &src_needs_copy); 1817 /* 1818 * If we didn't get a copy-object now, mark the source map 1819 * entry so that a shadow will be created to hold its changed 1820 * pages. 1821 */ 1822 if (src_needs_copy) 1823 src_entry->needs_copy = TRUE; 1824 1825 /* 1826 * The destination always needs to have a shadow created. 1827 */ 1828 dst_entry->needs_copy = TRUE; 1829 1830 /* 1831 * Mark the entries copy-on-write, so that write-enabling the 1832 * entry won't make copy-on-write pages writable. 1833 */ 1834 src_entry->copy_on_write = TRUE; 1835 dst_entry->copy_on_write = TRUE; 1836 /* 1837 * Get rid of the old object. 1838 */ 1839 vm_object_deallocate(temp_object); 1840 1841 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 1842 dst_entry->end - dst_entry->start, src_entry->start); 1843 } else { 1844 /* 1845 * Of course, wired down pages can't be set copy-on-write. 1846 * Cause wired pages to be copied into the new map by 1847 * simulating faults (the new pages are pageable) 1848 */ 1849 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 1850 } 1851 } 1852 1853 /* 1854 * vm_map_copy: 1855 * 1856 * Perform a virtual memory copy from the source 1857 * address map/range to the destination map/range. 1858 * 1859 * If src_destroy or dst_alloc is requested, 1860 * the source and destination regions should be 1861 * disjoint, not only in the top-level map, but 1862 * in the sharing maps as well. [The best way 1863 * to guarantee this is to use a new intermediate 1864 * map to make copies. This also reduces map 1865 * fragmentation.] 1866 */ 1867 int 1868 vm_map_copy(dst_map, src_map, 1869 dst_addr, len, src_addr, 1870 dst_alloc, src_destroy) 1871 vm_map_t dst_map; 1872 vm_map_t src_map; 1873 vm_offset_t dst_addr; 1874 vm_size_t len; 1875 vm_offset_t src_addr; 1876 boolean_t dst_alloc; 1877 boolean_t src_destroy; 1878 { 1879 register 1880 vm_map_entry_t src_entry; 1881 register 1882 vm_map_entry_t dst_entry; 1883 vm_map_entry_t tmp_entry; 1884 vm_offset_t src_start; 1885 vm_offset_t src_end; 1886 vm_offset_t dst_start; 1887 vm_offset_t dst_end; 1888 vm_offset_t src_clip; 1889 vm_offset_t dst_clip; 1890 int result; 1891 boolean_t old_src_destroy; 1892 1893 /* 1894 * XXX While we figure out why src_destroy screws up, we'll do it by 1895 * explicitly vm_map_delete'ing at the end. 1896 */ 1897 1898 old_src_destroy = src_destroy; 1899 src_destroy = FALSE; 1900 1901 /* 1902 * Compute start and end of region in both maps 1903 */ 1904 1905 src_start = src_addr; 1906 src_end = src_start + len; 1907 dst_start = dst_addr; 1908 dst_end = dst_start + len; 1909 1910 /* 1911 * Check that the region can exist in both source and destination. 1912 */ 1913 1914 if ((dst_end < dst_start) || (src_end < src_start)) 1915 return (KERN_NO_SPACE); 1916 1917 /* 1918 * Lock the maps in question -- we avoid deadlock by ordering lock 1919 * acquisition by map value 1920 */ 1921 1922 if (src_map == dst_map) { 1923 vm_map_lock(src_map); 1924 } else if ((int) src_map < (int) dst_map) { 1925 vm_map_lock(src_map); 1926 vm_map_lock(dst_map); 1927 } else { 1928 vm_map_lock(dst_map); 1929 vm_map_lock(src_map); 1930 } 1931 1932 result = KERN_SUCCESS; 1933 1934 /* 1935 * Check protections... source must be completely readable and 1936 * destination must be completely writable. [Note that if we're 1937 * allocating the destination region, we don't have to worry about 1938 * protection, but instead about whether the region exists.] 