xref: /freebsd/sys/vm/vm_map.c (revision 13464e4a44fc58490a03bb8bfc7e3c972e9c30b2)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137     vm_map_entry_t gap_entry);
138 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
139     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
140 #ifdef INVARIANTS
141 static void vm_map_zdtor(void *mem, int size, void *arg);
142 static void vmspace_zdtor(void *mem, int size, void *arg);
143 #endif
144 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
145     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
146     int cow);
147 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
148     vm_offset_t failed_addr);
149 
150 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
151     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
152      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
153 
154 /*
155  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
156  * stable.
157  */
158 #define PROC_VMSPACE_LOCK(p) do { } while (0)
159 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
160 
161 /*
162  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
163  *
164  *	Asserts that the starting and ending region
165  *	addresses fall within the valid range of the map.
166  */
167 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
168 		{					\
169 		if (start < vm_map_min(map))		\
170 			start = vm_map_min(map);	\
171 		if (end > vm_map_max(map))		\
172 			end = vm_map_max(map);		\
173 		if (start > end)			\
174 			start = end;			\
175 		}
176 
177 /*
178  *	vm_map_startup:
179  *
180  *	Initialize the vm_map module.  Must be called before
181  *	any other vm_map routines.
182  *
183  *	Map and entry structures are allocated from the general
184  *	purpose memory pool with some exceptions:
185  *
186  *	- The kernel map and kmem submap are allocated statically.
187  *	- Kernel map entries are allocated out of a static pool.
188  *
189  *	These restrictions are necessary since malloc() uses the
190  *	maps and requires map entries.
191  */
192 
193 void
194 vm_map_startup(void)
195 {
196 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
197 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
198 #ifdef INVARIANTS
199 	    vm_map_zdtor,
200 #else
201 	    NULL,
202 #endif
203 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	uma_prealloc(mapzone, MAX_KMAP);
205 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
206 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
207 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
208 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
210 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
211 #ifdef INVARIANTS
212 	    vmspace_zdtor,
213 #else
214 	    NULL,
215 #endif
216 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
217 }
218 
219 static int
220 vmspace_zinit(void *mem, int size, int flags)
221 {
222 	struct vmspace *vm;
223 
224 	vm = (struct vmspace *)mem;
225 
226 	vm->vm_map.pmap = NULL;
227 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
228 	PMAP_LOCK_INIT(vmspace_pmap(vm));
229 	return (0);
230 }
231 
232 static int
233 vm_map_zinit(void *mem, int size, int flags)
234 {
235 	vm_map_t map;
236 
237 	map = (vm_map_t)mem;
238 	memset(map, 0, sizeof(*map));
239 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
240 	sx_init(&map->lock, "vm map (user)");
241 	return (0);
242 }
243 
244 #ifdef INVARIANTS
245 static void
246 vmspace_zdtor(void *mem, int size, void *arg)
247 {
248 	struct vmspace *vm;
249 
250 	vm = (struct vmspace *)mem;
251 
252 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
253 }
254 static void
255 vm_map_zdtor(void *mem, int size, void *arg)
256 {
257 	vm_map_t map;
258 
259 	map = (vm_map_t)mem;
260 	KASSERT(map->nentries == 0,
261 	    ("map %p nentries == %d on free.",
262 	    map, map->nentries));
263 	KASSERT(map->size == 0,
264 	    ("map %p size == %lu on free.",
265 	    map, (unsigned long)map->size));
266 }
267 #endif	/* INVARIANTS */
268 
269 /*
270  * Allocate a vmspace structure, including a vm_map and pmap,
271  * and initialize those structures.  The refcnt is set to 1.
272  *
273  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
274  */
275 struct vmspace *
276 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
277 {
278 	struct vmspace *vm;
279 
280 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
281 
282 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
283 
284 	if (pinit == NULL)
285 		pinit = &pmap_pinit;
286 
287 	if (!pinit(vmspace_pmap(vm))) {
288 		uma_zfree(vmspace_zone, vm);
289 		return (NULL);
290 	}
291 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293 	vm->vm_refcnt = 1;
294 	vm->vm_shm = NULL;
295 	vm->vm_swrss = 0;
296 	vm->vm_tsize = 0;
297 	vm->vm_dsize = 0;
298 	vm->vm_ssize = 0;
299 	vm->vm_taddr = 0;
300 	vm->vm_daddr = 0;
301 	vm->vm_maxsaddr = 0;
302 	return (vm);
303 }
304 
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309 
310 	PROC_LOCK(p);
311 	racct_set(p, RACCT_DATA, 0);
312 	racct_set(p, RACCT_STACK, 0);
313 	racct_set(p, RACCT_RSS, 0);
314 	racct_set(p, RACCT_MEMLOCK, 0);
315 	racct_set(p, RACCT_VMEM, 0);
316 	PROC_UNLOCK(p);
317 }
318 #endif
319 
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323 
324 	CTR1(KTR_VM, "vmspace_free: %p", vm);
325 
326 	/*
327 	 * Make sure any SysV shm is freed, it might not have been in
328 	 * exit1().
329 	 */
330 	shmexit(vm);
331 
332 	/*
333 	 * Lock the map, to wait out all other references to it.
334 	 * Delete all of the mappings and pages they hold, then call
335 	 * the pmap module to reclaim anything left.
336 	 */
337 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
338 	    vm->vm_map.max_offset);
339 
340 	pmap_release(vmspace_pmap(vm));
341 	vm->vm_map.pmap = NULL;
342 	uma_zfree(vmspace_zone, vm);
343 }
344 
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348 
349 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350 	    "vmspace_free() called");
351 
352 	if (vm->vm_refcnt == 0)
353 		panic("vmspace_free: attempt to free already freed vmspace");
354 
355 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356 		vmspace_dofree(vm);
357 }
358 
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362 	struct vmspace *vm;
363 
364 	PROC_VMSPACE_LOCK(p);
365 	vm = p->p_vmspace;
366 	p->p_vmspace = NULL;
367 	PROC_VMSPACE_UNLOCK(p);
368 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369 	vmspace_free(vm);
370 }
371 
372 void
373 vmspace_exit(struct thread *td)
374 {
375 	int refcnt;
376 	struct vmspace *vm;
377 	struct proc *p;
378 
379 	/*
380 	 * Release user portion of address space.
381 	 * This releases references to vnodes,
382 	 * which could cause I/O if the file has been unlinked.
383 	 * Need to do this early enough that we can still sleep.
384 	 *
385 	 * The last exiting process to reach this point releases as
386 	 * much of the environment as it can. vmspace_dofree() is the
387 	 * slower fallback in case another process had a temporary
388 	 * reference to the vmspace.
389 	 */
390 
391 	p = td->td_proc;
392 	vm = p->p_vmspace;
393 	atomic_add_int(&vmspace0.vm_refcnt, 1);
394 	do {
395 		refcnt = vm->vm_refcnt;
396 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397 			/* Switch now since other proc might free vmspace */
398 			PROC_VMSPACE_LOCK(p);
399 			p->p_vmspace = &vmspace0;
400 			PROC_VMSPACE_UNLOCK(p);
401 			pmap_activate(td);
402 		}
403 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
404 	if (refcnt == 1) {
405 		if (p->p_vmspace != vm) {
406 			/* vmspace not yet freed, switch back */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = vm;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 		pmap_remove_pages(vmspace_pmap(vm));
413 		/* Switch now since this proc will free vmspace */
414 		PROC_VMSPACE_LOCK(p);
415 		p->p_vmspace = &vmspace0;
416 		PROC_VMSPACE_UNLOCK(p);
417 		pmap_activate(td);
418 		vmspace_dofree(vm);
419 	}
420 #ifdef RACCT
421 	if (racct_enable)
422 		vmspace_container_reset(p);
423 #endif
424 }
425 
426 /* Acquire reference to vmspace owned by another process. */
427 
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431 	struct vmspace *vm;
432 	int refcnt;
433 
434 	PROC_VMSPACE_LOCK(p);
435 	vm = p->p_vmspace;
436 	if (vm == NULL) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		return (NULL);
439 	}
440 	do {
441 		refcnt = vm->vm_refcnt;
442 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
443 			PROC_VMSPACE_UNLOCK(p);
444 			return (NULL);
445 		}
446 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
447 	if (vm != p->p_vmspace) {
448 		PROC_VMSPACE_UNLOCK(p);
449 		vmspace_free(vm);
450 		return (NULL);
451 	}
452 	PROC_VMSPACE_UNLOCK(p);
453 	return (vm);
454 }
455 
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475 	struct vmspace *oldvm;
476 
477 	/* XXX: Need some way to assert that this is an aio daemon. */
478 
479 	KASSERT(newvm->vm_refcnt > 0,
480 	    ("vmspace_switch_aio: newvm unreferenced"));
481 
482 	oldvm = curproc->p_vmspace;
483 	if (oldvm == newvm)
484 		return;
485 
486 	/*
487 	 * Point to the new address space and refer to it.
488 	 */
489 	curproc->p_vmspace = newvm;
490 	atomic_add_int(&newvm->vm_refcnt, 1);
491 
492 	/* Activate the new mapping. */
493 	pmap_activate(curthread);
494 
495 	/* Remove the daemon's reference to the old address space. */
496 	KASSERT(oldvm->vm_refcnt > 1,
497 	    ("vmspace_switch_aio: oldvm dropping last reference"));
498 	vmspace_free(oldvm);
499 }
500 
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504 
505 	if (map->system_map)
506 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
507 	else
508 		sx_xlock_(&map->lock, file, line);
509 	map->timestamp++;
510 }
511 
512 static void
513 vm_map_process_deferred(void)
514 {
515 	struct thread *td;
516 	vm_map_entry_t entry, next;
517 	vm_object_t object;
518 
519 	td = curthread;
520 	entry = td->td_map_def_user;
521 	td->td_map_def_user = NULL;
522 	while (entry != NULL) {
523 		next = entry->next;
524 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525 			/*
526 			 * Decrement the object's writemappings and
527 			 * possibly the vnode's v_writecount.
528 			 */
529 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530 			    ("Submap with writecount"));
531 			object = entry->object.vm_object;
532 			KASSERT(object != NULL, ("No object for writecount"));
533 			vnode_pager_release_writecount(object, entry->start,
534 			    entry->end);
535 		}
536 		vm_map_entry_deallocate(entry, FALSE);
537 		entry = next;
538 	}
539 }
540 
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544 
545 	if (map->system_map)
546 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547 	else {
548 		sx_xunlock_(&map->lock, file, line);
549 		vm_map_process_deferred();
550 	}
551 }
552 
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556 
557 	if (map->system_map)
558 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
559 	else
560 		sx_slock_(&map->lock, file, line);
561 }
562 
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566 
567 	if (map->system_map)
568 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569 	else {
570 		sx_sunlock_(&map->lock, file, line);
571 		vm_map_process_deferred();
572 	}
573 }
574 
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578 	int error;
579 
580 	error = map->system_map ?
581 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582 	    !sx_try_xlock_(&map->lock, file, line);
583 	if (error == 0)
584 		map->timestamp++;
585 	return (error == 0);
586 }
587 
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591 	int error;
592 
593 	error = map->system_map ?
594 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595 	    !sx_try_slock_(&map->lock, file, line);
596 	return (error == 0);
597 }
598 
599 /*
600  *	_vm_map_lock_upgrade:	[ internal use only ]
601  *
602  *	Tries to upgrade a read (shared) lock on the specified map to a write
603  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *	returned without a read or write lock held.
606  *
607  *	Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612 	unsigned int last_timestamp;
613 
614 	if (map->system_map) {
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	} else {
617 		if (!sx_try_upgrade_(&map->lock, file, line)) {
618 			last_timestamp = map->timestamp;
619 			sx_sunlock_(&map->lock, file, line);
620 			vm_map_process_deferred();
621 			/*
622 			 * If the map's timestamp does not change while the
623 			 * map is unlocked, then the upgrade succeeds.
624 			 */
625 			sx_xlock_(&map->lock, file, line);
626 			if (last_timestamp != map->timestamp) {
627 				sx_xunlock_(&map->lock, file, line);
628 				return (1);
629 			}
630 		}
631 	}
632 	map->timestamp++;
633 	return (0);
634 }
635 
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639 
640 	if (map->system_map) {
641 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642 	} else
643 		sx_downgrade_(&map->lock, file, line);
644 }
645 
646 /*
647  *	vm_map_locked:
648  *
649  *	Returns a non-zero value if the caller holds a write (exclusive) lock
650  *	on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655 
656 	if (map->system_map)
657 		return (mtx_owned(&map->system_mtx));
658 	else
659 		return (sx_xlocked(&map->lock));
660 }
661 
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666 
667 	if (map->system_map)
668 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669 	else
670 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672 
673 #define	VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define	VM_MAP_ASSERT_LOCKED(map)
677 #endif
678 
679 /*
680  *	_vm_map_unlock_and_wait:
681  *
682  *	Atomically releases the lock on the specified map and puts the calling
683  *	thread to sleep.  The calling thread will remain asleep until either
684  *	vm_map_wakeup() is performed on the map or the specified timeout is
685  *	exceeded.
686  *
687  *	WARNING!  This function does not perform deferred deallocations of
688  *	objects and map	entries.  Therefore, the calling thread is expected to
689  *	reacquire the map lock after reawakening and later perform an ordinary
690  *	unlock operation, such as vm_map_unlock(), before completing its
691  *	operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696 
697 	mtx_lock(&map_sleep_mtx);
698 	if (map->system_map)
699 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700 	else
701 		sx_xunlock_(&map->lock, file, line);
702 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703 	    timo));
704 }
705 
706 /*
707  *	vm_map_wakeup:
708  *
709  *	Awaken any threads that have slept on the map using
710  *	vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715 
716 	/*
717 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
718 	 * from being performed (and lost) between the map unlock
719 	 * and the msleep() in _vm_map_unlock_and_wait().
720 	 */
721 	mtx_lock(&map_sleep_mtx);
722 	mtx_unlock(&map_sleep_mtx);
723 	wakeup(&map->root);
724 }
725 
726 void
727 vm_map_busy(vm_map_t map)
728 {
729 
730 	VM_MAP_ASSERT_LOCKED(map);
731 	map->busy++;
732 }
733 
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737 
738 	VM_MAP_ASSERT_LOCKED(map);
739 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742 		wakeup(&map->busy);
743 	}
744 }
745 
746 void
747 vm_map_wait_busy(vm_map_t map)
748 {
749 
750 	VM_MAP_ASSERT_LOCKED(map);
751 	while (map->busy) {
752 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753 		if (map->system_map)
754 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755 		else
756 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757 	}
758 	map->timestamp++;
759 }
760 
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764 	return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766 
767 /*
768  *	vm_map_create:
769  *
770  *	Creates and returns a new empty VM map with
771  *	the given physical map structure, and having
772  *	the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777 	vm_map_t result;
778 
779 	result = uma_zalloc(mapzone, M_WAITOK);
780 	CTR1(KTR_VM, "vm_map_create: %p", result);
781 	_vm_map_init(result, pmap, min, max);
782 	return (result);
783 }
784 
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792 
793 	map->header.next = map->header.prev = &map->header;
794 	map->needs_wakeup = FALSE;
795 	map->system_map = 0;
796 	map->pmap = pmap;
797 	map->min_offset = min;
798 	map->max_offset = max;
799 	map->flags = 0;
800 	map->root = NULL;
801 	map->timestamp = 0;
802 	map->busy = 0;
803 }
804 
805 void
806 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
807 {
808 
809 	_vm_map_init(map, pmap, min, max);
810 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
811 	sx_init(&map->lock, "user map");
812 }
813 
814 /*
815  *	vm_map_entry_dispose:	[ internal use only ]
816  *
817  *	Inverse of vm_map_entry_create.
818  */
819 static void
820 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
821 {
822 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
823 }
824 
825 /*
826  *	vm_map_entry_create:	[ internal use only ]
827  *
828  *	Allocates a VM map entry for insertion.
829  *	No entry fields are filled in.
830  */
831 static vm_map_entry_t
832 vm_map_entry_create(vm_map_t map)
833 {
834 	vm_map_entry_t new_entry;
835 
836 	if (map->system_map)
837 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
838 	else
839 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
840 	if (new_entry == NULL)
841 		panic("vm_map_entry_create: kernel resources exhausted");
842 	return (new_entry);
843 }
844 
845 /*
846  *	vm_map_entry_set_behavior:
847  *
848  *	Set the expected access behavior, either normal, random, or
849  *	sequential.
