1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) 551 VOP_SET_TEXT_CHECKED(vp); 552 else 553 VOP_UNSET_TEXT_CHECKED(vp); 554 } 555 VM_OBJECT_RUNLOCK(object); 556 } 557 558 static void 559 vm_map_process_deferred(void) 560 { 561 struct thread *td; 562 vm_map_entry_t entry, next; 563 vm_object_t object; 564 565 td = curthread; 566 entry = td->td_map_def_user; 567 td->td_map_def_user = NULL; 568 while (entry != NULL) { 569 next = entry->next; 570 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 571 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 572 MAP_ENTRY_VN_EXEC)); 573 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 574 /* 575 * Decrement the object's writemappings and 576 * possibly the vnode's v_writecount. 577 */ 578 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 579 ("Submap with writecount")); 580 object = entry->object.vm_object; 581 KASSERT(object != NULL, ("No object for writecount")); 582 vnode_pager_release_writecount(object, entry->start, 583 entry->end); 584 } 585 vm_map_entry_set_vnode_text(entry, false); 586 vm_map_entry_deallocate(entry, FALSE); 587 entry = next; 588 } 589 } 590 591 void 592 _vm_map_unlock(vm_map_t map, const char *file, int line) 593 { 594 595 if (map->system_map) 596 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 597 else { 598 sx_xunlock_(&map->lock, file, line); 599 vm_map_process_deferred(); 600 } 601 } 602 603 void 604 _vm_map_lock_read(vm_map_t map, const char *file, int line) 605 { 606 607 if (map->system_map) 608 mtx_lock_flags_(&map->system_mtx, 0, file, line); 609 else 610 sx_slock_(&map->lock, file, line); 611 } 612 613 void 614 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 619 else { 620 sx_sunlock_(&map->lock, file, line); 621 vm_map_process_deferred(); 622 } 623 } 624 625 int 626 _vm_map_trylock(vm_map_t map, const char *file, int line) 627 { 628 int error; 629 630 error = map->system_map ? 631 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 632 !sx_try_xlock_(&map->lock, file, line); 633 if (error == 0) 634 map->timestamp++; 635 return (error == 0); 636 } 637 638 int 639 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 640 { 641 int error; 642 643 error = map->system_map ? 644 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 645 !sx_try_slock_(&map->lock, file, line); 646 return (error == 0); 647 } 648 649 /* 650 * _vm_map_lock_upgrade: [ internal use only ] 651 * 652 * Tries to upgrade a read (shared) lock on the specified map to a write 653 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 654 * non-zero value if the upgrade fails. If the upgrade fails, the map is 655 * returned without a read or write lock held. 656 * 657 * Requires that the map be read locked. 658 */ 659 int 660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 661 { 662 unsigned int last_timestamp; 663 664 if (map->system_map) { 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 } else { 667 if (!sx_try_upgrade_(&map->lock, file, line)) { 668 last_timestamp = map->timestamp; 669 sx_sunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 /* 672 * If the map's timestamp does not change while the 673 * map is unlocked, then the upgrade succeeds. 674 */ 675 sx_xlock_(&map->lock, file, line); 676 if (last_timestamp != map->timestamp) { 677 sx_xunlock_(&map->lock, file, line); 678 return (1); 679 } 680 } 681 } 682 map->timestamp++; 683 return (0); 684 } 685 686 void 687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 692 } else 693 sx_downgrade_(&map->lock, file, line); 694 } 695 696 /* 697 * vm_map_locked: 698 * 699 * Returns a non-zero value if the caller holds a write (exclusive) lock 700 * on the specified map and the value "0" otherwise. 701 */ 702 int 703 vm_map_locked(vm_map_t map) 704 { 705 706 if (map->system_map) 707 return (mtx_owned(&map->system_mtx)); 708 else 709 return (sx_xlocked(&map->lock)); 710 } 711 712 #ifdef INVARIANTS 713 static void 714 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 715 { 716 717 if (map->system_map) 718 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 719 else 720 sx_assert_(&map->lock, SA_XLOCKED, file, line); 721 } 722 723 #define VM_MAP_ASSERT_LOCKED(map) \ 724 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 725 726 #ifdef DIAGNOSTIC 727 static int enable_vmmap_check = 1; 728 #else 729 static int enable_vmmap_check = 0; 730 #endif 731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 732 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 733 734 static void 735 _vm_map_assert_consistent(vm_map_t map) 736 { 737 vm_map_entry_t child, entry, prev; 738 vm_size_t max_left, max_right; 739 740 if (!enable_vmmap_check) 741 return; 742 743 for (prev = &map->header; (entry = prev->next) != &map->header; 744 prev = entry) { 745 KASSERT(prev->end <= entry->start, 746 ("map %p prev->end = %jx, start = %jx", map, 747 (uintmax_t)prev->end, (uintmax_t)entry->start)); 748 KASSERT(entry->start < entry->end, 749 ("map %p start = %jx, end = %jx", map, 750 (uintmax_t)entry->start, (uintmax_t)entry->end)); 751 KASSERT(entry->end <= entry->next->start, 752 ("map %p end = %jx, next->start = %jx", map, 753 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 754 KASSERT(entry->left == NULL || 755 entry->left->start < entry->start, 756 ("map %p left->start = %jx, start = %jx", map, 757 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 758 KASSERT(entry->right == NULL || 759 entry->start < entry->right->start, 760 ("map %p start = %jx, right->start = %jx", map, 761 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 762 child = entry->left; 763 max_left = (child != NULL) ? child->max_free : 764 entry->start - prev->end; 765 child = entry->right; 766 max_right = (child != NULL) ? child->max_free : 767 entry->next->start - entry->end; 768 KASSERT(entry->max_free == MAX(max_left, max_right), 769 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 770 (uintmax_t)entry->max_free, 771 (uintmax_t)max_left, (uintmax_t)max_right)); 772 } 773 } 774 775 #define VM_MAP_ASSERT_CONSISTENT(map) \ 776 _vm_map_assert_consistent(map) 777 #else 778 #define VM_MAP_ASSERT_LOCKED(map) 779 #define VM_MAP_ASSERT_CONSISTENT(map) 780 #endif /* INVARIANTS */ 781 782 /* 783 * _vm_map_unlock_and_wait: 784 * 785 * Atomically releases the lock on the specified map and puts the calling 786 * thread to sleep. The calling thread will remain asleep until either 787 * vm_map_wakeup() is performed on the map or the specified timeout is 788 * exceeded. 789 * 790 * WARNING! This function does not perform deferred deallocations of 791 * objects and map entries. Therefore, the calling thread is expected to 792 * reacquire the map lock after reawakening and later perform an ordinary 793 * unlock operation, such as vm_map_unlock(), before completing its 794 * operation on the map. 795 */ 796 int 797 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 798 { 799 800 mtx_lock(&map_sleep_mtx); 801 if (map->system_map) 802 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 803 else 804 sx_xunlock_(&map->lock, file, line); 805 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 806 timo)); 807 } 808 809 /* 810 * vm_map_wakeup: 811 * 812 * Awaken any threads that have slept on the map using 813 * vm_map_unlock_and_wait(). 