1939 */ 1940 1941 if (src_map->is_main_map && dst_map->is_main_map) { 1942 if (!vm_map_check_protection(src_map, src_start, src_end, 1943 VM_PROT_READ)) { 1944 result = KERN_PROTECTION_FAILURE; 1945 goto Return; 1946 } 1947 if (dst_alloc) { 1948 /* XXX Consider making this a vm_map_find instead */ 1949 if ((result = vm_map_insert(dst_map, NULL, 1950 (vm_offset_t) 0, dst_start, dst_end)) != KERN_SUCCESS) 1951 goto Return; 1952 } else if (!vm_map_check_protection(dst_map, dst_start, dst_end, 1953 VM_PROT_WRITE)) { 1954 result = KERN_PROTECTION_FAILURE; 1955 goto Return; 1956 } 1957 } 1958 /* 1959 * Find the start entries and clip. 1960 * 1961 * Note that checking protection asserts that the lookup cannot fail. 1962 * 1963 * Also note that we wait to do the second lookup until we have done the 1964 * first clip, as the clip may affect which entry we get! 1965 */ 1966 1967 (void) vm_map_lookup_entry(src_map, src_addr, &tmp_entry); 1968 src_entry = tmp_entry; 1969 vm_map_clip_start(src_map, src_entry, src_start); 1970 1971 (void) vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry); 1972 dst_entry = tmp_entry; 1973 vm_map_clip_start(dst_map, dst_entry, dst_start); 1974 1975 /* 1976 * If both source and destination entries are the same, retry the 1977 * first lookup, as it may have changed. 1978 */ 1979 1980 if (src_entry == dst_entry) { 1981 (void) vm_map_lookup_entry(src_map, src_addr, &tmp_entry); 1982 src_entry = tmp_entry; 1983 } 1984 /* 1985 * If source and destination entries are still the same, a null copy 1986 * is being performed. 1987 */ 1988 1989 if (src_entry == dst_entry) 1990 goto Return; 1991 1992 /* 1993 * Go through entries until we get to the end of the region. 1994 */ 1995 1996 while (src_start < src_end) { 1997 /* 1998 * Clip the entries to the endpoint of the entire region. 1999 */ 2000 2001 vm_map_clip_end(src_map, src_entry, src_end); 2002 vm_map_clip_end(dst_map, dst_entry, dst_end); 2003 2004 /* 2005 * Clip each entry to the endpoint of the other entry. 2006 */ 2007 2008 src_clip = src_entry->start + (dst_entry->end - dst_entry->start); 2009 vm_map_clip_end(src_map, src_entry, src_clip); 2010 2011 dst_clip = dst_entry->start + (src_entry->end - src_entry->start); 2012 vm_map_clip_end(dst_map, dst_entry, dst_clip); 2013 2014 /* 2015 * Both entries now match in size and relative endpoints. 2016 * 2017 * If both entries refer to a VM object, we can deal with them 2018 * now. 2019 */ 2020 2021 if (!src_entry->is_a_map && !dst_entry->is_a_map) { 2022 vm_map_copy_entry(src_map, dst_map, src_entry, 2023 dst_entry); 2024 } else { 2025 register vm_map_t new_dst_map; 2026 vm_offset_t new_dst_start; 2027 vm_size_t new_size; 2028 vm_map_t new_src_map; 2029 vm_offset_t new_src_start; 2030 2031 /* 2032 * We have to follow at least one sharing map. 2033 */ 2034 2035 new_size = (dst_entry->end - dst_entry->start); 2036 2037 if (src_entry->is_a_map) { 2038 new_src_map = src_entry->object.share_map; 2039 new_src_start = src_entry->offset; 2040 } else { 2041 new_src_map = src_map; 2042 new_src_start = src_entry->start; 2043 lock_set_recursive(&src_map->lock); 2044 } 2045 2046 if (dst_entry->is_a_map) { 2047 vm_offset_t new_dst_end; 2048 2049 new_dst_map = dst_entry->object.share_map; 2050 new_dst_start = dst_entry->offset; 2051 2052 /* 2053 * Since the destination sharing entries will 2054 * be merely deallocated, we can do that now, 2055 * and replace the region with a null object. 