850  */
851 static inline void
852 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
853 {
854 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
855 	    (behavior & MAP_ENTRY_BEHAV_MASK);
856 }
857 
858 /*
859  *	vm_map_entry_set_max_free:
860  *
861  *	Set the max_free field in a vm_map_entry.
862  */
863 static inline void
864 vm_map_entry_set_max_free(vm_map_entry_t entry)
865 {
866 
867 	entry->max_free = entry->adj_free;
868 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
869 		entry->max_free = entry->left->max_free;
870 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
871 		entry->max_free = entry->right->max_free;
872 }
873 
874 /*
875  *	vm_map_entry_splay:
876  *
877  *	The Sleator and Tarjan top-down splay algorithm with the
878  *	following variation.  Max_free must be computed bottom-up, so
879  *	on the downward pass, maintain the left and right spines in
880  *	reverse order.  Then, make a second pass up each side to fix
881  *	the pointers and compute max_free.  The time bound is O(log n)
882  *	amortized.
883  *
884  *	The new root is the vm_map_entry containing "addr", or else an
885  *	adjacent entry (lower or higher) if addr is not in the tree.
886  *
887  *	The map must be locked, and leaves it so.
888  *
889  *	Returns: the new root.
890  */
891 static vm_map_entry_t
892 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
893 {
894 	vm_map_entry_t llist, rlist;
895 	vm_map_entry_t ltree, rtree;
896 	vm_map_entry_t y;
897 
898 	/* Special case of empty tree. */
899 	if (root == NULL)
900 		return (root);
901 
902 	/*
903 	 * Pass One: Splay down the tree until we find addr or a NULL
904 	 * pointer where addr would go.  llist and rlist are the two
905 	 * sides in reverse order (bottom-up), with llist linked by
906 	 * the right pointer and rlist linked by the left pointer in
907 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
908 	 * the two spines.
909 	 */
910 	llist = NULL;
911 	rlist = NULL;
912 	for (;;) {
913 		/* root is never NULL in here. */
914 		if (addr < root->start) {
915 			y = root->left;
916 			if (y == NULL)
917 				break;
918 			if (addr < y->start && y->left != NULL) {
919 				/* Rotate right and put y on rlist. */
920 				root->left = y->right;
921 				y->right = root;
922 				vm_map_entry_set_max_free(root);
923 				root = y->left;
924 				y->left = rlist;
925 				rlist = y;
926 			} else {
927 				/* Put root on rlist. */
928 				root->left = rlist;
929 				rlist = root;
930 				root = y;
931 			}
932 		} else if (addr >= root->end) {
933 			y = root->right;
934 			if (y == NULL)
935 				break;
936 			if (addr >= y->end && y->right != NULL) {
937 				/* Rotate left and put y on llist. */
938 				root->right = y->left;
939 				y->left = root;
940 				vm_map_entry_set_max_free(root);
941 				root = y->right;
942 				y->right = llist;
943 				llist = y;
944 			} else {
945 				/* Put root on llist. */
946 				root->right = llist;
947 				llist = root;
948 				root = y;
949 			}
950 		} else
951 			break;
952 	}
953 
954 	/*
955 	 * Pass Two: Walk back up the two spines, flip the pointers
956 	 * and set max_free.  The subtrees of the root go at the
957 	 * bottom of llist and rlist.
958 	 */
959 	ltree = root->left;
960 	while (llist != NULL) {
961 		y = llist->right;
962 		llist->right = ltree;
963 		vm_map_entry_set_max_free(llist);
964 		ltree = llist;
965 		llist = y;
966 	}
967 	rtree = root->right;
968 	while (rlist != NULL) {
969 		y = rlist->left;
970 		rlist->left = rtree;
971 		vm_map_entry_set_max_free(rlist);
972 		rtree = rlist;
973 		rlist = y;
974 	}
975 
976 	/*
977 	 * Final assembly: add ltree and rtree as subtrees of root.
978 	 */
979 	root->left = ltree;
980 	root->right = rtree;
981 	vm_map_entry_set_max_free(root);
982 
983 	return (root);
984 }
985 
986 /*
987  *	vm_map_entry_{un,}link:
988  *
989  *	Insert/remove entries from maps.
990  */
991 static void
992 vm_map_entry_link(vm_map_t map,
993 		  vm_map_entry_t after_where,
994 		  vm_map_entry_t entry)
995 {
996 
997 	CTR4(KTR_VM,
998 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
999 	    map->nentries, entry, after_where);
1000 	VM_MAP_ASSERT_LOCKED(map);
1001 	KASSERT(after_where == &map->header ||
1002 	    after_where->end <= entry->start,
1003 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1004 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1005 	KASSERT(after_where->next == &map->header ||
1006 	    entry->end <= after_where->next->start,
1007 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1008 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1009 
1010 	map->nentries++;
1011 	entry->prev = after_where;
1012 	entry->next = after_where->next;
1013 	entry->next->prev = entry;
1014 	after_where->next = entry;
1015 
1016 	if (after_where != &map->header) {
1017 		if (after_where != map->root)
1018 			vm_map_entry_splay(after_where->start, map->root);
1019 		entry->right = after_where->right;
1020 		entry->left = after_where;
1021 		after_where->right = NULL;
1022 		after_where->adj_free = entry->start - after_where->end;
1023 		vm_map_entry_set_max_free(after_where);
1024 	} else {
1025 		entry->right = map->root;
1026 		entry->left = NULL;
1027 	}
1028 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1029 	    entry->next->start) - entry->end;
1030 	vm_map_entry_set_max_free(entry);
1031 	map->root = entry;
1032 }
1033 
1034 static void
1035 vm_map_entry_unlink(vm_map_t map,
1036 		    vm_map_entry_t entry)
1037 {
1038 	vm_map_entry_t next, prev, root;
1039 
1040 	VM_MAP_ASSERT_LOCKED(map);
1041 	if (entry != map->root)
1042 		vm_map_entry_splay(entry->start, map->root);
1043 	if (entry->left == NULL)
1044 		root = entry->right;
1045 	else {
1046 		root = vm_map_entry_splay(entry->start, entry->left);
1047 		root->right = entry->right;
1048 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1049 		    entry->next->start) - root->end;
1050 		vm_map_entry_set_max_free(root);
1051 	}
1052 	map->root = root;
1053 
1054 	prev = entry->prev;
1055 	next = entry->next;
1056 	next->prev = prev;
1057 	prev->next = next;
1058 	map->nentries--;
1059 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1060 	    map->nentries, entry);
1061 }
1062 
1063 /*
1064  *	vm_map_entry_resize_free:
1065  *
1066  *	Recompute the amount of free space following a vm_map_entry
1067  *	and propagate that value up the tree.  Call this function after
1068  *	resizing a map entry in-place, that is, without a call to
1069  *	vm_map_entry_link() or _unlink().
1070  *
1071  *	The map must be locked, and leaves it so.
1072  */
1073 static void
1074 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1075 {
1076 
1077 	/*
1078 	 * Using splay trees without parent pointers, propagating
1079 	 * max_free up the tree is done by moving the entry to the
1080 	 * root and making the change there.
1081 	 */
1082 	if (entry != map->root)
1083 		map->root = vm_map_entry_splay(entry->start, map->root);
1084 
1085 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1086 	    entry->next->start) - entry->end;
1087 	vm_map_entry_set_max_free(entry);
1088 }
1089 
1090 /*
1091  *	vm_map_lookup_entry:	[ internal use only ]
1092  *
1093  *	Finds the map entry containing (or
1094  *	immediately preceding) the specified address
1095  *	in the given map; the entry is returned
1096  *	in the "entry" parameter.  The boolean
1097  *	result indicates whether the address is
1098  *	actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102 	vm_map_t map,
1103 	vm_offset_t address,
1104 	vm_map_entry_t *entry)	/* OUT */
1105 {
1106 	vm_map_entry_t cur;
1107 	boolean_t locked;
1108 
1109 	/*
1110 	 * If the map is empty, then the map entry immediately preceding
1111 	 * "address" is the map's header.
1112 	 */
1113 	cur = map->root;
1114 	if (cur == NULL)
1115 		*entry = &map->header;
1116 	else if (address >= cur->start && cur->end > address) {
1117 		*entry = cur;
1118 		return (TRUE);
1119 	} else if ((locked = vm_map_locked(map)) ||
1120 	    sx_try_upgrade(&map->lock)) {
1121 		/*
1122 		 * Splay requires a write lock on the map.  However, it only
1123 		 * restructures the binary search tree; it does not otherwise
1124 		 * change the map.  Thus, the map's timestamp need not change
1125 		 * on a temporary upgrade.
1126 		 */
1127 		map->root = cur = vm_map_entry_splay(address, cur);
1128 		if (!locked)
1129 			sx_downgrade(&map->lock);
1130 
1131 		/*
1132 		 * If "address" is contained within a map entry, the new root
1133 		 * is that map entry.  Otherwise, the new root is a map entry
1134 		 * immediately before or after "address".
1135 		 */
1136 		if (address >= cur->start) {
1137 			*entry = cur;
1138 			if (cur->end > address)
1139 				return (TRUE);
1140 		} else
1141 			*entry = cur->prev;
1142 	} else
1143 		/*
1144 		 * Since the map is only locked for read access, perform a
1145 		 * standard binary search tree lookup for "address".
1146 		 */
1147 		for (;;) {
1148 			if (address < cur->start) {
1149 				if (cur->left == NULL) {
1150 					*entry = cur->prev;
1151 					break;
1152 				}
1153 				cur = cur->left;
1154 			} else if (cur->end > address) {
1155 				*entry = cur;
1156 				return (TRUE);
1157 			} else {
1158 				if (cur->right == NULL) {
1159 					*entry = cur;
1160 					break;
1161 				}
1162 				cur = cur->right;
1163 			}
1164 		}
1165 	return (FALSE);
1166 }
1167 
1168 /*
1169  *	vm_map_insert:
1170  *
1171  *	Inserts the given whole VM object into the target
1172  *	map at the specified address range.  The object's
1173  *	size should match that of the address range.
1174  *
1175  *	Requires that the map be locked, and leaves it so.
1176  *
1177  *	If object is non-NULL, ref count must be bumped by caller
1178  *	prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1185 	struct ucred *cred;
1186 	vm_eflags_t protoeflags;
1187 	vm_inherit_t inheritance;
1188 
1189 	VM_MAP_ASSERT_LOCKED(map);
1190 	KASSERT((object != kmem_object && object != kernel_object) ||
1191 	    (cow & MAP_COPY_ON_WRITE) == 0,
1192 	    ("vm_map_insert: kmem or kernel object and COW"));
1193 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195 	KASSERT((prot & ~max) == 0,
1196 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1197 
1198 	/*
1199 	 * Check that the start and end points are not bogus.
1200 	 */
1201 	if (start < map->min_offset || end > map->max_offset || start >= end)
1202 		return (KERN_INVALID_ADDRESS);
1203 
1204 	/*
1205 	 * Find the entry prior to the proposed starting address; if it's part
1206 	 * of an existing entry, this range is bogus.
1207 	 */
1208 	if (vm_map_lookup_entry(map, start, &temp_entry))
1209 		return (KERN_NO_SPACE);
1210 
1211 	prev_entry = temp_entry;
1212 
1213 	/*
1214 	 * Assert that the next entry doesn't overlap the end point.
1215 	 */
1216 	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1217 		return (KERN_NO_SPACE);
1218 
1219 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220 	    max != VM_PROT_NONE))
1221 		return (KERN_INVALID_ARGUMENT);
1222 
1223 	protoeflags = 0;
1224 	if (cow & MAP_COPY_ON_WRITE)
1225 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226 	if (cow & MAP_NOFAULT)
1227 		protoeflags |= MAP_ENTRY_NOFAULT;
1228 	if (cow & MAP_DISABLE_SYNCER)
1229 		protoeflags |= MAP_ENTRY_NOSYNC;
1230 	if (cow & MAP_DISABLE_COREDUMP)
1231 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232 	if (cow & MAP_STACK_GROWS_DOWN)
1233 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234 	if (cow & MAP_STACK_GROWS_UP)
1235 		protoeflags |= MAP_ENTRY_GROWS_UP;
1236 	if (cow & MAP_VN_WRITECOUNT)
1237 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238 	if ((cow & MAP_CREATE_GUARD) != 0)
1239 		protoeflags |= MAP_ENTRY_GUARD;
1240 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244 	if (cow & MAP_INHERIT_SHARE)
1245 		inheritance = VM_INHERIT_SHARE;
1246 	else
1247 		inheritance = VM_INHERIT_DEFAULT;
1248 
1249 	cred = NULL;
1250 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251 		goto charged;
1252 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255 			return (KERN_RESOURCE_SHORTAGE);
1256 		KASSERT(object == NULL ||
1257 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258 		    object->cred == NULL,
1259 		    ("overcommit: vm_map_insert o %p", object));
1260 		cred = curthread->td_ucred;
1261 	}
1262 
1263 charged:
1264 	/* Expand the kernel pmap, if necessary. */
1265 	if (map == kernel_map && end > kernel_vm_end)
1266 		pmap_growkernel(end);
1267 	if (object != NULL) {
1268 		/*
1269 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1270 		 * is trivially proven to be the only mapping for any
1271 		 * of the object's pages.  (Object granularity
1272 		 * reference counting is insufficient to recognize
1273 		 * aliases with precision.)
1274 		 */
1275 		VM_OBJECT_WLOCK(object);
1276 		if (object->ref_count > 1 || object->shadow_count != 0)
1277 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278 		VM_OBJECT_WUNLOCK(object);
1279 	} else if (prev_entry != &map->header &&
1280 	    prev_entry->eflags == protoeflags &&
1281 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1283 	    (prev_entry->cred == cred ||
1284 	    (prev_entry->object.vm_object != NULL &&
1285 	    prev_entry->object.vm_object->cred == cred)) &&
1286 	    vm_object_coalesce(prev_entry->object.vm_object,
1287 	    prev_entry->offset,
1288 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1289 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291 		/*
1292 		 * We were able to extend the object.  Determine if we
1293 		 * can extend the previous map entry to include the
1294 		 * new range as well.
1295 		 */
1296 		if (prev_entry->inheritance == inheritance &&
1297 		    prev_entry->protection == prot &&
1298 		    prev_entry->max_protection == max) {
1299 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300 				map->size += end - prev_entry->end;
1301 			prev_entry->end = end;
1302 			vm_map_entry_resize_free(map, prev_entry);
1303 			vm_map_simplify_entry(map, prev_entry);
1304 			return (KERN_SUCCESS);
1305 		}
1306 
1307 		/*
1308 		 * If we can extend the object but cannot extend the
1309 		 * map entry, we have to create a new map entry.  We
1310 		 * must bump the ref count on the extended object to
1311 		 * account for it.  object may be NULL.
1312 		 */
1313 		object = prev_entry->object.vm_object;
1314 		offset = prev_entry->offset +
1315 		    (prev_entry->end - prev_entry->start);
1316 		vm_object_reference(object);
1317 		if (cred != NULL && object != NULL && object->cred != NULL &&
1318 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319 			/* Object already accounts for this uid. */
1320 			cred = NULL;
1321 		}
1322 	}
1323 	if (cred != NULL)
1324 		crhold(cred);
1325 
1326 	/*
1327 	 * Create a new entry
1328 	 */
1329 	new_entry = vm_map_entry_create(map);
1330 	new_entry->start = start;
1331 	new_entry->end = end;
1332 	new_entry->cred = NULL;
1333 
1334 	new_entry->eflags = protoeflags;
1335 	new_entry->object.vm_object = object;
1336 	new_entry->offset = offset;
1337 
1338 	new_entry->inheritance = inheritance;
1339 	new_entry->protection = prot;
1340 	new_entry->max_protection = max;
1341 	new_entry->wired_count = 0;
1342 	new_entry->wiring_thread = NULL;
1343 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344 	new_entry->next_read = start;
1345 
1346 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348 	new_entry->cred = cred;
1349 
1350 	/*
1351 	 * Insert the new entry into the list
1352 	 */
1353 	vm_map_entry_link(map, prev_entry, new_entry);
1354 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355 		map->size += new_entry->end - new_entry->start;
1356 
1357 	/*
1358 	 * Try to coalesce the new entry with both the previous and next
1359 	 * entries in the list.  Previously, we only attempted to coalesce
1360 	 * with the previous entry when object is NULL.  Here, we handle the
1361 	 * other cases, which are less common.