814 */ 815 void 816 vm_map_wakeup(vm_map_t map) 817 { 818 819 /* 820 * Acquire and release map_sleep_mtx to prevent a wakeup() 821 * from being performed (and lost) between the map unlock 822 * and the msleep() in _vm_map_unlock_and_wait(). 823 */ 824 mtx_lock(&map_sleep_mtx); 825 mtx_unlock(&map_sleep_mtx); 826 wakeup(&map->root); 827 } 828 829 void 830 vm_map_busy(vm_map_t map) 831 { 832 833 VM_MAP_ASSERT_LOCKED(map); 834 map->busy++; 835 } 836 837 void 838 vm_map_unbusy(vm_map_t map) 839 { 840 841 VM_MAP_ASSERT_LOCKED(map); 842 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 843 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 844 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 845 wakeup(&map->busy); 846 } 847 } 848 849 void 850 vm_map_wait_busy(vm_map_t map) 851 { 852 853 VM_MAP_ASSERT_LOCKED(map); 854 while (map->busy) { 855 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 856 if (map->system_map) 857 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 858 else 859 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 860 } 861 map->timestamp++; 862 } 863 864 long 865 vmspace_resident_count(struct vmspace *vmspace) 866 { 867 return pmap_resident_count(vmspace_pmap(vmspace)); 868 } 869 870 /* 871 * vm_map_create: 872 * 873 * Creates and returns a new empty VM map with 874 * the given physical map structure, and having 875 * the given lower and upper address bounds. 876 */ 877 vm_map_t 878 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 879 { 880 vm_map_t result; 881 882 result = uma_zalloc(mapzone, M_WAITOK); 883 CTR1(KTR_VM, "vm_map_create: %p", result); 884 _vm_map_init(result, pmap, min, max); 885 return (result); 886 } 887 888 /* 889 * Initialize an existing vm_map structure 890 * such as that in the vmspace structure. 891 */ 892 static void 893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 894 { 895 896 map->header.next = map->header.prev = &map->header; 897 map->header.eflags = MAP_ENTRY_HEADER; 898 map->needs_wakeup = FALSE; 899 map->system_map = 0; 900 map->pmap = pmap; 901 map->header.end = min; 902 map->header.start = max; 903 map->flags = 0; 904 map->root = NULL; 905 map->timestamp = 0; 906 map->busy = 0; 907 map->anon_loc = 0; 908 } 909 910 void 911 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 912 { 913 914 _vm_map_init(map, pmap, min, max); 915 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 916 sx_init(&map->lock, "user map"); 917 } 918 919 /* 920 * vm_map_entry_dispose: [ internal use only ] 921 * 922 * Inverse of vm_map_entry_create. 923 */ 924 static void 925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 926 { 927 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 928 } 929 930 /* 931 * vm_map_entry_create: [ internal use only ] 932 * 933 * Allocates a VM map entry for insertion. 934 * No entry fields are filled in. 935 */ 936 static vm_map_entry_t 937 vm_map_entry_create(vm_map_t map) 938 { 939 vm_map_entry_t new_entry; 940 941 if (map->system_map) 942 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 943 else 944 new_entry = uma_zalloc(mapentzone, M_WAITOK); 945 if (new_entry == NULL) 946 panic("vm_map_entry_create: kernel resources exhausted"); 947 return (new_entry); 948 } 949 950 /* 951 * vm_map_entry_set_behavior: 952 * 953 * Set the expected access behavior, either normal, random, or 954 * sequential. 955 */ 956 static inline void 957 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 958 { 959 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 960 (behavior & MAP_ENTRY_BEHAV_MASK); 961 } 962 963 /* 964 * vm_map_entry_max_free_{left,right}: 965 * 966 * Compute the size of the largest free gap between two entries, 967 * one the root of a tree and the other the ancestor of that root 968 * that is the least or greatest ancestor found on the search path. 969 */ 970 static inline vm_size_t 971 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 972 { 973 974 return (root->left != NULL ? 975 root->left->max_free : root->start - left_ancestor->end); 976 } 977 978 static inline vm_size_t 979 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 980 { 981 982 return (root->right != NULL ? 983 root->right->max_free : right_ancestor->start - root->end); 984 } 985 986 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 987 vm_size_t max_free; \ 988 \ 989 /* \ 990 * Infer root->right->max_free == root->max_free when \ 991 * y->max_free < root->max_free || root->max_free == 0. \ 992 * Otherwise, look right to find it. \ 993 */ \ 994 y = root->left; \ 995 max_free = root->max_free; \ 996 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 997 ("%s: max_free invariant fails", __func__)); \ 998 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 999 max_free = vm_map_entry_max_free_right(root, rlist); \ 1000 if (y != NULL && (test)) { \ 1001 /* Rotate right and make y root. */ \ 1002 root->left = y->right; \ 1003 y->right = root; \ 1004 if (max_free < y->max_free) \ 1005 root->max_free = max_free = MAX(max_free, \ 1006 vm_map_entry_max_free_left(root, y)); \ 1007 root = y; \ 1008 y = root->left; \ 1009 } \ 1010 /* Copy right->max_free. Put root on rlist. */ \ 1011 root->max_free = max_free; \ 1012 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1013 ("%s: max_free not copied from right", __func__)); \ 1014 root->left = rlist; \ 1015 rlist = root; \ 1016 root = y; \ 1017 } while (0) 1018 1019 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1020 vm_size_t max_free; \ 1021 \ 1022 /* \ 1023 * Infer root->left->max_free == root->max_free when \ 1024 * y->max_free < root->max_free || root->max_free == 0. \ 1025 * Otherwise, look left to find it. \ 1026 */ \ 1027 y = root->right; \ 1028 max_free = root->max_free; \ 1029 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1030 ("%s: max_free invariant fails", __func__)); \ 1031 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1032 max_free = vm_map_entry_max_free_left(root, llist); \ 1033 if (y != NULL && (test)) { \ 1034 /* Rotate left and make y root. */ \ 1035 root->right = y->left; \ 1036 y->left = root; \ 1037 if (max_free < y->max_free) \ 1038 root->max_free = max_free = MAX(max_free, \ 1039 vm_map_entry_max_free_right(root, y)); \ 1040 root = y; \ 1041 y = root->right; \ 1042 } \ 1043 /* Copy left->max_free. Put root on llist. */ \ 1044 root->max_free = max_free; \ 1045 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1046 ("%s: max_free not copied from left", __func__)); \ 1047 root->right = llist; \ 1048 llist = root; \ 1049 root = y; \ 1050 } while (0) 1051 1052 /* 1053 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1054 * breaking off left and right subtrees of nodes less than, or greater than 1055 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1056 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1057 * linked by the right pointer and rlist linked by the left pointer in the 1058 * vm_map_entry, and both lists terminated by &map->header. This function, and 1059 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1060 * values in &map->header. 