2056 * [This prevents splitting the source map to 2057 * match the form of the destination map.] 2058 * Note that we can only do so if the source 2059 * and destination do not overlap. 2060 */ 2061 2062 new_dst_end = new_dst_start + new_size; 2063 2064 if (new_dst_map != new_src_map) { 2065 vm_map_lock(new_dst_map); 2066 (void) vm_map_delete(new_dst_map, 2067 new_dst_start, 2068 new_dst_end); 2069 (void) vm_map_insert(new_dst_map, 2070 NULL, 2071 (vm_offset_t) 0, 2072 new_dst_start, 2073 new_dst_end); 2074 vm_map_unlock(new_dst_map); 2075 } 2076 } else { 2077 new_dst_map = dst_map; 2078 new_dst_start = dst_entry->start; 2079 lock_set_recursive(&dst_map->lock); 2080 } 2081 2082 /* 2083 * Recursively copy the sharing map. 2084 */ 2085 2086 (void) vm_map_copy(new_dst_map, new_src_map, 2087 new_dst_start, new_size, new_src_start, 2088 FALSE, FALSE); 2089 2090 if (dst_map == new_dst_map) 2091 lock_clear_recursive(&dst_map->lock); 2092 if (src_map == new_src_map) 2093 lock_clear_recursive(&src_map->lock); 2094 } 2095 2096 /* 2097 * Update variables for next pass through the loop. 2098 */ 2099 2100 src_start = src_entry->end; 2101 src_entry = src_entry->next; 2102 dst_start = dst_entry->end; 2103 dst_entry = dst_entry->next; 2104 2105 /* 2106 * If the source is to be destroyed, here is the place to do 2107 * it. 2108 */ 2109 2110 if (src_destroy && src_map->is_main_map && 2111 dst_map->is_main_map) 2112 vm_map_entry_delete(src_map, src_entry->prev); 2113 } 2114 2115 /* 2116 * Update the physical maps as appropriate 2117 */ 2118 2119 if (src_map->is_main_map && dst_map->is_main_map) { 2120 if (src_destroy) 2121 pmap_remove(src_map->pmap, src_addr, src_addr + len); 2122 } 2123 /* 2124 * Unlock the maps 2125 */ 2126 2127 Return:; 2128 2129 if (old_src_destroy) 2130 vm_map_delete(src_map, src_addr, src_addr + len); 2131 2132 vm_map_unlock(src_map); 2133 if (src_map != dst_map) 2134 vm_map_unlock(dst_map); 2135 2136 return (result); 2137 } 2138 2139 /* 2140 * vmspace_fork: 2141 * Create a new process vmspace structure and vm_map 2142 * based on those of an existing process. The new map 2143 * is based on the old map, according to the inheritance 2144 * values on the regions in that map. 2145 * 2146 * The source map must not be locked. 2147 */ 2148 struct vmspace * 2149 vmspace_fork(vm1) 2150 register struct vmspace *vm1; 2151 { 2152 register struct vmspace *vm2; 2153 vm_map_t old_map = &vm1->vm_map; 2154 vm_map_t new_map; 2155 vm_map_entry_t old_entry; 2156 vm_map_entry_t new_entry; 2157 pmap_t new_pmap; 2158 2159 vm_map_lock(old_map); 2160 2161 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, 2162 old_map->entries_pageable); 2163 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2164 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2165 new_pmap = &vm2->vm_pmap; /* XXX */ 2166 new_map = &vm2->vm_map; /* XXX */ 