1362 	 */
1363 	vm_map_simplify_entry(map, new_entry);
1364 
1365 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1368 	}
1369 
1370 	return (KERN_SUCCESS);
1371 }
1372 
1373 /*
1374  *	vm_map_findspace:
1375  *
1376  *	Find the first fit (lowest VM address) for "length" free bytes
1377  *	beginning at address >= start in the given map.
1378  *
1379  *	In a vm_map_entry, "adj_free" is the amount of free space
1380  *	adjacent (higher address) to this entry, and "max_free" is the
1381  *	maximum amount of contiguous free space in its subtree.  This
1382  *	allows finding a free region in one path down the tree, so
1383  *	O(log n) amortized with splay trees.
1384  *
1385  *	The map must be locked, and leaves it so.
1386  *
1387  *	Returns: 0 on success, and starting address in *addr,
1388  *		 1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)	/* OUT */
1393 {
1394 	vm_map_entry_t entry;
1395 	vm_offset_t st;
1396 
1397 	/*
1398 	 * Request must fit within min/max VM address and must avoid
1399 	 * address wrap.
1400 	 */
1401 	if (start < map->min_offset)
1402 		start = map->min_offset;
1403 	if (start + length > map->max_offset || start + length < start)
1404 		return (1);
1405 
1406 	/* Empty tree means wide open address space. */
1407 	if (map->root == NULL) {
1408 		*addr = start;
1409 		return (0);
1410 	}
1411 
1412 	/*
1413 	 * After splay, if start comes before root node, then there
1414 	 * must be a gap from start to the root.
1415 	 */
1416 	map->root = vm_map_entry_splay(start, map->root);
1417 	if (start + length <= map->root->start) {
1418 		*addr = start;
1419 		return (0);
1420 	}
1421 
1422 	/*
1423 	 * Root is the last node that might begin its gap before
1424 	 * start, and this is the last comparison where address
1425 	 * wrap might be a problem.
1426 	 */
1427 	st = (start > map->root->end) ? start : map->root->end;
1428 	if (length <= map->root->end + map->root->adj_free - st) {
1429 		*addr = st;
1430 		return (0);
1431 	}
1432 
1433 	/* With max_free, can immediately tell if no solution. */
1434 	entry = map->root->right;
1435 	if (entry == NULL || length > entry->max_free)
1436 		return (1);
1437 
1438 	/*
1439 	 * Search the right subtree in the order: left subtree, root,
1440 	 * right subtree (first fit).  The previous splay implies that
1441 	 * all regions in the right subtree have addresses > start.
1442 	 */
1443 	while (entry != NULL) {
1444 		if (entry->left != NULL && entry->left->max_free >= length)
1445 			entry = entry->left;
1446 		else if (entry->adj_free >= length) {
1447 			*addr = entry->end;
1448 			return (0);
1449 		} else
1450 			entry = entry->right;
1451 	}
1452 
1453 	/* Can't get here, so panic if we do. */
1454 	panic("vm_map_findspace: max_free corrupt");
1455 }
1456 
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462 	vm_offset_t end;
1463 	int result;
1464 
1465 	end = start + length;
1466 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467 	    object == NULL,
1468 	    ("vm_map_fixed: non-NULL backing object for stack"));
1469 	vm_map_lock(map);
1470 	VM_MAP_RANGE_CHECK(map, start, end);
1471 	if ((cow & MAP_CHECK_EXCL) == 0)
1472 		vm_map_delete(map, start, end);
1473 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475 		    prot, max, cow);
1476 	} else {
1477 		result = vm_map_insert(map, object, offset, start, end,
1478 		    prot, max, cow);
1479 	}
1480 	vm_map_unlock(map);
1481 	return (result);
1482 }
1483 
1484 /*
1485  *	vm_map_find finds an unallocated region in the target address
1486  *	map with the given length.  The search is defined to be
1487  *	first-fit from the specified address; the region found is
1488  *	returned in the same parameter.
1489  *
1490  *	If object is non-NULL, ref count must be bumped by caller
1491  *	prior to making call to account for the new entry.
1492  */
1493 int
1494 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1495 	    vm_offset_t *addr,	/* IN/OUT */
1496 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1497 	    vm_prot_t prot, vm_prot_t max, int cow)
1498 {
1499 	vm_offset_t alignment, initial_addr, start;
1500 	int result;
1501 
1502 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1503 	    object == NULL,
1504 	    ("vm_map_find: non-NULL backing object for stack"));
1505 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1506 	    (object->flags & OBJ_COLORED) == 0))
1507 		find_space = VMFS_ANY_SPACE;
1508 	if (find_space >> 8 != 0) {
1509 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1510 		alignment = (vm_offset_t)1 << (find_space >> 8);
1511 	} else
1512 		alignment = 0;
1513 	initial_addr = *addr;
1514 again:
1515 	start = initial_addr;
1516 	vm_map_lock(map);
1517 	do {
1518 		if (find_space != VMFS_NO_SPACE) {
1519 			if (vm_map_findspace(map, start, length, addr) ||
1520 			    (max_addr != 0 && *addr + length > max_addr)) {
1521 				vm_map_unlock(map);
1522 				if (find_space == VMFS_OPTIMAL_SPACE) {
1523 					find_space = VMFS_ANY_SPACE;
1524 					goto again;
1525 				}
1526 				return (KERN_NO_SPACE);
1527 			}
1528 			switch (find_space) {
1529 			case VMFS_SUPER_SPACE:
1530 			case VMFS_OPTIMAL_SPACE:
1531 				pmap_align_superpage(object, offset, addr,
1532 				    length);
1533 				break;
1534 			case VMFS_ANY_SPACE:
1535 				break;
1536 			default:
1537 				if ((*addr & (alignment - 1)) != 0) {
1538 					*addr &= ~(alignment - 1);
1539 					*addr += alignment;
1540 				}
1541 				break;
1542 			}
1543 
1544 			start = *addr;
1545 		}
1546 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1547 			result = vm_map_stack_locked(map, start, length,
1548 			    sgrowsiz, prot, max, cow);
1549 		} else {
1550 			result = vm_map_insert(map, object, offset, start,
1551 			    start + length, prot, max, cow);
1552 		}
1553 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1554 	    find_space != VMFS_ANY_SPACE);
1555 	vm_map_unlock(map);
1556 	return (result);
1557 }
1558 
1559 int
1560 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1561     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1562     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1563     int cow)
1564 {
1565 	vm_offset_t hint;
1566 	int rv;
1567 
1568 	hint = *addr;
1569 	for (;;) {
1570 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1571 		    find_space, prot, max, cow);
1572 		if (rv == KERN_SUCCESS || min_addr >= hint)
1573 			return (rv);
1574 		*addr = min_addr;
1575 	}
1576 }
1577 
1578 /*
1579  *	vm_map_simplify_entry:
1580  *
1581  *	Simplify the given map entry by merging with either neighbor.  This
1582  *	routine also has the ability to merge with both neighbors.
1583  *
1584  *	The map must be locked.
1585  *
1586  *	This routine guarantees that the passed entry remains valid (though
1587  *	possibly extended).  When merging, this routine may delete one or
1588  *	both neighbors.
1589  */
1590 void
1591 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1592 {
1593 	vm_map_entry_t next, prev;
1594 	vm_size_t prevsize, esize;
1595 
1596 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1597 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1598 		return;
1599 
1600 	prev = entry->prev;
1601 	if (prev != &map->header) {
1602 		prevsize = prev->end - prev->start;
1603 		if ( (prev->end == entry->start) &&
1604 		     (prev->object.vm_object == entry->object.vm_object) &&
1605 		     (!prev->object.vm_object ||
1606 			(prev->offset + prevsize == entry->offset)) &&
1607 		     (prev->eflags == entry->eflags) &&
1608 		     (prev->protection == entry->protection) &&
1609 		     (prev->max_protection == entry->max_protection) &&
1610 		     (prev->inheritance == entry->inheritance) &&
1611 		     (prev->wired_count == entry->wired_count) &&
1612 		     (prev->cred == entry->cred)) {
1613 			vm_map_entry_unlink(map, prev);
1614 			entry->start = prev->start;
1615 			entry->offset = prev->offset;
1616 			if (entry->prev != &map->header)
1617 				vm_map_entry_resize_free(map, entry->prev);
1618 
1619 			/*
1620 			 * If the backing object is a vnode object,
1621 			 * vm_object_deallocate() calls vrele().
1622 			 * However, vrele() does not lock the vnode
1623 			 * because the vnode has additional
1624 			 * references.  Thus, the map lock can be kept
1625 			 * without causing a lock-order reversal with
1626 			 * the vnode lock.
1627 			 *
1628 			 * Since we count the number of virtual page
1629 			 * mappings in object->un_pager.vnp.writemappings,
1630 			 * the writemappings value should not be adjusted
1631 			 * when the entry is disposed of.
1632 			 */
1633 			if (prev->object.vm_object)
1634 				vm_object_deallocate(prev->object.vm_object);
1635 			if (prev->cred != NULL)
1636 				crfree(prev->cred);
1637 			vm_map_entry_dispose(map, prev);
1638 		}
1639 	}
1640 
1641 	next = entry->next;
1642 	if (next != &map->header) {
1643 		esize = entry->end - entry->start;
1644 		if ((entry->end == next->start) &&
1645 		    (next->object.vm_object == entry->object.vm_object) &&
1646 		     (!entry->object.vm_object ||
1647 			(entry->offset + esize == next->offset)) &&
1648 		    (next->eflags == entry->eflags) &&
1649 		    (next->protection == entry->protection) &&
1650 		    (next->max_protection == entry->max_protection) &&
1651 		    (next->inheritance == entry->inheritance) &&
1652 		    (next->wired_count == entry->wired_count) &&
1653 		    (next->cred == entry->cred)) {
1654 			vm_map_entry_unlink(map, next);
1655 			entry->end = next->end;
1656 			vm_map_entry_resize_free(map, entry);
1657 
1658 			/*
1659 			 * See comment above.
1660 			 */
1661 			if (next->object.vm_object)
1662 				vm_object_deallocate(next->object.vm_object);
1663 			if (next->cred != NULL)
1664 				crfree(next->cred);
1665 			vm_map_entry_dispose(map, next);
1666 		}
1667 	}
1668 }
1669 /*
1670  *	vm_map_clip_start:	[ internal use only ]
1671  *
1672  *	Asserts that the given entry begins at or after
1673  *	the specified address; if necessary,
1674  *	it splits the entry into two.
1675  */
1676 #define vm_map_clip_start(map, entry, startaddr) \
1677 { \
1678 	if (startaddr > entry->start) \
1679 		_vm_map_clip_start(map, entry, startaddr); \
1680 }
1681 
1682 /*
1683  *	This routine is called only when it is known that
1684  *	the entry must be split.
1685  */
1686 static void
1687 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1688 {
1689 	vm_map_entry_t new_entry;
1690 
1691 	VM_MAP_ASSERT_LOCKED(map);
1692 	KASSERT(entry->end > start && entry->start < start,
1693 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1694 
1695 	/*
1696 	 * Split off the front portion -- note that we must insert the new
1697 	 * entry BEFORE this one, so that this entry has the specified
1698 	 * starting address.
1699 	 */
1700 	vm_map_simplify_entry(map, entry);
1701 
1702 	/*
1703 	 * If there is no object backing this entry, we might as well create
1704 	 * one now.  If we defer it, an object can get created after the map
1705 	 * is clipped, and individual objects will be created for the split-up
1706 	 * map.  This is a bit of a hack, but is also about the best place to
1707 	 * put this improvement.
1708 	 */
1709 	if (entry->object.vm_object == NULL && !map->system_map &&
1710 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1711 		vm_object_t object;
1712 		object = vm_object_allocate(OBJT_DEFAULT,
1713 				atop(entry->end - entry->start));
1714 		entry->object.vm_object = object;
1715 		entry->offset = 0;
1716 		if (entry->cred != NULL) {
1717 			object->cred = entry->cred;
1718 			object->charge = entry->end - entry->start;
1719 			entry->cred = NULL;
1720 		}
1721 	} else if (entry->object.vm_object != NULL &&
1722 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1723 		   entry->cred != NULL) {
1724 		VM_OBJECT_WLOCK(entry->object.vm_object);
1725 		KASSERT(entry->object.vm_object->cred == NULL,
1726 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1727 		entry->object.vm_object->cred = entry->cred;
1728 		entry->object.vm_object->charge = entry->end - entry->start;
1729 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1730 		entry->cred = NULL;
1731 	}
1732 
1733 	new_entry = vm_map_entry_create(map);
1734 	*new_entry = *entry;
1735 
1736 	new_entry->end = start;
1737 	entry->offset += (start - entry->start);
1738 	entry->start = start;
1739 	if (new_entry->cred != NULL)
1740 		crhold(entry->cred);
1741 
1742 	vm_map_entry_link(map, entry->prev, new_entry);
1743 
1744 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1745 		vm_object_reference(new_entry->object.vm_object);
1746 		/*
1747 		 * The object->un_pager.vnp.writemappings for the
1748 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1749 		 * kept as is here.  The virtual pages are
1750 		 * re-distributed among the clipped entries, so the sum is
1751 		 * left the same.
1752 		 */
1753 	}
1754 }
1755 
1756 /*
1757  *	vm_map_clip_end:	[ internal use only ]
1758  *
1759  *	Asserts that the given entry ends at or before
1760  *	the specified address; if necessary,
1761  *	it splits the entry into two.
1762  */
1763 #define vm_map_clip_end(map, entry, endaddr) \
1764 { \
1765 	if ((endaddr) < (entry->end)) \
1766 		_vm_map_clip_end((map), (entry), (endaddr)); \
1767 }
1768 
1769 /*
1770  *	This routine is called only when it is known that
1771  *	the entry must be split.
1772  */
1773 static void
1774 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1775 {
1776 	vm_map_entry_t new_entry;
1777 
1778 	VM_MAP_ASSERT_LOCKED(map);
1779 	KASSERT(entry->start < end && entry->end > end,
1780 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1781 
1782 	/*
1783 	 * If there is no object backing this entry, we might as well create
1784 	 * one now.  If we defer it, an object can get created after the map
1785 	 * is clipped, and individual objects will be created for the split-up
1786 	 * map.  This is a bit of a hack, but is also about the best place to
1787 	 * put this improvement.
1788 	 */
1789 	if (entry->object.vm_object == NULL && !map->system_map &&
1790 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1791 		vm_object_t object;
1792 		object = vm_object_allocate(OBJT_DEFAULT,
1793 				atop(entry->end - entry->start));
1794 		entry->object.vm_object = object;
1795 		entry->offset = 0;
1796 		if (entry->cred != NULL) {
1797 			object->cred = entry->cred;
1798 			object->charge = entry->end - entry->start;
1799 			entry->cred = NULL;
1800 		}
1801 	} else if (entry->object.vm_object != NULL &&
1802 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1803 		   entry->cred != NULL) {
1804 		VM_OBJECT_WLOCK(entry->object.vm_object);
1805 		KASSERT(entry->object.vm_object->cred == NULL,
1806 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1807 		entry->object.vm_object->cred = entry->cred;
1808 		entry->object.vm_object->charge = entry->end - entry->start;
1809 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1810 		entry->cred = NULL;
1811 	}
1812 
1813 	/*
1814 	 * Create a new entry and insert it AFTER the specified entry
1815 	 */
1816 	new_entry = vm_map_entry_create(map);
1817 	*new_entry = *entry;
1818 
1819 	new_entry->start = entry->end = end;
1820 	new_entry->offset += (end - entry->start);
1821 	if (new_entry->cred != NULL)
1822 		crhold(entry->cred);
1823 
1824 	vm_map_entry_link(map, entry, new_entry);
1825 
1826 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1827 		vm_object_reference(new_entry->object.vm_object);
1828 	}
1829 }
1830 
1831 /*
1832  *	vm_map_submap:		[ kernel use only ]
1833  *
1834  *	Mark the given range as handled by a subordinate map.
1835  *
1836  *	This range must have been created with vm_map_find,
1837  *	and no other operations may have been performed on this
1838  *	range prior to calling vm_map_submap.
1839  *
1840  *	Only a limited number of operations can be performed
1841  *	within this rage after calling vm_map_submap:
1842  *		vm_fault
1843  *	[Don't try vm_map_copy!]
1844  *
1845  *	To remove a submapping, one must first remove the
1846  *	range from the superior map, and then destroy the
1847  *	submap (if desired).  [Better yet, don't try it.]