1061 */ 1062 static vm_map_entry_t 1063 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1064 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1065 { 1066 vm_map_entry_t llist, rlist, root, y; 1067 1068 llist = rlist = &map->header; 1069 root = map->root; 1070 while (root != NULL && root->max_free >= length) { 1071 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1072 ("%s: root not within tree bounds", __func__)); 1073 if (addr < root->start) { 1074 SPLAY_LEFT_STEP(root, y, rlist, 1075 y->max_free >= length && addr < y->start); 1076 } else if (addr >= root->end) { 1077 SPLAY_RIGHT_STEP(root, y, llist, 1078 y->max_free >= length && addr >= y->end); 1079 } else 1080 break; 1081 } 1082 *out_llist = llist; 1083 *out_rlist = rlist; 1084 return (root); 1085 } 1086 1087 static void 1088 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1089 { 1090 vm_map_entry_t rlist, y; 1091 1092 root = root->right; 1093 rlist = *iolist; 1094 while (root != NULL) 1095 SPLAY_LEFT_STEP(root, y, rlist, true); 1096 *iolist = rlist; 1097 } 1098 1099 static void 1100 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1101 { 1102 vm_map_entry_t llist, y; 1103 1104 root = root->left; 1105 llist = *iolist; 1106 while (root != NULL) 1107 SPLAY_RIGHT_STEP(root, y, llist, true); 1108 *iolist = llist; 1109 } 1110 1111 static inline void 1112 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1113 { 1114 vm_map_entry_t tmp; 1115 1116 tmp = *b; 1117 *b = *a; 1118 *a = tmp; 1119 } 1120 1121 /* 1122 * Walk back up the two spines, flip the pointers and set max_free. The 1123 * subtrees of the root go at the bottom of llist and rlist. 1124 */ 1125 static void 1126 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1127 vm_map_entry_t llist, vm_map_entry_t rlist) 1128 { 1129 vm_map_entry_t prev; 1130 vm_size_t max_free_left, max_free_right; 1131 1132 max_free_left = vm_map_entry_max_free_left(root, llist); 1133 if (llist != &map->header) { 1134 prev = root->left; 1135 do { 1136 /* 1137 * The max_free values of the children of llist are in 1138 * llist->max_free and max_free_left. Update with the 1139 * max value. 1140 */ 1141 llist->max_free = max_free_left = 1142 MAX(llist->max_free, max_free_left); 1143 vm_map_entry_swap(&llist->right, &prev); 1144 vm_map_entry_swap(&prev, &llist); 1145 } while (llist != &map->header); 1146 root->left = prev; 1147 } 1148 max_free_right = vm_map_entry_max_free_right(root, rlist); 1149 if (rlist != &map->header) { 1150 prev = root->right; 1151 do { 1152 /* 1153 * The max_free values of the children of rlist are in 1154 * rlist->max_free and max_free_right. Update with the 1155 * max value. 1156 */ 1157 rlist->max_free = max_free_right = 1158 MAX(rlist->max_free, max_free_right); 1159 vm_map_entry_swap(&rlist->left, &prev); 1160 vm_map_entry_swap(&prev, &rlist); 1161 } while (rlist != &map->header); 1162 root->right = prev; 1163 } 1164 root->max_free = MAX(max_free_left, max_free_right); 1165 map->root = root; 1166 } 1167 1168 /* 1169 * vm_map_splay: 1170 * 1171 * The Sleator and Tarjan top-down splay algorithm with the 1172 * following variation. Max_free must be computed bottom-up, so 1173 * on the downward pass, maintain the left and right spines in 1174 * reverse order. Then, make a second pass up each side to fix 1175 * the pointers and compute max_free. The time bound is O(log n) 1176 * amortized. 1177 * 1178 * The new root is the vm_map_entry containing "addr", or else an 1179 * adjacent entry (lower if possible) if addr is not in the tree. 1180 * 1181 * The map must be locked, and leaves it so. 1182 * 1183 * Returns: the new root. 1184 */ 1185 static vm_map_entry_t 1186 vm_map_splay(vm_map_t map, vm_offset_t addr) 1187 { 1188 vm_map_entry_t llist, rlist, root; 1189 1190 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1191 if (root != NULL) { 1192 /* do nothing */ 1193 } else if (llist != &map->header) { 1194 /* 1195 * Recover the greatest node in the left 1196 * subtree and make it the root. 1197 */ 1198 root = llist; 1199 llist = root->right; 1200 root->right = NULL; 1201 } else if (rlist != &map->header) { 1202 /* 1203 * Recover the least node in the right 1204 * subtree and make it the root. 1205 */ 1206 root = rlist; 1207 rlist = root->left; 1208 root->left = NULL; 1209 } else { 1210 /* There is no root. */ 1211 return (NULL); 1212 } 1213 vm_map_splay_merge(map, root, llist, rlist); 1214 VM_MAP_ASSERT_CONSISTENT(map); 1215 return (root); 1216 } 1217 1218 /* 1219 * vm_map_entry_{un,}link: 1220 * 1221 * Insert/remove entries from maps. 1222 */ 1223 static void 1224 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1225 { 1226 vm_map_entry_t llist, rlist, root; 1227 1228 CTR3(KTR_VM, 1229 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1230 map->nentries, entry); 1231 VM_MAP_ASSERT_LOCKED(map); 1232 map->nentries++; 1233 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1234 KASSERT(root == NULL, 1235 ("vm_map_entry_link: link object already mapped")); 1236 entry->prev = llist; 1237 entry->next = rlist; 1238 llist->next = rlist->prev = entry; 1239 entry->left = entry->right = NULL; 1240 vm_map_splay_merge(map, entry, llist, rlist); 1241 VM_MAP_ASSERT_CONSISTENT(map); 1242 } 1243 1244 enum unlink_merge_type { 1245 UNLINK_MERGE_PREV, 1246 UNLINK_MERGE_NONE, 1247 UNLINK_MERGE_NEXT 1248 }; 1249 1250 static void 1251 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1252 enum unlink_merge_type op) 1253 { 1254 vm_map_entry_t llist, rlist, root, y; 1255 1256 VM_MAP_ASSERT_LOCKED(map); 1257 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1258 KASSERT(root != NULL, 1259 ("vm_map_entry_unlink: unlink object not mapped")); 1260 1261 switch (op) { 1262 case UNLINK_MERGE_PREV: 1263 vm_map_splay_findprev(root, &llist); 1264 llist->end = root->end; 1265 y = root->right; 1266 root = llist; 1267 llist = root->right; 1268 root->right = y; 1269 break; 1270 case UNLINK_MERGE_NEXT: 1271 vm_map_splay_findnext(root, &rlist); 1272 rlist->start = root->start; 1273 rlist->offset = root->offset; 1274 y = root->left; 1275 root = rlist; 1276 rlist = root->left; 1277 root->left = y; 1278 break; 1279 case UNLINK_MERGE_NONE: 1280 vm_map_splay_findprev(root, &llist); 1281 vm_map_splay_findnext(root, &rlist); 1282 if (llist != &map->header) { 1283 root = llist; 1284 llist = root->right; 1285 root->right = NULL; 1286 } else if (rlist != &map->header) { 1287 root = rlist; 1288 rlist = root->left; 1289 root->left = NULL; 1290 } else 1291 root = NULL; 1292 break; 1293 } 1294 y = entry->next; 1295 y->prev = entry->prev; 1296 y->prev->next = y; 1297 if (root != NULL) 1298 vm_map_splay_merge(map, root, llist, rlist); 1299 else 1300 map->root = NULL; 1301 VM_MAP_ASSERT_CONSISTENT(map); 1302 map->nentries--; 1303 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1304 map->nentries, entry); 1305 } 1306 1307 /* 1308 * vm_map_entry_resize: 1309 * 1310 * Resize a vm_map_entry, recompute the amount of free space that 1311 * follows it and propagate that value up the tree. 1312 * 1313 * The map must be locked, and leaves it so. 1314 */ 1315 static void 1316 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1317 { 1318 vm_map_entry_t