2167 2168 old_entry = old_map->header.next; 2169 2170 while (old_entry != &old_map->header) { 2171 if (old_entry->is_sub_map) 2172 panic("vm_map_fork: encountered a submap"); 2173 2174 switch (old_entry->inheritance) { 2175 case VM_INHERIT_NONE: 2176 break; 2177 2178 case VM_INHERIT_SHARE: 2179 /* 2180 * If we don't already have a sharing map: 2181 */ 2182 2183 if (!old_entry->is_a_map) { 2184 vm_map_t new_share_map; 2185 vm_map_entry_t new_share_entry; 2186 2187 /* 2188 * Create a new sharing map 2189 */ 2190 2191 new_share_map = vm_map_create(NULL, 2192 old_entry->start, 2193 old_entry->end, 2194 TRUE); 2195 new_share_map->is_main_map = FALSE; 2196 2197 /* 2198 * Create the only sharing entry from the old 2199 * task map entry. 2200 */ 2201 2202 new_share_entry = 2203 vm_map_entry_create(new_share_map); 2204 *new_share_entry = *old_entry; 2205 new_share_entry->wired_count = 0; 2206 2207 /* 2208 * Insert the entry into the new sharing map 2209 */ 2210 2211 vm_map_entry_link(new_share_map, 2212 new_share_map->header.prev, 2213 new_share_entry); 2214 2215 /* 2216 * Fix up the task map entry to refer to the 2217 * sharing map now. 2218 */ 2219 2220 old_entry->is_a_map = TRUE; 2221 old_entry->object.share_map = new_share_map; 2222 old_entry->offset = old_entry->start; 2223 } 2224 /* 2225 * Clone the entry, referencing the sharing map. 2226 */ 2227 2228 new_entry = vm_map_entry_create(new_map); 2229 *new_entry = *old_entry; 2230 new_entry->wired_count = 0; 2231 vm_map_reference(new_entry->object.share_map); 2232 2233 /* 2234 * Insert the entry into the new map -- we know we're 2235 * inserting at the end of the new map. 2236 */ 2237 2238 vm_map_entry_link(new_map, new_map->header.prev, 2239 new_entry); 2240 2241 /* 2242 * Update the physical map 2243 */ 2244 2245 pmap_copy(new_map->pmap, old_map->pmap, 2246 new_entry->start, 2247 (old_entry->end - old_entry->start), 2248 old_entry->start); 2249 break; 2250 2251 case VM_INHERIT_COPY: 2252 /* 2253 * Clone the entry and link into the map. 2254 */ 2255 2256 new_entry = vm_map_entry_create(new_map); 2257 *new_entry = *old_entry; 2258 new_entry->wired_count = 0; 2259 new_entry->object.vm_object = NULL; 2260 new_entry->is_a_map = FALSE; 2261 vm_map_entry_link(new_map, new_map->header.prev, 2262 new_entry); 2263 if (old_entry->is_a_map) { 2264 int check; 2265 2266 check = vm_map_copy(new_map, 2267 old_entry->object.share_map, 2268 new_entry->start, 2269 (vm_size_t) (new_entry->end - 2270 new_entry->start), 2271 old_entry->offset, 2272 FALSE, FALSE); 2273 if (check != KERN_SUCCESS) 2274 printf("vm_map_fork: copy in share_map region failed\n"); 2275 } else { 2276 vm_map_copy_entry(old_map, new_map, old_entry, 2277 new_entry); 2278 } 2279 break; 2280 } 2281 old_entry = old_entry->next; 2282 } 2283 2284 new_map->size = old_map->size; 2285 vm_map_unlock(old_map); 2286 2287 return (vm2); 2288 } 2289 2290 /* 2291 * vm_map_lookup: 2292 * 2293 * Finds the VM object, offset, and 2294 * protection for a given virtual address in the 2295 * specified map, assuming a page fault of the 2296 * type specified. 