1848  */
1849 int
1850 vm_map_submap(
1851 	vm_map_t map,
1852 	vm_offset_t start,
1853 	vm_offset_t end,
1854 	vm_map_t submap)
1855 {
1856 	vm_map_entry_t entry;
1857 	int result = KERN_INVALID_ARGUMENT;
1858 
1859 	vm_map_lock(map);
1860 
1861 	VM_MAP_RANGE_CHECK(map, start, end);
1862 
1863 	if (vm_map_lookup_entry(map, start, &entry)) {
1864 		vm_map_clip_start(map, entry, start);
1865 	} else
1866 		entry = entry->next;
1867 
1868 	vm_map_clip_end(map, entry, end);
1869 
1870 	if ((entry->start == start) && (entry->end == end) &&
1871 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1872 	    (entry->object.vm_object == NULL)) {
1873 		entry->object.sub_map = submap;
1874 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1875 		result = KERN_SUCCESS;
1876 	}
1877 	vm_map_unlock(map);
1878 
1879 	return (result);
1880 }
1881 
1882 /*
1883  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1884  */
1885 #define	MAX_INIT_PT	96
1886 
1887 /*
1888  *	vm_map_pmap_enter:
1889  *
1890  *	Preload the specified map's pmap with mappings to the specified
1891  *	object's memory-resident pages.  No further physical pages are
1892  *	allocated, and no further virtual pages are retrieved from secondary
1893  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1894  *	limited number of page mappings are created at the low-end of the
1895  *	specified address range.  (For this purpose, a superpage mapping
1896  *	counts as one page mapping.)  Otherwise, all resident pages within
1897  *	the specified address range are mapped.
1898  */
1899 static void
1900 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1901     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1902 {
1903 	vm_offset_t start;
1904 	vm_page_t p, p_start;
1905 	vm_pindex_t mask, psize, threshold, tmpidx;
1906 
1907 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1908 		return;
1909 	VM_OBJECT_RLOCK(object);
1910 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1911 		VM_OBJECT_RUNLOCK(object);
1912 		VM_OBJECT_WLOCK(object);
1913 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1914 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1915 			    size);
1916 			VM_OBJECT_WUNLOCK(object);
1917 			return;
1918 		}
1919 		VM_OBJECT_LOCK_DOWNGRADE(object);
1920 	}
1921 
1922 	psize = atop(size);
1923 	if (psize + pindex > object->size) {
1924 		if (object->size < pindex) {
1925 			VM_OBJECT_RUNLOCK(object);
1926 			return;
1927 		}
1928 		psize = object->size - pindex;
1929 	}
1930 
1931 	start = 0;
1932 	p_start = NULL;
1933 	threshold = MAX_INIT_PT;
1934 
1935 	p = vm_page_find_least(object, pindex);
1936 	/*
1937 	 * Assert: the variable p is either (1) the page with the
1938 	 * least pindex greater than or equal to the parameter pindex
1939 	 * or (2) NULL.
1940 	 */
1941 	for (;
1942 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1943 	     p = TAILQ_NEXT(p, listq)) {
1944 		/*
1945 		 * don't allow an madvise to blow away our really
1946 		 * free pages allocating pv entries.
1947 		 */
1948 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1949 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1950 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1951 		    tmpidx >= threshold)) {
1952 			psize = tmpidx;
1953 			break;
1954 		}
1955 		if (p->valid == VM_PAGE_BITS_ALL) {
1956 			if (p_start == NULL) {
1957 				start = addr + ptoa(tmpidx);
1958 				p_start = p;
1959 			}
1960 			/* Jump ahead if a superpage mapping is possible. */
1961 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1962 			    (pagesizes[p->psind] - 1)) == 0) {
1963 				mask = atop(pagesizes[p->psind]) - 1;
1964 				if (tmpidx + mask < psize &&
1965 				    vm_page_ps_is_valid(p)) {
1966 					p += mask;
1967 					threshold += mask;
1968 				}
1969 			}
1970 		} else if (p_start != NULL) {
1971 			pmap_enter_object(map->pmap, start, addr +
1972 			    ptoa(tmpidx), p_start, prot);
1973 			p_start = NULL;
1974 		}
1975 	}
1976 	if (p_start != NULL)
1977 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1978 		    p_start, prot);
1979 	VM_OBJECT_RUNLOCK(object);
1980 }
1981 
1982 /*
1983  *	vm_map_protect:
1984  *
1985  *	Sets the protection of the specified address
1986  *	region in the target map.  If "set_max" is
1987  *	specified, the maximum protection is to be set;
1988  *	otherwise, only the current protection is affected.
1989  */
1990 int
1991 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1992 	       vm_prot_t new_prot, boolean_t set_max)
1993 {
1994 	vm_map_entry_t current, entry;
1995 	vm_object_t obj;
1996 	struct ucred *cred;
1997 	vm_prot_t old_prot;
1998 
1999 	if (start == end)
2000 		return (KERN_SUCCESS);
2001 
2002 	vm_map_lock(map);
2003 
2004 	/*
2005 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2006 	 * need to fault pages into the map and will drop the map lock while
2007 	 * doing so, and the VM object may end up in an inconsistent state if we
2008 	 * update the protection on the map entry in between faults.
2009 	 */
2010 	vm_map_wait_busy(map);
2011 
2012 	VM_MAP_RANGE_CHECK(map, start, end);
2013 
2014 	if (vm_map_lookup_entry(map, start, &entry)) {
2015 		vm_map_clip_start(map, entry, start);
2016 	} else {
2017 		entry = entry->next;
2018 	}
2019 
2020 	/*
2021 	 * Make a first pass to check for protection violations.
2022 	 */
2023 	for (current = entry; current != &map->header && current->start < end;
2024 	    current = current->next) {
2025 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2026 			continue;
2027 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2028 			vm_map_unlock(map);
2029 			return (KERN_INVALID_ARGUMENT);
2030 		}
2031 		if ((new_prot & current->max_protection) != new_prot) {
2032 			vm_map_unlock(map);
2033 			return (KERN_PROTECTION_FAILURE);
2034 		}
2035 	}
2036 
2037 	/*
2038 	 * Do an accounting pass for private read-only mappings that
2039 	 * now will do cow due to allowed write (e.g. debugger sets
2040 	 * breakpoint on text segment)
2041 	 */
2042 	for (current = entry; current != &map->header && current->start < end;
2043 	    current = current->next) {
2044 
2045 		vm_map_clip_end(map, current, end);
2046 
2047 		if (set_max ||
2048 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2049 		    ENTRY_CHARGED(current) ||
2050 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2051 			continue;
2052 		}
2053 
2054 		cred = curthread->td_ucred;
2055 		obj = current->object.vm_object;
2056 
2057 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2058 			if (!swap_reserve(current->end - current->start)) {
2059 				vm_map_unlock(map);
2060 				return (KERN_RESOURCE_SHORTAGE);
2061 			}
2062 			crhold(cred);
2063 			current->cred = cred;
2064 			continue;
2065 		}
2066 
2067 		VM_OBJECT_WLOCK(obj);
2068 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2069 			VM_OBJECT_WUNLOCK(obj);
2070 			continue;
2071 		}
2072 
2073 		/*
2074 		 * Charge for the whole object allocation now, since
2075 		 * we cannot distinguish between non-charged and
2076 		 * charged clipped mapping of the same object later.
2077 		 */
2078 		KASSERT(obj->charge == 0,
2079 		    ("vm_map_protect: object %p overcharged (entry %p)",
2080 		    obj, current));
2081 		if (!swap_reserve(ptoa(obj->size))) {
2082 			VM_OBJECT_WUNLOCK(obj);
2083 			vm_map_unlock(map);
2084 			return (KERN_RESOURCE_SHORTAGE);
2085 		}
2086 
2087 		crhold(cred);
2088 		obj->cred = cred;
2089 		obj->charge = ptoa(obj->size);
2090 		VM_OBJECT_WUNLOCK(obj);
2091 	}
2092 
2093 	/*
2094 	 * Go back and fix up protections. [Note that clipping is not
2095 	 * necessary the second time.]
2096 	 */
2097 	for (current = entry; current != &map->header && current->start < end;
2098 	    current = current->next) {
2099 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2100 			continue;
2101 
2102 		old_prot = current->protection;
2103 
2104 		if (set_max)
2105 			current->protection =
2106 			    (current->max_protection = new_prot) &
2107 			    old_prot;
2108 		else
2109 			current->protection = new_prot;
2110 
2111 		/*
2112 		 * For user wired map entries, the normal lazy evaluation of
2113 		 * write access upgrades through soft page faults is
2114 		 * undesirable.  Instead, immediately copy any pages that are
2115 		 * copy-on-write and enable write access in the physical map.
2116 		 */
2117 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2118 		    (current->protection & VM_PROT_WRITE) != 0 &&
2119 		    (old_prot & VM_PROT_WRITE) == 0)
2120 			vm_fault_copy_entry(map, map, current, current, NULL);
2121 
2122 		/*
2123 		 * When restricting access, update the physical map.  Worry
2124 		 * about copy-on-write here.
2125 		 */
2126 		if ((old_prot & ~current->protection) != 0) {
2127 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2128 							VM_PROT_ALL)
2129 			pmap_protect(map->pmap, current->start,
2130 			    current->end,
2131 			    current->protection & MASK(current));
2132 #undef	MASK
2133 		}
2134 		vm_map_simplify_entry(map, current);
2135 	}
2136 	vm_map_unlock(map);
2137 	return (KERN_SUCCESS);
2138 }
2139 
2140 /*
2141  *	vm_map_madvise:
2142  *
2143  *	This routine traverses a processes map handling the madvise
2144  *	system call.  Advisories are classified as either those effecting
2145  *	the vm_map_entry structure, or those effecting the underlying
2146  *	objects.
2147  */
2148 int
2149 vm_map_madvise(
2150 	vm_map_t map,
2151 	vm_offset_t start,
2152 	vm_offset_t end,
2153 	int behav)
2154 {
2155 	vm_map_entry_t current, entry;
2156 	int modify_map = 0;
2157 
2158 	/*
2159 	 * Some madvise calls directly modify the vm_map_entry, in which case
2160 	 * we need to use an exclusive lock on the map and we need to perform
2161 	 * various clipping operations.  Otherwise we only need a read-lock
2162 	 * on the map.
2163 	 */
2164 	switch(behav) {
2165 	case MADV_NORMAL:
2166 	case MADV_SEQUENTIAL:
2167 	case MADV_RANDOM:
2168 	case MADV_NOSYNC:
2169 	case MADV_AUTOSYNC:
2170 	case MADV_NOCORE:
2171 	case MADV_CORE:
2172 		if (start == end)
2173 			return (KERN_SUCCESS);
2174 		modify_map = 1;
2175 		vm_map_lock(map);
2176 		break;
2177 	case MADV_WILLNEED:
2178 	case MADV_DONTNEED:
2179 	case MADV_FREE:
2180 		if (start == end)
2181 			return (KERN_SUCCESS);
2182 		vm_map_lock_read(map);
2183 		break;
2184 	default:
2185 		return (KERN_INVALID_ARGUMENT);
2186 	}
2187 
2188 	/*
2189 	 * Locate starting entry and clip if necessary.
2190 	 */
2191 	VM_MAP_RANGE_CHECK(map, start, end);
2192 
2193 	if (vm_map_lookup_entry(map, start, &entry)) {
2194 		if (modify_map)
2195 			vm_map_clip_start(map, entry, start);
2196 	} else {
2197 		entry = entry->next;
2198 	}
2199 
2200 	if (modify_map) {
2201 		/*
2202 		 * madvise behaviors that are implemented in the vm_map_entry.
2203 		 *
2204 		 * We clip the vm_map_entry so that behavioral changes are
2205 		 * limited to the specified address range.
2206 		 */
2207 		for (current = entry;
2208 		     (current != &map->header) && (current->start < end);
2209 		     current = current->next
2210 		) {
2211 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2212 				continue;
2213 
2214 			vm_map_clip_end(map, current, end);
2215 
2216 			switch (behav) {
2217 			case MADV_NORMAL:
2218 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2219 				break;
2220 			case MADV_SEQUENTIAL:
2221 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2222 				break;
2223 			case MADV_RANDOM:
2224 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2225 				break;
2226 			case MADV_NOSYNC:
2227 				current->eflags |= MAP_ENTRY_NOSYNC;
2228 				break;
2229 			case MADV_AUTOSYNC:
2230 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2231 				break;
2232 			case MADV_NOCORE:
2233 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2234 				break;
2235 			case MADV_CORE:
2236 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2237 				break;
2238 			default:
2239 				break;
2240 			}
2241 			vm_map_simplify_entry(map, current);
2242 		}
2243 		vm_map_unlock(map);
2244 	} else {
2245 		vm_pindex_t pstart, pend;
2246 
2247 		/*
2248 		 * madvise behaviors that are implemented in the underlying
2249 		 * vm_object.
2250 		 *
2251 		 * Since we don't clip the vm_map_entry, we have to clip
2252 		 * the vm_object pindex and count.
2253 		 */
2254 		for (current = entry;
2255 		     (current != &map->header) && (current->start < end);
2256 		     current = current->next
2257 		) {
2258 			vm_offset_t useEnd, useStart;
2259 
2260 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2261 				continue;
2262 
2263 			pstart = OFF_TO_IDX(current->offset);
2264 			pend = pstart + atop(current->end - current->start);
2265 			useStart = current->start;
2266 			useEnd = current->end;
2267 
2268 			if (current->start < start) {
2269 				pstart += atop(start - current->start);
2270 				useStart = start;
2271 			}
2272 			if (current->end > end) {
2273 				pend -= atop(current->end - end);
2274 				useEnd = end;
2275 			}
2276 
2277 			if (pstart >= pend)
2278 				continue;
2279 
2280 			/*
2281 			 * Perform the pmap_advise() before clearing
2282 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2283 			 * concurrent pmap operation, such as pmap_remove(),
2284 			 * could clear a reference in the pmap and set
2285 			 * PGA_REFERENCED on the page before the pmap_advise()
2286 			 * had completed.  Consequently, the page would appear
2287 			 * referenced based upon an old reference that
2288 			 * occurred before this pmap_advise() ran.
2289 			 */
2290 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2291 				pmap_advise(map->pmap, useStart, useEnd,
2292 				    behav);
2293 
2294 			vm_object_madvise(current->object.vm_object, pstart,
2295 			    pend, behav);
2296 
2297 			/*
2298 			 * Pre-populate paging structures in the
2299 			 * WILLNEED case.  For wired entries, the
2300 			 * paging structures are already populated.
2301 			 */
2302 			if (behav == MADV_WILLNEED &&
2303 			    current->wired_count == 0) {
2304 				vm_map_pmap_enter(map,
2305 				    useStart,
2306 				    current->protection,
2307 				    current->object.vm_object,
2308 				    pstart,
2309 				    ptoa(pend - pstart),
2310 				    MAP_PREFAULT_MADVISE
2311 				);
2312 			}
2313 		}
2314 		vm_map_unlock_read(map);
2315 	}
2316 	return (0);
2317 }
2318 
2319 
2320 /*
2321  *	vm_map_inherit:
2322  *
2323  *	Sets the inheritance of the specified address
2324  *	range in the target map.  Inheritance
2325  *	affects how the map will be shared with
2326  *	child maps at the time of vmspace_fork.
2327  */
2328 int
2329 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2330 	       vm_inherit_t new_inheritance)
2331 {
2332 	vm_map_entry_t entry;
2333 	vm_map_entry_t temp_entry;
2334 
2335 	switch (new_inheritance) {
2336 	case VM_INHERIT_NONE:
2337 	case VM_INHERIT_COPY:
2338 	case VM_INHERIT_SHARE:
2339 	case VM_INHERIT_ZERO:
2340 		break;
2341 	default:
2342 		return (KERN_INVALID_ARGUMENT);
2343 	}
2344 	if (start == end)
2345 		return (KERN_SUCCESS);
2346 	vm_map_lock(map);
2347 	VM_MAP_RANGE_CHECK(map, start, end);
2348 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2349 		entry = temp_entry;
2350 		vm_map_clip_start(map, entry, start);
2351 	} else
2352 		entry = temp_entry->next;
2353 	while ((entry != &map->header) && (entry->start < end)) {
2354 		vm_map_clip_end(map, entry, end);
2355 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2356 		    new_inheritance != VM_INHERIT_ZERO)
2357 			entry->inheritance = new_inheritance;
2358 		vm_map_simplify_entry(map, entry);
2359 		entry = entry->next;
2360 	}
2361 	vm_map_unlock(map);
2362 	return (KERN_SUCCESS);
2363 }
2364 
2365 /*
2366  *	vm_map_unwire:
2367  *
2368  *	Implements both kernel and user unwiring.