llist, rlist, root; 1319 1320 VM_MAP_ASSERT_LOCKED(map); 1321 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1322 KASSERT(root != NULL, 1323 ("%s: resize object not mapped", __func__)); 1324 vm_map_splay_findnext(root, &rlist); 1325 root->right = NULL; 1326 entry->end += grow_amount; 1327 vm_map_splay_merge(map, root, llist, rlist); 1328 VM_MAP_ASSERT_CONSISTENT(map); 1329 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1330 __func__, map, map->nentries, entry); 1331 } 1332 1333 /* 1334 * vm_map_lookup_entry: [ internal use only ] 1335 * 1336 * Finds the map entry containing (or 1337 * immediately preceding) the specified address 1338 * in the given map; the entry is returned 1339 * in the "entry" parameter. The boolean 1340 * result indicates whether the address is 1341 * actually contained in the map. 1342 */ 1343 boolean_t 1344 vm_map_lookup_entry( 1345 vm_map_t map, 1346 vm_offset_t address, 1347 vm_map_entry_t *entry) /* OUT */ 1348 { 1349 vm_map_entry_t cur, lbound; 1350 boolean_t locked; 1351 1352 /* 1353 * If the map is empty, then the map entry immediately preceding 1354 * "address" is the map's header. 1355 */ 1356 cur = map->root; 1357 if (cur == NULL) { 1358 *entry = &map->header; 1359 return (FALSE); 1360 } 1361 if (address >= cur->start && cur->end > address) { 1362 *entry = cur; 1363 return (TRUE); 1364 } 1365 if ((locked = vm_map_locked(map)) || 1366 sx_try_upgrade(&map->lock)) { 1367 /* 1368 * Splay requires a write lock on the map. However, it only 1369 * restructures the binary search tree; it does not otherwise 1370 * change the map. Thus, the map's timestamp need not change 1371 * on a temporary upgrade. 1372 */ 1373 cur = vm_map_splay(map, address); 1374 if (!locked) 1375 sx_downgrade(&map->lock); 1376 1377 /* 1378 * If "address" is contained within a map entry, the new root 1379 * is that map entry. Otherwise, the new root is a map entry 1380 * immediately before or after "address". 1381 */ 1382 if (address < cur->start) { 1383 *entry = &map->header; 1384 return (FALSE); 1385 } 1386 *entry = cur; 1387 return (address < cur->end); 1388 } 1389 /* 1390 * Since the map is only locked for read access, perform a 1391 * standard binary search tree lookup for "address". 1392 */ 1393 lbound = &map->header; 1394 do { 1395 if (address < cur->start) { 1396 cur = cur->left; 1397 } else if (cur->end <= address) { 1398 lbound = cur; 1399 cur = cur->right; 1400 } else { 1401 *entry = cur; 1402 return (TRUE); 1403 } 1404 } while (cur != NULL); 1405 *entry = lbound; 1406 return (FALSE); 1407 } 1408 1409 /* 1410 * vm_map_insert: 1411 * 1412 * Inserts the given whole VM object into the target 1413 * map at the specified address range. The object's 1414 * size should match that of the address range. 1415 * 1416 * Requires that the map be locked, and leaves it so. 1417 * 1418 * If object is non-NULL, ref count must be bumped by caller 1419 * prior to making call to account for the new entry. 1420 */ 1421 int 1422 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1423 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1424 { 1425 vm_map_entry_t new_entry, prev_entry; 1426 struct ucred *cred; 1427 vm_eflags_t protoeflags; 1428 vm_inherit_t inheritance; 1429 1430 VM_MAP_ASSERT_LOCKED(map); 1431 KASSERT(object != kernel_object || 1432 (cow & MAP_COPY_ON_WRITE) == 0, 1433 ("vm_map_insert: kernel object and COW")); 1434 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1435 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1436 KASSERT((prot & ~max) == 0, 1437 ("prot %#x is not subset of max_prot %#x", prot, max)); 1438 1439 /* 1440 * Check that the start and end points are not bogus. 1441 */ 1442 if (start < vm_map_min(map) || end > vm_map_max(map) || 1443 start >= end) 1444 return (KERN_INVALID_ADDRESS); 1445 1446 /* 1447 * Find the entry prior to the proposed starting address; if it's part 1448 * of an existing entry, this range is bogus. 1449 */ 1450 if (vm_map_lookup_entry(map, start, &prev_entry)) 1451 return (KERN_NO_SPACE); 1452 1453 /* 1454 * Assert that the next entry doesn't overlap the end point. 1455 */ 1456 if (prev_entry->next->start < end) 1457 return (KERN_NO_SPACE); 1458 1459 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1460 max != VM_PROT_NONE)) 1461 return (KERN_INVALID_ARGUMENT); 1462 1463 protoeflags = 0; 1464 if (cow & MAP_COPY_ON_WRITE) 1465 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1466 if (cow & MAP_NOFAULT) 1467 protoeflags |= MAP_ENTRY_NOFAULT; 1468 if (cow & MAP_DISABLE_SYNCER) 1469 protoeflags |= MAP_ENTRY_NOSYNC; 1470 if (cow & MAP_DISABLE_COREDUMP) 1471 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1472 if (cow & MAP_STACK_GROWS_DOWN) 1473 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1474 if (cow & MAP_STACK_GROWS_UP) 1475 protoeflags |= MAP_ENTRY_GROWS_UP; 1476 if (cow & MAP_VN_WRITECOUNT) 1477 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1478 if (cow & MAP_VN_EXEC) 1479 protoeflags |= MAP_ENTRY_VN_EXEC; 1480 if ((cow & MAP_CREATE_GUARD) != 0) 1481 protoeflags |= MAP_ENTRY_GUARD; 1482 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1483 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1484 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1485 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1486 if (cow & MAP_INHERIT_SHARE) 1487 inheritance = VM_INHERIT_SHARE; 1488 else 1489 inheritance = VM_INHERIT_DEFAULT; 1490 1491 cred = NULL; 1492 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1493 goto charged; 1494 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1495 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1496 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1497 return (KERN_RESOURCE_SHORTAGE); 1498 KASSERT(object == NULL || 1499 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1500 object->cred == NULL, 1501 ("overcommit: vm_map_insert o %p", object)); 1502 cred = curthread->td_ucred; 1503 } 1504 1505 charged: 1506 /* Expand the kernel pmap, if necessary. */ 1507 if (map == kernel_map && end > kernel_vm_end) 1508 pmap_growkernel(end); 1509 if (object != NULL) { 1510 /* 1511 * OBJ_ONEMAPPING must be cleared unless this mapping 1512 * is trivially proven to be the only mapping for any 1513 * of the object's pages. (Object granularity 1514 * reference counting is insufficient to recognize 1515 * aliases with precision.) 