2297 * 2298 * Leaves the map in question locked for read; return 2299 * values are guaranteed until a vm_map_lookup_done 2300 * call is performed. Note that the map argument 2301 * is in/out; the returned map must be used in 2302 * the call to vm_map_lookup_done. 2303 * 2304 * A handle (out_entry) is returned for use in 2305 * vm_map_lookup_done, to make that fast. 2306 * 2307 * If a lookup is requested with "write protection" 2308 * specified, the map may be changed to perform virtual 2309 * copying operations, although the data referenced will 2310 * remain the same. 2311 */ 2312 int 2313 vm_map_lookup(var_map, vaddr, fault_type, out_entry, 2314 object, offset, out_prot, wired, single_use) 2315 vm_map_t *var_map; /* IN/OUT */ 2316 register vm_offset_t vaddr; 2317 register vm_prot_t fault_type; 2318 2319 vm_map_entry_t *out_entry; /* OUT */ 2320 vm_object_t *object; /* OUT */ 2321 vm_offset_t *offset; /* OUT */ 2322 vm_prot_t *out_prot; /* OUT */ 2323 boolean_t *wired; /* OUT */ 2324 boolean_t *single_use; /* OUT */ 2325 { 2326 vm_map_t share_map; 2327 vm_offset_t share_offset; 2328 register vm_map_entry_t entry; 2329 register vm_map_t map = *var_map; 2330 register vm_prot_t prot; 2331 register boolean_t su; 2332 2333 RetryLookup:; 2334 2335 /* 2336 * Lookup the faulting address. 2337 */ 2338 2339 vm_map_lock_read(map); 2340 2341 #define RETURN(why) \ 2342 { \ 2343 vm_map_unlock_read(map); \ 2344 return(why); \ 2345 } 2346 2347 /* 2348 * If the map has an interesting hint, try it before calling full 2349 * blown lookup routine. 2350 */ 2351 2352 simple_lock(&map->hint_lock); 2353 entry = map->hint; 2354 simple_unlock(&map->hint_lock); 2355 2356 *out_entry = entry; 2357 2358 if ((entry == &map->header) || 2359 (vaddr < entry->start) || (vaddr >= entry->end)) { 2360 vm_map_entry_t tmp_entry; 2361 2362 /* 2363 * Entry was either not a valid hint, or the vaddr was not 2364 * contained in the entry, so do a full lookup. 2365 */ 2366 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2367 RETURN(KERN_INVALID_ADDRESS); 2368 2369 entry = tmp_entry; 2370 *out_entry = entry; 2371 } 2372 /* 2373 * Handle submaps. 2374 */ 2375 2376 if (entry->is_sub_map) { 2377 vm_map_t old_map = map; 2378 2379 *var_map = map = entry->object.sub_map; 2380 vm_map_unlock_read(old_map); 2381 goto RetryLookup; 2382 } 2383 /* 2384 * Check whether this task is allowed to have this page. 2385 */ 2386 2387 prot = entry->protection; 2388 if ((fault_type & (prot)) != fault_type) 2389 RETURN(KERN_PROTECTION_FAILURE); 2390 2391 /* 2392 * If this page is not pageable, we have to get it for all possible 2393 * accesses. 2394 */ 2395 2396 *wired = (entry->wired_count != 0); 2397 if (*wired) 2398 prot = fault_type = entry->protection; 2399 2400 /* 2401 * If we don't already have a VM object, track it down. 2402 */ 2403 2404 su = !entry->is_a_map; 2405 if (su) { 2406 share_map = map; 2407 share_offset = vaddr; 2408 } else { 2409 vm_map_entry_t share_entry; 2410 2411 /* 2412 * Compute the sharing map, and offset into it. 2413 */ 2414 2415 share_map = entry->object.share_map; 2416 share_offset = (vaddr - entry->start) + entry->offset; 2417 2418 /* 2419 * Look for the backing store object and offset 2420 */ 2421 2422 vm_map_lock_read(share_map); 2423 2424 if (!vm_map_lookup_entry(share_map, share_offset, 2425 &share_entry)) { 2426 vm_map_unlock_read(share_map); 2427 RETURN(KERN_INVALID_ADDRESS); 2428 } 2429 entry = share_entry; 2430 } 2431 2432 /* 2433 * If the entry was copy-on-write, we either ... 