2369  */
2370 int
2371 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2372     int flags)
2373 {
2374 	vm_map_entry_t entry, first_entry, tmp_entry;
2375 	vm_offset_t saved_start;
2376 	unsigned int last_timestamp;
2377 	int rv;
2378 	boolean_t need_wakeup, result, user_unwire;
2379 
2380 	if (start == end)
2381 		return (KERN_SUCCESS);
2382 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2383 	vm_map_lock(map);
2384 	VM_MAP_RANGE_CHECK(map, start, end);
2385 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2386 		if (flags & VM_MAP_WIRE_HOLESOK)
2387 			first_entry = first_entry->next;
2388 		else {
2389 			vm_map_unlock(map);
2390 			return (KERN_INVALID_ADDRESS);
2391 		}
2392 	}
2393 	last_timestamp = map->timestamp;
2394 	entry = first_entry;
2395 	while (entry != &map->header && entry->start < end) {
2396 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2397 			/*
2398 			 * We have not yet clipped the entry.
2399 			 */
2400 			saved_start = (start >= entry->start) ? start :
2401 			    entry->start;
2402 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2403 			if (vm_map_unlock_and_wait(map, 0)) {
2404 				/*
2405 				 * Allow interruption of user unwiring?
2406 				 */
2407 			}
2408 			vm_map_lock(map);
2409 			if (last_timestamp+1 != map->timestamp) {
2410 				/*
2411 				 * Look again for the entry because the map was
2412 				 * modified while it was unlocked.
2413 				 * Specifically, the entry may have been
2414 				 * clipped, merged, or deleted.
2415 				 */
2416 				if (!vm_map_lookup_entry(map, saved_start,
2417 				    &tmp_entry)) {
2418 					if (flags & VM_MAP_WIRE_HOLESOK)
2419 						tmp_entry = tmp_entry->next;
2420 					else {
2421 						if (saved_start == start) {
2422 							/*
2423 							 * First_entry has been deleted.
2424 							 */
2425 							vm_map_unlock(map);
2426 							return (KERN_INVALID_ADDRESS);
2427 						}
2428 						end = saved_start;
2429 						rv = KERN_INVALID_ADDRESS;
2430 						goto done;
2431 					}
2432 				}
2433 				if (entry == first_entry)
2434 					first_entry = tmp_entry;
2435 				else
2436 					first_entry = NULL;
2437 				entry = tmp_entry;
2438 			}
2439 			last_timestamp = map->timestamp;
2440 			continue;
2441 		}
2442 		vm_map_clip_start(map, entry, start);
2443 		vm_map_clip_end(map, entry, end);
2444 		/*
2445 		 * Mark the entry in case the map lock is released.  (See
2446 		 * above.)
2447 		 */
2448 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2449 		    entry->wiring_thread == NULL,
2450 		    ("owned map entry %p", entry));
2451 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2452 		entry->wiring_thread = curthread;
2453 		/*
2454 		 * Check the map for holes in the specified region.
2455 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2456 		 */
2457 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2458 		    (entry->end < end && (entry->next == &map->header ||
2459 		    entry->next->start > entry->end))) {
2460 			end = entry->end;
2461 			rv = KERN_INVALID_ADDRESS;
2462 			goto done;
2463 		}
2464 		/*
2465 		 * If system unwiring, require that the entry is system wired.
2466 		 */
2467 		if (!user_unwire &&
2468 		    vm_map_entry_system_wired_count(entry) == 0) {
2469 			end = entry->end;
2470 			rv = KERN_INVALID_ARGUMENT;
2471 			goto done;
2472 		}
2473 		entry = entry->next;
2474 	}
2475 	rv = KERN_SUCCESS;
2476 done:
2477 	need_wakeup = FALSE;
2478 	if (first_entry == NULL) {
2479 		result = vm_map_lookup_entry(map, start, &first_entry);
2480 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2481 			first_entry = first_entry->next;
2482 		else
2483 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2484 	}
2485 	for (entry = first_entry; entry != &map->header && entry->start < end;
2486 	    entry = entry->next) {
2487 		/*
2488 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2489 		 * space in the unwired region could have been mapped
2490 		 * while the map lock was dropped for draining
2491 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2492 		 * could be simultaneously wiring this new mapping
2493 		 * entry.  Detect these cases and skip any entries
2494 		 * marked as in transition by us.
2495 		 */
2496 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2497 		    entry->wiring_thread != curthread) {
2498 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2499 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2500 			continue;
2501 		}
2502 
2503 		if (rv == KERN_SUCCESS && (!user_unwire ||
2504 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2505 			if (user_unwire)
2506 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2507 			if (entry->wired_count == 1)
2508 				vm_map_entry_unwire(map, entry);
2509 			else
2510 				entry->wired_count--;
2511 		}
2512 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2513 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2514 		KASSERT(entry->wiring_thread == curthread,
2515 		    ("vm_map_unwire: alien wire %p", entry));
2516 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2517 		entry->wiring_thread = NULL;
2518 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2519 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2520 			need_wakeup = TRUE;
2521 		}
2522 		vm_map_simplify_entry(map, entry);
2523 	}
2524 	vm_map_unlock(map);
2525 	if (need_wakeup)
2526 		vm_map_wakeup(map);
2527 	return (rv);
2528 }
2529 
2530 /*
2531  *	vm_map_wire_entry_failure:
2532  *
2533  *	Handle a wiring failure on the given entry.
2534  *
2535  *	The map should be locked.
2536  */
2537 static void
2538 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2539     vm_offset_t failed_addr)
2540 {
2541 
2542 	VM_MAP_ASSERT_LOCKED(map);
2543 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2544 	    entry->wired_count == 1,
2545 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2546 	KASSERT(failed_addr < entry->end,
2547 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2548 
2549 	/*
2550 	 * If any pages at the start of this entry were successfully wired,
2551 	 * then unwire them.
2552 	 */
2553 	if (failed_addr > entry->start) {
2554 		pmap_unwire(map->pmap, entry->start, failed_addr);
2555 		vm_object_unwire(entry->object.vm_object, entry->offset,
2556 		    failed_addr - entry->start, PQ_ACTIVE);
2557 	}
2558 
2559 	/*
2560 	 * Assign an out-of-range value to represent the failure to wire this
2561 	 * entry.
2562 	 */
2563 	entry->wired_count = -1;
2564 }
2565 
2566 /*
2567  *	vm_map_wire:
2568  *
2569  *	Implements both kernel and user wiring.
2570  */
2571 int
2572 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2573     int flags)
2574 {
2575 	vm_map_entry_t entry, first_entry, tmp_entry;
2576 	vm_offset_t faddr, saved_end, saved_start;
2577 	unsigned int last_timestamp;
2578 	int rv;
2579 	boolean_t need_wakeup, result, user_wire;
2580 	vm_prot_t prot;
2581 
2582 	if (start == end)
2583 		return (KERN_SUCCESS);
2584 	prot = 0;
2585 	if (flags & VM_MAP_WIRE_WRITE)
2586 		prot |= VM_PROT_WRITE;
2587 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2588 	vm_map_lock(map);
2589 	VM_MAP_RANGE_CHECK(map, start, end);
2590 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2591 		if (flags & VM_MAP_WIRE_HOLESOK)
2592 			first_entry = first_entry->next;
2593 		else {
2594 			vm_map_unlock(map);
2595 			return (KERN_INVALID_ADDRESS);
2596 		}
2597 	}
2598 	last_timestamp = map->timestamp;
2599 	entry = first_entry;
2600 	while (entry != &map->header && entry->start < end) {
2601 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2602 			/*
2603 			 * We have not yet clipped the entry.
2604 			 */
2605 			saved_start = (start >= entry->start) ? start :
2606 			    entry->start;
2607 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2608 			if (vm_map_unlock_and_wait(map, 0)) {
2609 				/*
2610 				 * Allow interruption of user wiring?
2611 				 */
2612 			}
2613 			vm_map_lock(map);
2614 			if (last_timestamp + 1 != map->timestamp) {
2615 				/*
2616 				 * Look again for the entry because the map was
2617 				 * modified while it was unlocked.
2618 				 * Specifically, the entry may have been
2619 				 * clipped, merged, or deleted.
2620 				 */
2621 				if (!vm_map_lookup_entry(map, saved_start,
2622 				    &tmp_entry)) {
2623 					if (flags & VM_MAP_WIRE_HOLESOK)
2624 						tmp_entry = tmp_entry->next;
2625 					else {
2626 						if (saved_start == start) {
2627 							/*
2628 							 * first_entry has been deleted.
2629 							 */
2630 							vm_map_unlock(map);
2631 							return (KERN_INVALID_ADDRESS);
2632 						}
2633 						end = saved_start;
2634 						rv = KERN_INVALID_ADDRESS;
2635 						goto done;
2636 					}
2637 				}
2638 				if (entry == first_entry)
2639 					first_entry = tmp_entry;
2640 				else
2641 					first_entry = NULL;
2642 				entry = tmp_entry;
2643 			}
2644 			last_timestamp = map->timestamp;
2645 			continue;
2646 		}
2647 		vm_map_clip_start(map, entry, start);
2648 		vm_map_clip_end(map, entry, end);
2649 		/*
2650 		 * Mark the entry in case the map lock is released.  (See
2651 		 * above.)
2652 		 */
2653 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2654 		    entry->wiring_thread == NULL,
2655 		    ("owned map entry %p", entry));
2656 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2657 		entry->wiring_thread = curthread;
2658 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2659 		    || (entry->protection & prot) != prot) {
2660 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2661 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2662 				end = entry->end;
2663 				rv = KERN_INVALID_ADDRESS;
2664 				goto done;
2665 			}
2666 			goto next_entry;
2667 		}
2668 		if (entry->wired_count == 0) {
2669 			entry->wired_count++;
2670 			saved_start = entry->start;
2671 			saved_end = entry->end;
2672 
2673 			/*
2674 			 * Release the map lock, relying on the in-transition
2675 			 * mark.  Mark the map busy for fork.
2676 			 */
2677 			vm_map_busy(map);
2678 			vm_map_unlock(map);
2679 
2680 			faddr = saved_start;
2681 			do {
2682 				/*
2683 				 * Simulate a fault to get the page and enter
2684 				 * it into the physical map.
2685 				 */
2686 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2687 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2688 					break;
2689 			} while ((faddr += PAGE_SIZE) < saved_end);
2690 			vm_map_lock(map);
2691 			vm_map_unbusy(map);
2692 			if (last_timestamp + 1 != map->timestamp) {
2693 				/*
2694 				 * Look again for the entry because the map was
2695 				 * modified while it was unlocked.  The entry
2696 				 * may have been clipped, but NOT merged or
2697 				 * deleted.
2698 				 */
2699 				result = vm_map_lookup_entry(map, saved_start,
2700 				    &tmp_entry);
2701 				KASSERT(result, ("vm_map_wire: lookup failed"));
2702 				if (entry == first_entry)
2703 					first_entry = tmp_entry;
2704 				else
2705 					first_entry = NULL;
2706 				entry = tmp_entry;
2707 				while (entry->end < saved_end) {
2708 					/*
2709 					 * In case of failure, handle entries
2710 					 * that were not fully wired here;
2711 					 * fully wired entries are handled
2712 					 * later.
2713 					 */
2714 					if (rv != KERN_SUCCESS &&
2715 					    faddr < entry->end)
2716 						vm_map_wire_entry_failure(map,
2717 						    entry, faddr);
2718 					entry = entry->next;
2719 				}
2720 			}
2721 			last_timestamp = map->timestamp;
2722 			if (rv != KERN_SUCCESS) {
2723 				vm_map_wire_entry_failure(map, entry, faddr);
2724 				end = entry->end;
2725 				goto done;
2726 			}
2727 		} else if (!user_wire ||
2728 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2729 			entry->wired_count++;
2730 		}
2731 		/*
2732 		 * Check the map for holes in the specified region.
2733 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2734 		 */
2735 	next_entry:
2736 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2737 		    entry->end < end && (entry->next == &map->header ||
2738 		    entry->next->start > entry->end)) {
2739 			end = entry->end;
2740 			rv = KERN_INVALID_ADDRESS;
2741 			goto done;
2742 		}
2743 		entry = entry->next;
2744 	}
2745 	rv = KERN_SUCCESS;
2746 done:
2747 	need_wakeup = FALSE;
2748 	if (first_entry == NULL) {
2749 		result = vm_map_lookup_entry(map, start, &first_entry);
2750 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2751 			first_entry = first_entry->next;
2752 		else
2753 			KASSERT(result, ("vm_map_wire: lookup failed"));
2754 	}
2755 	for (entry = first_entry; entry != &map->header && entry->start < end;
2756 	    entry = entry->next) {
2757 		/*
2758 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2759 		 * space in the unwired region could have been mapped
2760 		 * while the map lock was dropped for faulting in the
2761 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2762 		 * Moreover, another thread could be simultaneously
2763 		 * wiring this new mapping entry.  Detect these cases
2764 		 * and skip any entries marked as in transition not by us.
2765 		 */
2766 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2767 		    entry->wiring_thread != curthread) {
2768 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2769 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2770 			continue;
2771 		}
2772 
2773 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2774 			goto next_entry_done;
2775 
2776 		if (rv == KERN_SUCCESS) {
2777 			if (user_wire)
2778 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2779 		} else if (entry->wired_count == -1) {
2780 			/*
2781 			 * Wiring failed on this entry.  Thus, unwiring is
2782 			 * unnecessary.
2783 			 */
2784 			entry->wired_count = 0;
2785 		} else if (!user_wire ||
2786 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2787 			/*
2788 			 * Undo the wiring.  Wiring succeeded on this entry
2789 			 * but failed on a later entry.
2790 			 */
2791 			if (entry->wired_count == 1)
2792 				vm_map_entry_unwire(map, entry);
2793 			else
2794 				entry->wired_count--;
2795 		}
2796 	next_entry_done:
2797 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2798 		    ("vm_map_wire: in-transition flag missing %p", entry));
2799 		KASSERT(entry->wiring_thread == curthread,
2800 		    ("vm_map_wire: alien wire %p", entry));
2801 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2802 		    MAP_ENTRY_WIRE_SKIPPED);
2803 		entry->wiring_thread = NULL;
2804 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2805 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2806 			need_wakeup = TRUE;
2807 		}
2808 		vm_map_simplify_entry(map, entry);
2809 	}
2810 	vm_map_unlock(map);
2811 	if (need_wakeup)
2812 		vm_map_wakeup(map);
2813 	return (rv);
2814 }
2815 
2816 /*
2817  * vm_map_sync
2818  *
2819  * Push any dirty cached pages in the address range to their pager.
2820  * If syncio is TRUE, dirty pages are written synchronously.
2821  * If invalidate is TRUE, any cached pages are freed as well.
2822  *
2823  * If the size of the region from start to end is zero, we are
2824  * supposed to flush all modified pages within the region containing
2825  * start.  Unfortunately, a region can be split or coalesced with
2826  * neighboring regions, making it difficult to determine what the
2827  * original region was.  Therefore, we approximate this requirement by
2828  * flushing the current region containing start.
2829  *
2830  * Returns an error if any part of the specified range is not mapped.
2831  */
2832 int
2833 vm_map_sync(
2834 	vm_map_t map,
2835 	vm_offset_t start,
2836 	vm_offset_t end,
2837 	boolean_t syncio,
2838 	boolean_t invalidate)
2839 {
2840 	vm_map_entry_t current;
2841 	vm_map_entry_t entry;
2842 	vm_size_t size;
2843 	vm_object_t object;
2844 	vm_ooffset_t offset;
2845 	unsigned int last_timestamp;
2846 	boolean_t failed;
2847 
2848 	vm_map_lock_read(map);
2849 	VM_MAP_RANGE_CHECK(map, start, end);
2850 	if (!vm_map_lookup_entry(map, start, &entry)) {
2851 		vm_map_unlock_read(map);
2852 		return (KERN_INVALID_ADDRESS);
2853 	} else if (start == end) {
2854 		start = entry->start;
2855 		end = entry->end;
2856 	}
2857 	/*
2858 	 * Make a first pass to check for user-wired memory and holes.