1516 */ 1517 VM_OBJECT_WLOCK(object); 1518 if (object->ref_count > 1 || object->shadow_count != 0) 1519 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1520 VM_OBJECT_WUNLOCK(object); 1521 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1522 protoeflags && 1523 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1524 MAP_VN_EXEC)) == 0 && 1525 prev_entry->end == start && (prev_entry->cred == cred || 1526 (prev_entry->object.vm_object != NULL && 1527 prev_entry->object.vm_object->cred == cred)) && 1528 vm_object_coalesce(prev_entry->object.vm_object, 1529 prev_entry->offset, 1530 (vm_size_t)(prev_entry->end - prev_entry->start), 1531 (vm_size_t)(end - prev_entry->end), cred != NULL && 1532 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1533 /* 1534 * We were able to extend the object. Determine if we 1535 * can extend the previous map entry to include the 1536 * new range as well. 1537 */ 1538 if (prev_entry->inheritance == inheritance && 1539 prev_entry->protection == prot && 1540 prev_entry->max_protection == max && 1541 prev_entry->wired_count == 0) { 1542 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1543 0, ("prev_entry %p has incoherent wiring", 1544 prev_entry)); 1545 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1546 map->size += end - prev_entry->end; 1547 vm_map_entry_resize(map, prev_entry, 1548 end - prev_entry->end); 1549 vm_map_simplify_entry(map, prev_entry); 1550 return (KERN_SUCCESS); 1551 } 1552 1553 /* 1554 * If we can extend the object but cannot extend the 1555 * map entry, we have to create a new map entry. We 1556 * must bump the ref count on the extended object to 1557 * account for it. object may be NULL. 1558 */ 1559 object = prev_entry->object.vm_object; 1560 offset = prev_entry->offset + 1561 (prev_entry->end - prev_entry->start); 1562 vm_object_reference(object); 1563 if (cred != NULL && object != NULL && object->cred != NULL && 1564 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1565 /* Object already accounts for this uid. */ 1566 cred = NULL; 1567 } 1568 } 1569 if (cred != NULL) 1570 crhold(cred); 1571 1572 /* 1573 * Create a new entry 1574 */ 1575 new_entry = vm_map_entry_create(map); 1576 new_entry->start = start; 1577 new_entry->end = end; 1578 new_entry->cred = NULL; 1579 1580 new_entry->eflags = protoeflags; 1581 new_entry->object.vm_object = object; 1582 new_entry->offset = offset; 1583 1584 new_entry->inheritance = inheritance; 1585 new_entry->protection = prot; 1586 new_entry->max_protection = max; 1587 new_entry->wired_count = 0; 1588 new_entry->wiring_thread = NULL; 1589 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1590 new_entry->next_read = start; 1591 1592 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1593 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1594 new_entry->cred = cred; 1595 1596 /* 1597 * Insert the new entry into the list 1598 */ 1599 vm_map_entry_link(map, new_entry); 1600 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1601 map->size += new_entry->end - new_entry->start; 1602 1603 /* 1604 * Try to coalesce the new entry with both the previous and next 1605 * entries in the list. Previously, we only attempted to coalesce 1606 * with the previous entry when object is NULL. Here, we handle the 1607 * other cases, which are less common. 1608 */ 1609 vm_map_simplify_entry(map, new_entry); 1610 1611 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1612 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1613 end - start, cow & MAP_PREFAULT_PARTIAL); 1614 } 1615 1616 return (KERN_SUCCESS); 1617 } 1618 1619 /* 1620 * vm_map_findspace: 1621 * 1622 * Find the first fit (lowest VM address) for "length" free bytes 1623 * beginning at address >= start in the given map. 1624 * 1625 * In a vm_map_entry, "max_free" is the maximum amount of 1626 * contiguous free space between an entry in its subtree and a 1627 * neighbor of that entry. This allows finding a free region in 1628 * one path down the tree, so O(log n) amortized with splay 1629 * trees. 1630 * 1631 * The map must be locked, and leaves it so. 1632 * 1633 * Returns: starting address if sufficient space, 1634 * vm_map_max(map)-length+1 if insufficient space. 1635 */ 1636 vm_offset_t 1637 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1638 { 1639 vm_map_entry_t llist, rlist, root, y; 1640 vm_size_t left_length; 1641 vm_offset_t gap_end; 1642 1643 /* 1644 * Request must fit within min/max VM address and must avoid 1645 * address wrap. 1646 */ 1647 start = MAX(start, vm_map_min(map)); 1648 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1649 return (vm_map_max(map) - length + 1); 1650 1651 /* Empty tree means wide open address space. */ 1652 if (map->root == NULL) 1653 return (start); 1654 1655 /* 1656 * After splay_split, if start is within an entry, push it to the start 1657 * of the following gap. If rlist is at the end of the gap containing 1658 * start, save the end of that gap in gap_end to see if the gap is big 1659 * enough; otherwise set gap_end to start skip gap-checking and move 1660 * directly to a search of the right subtree. 1661 */ 1662 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1663 gap_end = rlist->start; 1664 if (root != NULL) { 1665 start = root->end; 1666 if (root->right != NULL) 1667 gap_end = start; 1668 } else if (rlist != &map->header) { 1669 root = rlist; 1670 rlist = root->left; 1671 root->left = NULL; 1672 } else { 1673 root = llist; 1674 llist = root->right; 1675 root->right = NULL; 1676 } 1677 vm_map_splay_merge(map, root, llist, rlist); 1678 VM_MAP_ASSERT_CONSISTENT(map); 1679 if (length <= gap_end - start) 1680 return (start); 1681 1682 /* With max_free, can immediately tell if no solution. */ 1683 if (root->right == NULL || length > root->right->max_free) 1684 return (vm_map_max(map) - length + 1); 1685 1686 /* 1687 * Splay for the least large-enough gap in the right subtree. 1688 */ 1689 llist = rlist = &map->header; 1690 for (left_length = 0;; 1691 left_length = vm_map_entry_max_free_left(root, llist)) { 1692 if (length <= left_length) 1693 SPLAY_LEFT_STEP(root, y, rlist, 1694 length <= vm_map_entry_max_free_left(y, llist)); 1695 else 1696 SPLAY_RIGHT_STEP(root, y, llist, 1697 length > vm_map_entry_max_free_left(y, root)); 1698 if (root == NULL) 1699 break; 1700 } 1701 root = llist; 1702 llist = root->right; 1703 root->right = NULL; 1704 if (rlist != &map->header) { 1705 y = rlist; 1706 rlist = y->left; 1707 y->left = NULL; 1708 vm_map_splay_merge(map, y, &map->header, rlist); 1709 y->max_free = MAX( 1710 vm_map_entry_max_free_left(y, root), 1711 vm_map_entry_max_free_right(y, &map->header)); 1712 root->right = y; 1713 } 1714 vm_map_splay_merge(map, root, llist, &map->header); 1715 VM_MAP_ASSERT_CONSISTENT(map); 1716 return (root->end); 1717 } 1718 1719 int 1720 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1721 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1722 vm_prot_t max, int cow) 1723 { 1724 vm_offset_t end; 1725 int result; 1726 1727 end = start + length; 1728 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1729 object == NULL, 1730 ("vm_map_fixed: non-NULL backing object for stack")); 1731 vm_map_lock(map); 1732 VM_MAP_RANGE_CHECK(map, start, end); 1733 if ((cow & MAP_CHECK_EXCL) == 0) 1734 vm_map_delete(map, start, end); 1735 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1736 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1737 prot, max, cow); 1738 } else { 1739 result = vm_map_insert(map, object, offset, start, end, 1740 prot, max, cow); 1741 } 1742 vm_map_unlock(map); 1743 return (result); 1744 } 1745 1746 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1747 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1748 1749 static int cluster_anon = 1; 1750 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1751 &cluster_anon, 0, 1752 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1753 1754 static bool 1755 