2434 */ 2435 2436 if (entry->needs_copy) { 2437 /* 2438 * If we want to write the page, we may as well handle that 2439 * now since we've got the sharing map locked. 2440 * 2441 * If we don't need to write the page, we just demote the 2442 * permissions allowed. 2443 */ 2444 2445 if (fault_type & VM_PROT_WRITE) { 2446 /* 2447 * Make a new object, and place it in the object 2448 * chain. Note that no new references have appeared 2449 * -- one just moved from the share map to the new 2450 * object. 2451 */ 2452 2453 if (lock_read_to_write(&share_map->lock)) { 2454 if (share_map != map) 2455 vm_map_unlock_read(map); 2456 goto RetryLookup; 2457 } 2458 vm_object_shadow( 2459 &entry->object.vm_object, 2460 &entry->offset, 2461 (vm_size_t) (entry->end - entry->start)); 2462 2463 entry->needs_copy = FALSE; 2464 2465 lock_write_to_read(&share_map->lock); 2466 } else { 2467 /* 2468 * We're attempting to read a copy-on-write page -- 2469 * don't allow writes. 2470 */ 2471 2472 prot &= (~VM_PROT_WRITE); 2473 } 2474 } 2475 /* 2476 * Create an object if necessary. 2477 */ 2478 if (entry->object.vm_object == NULL) { 2479 2480 if (lock_read_to_write(&share_map->lock)) { 2481 if (share_map != map) 2482 vm_map_unlock_read(map); 2483 goto RetryLookup; 2484 } 2485 entry->object.vm_object = vm_object_allocate( 2486 (vm_size_t) (entry->end - entry->start)); 2487 entry->offset = 0; 2488 lock_write_to_read(&share_map->lock); 2489 } 2490 /* 2491 * Return the object/offset from this entry. If the entry was 2492 * copy-on-write or empty, it has been fixed up. 2493 */ 2494 2495 *offset = (share_offset - entry->start) + entry->offset; 2496 *object = entry->object.vm_object; 2497 2498 /* 2499 * Return whether this is the only map sharing this data. 2500 */ 2501 2502 if (!su) { 2503 simple_lock(&share_map->ref_lock); 2504 su = (share_map->ref_count == 1); 2505 simple_unlock(&share_map->ref_lock); 2506 } 2507 *out_prot = prot; 2508 *single_use = su; 2509 2510 return (KERN_SUCCESS); 2511 2512 #undef RETURN 2513 } 2514 2515 /* 2516 * vm_map_lookup_done: 2517 * 2518 * Releases locks acquired by a vm_map_lookup 2519 * (according to the handle returned by that lookup). 2520 */ 2521 2522 void 2523 vm_map_lookup_done(map, entry) 2524 register vm_map_t map; 2525 vm_map_entry_t entry; 2526 { 2527 /* 2528 * If this entry references a map, unlock it first. 2529 */ 2530 2531 if (entry->is_a_map) 2532 vm_map_unlock_read(entry->object.share_map); 2533 2534 /* 2535 * Unlock the main-level map 2536 */ 2537 2538 vm_map_unlock_read(map); 2539 } 2540 2541 /* 2542 * Routine: vm_map_simplify 2543 * Purpose: 2544 * Attempt to simplify the map representation in 2545 * the vicinity of the given starting address. 