2859 	 */
2860 	for (current = entry; current != &map->header && current->start < end;
2861 	    current = current->next) {
2862 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2863 			vm_map_unlock_read(map);
2864 			return (KERN_INVALID_ARGUMENT);
2865 		}
2866 		if (end > current->end &&
2867 		    (current->next == &map->header ||
2868 			current->end != current->next->start)) {
2869 			vm_map_unlock_read(map);
2870 			return (KERN_INVALID_ADDRESS);
2871 		}
2872 	}
2873 
2874 	if (invalidate)
2875 		pmap_remove(map->pmap, start, end);
2876 	failed = FALSE;
2877 
2878 	/*
2879 	 * Make a second pass, cleaning/uncaching pages from the indicated
2880 	 * objects as we go.
2881 	 */
2882 	for (current = entry; current != &map->header && current->start < end;) {
2883 		offset = current->offset + (start - current->start);
2884 		size = (end <= current->end ? end : current->end) - start;
2885 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2886 			vm_map_t smap;
2887 			vm_map_entry_t tentry;
2888 			vm_size_t tsize;
2889 
2890 			smap = current->object.sub_map;
2891 			vm_map_lock_read(smap);
2892 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2893 			tsize = tentry->end - offset;
2894 			if (tsize < size)
2895 				size = tsize;
2896 			object = tentry->object.vm_object;
2897 			offset = tentry->offset + (offset - tentry->start);
2898 			vm_map_unlock_read(smap);
2899 		} else {
2900 			object = current->object.vm_object;
2901 		}
2902 		vm_object_reference(object);
2903 		last_timestamp = map->timestamp;
2904 		vm_map_unlock_read(map);
2905 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2906 			failed = TRUE;
2907 		start += size;
2908 		vm_object_deallocate(object);
2909 		vm_map_lock_read(map);
2910 		if (last_timestamp == map->timestamp ||
2911 		    !vm_map_lookup_entry(map, start, &current))
2912 			current = current->next;
2913 	}
2914 
2915 	vm_map_unlock_read(map);
2916 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2917 }
2918 
2919 /*
2920  *	vm_map_entry_unwire:	[ internal use only ]
2921  *
2922  *	Make the region specified by this entry pageable.
2923  *
2924  *	The map in question should be locked.
2925  *	[This is the reason for this routine's existence.]
2926  */
2927 static void
2928 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2929 {
2930 
2931 	VM_MAP_ASSERT_LOCKED(map);
2932 	KASSERT(entry->wired_count > 0,
2933 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2934 	pmap_unwire(map->pmap, entry->start, entry->end);
2935 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2936 	    entry->start, PQ_ACTIVE);
2937 	entry->wired_count = 0;
2938 }
2939 
2940 static void
2941 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2942 {
2943 
2944 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2945 		vm_object_deallocate(entry->object.vm_object);
2946 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2947 }
2948 
2949 /*
2950  *	vm_map_entry_delete:	[ internal use only ]
2951  *
2952  *	Deallocate the given entry from the target map.
2953  */
2954 static void
2955 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2956 {
2957 	vm_object_t object;
2958 	vm_pindex_t offidxstart, offidxend, count, size1;
2959 	vm_size_t size;
2960 
2961 	vm_map_entry_unlink(map, entry);
2962 	object = entry->object.vm_object;
2963 
2964 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2965 		MPASS(entry->cred == NULL);
2966 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2967 		MPASS(object == NULL);
2968 		vm_map_entry_deallocate(entry, map->system_map);
2969 		return;
2970 	}
2971 
2972 	size = entry->end - entry->start;
2973 	map->size -= size;
2974 
2975 	if (entry->cred != NULL) {
2976 		swap_release_by_cred(size, entry->cred);
2977 		crfree(entry->cred);
2978 	}
2979 
2980 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2981 	    (object != NULL)) {
2982 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2983 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2984 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2985 		count = atop(size);
2986 		offidxstart = OFF_TO_IDX(entry->offset);
2987 		offidxend = offidxstart + count;
2988 		VM_OBJECT_WLOCK(object);
2989 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2990 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2991 		    object == kernel_object || object == kmem_object)) {
2992 			vm_object_collapse(object);
2993 
2994 			/*
2995 			 * The option OBJPR_NOTMAPPED can be passed here
2996 			 * because vm_map_delete() already performed
2997 			 * pmap_remove() on the only mapping to this range
2998 			 * of pages.
2999 			 */
3000 			vm_object_page_remove(object, offidxstart, offidxend,
3001 			    OBJPR_NOTMAPPED);
3002 			if (object->type == OBJT_SWAP)
3003 				swap_pager_freespace(object, offidxstart,
3004 				    count);
3005 			if (offidxend >= object->size &&
3006 			    offidxstart < object->size) {
3007 				size1 = object->size;
3008 				object->size = offidxstart;
3009 				if (object->cred != NULL) {
3010 					size1 -= object->size;
3011 					KASSERT(object->charge >= ptoa(size1),
3012 					    ("object %p charge < 0", object));
3013 					swap_release_by_cred(ptoa(size1),
3014 					    object->cred);
3015 					object->charge -= ptoa(size1);
3016 				}
3017 			}
3018 		}
3019 		VM_OBJECT_WUNLOCK(object);
3020 	} else
3021 		entry->object.vm_object = NULL;
3022 	if (map->system_map)
3023 		vm_map_entry_deallocate(entry, TRUE);
3024 	else {
3025 		entry->next = curthread->td_map_def_user;
3026 		curthread->td_map_def_user = entry;
3027 	}
3028 }
3029 
3030 /*
3031  *	vm_map_delete:	[ internal use only ]
3032  *
3033  *	Deallocates the given address range from the target
3034  *	map.
3035  */
3036 int
3037 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3038 {
3039 	vm_map_entry_t entry;
3040 	vm_map_entry_t first_entry;
3041 
3042 	VM_MAP_ASSERT_LOCKED(map);
3043 	if (start == end)
3044 		return (KERN_SUCCESS);
3045 
3046 	/*
3047 	 * Find the start of the region, and clip it
3048 	 */
3049 	if (!vm_map_lookup_entry(map, start, &first_entry))
3050 		entry = first_entry->next;
3051 	else {
3052 		entry = first_entry;
3053 		vm_map_clip_start(map, entry, start);
3054 	}
3055 
3056 	/*
3057 	 * Step through all entries in this region
3058 	 */
3059 	while ((entry != &map->header) && (entry->start < end)) {
3060 		vm_map_entry_t next;
3061 
3062 		/*
3063 		 * Wait for wiring or unwiring of an entry to complete.
3064 		 * Also wait for any system wirings to disappear on
3065 		 * user maps.
3066 		 */
3067 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3068 		    (vm_map_pmap(map) != kernel_pmap &&
3069 		    vm_map_entry_system_wired_count(entry) != 0)) {
3070 			unsigned int last_timestamp;
3071 			vm_offset_t saved_start;
3072 			vm_map_entry_t tmp_entry;
3073 
3074 			saved_start = entry->start;
3075 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3076 			last_timestamp = map->timestamp;
3077 			(void) vm_map_unlock_and_wait(map, 0);
3078 			vm_map_lock(map);
3079 			if (last_timestamp + 1 != map->timestamp) {
3080 				/*
3081 				 * Look again for the entry because the map was
3082 				 * modified while it was unlocked.
3083 				 * Specifically, the entry may have been
3084 				 * clipped, merged, or deleted.
3085 				 */
3086 				if (!vm_map_lookup_entry(map, saved_start,
3087 							 &tmp_entry))
3088 					entry = tmp_entry->next;
3089 				else {
3090 					entry = tmp_entry;
3091 					vm_map_clip_start(map, entry,
3092 							  saved_start);
3093 				}
3094 			}
3095 			continue;
3096 		}
3097 		vm_map_clip_end(map, entry, end);
3098 
3099 		next = entry->next;
3100 
3101 		/*
3102 		 * Unwire before removing addresses from the pmap; otherwise,
3103 		 * unwiring will put the entries back in the pmap.
3104 		 */
3105 		if (entry->wired_count != 0) {
3106 			vm_map_entry_unwire(map, entry);
3107 		}
3108 
3109 		pmap_remove(map->pmap, entry->start, entry->end);
3110 
3111 		/*
3112 		 * Delete the entry only after removing all pmap
3113 		 * entries pointing to its pages.  (Otherwise, its
3114 		 * page frames may be reallocated, and any modify bits
3115 		 * will be set in the wrong object!)
3116 		 */
3117 		vm_map_entry_delete(map, entry);
3118 		entry = next;
3119 	}
3120 	return (KERN_SUCCESS);
3121 }
3122 
3123 /*
3124  *	vm_map_remove:
3125  *
3126  *	Remove the given address range from the target map.
3127  *	This is the exported form of vm_map_delete.
3128  */
3129 int
3130 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3131 {
3132 	int result;
3133 
3134 	vm_map_lock(map);
3135 	VM_MAP_RANGE_CHECK(map, start, end);
3136 	result = vm_map_delete(map, start, end);
3137 	vm_map_unlock(map);
3138 	return (result);
3139 }
3140 
3141 /*
3142  *	vm_map_check_protection:
3143  *
3144  *	Assert that the target map allows the specified privilege on the
3145  *	entire address region given.  The entire region must be allocated.
3146  *
3147  *	WARNING!  This code does not and should not check whether the
3148  *	contents of the region is accessible.  For example a smaller file
3149  *	might be mapped into a larger address space.
3150  *
3151  *	NOTE!  This code is also called by munmap().
3152  *
3153  *	The map must be locked.  A read lock is sufficient.
3154  */
3155 boolean_t
3156 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3157 			vm_prot_t protection)
3158 {
3159 	vm_map_entry_t entry;
3160 	vm_map_entry_t tmp_entry;
3161 
3162 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3163 		return (FALSE);
3164 	entry = tmp_entry;
3165 
3166 	while (start < end) {
3167 		if (entry == &map->header)
3168 			return (FALSE);
3169 		/*
3170 		 * No holes allowed!
3171 		 */
3172 		if (start < entry->start)
3173 			return (FALSE);
3174 		/*
3175 		 * Check protection associated with entry.
3176 		 */
3177 		if ((entry->protection & protection) != protection)
3178 			return (FALSE);
3179 		/* go to next entry */
3180 		start = entry->end;
3181 		entry = entry->next;
3182 	}
3183 	return (TRUE);
3184 }
3185 
3186 /*
3187  *	vm_map_copy_entry:
3188  *
3189  *	Copies the contents of the source entry to the destination
3190  *	entry.  The entries *must* be aligned properly.
3191  */
3192 static void
3193 vm_map_copy_entry(
3194 	vm_map_t src_map,
3195 	vm_map_t dst_map,
3196 	vm_map_entry_t src_entry,
3197 	vm_map_entry_t dst_entry,
3198 	vm_ooffset_t *fork_charge)
3199 {
3200 	vm_object_t src_object;
3201 	vm_map_entry_t fake_entry;
3202 	vm_offset_t size;
3203 	struct ucred *cred;
3204 	int charged;
3205 
3206 	VM_MAP_ASSERT_LOCKED(dst_map);
3207 
3208 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3209 		return;
3210 
3211 	if (src_entry->wired_count == 0 ||
3212 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3213 		/*
3214 		 * If the source entry is marked needs_copy, it is already
3215 		 * write-protected.
3216 		 */
3217 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3218 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3219 			pmap_protect(src_map->pmap,
3220 			    src_entry->start,
3221 			    src_entry->end,
3222 			    src_entry->protection & ~VM_PROT_WRITE);
3223 		}
3224 
3225 		/*
3226 		 * Make a copy of the object.
3227 		 */
3228 		size = src_entry->end - src_entry->start;
3229 		if ((src_object = src_entry->object.vm_object) != NULL) {
3230 			VM_OBJECT_WLOCK(src_object);
3231 			charged = ENTRY_CHARGED(src_entry);
3232 			if (src_object->handle == NULL &&
3233 			    (src_object->type == OBJT_DEFAULT ||
3234 			    src_object->type == OBJT_SWAP)) {
3235 				vm_object_collapse(src_object);
3236 				if ((src_object->flags & (OBJ_NOSPLIT |
3237 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3238 					vm_object_split(src_entry);
3239 					src_object =
3240 					    src_entry->object.vm_object;
3241 				}
3242 			}
3243 			vm_object_reference_locked(src_object);
3244 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3245 			if (src_entry->cred != NULL &&
3246 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3247 				KASSERT(src_object->cred == NULL,
3248 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3249 				     src_object));
3250 				src_object->cred = src_entry->cred;
3251 				src_object->charge = size;
3252 			}
3253 			VM_OBJECT_WUNLOCK(src_object);
3254 			dst_entry->object.vm_object = src_object;
3255 			if (charged) {
3256 				cred = curthread->td_ucred;
3257 				crhold(cred);
3258 				dst_entry->cred = cred;
3259 				*fork_charge += size;
3260 				if (!(src_entry->eflags &
3261 				      MAP_ENTRY_NEEDS_COPY)) {
3262 					crhold(cred);
3263 					src_entry->cred = cred;
3264 					*fork_charge += size;
3265 				}
3266 			}
3267 			src_entry->eflags |= MAP_ENTRY_COW |
3268 			    MAP_ENTRY_NEEDS_COPY;
3269 			dst_entry->eflags |= MAP_ENTRY_COW |
3270 			    MAP_ENTRY_NEEDS_COPY;
3271 			dst_entry->offset = src_entry->offset;
3272 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3273 				/*
3274 				 * MAP_ENTRY_VN_WRITECNT cannot
3275 				 * indicate write reference from
3276 				 * src_entry, since the entry is
3277 				 * marked as needs copy.  Allocate a
3278 				 * fake entry that is used to
3279 				 * decrement object->un_pager.vnp.writecount
3280 				 * at the appropriate time.  Attach
3281 				 * fake_entry to the deferred list.
3282 				 */
3283 				fake_entry = vm_map_entry_create(dst_map);
3284 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3285 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3286 				vm_object_reference(src_object);
3287 				fake_entry->object.vm_object = src_object;
3288 				fake_entry->start = src_entry->start;
3289 				fake_entry->end = src_entry->end;
3290 				fake_entry->next = curthread->td_map_def_user;
3291 				curthread->td_map_def_user = fake_entry;
3292 			}
3293 
3294 			pmap_copy(dst_map->pmap, src_map->pmap,
3295 			    dst_entry->start, dst_entry->end - dst_entry->start,
3296 			    src_entry->start);
3297 		} else {
3298 			dst_entry->object.vm_object = NULL;
3299 			dst_entry->offset = 0;
3300 			if (src_entry->cred != NULL) {
3301 				dst_entry->cred = curthread->td_ucred;
3302 				crhold(dst_entry->cred);
3303 				*fork_charge += size;
3304 			}
3305 		}
3306 	} else {
3307 		/*
3308 		 * We don't want to make writeable wired pages copy-on-write.
3309 		 * Immediately copy these pages into the new map by simulating
3310 		 * page faults.  The new pages are pageable.
3311 		 */
3312 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3313 		    fork_charge);
3314 	}
3315 }
3316 
3317 /*
3318  * vmspace_map_entry_forked:
3319  * Update the newly-forked vmspace each time a map entry is inherited
3320  * or copied.  The values for vm_dsize and vm_tsize are approximate
3321  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3322  */
3323 static void
3324 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3325     vm_map_entry_t entry)
3326 {
3327 	vm_size_t entrysize;
3328 	vm_offset_t newend;
3329 
3330 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3331 		return;
3332 	entrysize = entry->end - entry->start;
3333 	vm2->vm_map.size += entrysize;
3334 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3335 		vm2->vm_ssize += btoc(entrysize);
3336 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3337 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3338 		newend = MIN(entry->end,
3339 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3340 		vm2->vm_dsize += btoc(newend - entry->start);
3341 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3342 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3343 		newend = MIN(entry->end,
3344 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3345 		vm2->vm_tsize += btoc(newend - entry->start);
3346 	}
3347 }
3348 
3349 /*
3350  * vmspace_fork:
3351  * Create a new process vmspace structure and vm_map
3352  * based on those of an existing process.  The new map
3353  * is based on the old map, according to the inheritance
3354  * values on the regions in that map.
3355  *
3356  * XXX It might be worth coalescing the entries added to the new vmspace.
3357  *
3358  * The source map must not be locked.