clustering_anon_allowed(vm_offset_t addr) 1756 { 1757 1758 switch (cluster_anon) { 1759 case 0: 1760 return (false); 1761 case 1: 1762 return (addr == 0); 1763 case 2: 1764 default: 1765 return (true); 1766 } 1767 } 1768 1769 static long aslr_restarts; 1770 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1771 &aslr_restarts, 0, 1772 "Number of aslr failures"); 1773 1774 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1775 1776 /* 1777 * Searches for the specified amount of free space in the given map with the 1778 * specified alignment. Performs an address-ordered, first-fit search from 1779 * the given address "*addr", with an optional upper bound "max_addr". If the 1780 * parameter "alignment" is zero, then the alignment is computed from the 1781 * given (object, offset) pair so as to enable the greatest possible use of 1782 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1783 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1784 * 1785 * The map must be locked. Initially, there must be at least "length" bytes 1786 * of free space at the given address. 1787 */ 1788 static int 1789 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1790 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1791 vm_offset_t alignment) 1792 { 1793 vm_offset_t aligned_addr, free_addr; 1794 1795 VM_MAP_ASSERT_LOCKED(map); 1796 free_addr = *addr; 1797 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1798 ("caller failed to provide space %#jx at address %p", 1799 (uintmax_t)length, (void *)free_addr)); 1800 for (;;) { 1801 /* 1802 * At the start of every iteration, the free space at address 1803 * "*addr" is at least "length" bytes. 1804 */ 1805 if (alignment == 0) 1806 pmap_align_superpage(object, offset, addr, length); 1807 else if ((*addr & (alignment - 1)) != 0) { 1808 *addr &= ~(alignment - 1); 1809 *addr += alignment; 1810 } 1811 aligned_addr = *addr; 1812 if (aligned_addr == free_addr) { 1813 /* 1814 * Alignment did not change "*addr", so "*addr" must 1815 * still provide sufficient free space. 1816 */ 1817 return (KERN_SUCCESS); 1818 } 1819 1820 /* 1821 * Test for address wrap on "*addr". A wrapped "*addr" could 1822 * be a valid address, in which case vm_map_findspace() cannot 1823 * be relied upon to fail. 1824 */ 1825 if (aligned_addr < free_addr) 1826 return (KERN_NO_SPACE); 1827 *addr = vm_map_findspace(map, aligned_addr, length); 1828 if (*addr + length > vm_map_max(map) || 1829 (max_addr != 0 && *addr + length > max_addr)) 1830 return (KERN_NO_SPACE); 1831 free_addr = *addr; 1832 if (free_addr == aligned_addr) { 1833 /* 1834 * If a successful call to vm_map_findspace() did not 1835 * change "*addr", then "*addr" must still be aligned 1836 * and provide sufficient free space. 1837 */ 1838 return (KERN_SUCCESS); 1839 } 1840 } 1841 } 1842 1843 /* 1844 * vm_map_find finds an unallocated region in the target address 1845 * map with the given length. The search is defined to be 1846 * first-fit from the specified address; the region found is 1847 * returned in the same parameter. 1848 * 1849 * If object is non-NULL, ref count must be bumped by caller 1850 * prior to making call to account for the new entry. 1851 */ 1852 int 1853 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1854 vm_offset_t *addr, /* IN/OUT */ 1855 vm_size_t length, vm_offset_t max_addr, int find_space, 1856 vm_prot_t prot, vm_prot_t max, int cow) 1857 { 1858 vm_offset_t alignment, curr_min_addr, min_addr; 1859 int gap, pidx, rv, try; 1860 bool cluster, en_aslr, update_anon; 1861 1862 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1863 object == NULL, 1864 ("vm_map_find: non-NULL backing object for stack")); 1865 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1866 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1867 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1868 (object->flags & OBJ_COLORED) == 0)) 1869 find_space = VMFS_ANY_SPACE; 1870 if (find_space >> 8 != 0) { 1871 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1872 alignment = (vm_offset_t)1 << (find_space >> 8); 1873 } else 1874 alignment = 0; 1875 en_aslr = (map->flags & MAP_ASLR) != 0; 1876 update_anon = cluster = clustering_anon_allowed(*addr) && 1877 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1878 find_space != VMFS_NO_SPACE && object == NULL && 1879 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1880 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1881 curr_min_addr = min_addr = *addr; 1882 if (en_aslr && min_addr == 0 && !cluster && 1883 find_space != VMFS_NO_SPACE && 1884 (map->flags & MAP_ASLR_IGNSTART) != 0) 1885 curr_min_addr = min_addr = vm_map_min(map); 1886 try = 0; 1887 vm_map_lock(map); 1888 if (cluster) { 1889 curr_min_addr = map->anon_loc; 1890 if (curr_min_addr == 0) 1891 cluster = false; 1892 } 1893 if (find_space != VMFS_NO_SPACE) { 1894 KASSERT(find_space == VMFS_ANY_SPACE || 1895 find_space == VMFS_OPTIMAL_SPACE || 1896 find_space == VMFS_SUPER_SPACE || 1897 alignment != 0, ("unexpected VMFS flag")); 1898 again: 1899 /* 1900 * When creating an anonymous mapping, try clustering 1901 * with an existing anonymous mapping first. 1902 * 1903 * We make up to two attempts to find address space 1904 * for a given find_space value. The first attempt may 1905 * apply randomization or may cluster with an existing 1906 * anonymous mapping. If this first attempt fails, 1907 * perform a first-fit search of the available address 1908 * space. 1909 * 1910 * If all tries failed, and find_space is 1911 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1912 * Again enable clustering and randomization. 1913 */ 1914 try++; 1915 MPASS(try <= 2); 1916 1917 if (try == 2) { 1918 /* 1919 * Second try: we failed either to find a 1920 * suitable region for randomizing the 1921 * allocation, or to cluster with an existing 1922 * mapping. Retry with free run. 1923 */ 1924 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1925 vm_map_min(map) : min_addr; 1926 atomic_add_long(&aslr_restarts, 1); 1927 } 1928 1929 if (try == 1 && en_aslr && !cluster) { 1930 /* 1931 * Find space for allocation, including 1932 * gap needed for later randomization. 