2546 * Note: 2547 * This routine is intended primarily to keep the 2548 * kernel maps more compact -- they generally don't 2549 * benefit from the "expand a map entry" technology 2550 * at allocation time because the adjacent entry 2551 * is often wired down. 2552 */ 2553 void 2554 vm_map_simplify(map, start) 2555 vm_map_t map; 2556 vm_offset_t start; 2557 { 2558 vm_map_entry_t this_entry; 2559 vm_map_entry_t prev_entry; 2560 2561 vm_map_lock(map); 2562 if ( 2563 (vm_map_lookup_entry(map, start, &this_entry)) && 2564 ((prev_entry = this_entry->prev) != &map->header) && 2565 2566 (prev_entry->end == start) && 2567 (map->is_main_map) && 2568 2569 (prev_entry->is_a_map == FALSE) && 2570 (prev_entry->is_sub_map == FALSE) && 2571 2572 (this_entry->is_a_map == FALSE) && 2573 (this_entry->is_sub_map == FALSE) && 2574 2575 (prev_entry->inheritance == this_entry->inheritance) && 2576 (prev_entry->protection == this_entry->protection) && 2577 (prev_entry->max_protection == this_entry->max_protection) && 2578 (prev_entry->wired_count == this_entry->wired_count) && 2579 2580 (prev_entry->copy_on_write == this_entry->copy_on_write) && 2581 (prev_entry->needs_copy == this_entry->needs_copy) && 2582 2583 (prev_entry->object.vm_object == this_entry->object.vm_object) && 2584 ((prev_entry->offset + (prev_entry->end - prev_entry->start)) 2585 == this_entry->offset) 2586 ) { 2587 if (map->first_free == this_entry) 2588 map->first_free = prev_entry; 2589 2590 if (!this_entry->object.vm_object->paging_in_progress) { 2591 SAVE_HINT(map, prev_entry); 2592 vm_map_entry_unlink(map, this_entry); 2593 prev_entry->end = this_entry->end; 2594 vm_object_deallocate(this_entry->object.vm_object); 2595 vm_map_entry_dispose(map, this_entry); 2596 } 2597 } 2598 vm_map_unlock(map); 2599 } 2600 2601 /* 2602 * vm_map_print: [ debug ] 2603 */ 2604 void 2605 vm_map_print(map, full) 2606 register vm_map_t map; 2607 boolean_t full; 2608 { 2609 register vm_map_entry_t entry; 2610 extern int indent; 2611 2612 iprintf("%s map 0x%x: pmap=0x%x,ref=%d,nentries=%d,version=%d\n", 2613 (map->is_main_map ? "Task" : "Share"), 2614 (int) map, (int) (map->pmap), map->ref_count, map->nentries, 2615 map->timestamp); 2616 2617 if (!full && indent) 2618 return; 2619 2620 indent += 2; 2621 for (entry = map->header.next; entry != &map->header; 2622 entry = entry->next) { 2623 iprintf("map entry 0x%x: start=0x%x, end=0x%x, ", 2624 (int) entry, (int) entry->start, (int) entry->end); 2625 if (map->is_main_map) { 2626 static char *inheritance_name[4] = 2627 {"share", "copy", "none", "donate_copy"}; 2628 2629 printf("prot=%x/%x/%s, ", 2630 entry->protection, 2631 entry->max_protection, 2632 inheritance_name[entry->inheritance]); 2633 if (entry->wired_count != 0) 2634 printf("wired, "); 2635 } 2636 if (entry->is_a_map || entry->is_sub_map) { 2637 printf("share=0x%x, offset=0x%x\n", 2638 (int) entry->object.share_map, 2639 (int) entry->offset); 2640 if ((entry->prev == &map->header) || 2641 (!entry->prev->is_a_map) || 2642 (entry->prev->object.share_map != 2643 entry->object.share_map)) { 2644 indent += 2; 2645 vm_map_print(entry->object.share_map, full); 2646 indent -= 2; 2647 } 2648 } else { 2649 printf("object=0x%x, offset=0x%x", 2650 (int) entry->object.vm_object, 2651 (int) entry->offset); 2652 if (entry->copy_on_write) 2653 printf(", copy (%s)", 2654 entry->needs_copy ? "needed" : "done"); 2655 printf("\n"); 2656 2657 if ((entry->prev == &map->header) || 2658 (entry->prev->is_a_map) || 2659 (entry->prev->object.vm_object != 2660 entry->object.vm_object)) { 2661 indent += 2; 2662 vm_object_print(entry->object.vm_object, full); 2663 indent -= 2; 2664 } 2665 } 2666 } 2667 indent -= 2; 2668 } 2669