3359  */
3360 struct vmspace *
3361 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3362 {
3363 	struct vmspace *vm2;
3364 	vm_map_t new_map, old_map;
3365 	vm_map_entry_t new_entry, old_entry;
3366 	vm_object_t object;
3367 	int locked;
3368 	vm_inherit_t inh;
3369 
3370 	old_map = &vm1->vm_map;
3371 	/* Copy immutable fields of vm1 to vm2. */
3372 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3373 	if (vm2 == NULL)
3374 		return (NULL);
3375 	vm2->vm_taddr = vm1->vm_taddr;
3376 	vm2->vm_daddr = vm1->vm_daddr;
3377 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3378 	vm_map_lock(old_map);
3379 	if (old_map->busy)
3380 		vm_map_wait_busy(old_map);
3381 	new_map = &vm2->vm_map;
3382 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3383 	KASSERT(locked, ("vmspace_fork: lock failed"));
3384 
3385 	old_entry = old_map->header.next;
3386 
3387 	while (old_entry != &old_map->header) {
3388 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3389 			panic("vm_map_fork: encountered a submap");
3390 
3391 		inh = old_entry->inheritance;
3392 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3393 		    inh != VM_INHERIT_NONE)
3394 			inh = VM_INHERIT_COPY;
3395 
3396 		switch (inh) {
3397 		case VM_INHERIT_NONE:
3398 			break;
3399 
3400 		case VM_INHERIT_SHARE:
3401 			/*
3402 			 * Clone the entry, creating the shared object if necessary.
3403 			 */
3404 			object = old_entry->object.vm_object;
3405 			if (object == NULL) {
3406 				object = vm_object_allocate(OBJT_DEFAULT,
3407 					atop(old_entry->end - old_entry->start));
3408 				old_entry->object.vm_object = object;
3409 				old_entry->offset = 0;
3410 				if (old_entry->cred != NULL) {
3411 					object->cred = old_entry->cred;
3412 					object->charge = old_entry->end -
3413 					    old_entry->start;
3414 					old_entry->cred = NULL;
3415 				}
3416 			}
3417 
3418 			/*
3419 			 * Add the reference before calling vm_object_shadow
3420 			 * to insure that a shadow object is created.
3421 			 */
3422 			vm_object_reference(object);
3423 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3424 				vm_object_shadow(&old_entry->object.vm_object,
3425 				    &old_entry->offset,
3426 				    old_entry->end - old_entry->start);
3427 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3428 				/* Transfer the second reference too. */
3429 				vm_object_reference(
3430 				    old_entry->object.vm_object);
3431 
3432 				/*
3433 				 * As in vm_map_simplify_entry(), the
3434 				 * vnode lock will not be acquired in
3435 				 * this call to vm_object_deallocate().
3436 				 */
3437 				vm_object_deallocate(object);
3438 				object = old_entry->object.vm_object;
3439 			}
3440 			VM_OBJECT_WLOCK(object);
3441 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3442 			if (old_entry->cred != NULL) {
3443 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3444 				object->cred = old_entry->cred;
3445 				object->charge = old_entry->end - old_entry->start;
3446 				old_entry->cred = NULL;
3447 			}
3448 
3449 			/*
3450 			 * Assert the correct state of the vnode
3451 			 * v_writecount while the object is locked, to
3452 			 * not relock it later for the assertion
3453 			 * correctness.
3454 			 */
3455 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3456 			    object->type == OBJT_VNODE) {
3457 				KASSERT(((struct vnode *)object->handle)->
3458 				    v_writecount > 0,
3459 				    ("vmspace_fork: v_writecount %p", object));
3460 				KASSERT(object->un_pager.vnp.writemappings > 0,
3461 				    ("vmspace_fork: vnp.writecount %p",
3462 				    object));
3463 			}
3464 			VM_OBJECT_WUNLOCK(object);
3465 
3466 			/*
3467 			 * Clone the entry, referencing the shared object.
3468 			 */
3469 			new_entry = vm_map_entry_create(new_map);
3470 			*new_entry = *old_entry;
3471 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3472 			    MAP_ENTRY_IN_TRANSITION);
3473 			new_entry->wiring_thread = NULL;
3474 			new_entry->wired_count = 0;
3475 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3476 				vnode_pager_update_writecount(object,
3477 				    new_entry->start, new_entry->end);
3478 			}
3479 
3480 			/*
3481 			 * Insert the entry into the new map -- we know we're
3482 			 * inserting at the end of the new map.
3483 			 */
3484 			vm_map_entry_link(new_map, new_map->header.prev,
3485 			    new_entry);
3486 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3487 
3488 			/*
3489 			 * Update the physical map
3490 			 */
3491 			pmap_copy(new_map->pmap, old_map->pmap,
3492 			    new_entry->start,
3493 			    (old_entry->end - old_entry->start),
3494 			    old_entry->start);
3495 			break;
3496 
3497 		case VM_INHERIT_COPY:
3498 			/*
3499 			 * Clone the entry and link into the map.
3500 			 */
3501 			new_entry = vm_map_entry_create(new_map);
3502 			*new_entry = *old_entry;
3503 			/*
3504 			 * Copied entry is COW over the old object.
3505 			 */
3506 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3507 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3508 			new_entry->wiring_thread = NULL;
3509 			new_entry->wired_count = 0;
3510 			new_entry->object.vm_object = NULL;
3511 			new_entry->cred = NULL;
3512 			vm_map_entry_link(new_map, new_map->header.prev,
3513 			    new_entry);
3514 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3515 			vm_map_copy_entry(old_map, new_map, old_entry,
3516 			    new_entry, fork_charge);
3517 			break;
3518 
3519 		case VM_INHERIT_ZERO:
3520 			/*
3521 			 * Create a new anonymous mapping entry modelled from
3522 			 * the old one.
3523 			 */
3524 			new_entry = vm_map_entry_create(new_map);
3525 			memset(new_entry, 0, sizeof(*new_entry));
3526 
3527 			new_entry->start = old_entry->start;
3528 			new_entry->end = old_entry->end;
3529 			new_entry->eflags = old_entry->eflags &
3530 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3531 			    MAP_ENTRY_VN_WRITECNT);
3532 			new_entry->protection = old_entry->protection;
3533 			new_entry->max_protection = old_entry->max_protection;
3534 			new_entry->inheritance = VM_INHERIT_ZERO;
3535 
3536 			vm_map_entry_link(new_map, new_map->header.prev,
3537 			    new_entry);
3538 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3539 
3540 			new_entry->cred = curthread->td_ucred;
3541 			crhold(new_entry->cred);
3542 			*fork_charge += (new_entry->end - new_entry->start);
3543 
3544 			break;
3545 		}
3546 		old_entry = old_entry->next;
3547 	}
3548 	/*
3549 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3550 	 * map entries, which cannot be done until both old_map and
3551 	 * new_map locks are released.
3552 	 */
3553 	sx_xunlock(&old_map->lock);
3554 	sx_xunlock(&new_map->lock);
3555 	vm_map_process_deferred();
3556 
3557 	return (vm2);
3558 }
3559 
3560 /*
3561  * Create a process's stack for exec_new_vmspace().  This function is never
3562  * asked to wire the newly created stack.
3563  */
3564 int
3565 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3566     vm_prot_t prot, vm_prot_t max, int cow)
3567 {
3568 	vm_size_t growsize, init_ssize;
3569 	rlim_t vmemlim;
3570 	int rv;
3571 
3572 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3573 	growsize = sgrowsiz;
3574 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3575 	vm_map_lock(map);
3576 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3577 	/* If we would blow our VMEM resource limit, no go */
3578 	if (map->size + init_ssize > vmemlim) {
3579 		rv = KERN_NO_SPACE;
3580 		goto out;
3581 	}
3582 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3583 	    max, cow);
3584 out:
3585 	vm_map_unlock(map);
3586 	return (rv);
3587 }
3588 
3589 static int stack_guard_page = 1;
3590 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3591     &stack_guard_page, 0,
3592     "Specifies the number of guard pages for a stack that grows");
3593 
3594 static int
3595 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3596     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3597 {
3598 	vm_map_entry_t new_entry, prev_entry;
3599 	vm_offset_t bot, gap_bot, gap_top, top;
3600 	vm_size_t init_ssize, sgp;
3601 	int orient, rv;
3602 
3603 	/*
3604 	 * The stack orientation is piggybacked with the cow argument.
3605 	 * Extract it into orient and mask the cow argument so that we
3606 	 * don't pass it around further.
3607 	 */
3608 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3609 	KASSERT(orient != 0, ("No stack grow direction"));
3610 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3611 	    ("bi-dir stack"));
3612 
3613 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3614 	if (addrbos < vm_map_min(map) ||
3615 	    addrbos > vm_map_max(map) ||
3616 	    addrbos + max_ssize < addrbos ||
3617 	    sgp >= max_ssize)
3618 		return (KERN_NO_SPACE);
3619 
3620 	init_ssize = growsize;
3621 	if (max_ssize < init_ssize + sgp)
3622 		init_ssize = max_ssize - sgp;
3623 
3624 	/* If addr is already mapped, no go */
3625 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3626 		return (KERN_NO_SPACE);
3627 
3628 	/*
3629 	 * If we can't accommodate max_ssize in the current mapping, no go.
3630 	 */
3631 	if ((prev_entry->next != &map->header) &&
3632 	    (prev_entry->next->start < addrbos + max_ssize))
3633 		return (KERN_NO_SPACE);
3634 
3635 	/*
3636 	 * We initially map a stack of only init_ssize.  We will grow as
3637 	 * needed later.  Depending on the orientation of the stack (i.e.
3638 	 * the grow direction) we either map at the top of the range, the
3639 	 * bottom of the range or in the middle.
3640 	 *
3641 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3642 	 * and cow to be 0.  Possibly we should eliminate these as input
3643 	 * parameters, and just pass these values here in the insert call.
3644 	 */
3645 	if (orient == MAP_STACK_GROWS_DOWN) {
3646 		bot = addrbos + max_ssize - init_ssize;
3647 		top = bot + init_ssize;
3648 		gap_bot = addrbos;
3649 		gap_top = bot;
3650 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3651 		bot = addrbos;
3652 		top = bot + init_ssize;
3653 		gap_bot = top;
3654 		gap_top = addrbos + max_ssize;
3655 	}
3656 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3657 	if (rv != KERN_SUCCESS)
3658 		return (rv);
3659 	new_entry = prev_entry->next;
3660 	KASSERT(new_entry->end == top || new_entry->start == bot,
3661 	    ("Bad entry start/end for new stack entry"));
3662 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3663 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3664 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3665 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3666 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3667 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3668 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3669 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3670 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3671 	if (rv != KERN_SUCCESS)
3672 		(void)vm_map_delete(map, bot, top);
3673 	return (rv);
3674 }
3675 
3676 /*
3677  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3678  * successfully grow the stack.
3679  */
3680 static int
3681 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3682 {
3683 	vm_map_entry_t stack_entry;
3684 	struct proc *p;
3685 	struct vmspace *vm;
3686 	struct ucred *cred;
3687 	vm_offset_t gap_end, gap_start, grow_start;
3688 	size_t grow_amount, guard, max_grow;
3689 	rlim_t lmemlim, stacklim, vmemlim;
3690 	int rv, rv1;
3691 	bool gap_deleted, grow_down, is_procstack;
3692 #ifdef notyet
3693 	uint64_t limit;
3694 #endif
3695 #ifdef RACCT
3696 	int error;
3697 #endif
3698 
3699 	p = curproc;
3700 	vm = p->p_vmspace;
3701 	MPASS(map == &p->p_vmspace->vm_map);
3702 	MPASS(!map->system_map);
3703 
3704 	guard = stack_guard_page * PAGE_SIZE;
3705 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3706 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3707 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3708 retry:
3709 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3710 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3711 		return (KERN_FAILURE);
3712 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3713 		return (KERN_SUCCESS);
3714 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3715 		stack_entry = gap_entry->next;
3716 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3717 		    stack_entry->start != gap_entry->end)
3718 			return (KERN_FAILURE);
3719 		grow_amount = round_page(stack_entry->start - addr);
3720 		grow_down = true;
3721 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3722 		stack_entry = gap_entry->prev;
3723 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3724 		    stack_entry->end != gap_entry->start)
3725 			return (KERN_FAILURE);
3726 		grow_amount = round_page(addr + 1 - stack_entry->end);
3727 		grow_down = false;
3728 	} else {
3729 		return (KERN_FAILURE);
3730 	}
3731 	max_grow = gap_entry->end - gap_entry->start;
3732 	if (guard > max_grow)
3733 		return (KERN_NO_SPACE);
3734 	max_grow -= guard;
3735 	if (grow_amount > max_grow)
3736 		return (KERN_NO_SPACE);
3737 
3738 	/*
3739 	 * If this is the main process stack, see if we're over the stack
3740 	 * limit.
3741 	 */
3742 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3743 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3744 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3745 		return (KERN_NO_SPACE);
3746 
3747 #ifdef RACCT
3748 	if (racct_enable) {
3749 		PROC_LOCK(p);
3750 		if (is_procstack && racct_set(p, RACCT_STACK,
3751 		    ctob(vm->vm_ssize) + grow_amount)) {
3752 			PROC_UNLOCK(p);
3753 			return (KERN_NO_SPACE);
3754 		}
3755 		PROC_UNLOCK(p);
3756 	}
3757 #endif
3758 
3759 	grow_amount = roundup(grow_amount, sgrowsiz);
3760 	if (grow_amount > max_grow)
3761 		grow_amount = max_grow;
3762 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3763 		grow_amount = trunc_page((vm_size_t)stacklim) -
3764 		    ctob(vm->vm_ssize);
3765 	}
3766 
3767 #ifdef notyet
3768 	PROC_LOCK(p);
3769 	limit = racct_get_available(p, RACCT_STACK);
3770 	PROC_UNLOCK(p);
3771 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3772 		grow_amount = limit - ctob(vm->vm_ssize);
3773 #endif
3774 
3775 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3776 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3777 			rv = KERN_NO_SPACE;
3778 			goto out;
3779 		}
3780 #ifdef RACCT
3781 		if (racct_enable) {
3782 			PROC_LOCK(p);
3783 			if (racct_set(p, RACCT_MEMLOCK,
3784 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3785 				PROC_UNLOCK(p);
3786 				rv = KERN_NO_SPACE;
3787 				goto out;
3788 			}
3789 			PROC_UNLOCK(p);
3790 		}
3791 #endif
3792 	}
3793 
3794 	/* If we would blow our VMEM resource limit, no go */
3795 	if (map->size + grow_amount > vmemlim) {
3796 		rv = KERN_NO_SPACE;
3797 		goto out;
3798 	}
3799 #ifdef RACCT
3800 	if (racct_enable) {
3801 		PROC_LOCK(p);
3802 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3803 			PROC_UNLOCK(p);
3804 			rv = KERN_NO_SPACE;
3805 			goto out;
3806 		}
3807 		PROC_UNLOCK(p);
3808 	}
3809 #endif
3810 
3811 	if (vm_map_lock_upgrade(map)) {
3812 		gap_entry = NULL;
3813 		vm_map_lock_read(map);
3814 		goto retry;
3815 	}
3816 
3817 	if (grow_down) {
3818 		grow_start = gap_entry->end - grow_amount;
3819 		if (gap_entry->start + grow_amount == gap_entry->end) {
3820 			gap_start = gap_entry->start;
3821 			gap_end = gap_entry->end;
3822 			vm_map_entry_delete(map, gap_entry);
3823 			gap_deleted = true;
3824 		} else {
3825 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3826 			gap_entry->end -= grow_amount;
3827 			vm_map_entry_resize_free(map, gap_entry);
3828 			gap_deleted = false;
3829 		}
3830 		rv = vm_map_insert(map, NULL, 0, grow_start,
3831 		    grow_start + grow_amount,
3832 		    stack_entry->protection, stack_entry->max_protection,
3833 		    MAP_STACK_GROWS_DOWN);
3834 		if (rv != KERN_SUCCESS) {
3835 			if (gap_deleted) {
3836 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3837 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3838 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3839 				MPASS(rv1 == KERN_SUCCESS);
3840 			} else {
3841 				gap_entry->end += grow_amount;
3842 				vm_map_entry_resize_free(map, gap_entry);
3843 			}
3844 		}
3845 	} else {
3846 		grow_start = stack_entry->end;
3847 		cred = stack_entry->cred;
3848 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3849 			cred = stack_entry->object.vm_object->cred;
3850 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3851 			rv = KERN_NO_SPACE;
3852 		/* Grow the underlying object if applicable. */
3853 		else if (stack_entry->object.vm_object == NULL ||
3854 		    vm_object_coalesce(stack_entry->object.vm_object,
3855 		    stack_entry->offset,
3856 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3857 		    (vm_size_t)grow_amount, cred != NULL)) {
3858 			if (gap_entry->start + grow_amount == gap_entry->end)
3859 				vm_map_entry_delete(map, gap_entry);
3860 			else
3861 				gap_entry->start += grow_amount;
3862 			stack_entry->end += grow_amount;
3863 			map->size += grow_amount;
3864 			vm_map_entry_resize_free(map, stack_entry);
3865 			rv = KERN_SUCCESS;
3866 		} else
3867 			rv = KERN_FAILURE;
3868 	}
3869 	if (rv == KERN_SUCCESS && is_procstack)
3870 		vm->vm_ssize += btoc(grow_amount);
3871 
3872 	/*
3873 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3874 	 */
3875 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3876 		vm_map_unlock(map);
3877 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3878 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3879 		vm_map_lock_read(map);
3880 	} else
3881 		vm_map_lock_downgrade(map);
3882 
3883 out:
3884 #ifdef RACCT
3885 	if (racct_enable && rv != KERN_SUCCESS) {
3886 		PROC_LOCK(p);
3887 		error = racct_set(p, RACCT_VMEM, map->size);
3888 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3889 		if (!old_mlock) {
3890 			error = racct_set(p, RACCT_MEMLOCK,
3891 			    ptoa(pmap_wired_count(map->pmap)));
3892 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3893 		}
3894 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3895 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3896 		PROC_UNLOCK(p);
3897 	}
3898 #endif
3899 
3900 	return (rv);
3901 }
3902 
3903 /*
3904  * Unshare the specified VM space for exec.  If other processes are
3905  * mapped to it, then create a new one.  The new vmspace is null.