1933 */ 1934 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1935 (find_space == VMFS_SUPER_SPACE || find_space == 1936 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1937 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1938 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1939 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1940 *addr = vm_map_findspace(map, curr_min_addr, 1941 length + gap * pagesizes[pidx]); 1942 if (*addr + length + gap * pagesizes[pidx] > 1943 vm_map_max(map)) 1944 goto again; 1945 /* And randomize the start address. */ 1946 *addr += (arc4random() % gap) * pagesizes[pidx]; 1947 if (max_addr != 0 && *addr + length > max_addr) 1948 goto again; 1949 } else { 1950 *addr = vm_map_findspace(map, curr_min_addr, length); 1951 if (*addr + length > vm_map_max(map) || 1952 (max_addr != 0 && *addr + length > max_addr)) { 1953 if (cluster) { 1954 cluster = false; 1955 MPASS(try == 1); 1956 goto again; 1957 } 1958 rv = KERN_NO_SPACE; 1959 goto done; 1960 } 1961 } 1962 1963 if (find_space != VMFS_ANY_SPACE && 1964 (rv = vm_map_alignspace(map, object, offset, addr, length, 1965 max_addr, alignment)) != KERN_SUCCESS) { 1966 if (find_space == VMFS_OPTIMAL_SPACE) { 1967 find_space = VMFS_ANY_SPACE; 1968 curr_min_addr = min_addr; 1969 cluster = update_anon; 1970 try = 0; 1971 goto again; 1972 } 1973 goto done; 1974 } 1975 } else if ((cow & MAP_REMAP) != 0) { 1976 if (*addr < vm_map_min(map) || 1977 *addr + length > vm_map_max(map) || 1978 *addr + length <= length) { 1979 rv = KERN_INVALID_ADDRESS; 1980 goto done; 1981 } 1982 vm_map_delete(map, *addr, *addr + length); 1983 } 1984 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1985 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1986 max, cow); 1987 } else { 1988 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1989 prot, max, cow); 1990 } 1991 if (rv == KERN_SUCCESS && update_anon) 1992 map->anon_loc = *addr + length; 1993 done: 1994 vm_map_unlock(map); 1995 return (rv); 1996 } 1997 1998 /* 1999 * vm_map_find_min() is a variant of vm_map_find() that takes an 2000 * additional parameter (min_addr) and treats the given address 2001 * (*addr) differently. Specifically, it treats *addr as a hint 2002 * and not as the minimum address where the mapping is created. 2003 * 2004 * This function works in two phases. First, it tries to 2005 * allocate above the hint. If that fails and the hint is 2006 * greater than min_addr, it performs a second pass, replacing 2007 * the hint with min_addr as the minimum address for the 2008 * allocation. 2009 */ 2010 int 2011 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2012 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2013 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2014 int cow) 2015 { 2016 vm_offset_t hint; 2017 int rv; 2018 2019 hint = *addr; 2020 for (;;) { 2021 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2022 find_space, prot, max, cow); 2023 if (rv == KERN_SUCCESS || min_addr >= hint) 2024 return (rv); 2025 *addr = hint = min_addr; 2026 } 2027 } 2028 2029 /* 2030 * A map entry with any of the following flags set must not be merged with 2031 * another entry. 2032 */ 2033 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2034 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2035 2036 static bool 2037 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2038 { 2039 2040 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2041 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2042 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2043 prev, entry)); 2044 return (prev->end == entry->start && 2045 prev->object.vm_object == entry->object.vm_object && 2046 (prev->object.vm_object == NULL || 2047 prev->offset + (prev->end - prev->start) == entry->offset) && 2048 prev->eflags == entry->eflags && 2049 prev->protection == entry->protection && 2050 prev->max_protection == entry->max_protection && 2051 prev->inheritance == entry->inheritance && 2052 prev->wired_count == entry->wired_count && 2053 prev->cred == entry->cred); 2054 } 2055 2056 static void 2057 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2058 { 2059 2060 /* 2061 * If the backing object is a vnode object, vm_object_deallocate() 2062 * calls vrele(). However, vrele() does not lock the vnode because 2063 * the vnode has additional references. Thus, the map lock can be 2064 * kept without causing a lock-order reversal with the vnode lock. 2065 * 2066 * Since we count the number of virtual page mappings in 2067 * object->un_pager.vnp.writemappings, the writemappings value 2068 * should not be adjusted when the entry is disposed of. 2069 */ 2070 if (entry->object.vm_object != NULL) 2071 vm_object_deallocate(entry->object.vm_object); 2072 if (entry->cred != NULL) 2073 crfree(entry->cred); 2074 vm_map_entry_dispose(map, entry); 2075 } 2076 2077 /* 2078 * vm_map_simplify_entry: 2079 * 2080 * Simplify the given map entry by merging with either neighbor. This 2081 * routine also has the ability to merge with both neighbors. 2082 * 2083 * The map must be locked. 2084 * 2085 * This routine guarantees that the passed entry remains valid (though 2086 * possibly extended). When merging, this routine may delete one or 2087 * both neighbors. 2088 */ 2089 void 2090 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2091 { 2092 vm_map_entry_t next, prev; 2093 2094 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2095 return; 2096 prev = entry->prev; 2097 if (vm_map_mergeable_neighbors(prev, entry)) { 2098 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2099 vm_map_merged_neighbor_dispose(map, prev); 2100 } 2101 next = entry->next; 2102 if (vm_map_mergeable_neighbors(entry, next)) { 2103 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2104 vm_map_merged_neighbor_dispose(map, next); 2105 } 2106 } 2107 2108 /* 2109 * vm_map_entry_back: 2110 * 2111 * Allocate an object to back a map entry. 2112 */ 2113 static inline void 2114 vm_map_entry_back(vm_map_entry_t entry) 2115 { 2116 vm_object_t object; 2117 2118 KASSERT(entry->object.vm_object == NULL, 2119 ("map entry %p has backing object", entry)); 2120 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2121 ("map entry %p is a submap", entry)); 2122 object = vm_object_allocate(OBJT_DEFAULT, 2123 atop(entry->end - entry->start)); 2124 entry->object.vm_object = object; 2125 entry->offset = 0; 2126 if (entry->cred != NULL) { 2127 object->cred = entry->cred; 2128 object->charge = entry->end - entry->start; 2129 entry->cred = NULL; 2130 } 2131 } 2132 2133 /* 2134 * vm_map_entry_charge_object 2135 * 2136 * If there is no object backing this entry, create one. Otherwise, if 2137 * the entry has cred, give it to the backing object. 2138 */ 2139 static inline void 2140 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2141 { 2142 2143 VM_MAP_ASSERT_LOCKED(map); 2144 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2145 ("map entry %p is a submap", entry)); 2146 if (entry->object.vm_object == NULL && !map->system_map && 2147 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2148 vm_map_entry_back(entry); 2149 else if (entry->object.vm_object != NULL && 2150 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2151 entry->cred != NULL) { 2152 VM_OBJECT_WLOCK(entry->object.vm_object); 2153 KASSERT(entry->object.vm_object->cred == NULL, 2154 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2155 entry->object.vm_object->cred = entry->cred; 2156 entry->object.vm_object->charge = entry->end - entry->start; 2157 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2158 entry->cred = NULL; 2159 } 2160 } 2161 2162 /* 2163 * vm_map_clip_start: [ internal use only ] 2164 * 2165 * Asserts that the given entry begins at or after 2166 * the specified address; if necessary, 2167 * it splits the entry into two. 2168 */ 2169 #define vm_map_clip_start(map, entry, startaddr) \ 2170 { \ 2171 if (startaddr > entry->start) \ 2172 _vm_map_clip_start(map, entry, startaddr); \ 2173 } 2174 2175 /* 2176 * This routine is called only when it is known that 2177 * the entry must be split. 