3906  */
3907 int
3908 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3909 {
3910 	struct vmspace *oldvmspace = p->p_vmspace;
3911 	struct vmspace *newvmspace;
3912 
3913 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3914 	    ("vmspace_exec recursed"));
3915 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3916 	if (newvmspace == NULL)
3917 		return (ENOMEM);
3918 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3919 	/*
3920 	 * This code is written like this for prototype purposes.  The
3921 	 * goal is to avoid running down the vmspace here, but let the
3922 	 * other process's that are still using the vmspace to finally
3923 	 * run it down.  Even though there is little or no chance of blocking
3924 	 * here, it is a good idea to keep this form for future mods.
3925 	 */
3926 	PROC_VMSPACE_LOCK(p);
3927 	p->p_vmspace = newvmspace;
3928 	PROC_VMSPACE_UNLOCK(p);
3929 	if (p == curthread->td_proc)
3930 		pmap_activate(curthread);
3931 	curthread->td_pflags |= TDP_EXECVMSPC;
3932 	return (0);
3933 }
3934 
3935 /*
3936  * Unshare the specified VM space for forcing COW.  This
3937  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3938  */
3939 int
3940 vmspace_unshare(struct proc *p)
3941 {
3942 	struct vmspace *oldvmspace = p->p_vmspace;
3943 	struct vmspace *newvmspace;
3944 	vm_ooffset_t fork_charge;
3945 
3946 	if (oldvmspace->vm_refcnt == 1)
3947 		return (0);
3948 	fork_charge = 0;
3949 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3950 	if (newvmspace == NULL)
3951 		return (ENOMEM);
3952 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3953 		vmspace_free(newvmspace);
3954 		return (ENOMEM);
3955 	}
3956 	PROC_VMSPACE_LOCK(p);
3957 	p->p_vmspace = newvmspace;
3958 	PROC_VMSPACE_UNLOCK(p);
3959 	if (p == curthread->td_proc)
3960 		pmap_activate(curthread);
3961 	vmspace_free(oldvmspace);
3962 	return (0);
3963 }
3964 
3965 /*
3966  *	vm_map_lookup:
3967  *
3968  *	Finds the VM object, offset, and
3969  *	protection for a given virtual address in the
3970  *	specified map, assuming a page fault of the
3971  *	type specified.
3972  *
3973  *	Leaves the map in question locked for read; return
3974  *	values are guaranteed until a vm_map_lookup_done
3975  *	call is performed.  Note that the map argument
3976  *	is in/out; the returned map must be used in
3977  *	the call to vm_map_lookup_done.
3978  *
3979  *	A handle (out_entry) is returned for use in
3980  *	vm_map_lookup_done, to make that fast.
3981  *
3982  *	If a lookup is requested with "write protection"
3983  *	specified, the map may be changed to perform virtual
3984  *	copying operations, although the data referenced will
3985  *	remain the same.
3986  */
3987 int
3988 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3989 	      vm_offset_t vaddr,
3990 	      vm_prot_t fault_typea,
3991 	      vm_map_entry_t *out_entry,	/* OUT */
3992 	      vm_object_t *object,		/* OUT */
3993 	      vm_pindex_t *pindex,		/* OUT */
3994 	      vm_prot_t *out_prot,		/* OUT */
3995 	      boolean_t *wired)			/* OUT */
3996 {
3997 	vm_map_entry_t entry;
3998 	vm_map_t map = *var_map;
3999 	vm_prot_t prot;
4000 	vm_prot_t fault_type = fault_typea;
4001 	vm_object_t eobject;
4002 	vm_size_t size;
4003 	struct ucred *cred;
4004 
4005 RetryLookup:
4006 
4007 	vm_map_lock_read(map);
4008 
4009 RetryLookupLocked:
4010 	/*
4011 	 * Lookup the faulting address.
4012 	 */
4013 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4014 		vm_map_unlock_read(map);
4015 		return (KERN_INVALID_ADDRESS);
4016 	}
4017 
4018 	entry = *out_entry;
4019 
4020 	/*
4021 	 * Handle submaps.
4022 	 */
4023 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4024 		vm_map_t old_map = map;
4025 
4026 		*var_map = map = entry->object.sub_map;
4027 		vm_map_unlock_read(old_map);
4028 		goto RetryLookup;
4029 	}
4030 
4031 	/*
4032 	 * Check whether this task is allowed to have this page.
4033 	 */
4034 	prot = entry->protection;
4035 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4036 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4037 		if (prot == VM_PROT_NONE && map != kernel_map &&
4038 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4039 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4040 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4041 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4042 			goto RetryLookupLocked;
4043 	}
4044 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4045 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4046 		vm_map_unlock_read(map);
4047 		return (KERN_PROTECTION_FAILURE);
4048 	}
4049 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4050 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4051 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4052 	    ("entry %p flags %x", entry, entry->eflags));
4053 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4054 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4055 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4056 		vm_map_unlock_read(map);
4057 		return (KERN_PROTECTION_FAILURE);
4058 	}
4059 
4060 	/*
4061 	 * If this page is not pageable, we have to get it for all possible
4062 	 * accesses.
4063 	 */
4064 	*wired = (entry->wired_count != 0);
4065 	if (*wired)
4066 		fault_type = entry->protection;
4067 	size = entry->end - entry->start;
4068 	/*
4069 	 * If the entry was copy-on-write, we either ...
4070 	 */
4071 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4072 		/*
4073 		 * If we want to write the page, we may as well handle that
4074 		 * now since we've got the map locked.
4075 		 *
4076 		 * If we don't need to write the page, we just demote the
4077 		 * permissions allowed.
4078 		 */
4079 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4080 		    (fault_typea & VM_PROT_COPY) != 0) {
4081 			/*
4082 			 * Make a new object, and place it in the object
4083 			 * chain.  Note that no new references have appeared
4084 			 * -- one just moved from the map to the new
4085 			 * object.
4086 			 */
4087 			if (vm_map_lock_upgrade(map))
4088 				goto RetryLookup;
4089 
4090 			if (entry->cred == NULL) {
4091 				/*
4092 				 * The debugger owner is charged for
4093 				 * the memory.
4094 				 */
4095 				cred = curthread->td_ucred;
4096 				crhold(cred);
4097 				if (!swap_reserve_by_cred(size, cred)) {
4098 					crfree(cred);
4099 					vm_map_unlock(map);
4100 					return (KERN_RESOURCE_SHORTAGE);
4101 				}
4102 				entry->cred = cred;
4103 			}
4104 			vm_object_shadow(&entry->object.vm_object,
4105 			    &entry->offset, size);
4106 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4107 			eobject = entry->object.vm_object;
4108 			if (eobject->cred != NULL) {
4109 				/*
4110 				 * The object was not shadowed.
4111 				 */
4112 				swap_release_by_cred(size, entry->cred);
4113 				crfree(entry->cred);
4114 				entry->cred = NULL;
4115 			} else if (entry->cred != NULL) {
4116 				VM_OBJECT_WLOCK(eobject);
4117 				eobject->cred = entry->cred;
4118 				eobject->charge = size;
4119 				VM_OBJECT_WUNLOCK(eobject);
4120 				entry->cred = NULL;
4121 			}
4122 
4123 			vm_map_lock_downgrade(map);
4124 		} else {
4125 			/*
4126 			 * We're attempting to read a copy-on-write page --
4127 			 * don't allow writes.
4128 			 */
4129 			prot &= ~VM_PROT_WRITE;
4130 		}
4131 	}
4132 
4133 	/*
4134 	 * Create an object if necessary.
4135 	 */
4136 	if (entry->object.vm_object == NULL &&
4137 	    !map->system_map) {
4138 		if (vm_map_lock_upgrade(map))
4139 			goto RetryLookup;
4140 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4141 		    atop(size));
4142 		entry->offset = 0;
4143 		if (entry->cred != NULL) {
4144 			VM_OBJECT_WLOCK(entry->object.vm_object);
4145 			entry->object.vm_object->cred = entry->cred;
4146 			entry->object.vm_object->charge = size;
4147 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4148 			entry->cred = NULL;
4149 		}
4150 		vm_map_lock_downgrade(map);
4151 	}
4152 
4153 	/*
4154 	 * Return the object/offset from this entry.  If the entry was
4155 	 * copy-on-write or empty, it has been fixed up.
4156 	 */
4157 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4158 	*object = entry->object.vm_object;
4159 
4160 	*out_prot = prot;
4161 	return (KERN_SUCCESS);
4162 }
4163 
4164 /*
4165  *	vm_map_lookup_locked:
4166  *
4167  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4168  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4169  */
4170 int
4171 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4172 		     vm_offset_t vaddr,
4173 		     vm_prot_t fault_typea,
4174 		     vm_map_entry_t *out_entry,	/* OUT */
4175 		     vm_object_t *object,	/* OUT */
4176 		     vm_pindex_t *pindex,	/* OUT */
4177 		     vm_prot_t *out_prot,	/* OUT */
4178 		     boolean_t *wired)		/* OUT */
4179 {
4180 	vm_map_entry_t entry;
4181 	vm_map_t map = *var_map;
4182 	vm_prot_t prot;
4183 	vm_prot_t fault_type = fault_typea;
4184 
4185 	/*
4186 	 * Lookup the faulting address.
4187 	 */
4188 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4189 		return (KERN_INVALID_ADDRESS);
4190 
4191 	entry = *out_entry;
4192 
4193 	/*
4194 	 * Fail if the entry refers to a submap.
4195 	 */
4196 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4197 		return (KERN_FAILURE);
4198 
4199 	/*
4200 	 * Check whether this task is allowed to have this page.
4201 	 */
4202 	prot = entry->protection;
4203 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4204 	if ((fault_type & prot) != fault_type)
4205 		return (KERN_PROTECTION_FAILURE);
4206 
4207 	/*
4208 	 * If this page is not pageable, we have to get it for all possible
4209 	 * accesses.
4210 	 */
4211 	*wired = (entry->wired_count != 0);
4212 	if (*wired)
4213 		fault_type = entry->protection;
4214 
4215 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4216 		/*
4217 		 * Fail if the entry was copy-on-write for a write fault.
4218 		 */
4219 		if (fault_type & VM_PROT_WRITE)
4220 			return (KERN_FAILURE);
4221 		/*
4222 		 * We're attempting to read a copy-on-write page --
4223 		 * don't allow writes.
4224 		 */
4225 		prot &= ~VM_PROT_WRITE;
4226 	}
4227 
4228 	/*
4229 	 * Fail if an object should be created.
4230 	 */
4231 	if (entry->object.vm_object == NULL && !map->system_map)
4232 		return (KERN_FAILURE);
4233 
4234 	/*
4235 	 * Return the object/offset from this entry.  If the entry was
4236 	 * copy-on-write or empty, it has been fixed up.
4237 	 */
4238 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4239 	*object = entry->object.vm_object;
4240 
4241 	*out_prot = prot;
4242 	return (KERN_SUCCESS);
4243 }
4244 
4245 /*
4246  *	vm_map_lookup_done:
4247  *
4248  *	Releases locks acquired by a vm_map_lookup
4249  *	(according to the handle returned by that lookup).
4250  */
4251 void
4252 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4253 {
4254 	/*
4255 	 * Unlock the main-level map
4256 	 */
4257 	vm_map_unlock_read(map);
4258 }
4259 
4260 #include "opt_ddb.h"
4261 #ifdef DDB
4262 #include <sys/kernel.h>
4263 
4264 #include <ddb/ddb.h>
4265 
4266 static void
4267 vm_map_print(vm_map_t map)
4268 {
4269 	vm_map_entry_t entry;
4270 
4271 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4272 	    (void *)map,
4273 	    (void *)map->pmap, map->nentries, map->timestamp);
4274 
4275 	db_indent += 2;
4276 	for (entry = map->header.next; entry != &map->header;
4277 	    entry = entry->next) {
4278 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4279 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4280 		    entry->eflags);
4281 		{
4282 			static char *inheritance_name[4] =
4283 			{"share", "copy", "none", "donate_copy"};
4284 
4285 			db_iprintf(" prot=%x/%x/%s",
4286 			    entry->protection,
4287 			    entry->max_protection,
4288 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4289 			if (entry->wired_count != 0)
4290 				db_printf(", wired");
4291 		}
4292 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4293 			db_printf(", share=%p, offset=0x%jx\n",
4294 			    (void *)entry->object.sub_map,
4295 			    (uintmax_t)entry->offset);
4296 			if ((entry->prev == &map->header) ||
4297 			    (entry->prev->object.sub_map !=
4298 				entry->object.sub_map)) {
4299 				db_indent += 2;
4300 				vm_map_print((vm_map_t)entry->object.sub_map);
4301 				db_indent -= 2;
4302 			}
4303 		} else {
4304 			if (entry->cred != NULL)
4305 				db_printf(", ruid %d", entry->cred->cr_ruid);
4306 			db_printf(", object=%p, offset=0x%jx",
4307 			    (void *)entry->object.vm_object,
4308 			    (uintmax_t)entry->offset);
4309 			if (entry->object.vm_object && entry->object.vm_object->cred)
4310 				db_printf(", obj ruid %d charge %jx",
4311 				    entry->object.vm_object->cred->cr_ruid,
4312 				    (uintmax_t)entry->object.vm_object->charge);
4313 			if (entry->eflags & MAP_ENTRY_COW)
4314 				db_printf(", copy (%s)",
4315 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4316 			db_printf("\n");
4317 
4318 			if ((entry->prev == &map->header) ||
4319 			    (entry->prev->object.vm_object !=
4320 				entry->object.vm_object)) {
4321 				db_indent += 2;
4322 				vm_object_print((db_expr_t)(intptr_t)
4323 						entry->object.vm_object,
4324 						0, 0, (char *)0);
4325 				db_indent -= 2;
4326 			}
4327 		}
4328 	}
4329 	db_indent -= 2;
4330 }
4331 
4332 DB_SHOW_COMMAND(map, map)
4333 {
4334 
4335 	if (!have_addr) {
4336 		db_printf("usage: show map <addr>\n");
4337 		return;
4338 	}
4339 	vm_map_print((vm_map_t)addr);
4340 }
4341 
4342 DB_SHOW_COMMAND(procvm, procvm)
4343 {
4344 	struct proc *p;
4345 
4346 	if (have_addr) {
4347 		p = db_lookup_proc(addr);
4348 	} else {
4349 		p = curproc;
4350 	}
4351 
4352 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4353 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4354 	    (void *)vmspace_pmap(p->p_vmspace));
4355 
4356 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4357 }
4358 
4359 #endif /* DDB */
4360