2178 */ 2179 static void 2180 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2181 { 2182 vm_map_entry_t new_entry; 2183 2184 VM_MAP_ASSERT_LOCKED(map); 2185 KASSERT(entry->end > start && entry->start < start, 2186 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2187 2188 /* 2189 * Create a backing object now, if none exists, so that more individual 2190 * objects won't be created after the map entry is split. 2191 */ 2192 vm_map_entry_charge_object(map, entry); 2193 2194 /* Clone the entry. */ 2195 new_entry = vm_map_entry_create(map); 2196 *new_entry = *entry; 2197 2198 /* 2199 * Split off the front portion. Insert the new entry BEFORE this one, 2200 * so that this entry has the specified starting address. 2201 */ 2202 new_entry->end = start; 2203 entry->offset += (start - entry->start); 2204 entry->start = start; 2205 if (new_entry->cred != NULL) 2206 crhold(entry->cred); 2207 2208 vm_map_entry_link(map, new_entry); 2209 2210 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2211 vm_object_reference(new_entry->object.vm_object); 2212 vm_map_entry_set_vnode_text(new_entry, true); 2213 /* 2214 * The object->un_pager.vnp.writemappings for the 2215 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2216 * kept as is here. The virtual pages are 2217 * re-distributed among the clipped entries, so the sum is 2218 * left the same. 2219 */ 2220 } 2221 } 2222 2223 /* 2224 * vm_map_clip_end: [ internal use only ] 2225 * 2226 * Asserts that the given entry ends at or before 2227 * the specified address; if necessary, 2228 * it splits the entry into two. 2229 */ 2230 #define vm_map_clip_end(map, entry, endaddr) \ 2231 { \ 2232 if ((endaddr) < (entry->end)) \ 2233 _vm_map_clip_end((map), (entry), (endaddr)); \ 2234 } 2235 2236 /* 2237 * This routine is called only when it is known that 2238 * the entry must be split. 2239 */ 2240 static void 2241 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2242 { 2243 vm_map_entry_t new_entry; 2244 2245 VM_MAP_ASSERT_LOCKED(map); 2246 KASSERT(entry->start < end && entry->end > end, 2247 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2248 2249 /* 2250 * Create a backing object now, if none exists, so that more individual 2251 * objects won't be created after the map entry is split. 2252 */ 2253 vm_map_entry_charge_object(map, entry); 2254 2255 /* Clone the entry. */ 2256 new_entry = vm_map_entry_create(map); 2257 *new_entry = *entry; 2258 2259 /* 2260 * Split off the back portion. Insert the new entry AFTER this one, 2261 * so that this entry has the specified ending address. 2262 */ 2263 new_entry->start = entry->end = end; 2264 new_entry->offset += (end - entry->start); 2265 if (new_entry->cred != NULL) 2266 crhold(entry->cred); 2267 2268 vm_map_entry_link(map, new_entry); 2269 2270 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2271 vm_object_reference(new_entry->object.vm_object); 2272 vm_map_entry_set_vnode_text(new_entry, true); 2273 } 2274 } 2275 2276 /* 2277 * vm_map_submap: [ kernel use only ] 2278 * 2279 * Mark the given range as handled by a subordinate map. 2280 * 2281 * This range must have been created with vm_map_find, 2282 * and no other operations may have been performed on this 2283 * range prior to calling vm_map_submap. 2284 * 2285 * Only a limited number of operations can be performed 2286 * within this rage after calling vm_map_submap: 2287 * vm_fault 2288 * [Don't try vm_map_copy!] 2289 * 2290 * To remove a submapping, one must first remove the 2291 * range from the superior map, and then destroy the 2292 * submap (if desired). [Better yet, don't try it.] 2293 */ 2294 int 2295 vm_map_submap( 2296 vm_map_t map, 2297 vm_offset_t start, 2298 vm_offset_t end, 2299 vm_map_t submap) 2300 { 2301 vm_map_entry_t entry; 2302 int result; 2303 2304 result = KERN_INVALID_ARGUMENT; 2305 2306 vm_map_lock(submap); 2307 submap->flags |= MAP_IS_SUB_MAP; 2308 vm_map_unlock(submap); 2309 2310 vm_map_lock(map); 2311 2312 VM_MAP_RANGE_CHECK(map, start, end); 2313 2314 if (vm_map_lookup_entry(map, start, &entry)) { 2315 vm_map_clip_start(map, entry, start); 2316 } else 2317 entry = entry->next; 2318 2319 vm_map_clip_end(map, entry, end); 2320 2321 if ((entry->start == start) && (entry->end == end) && 2322 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2323 (entry->object.vm_object == NULL)) { 2324 entry->object.sub_map = submap; 2325 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2326 result = KERN_SUCCESS; 2327 } 2328 vm_map_unlock(map); 2329 2330 if (result != KERN_SUCCESS) { 2331 vm_map_lock(submap); 2332 submap->flags &= ~MAP_IS_SUB_MAP; 2333 vm_map_unlock(submap); 2334 } 2335 return (result); 2336 } 2337 2338 /* 2339 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2340 */ 2341 #define MAX_INIT_PT 96 2342 2343 /* 2344 * vm_map_pmap_enter: 2345 * 2346 * Preload the specified map's pmap with mappings to the specified 2347 * object's memory-resident pages. No further physical pages are 2348 * allocated, and no further virtual pages are retrieved from secondary 2349 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2350 * limited number of page mappings are created at the low-end of the 2351 * specified address range. (For this purpose, a superpage mapping 2352 * counts as one page mapping.) Otherwise, all resident pages within 2353 * the specified address range are mapped. 2354 */ 2355 static void 2356 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2357 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2358 { 2359 vm_offset_t start; 2360 vm_page_t p, p_start; 2361 vm_pindex_t mask, psize, threshold, tmpidx; 2362 2363 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2364 return; 2365 VM_OBJECT_RLOCK(object); 2366 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2367 VM_OBJECT_RUNLOCK(object); 2368 VM_OBJECT_WLOCK(object); 2369 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2370 pmap_object_init_pt(map->pmap, addr, object, pindex, 2371 size); 2372 VM_OBJECT_WUNLOCK(object); 2373 return; 2374 } 2375 VM_OBJECT_LOCK_DOWNGRADE(object); 2376 } 2377 2378 psize = atop(size); 2379 if (psize + pindex > object->size) { 2380 if (object->size < pindex) { 2381 VM_OBJECT_RUNLOCK(object); 2382 return; 2383 } 2384 psize = object->size - pindex; 2385 } 2386 2387 start = 0; 2388 p_start = NULL; 2389 threshold = MAX_INIT_PT; 2390 2391 p = vm_page_find_least(object, pindex); 2392 /* 2393 * Assert: the variable p is either (1) the page with the 2394 * least pindex greater than or equal to the parameter pindex 2395 * or (2) NULL. 2396 */ 2397 for (; 2398 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2399 p = TAILQ_NEXT(p, listq)) { 2400 /* 2401 * don't allow an madvise to blow away our really 2402 * free pages allocating pv entries. 2403 */ 2404 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2405 vm_page_count_severe()) || 2406 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2407 tmpidx >= threshold)) { 2408 psize = tmpidx; 2409 break; 2410 } 2411 if (p->valid == VM_PAGE_BITS_ALL) { 2412 if (p_start == NULL) { 2413 start = addr + ptoa(tmpidx); 2414 p_start = p; 2415 } 2416 /* Jump ahead if a superpage mapping is possible. */ 2417 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2418 (pagesizes[p->psind] - 1)) == 0) { 2419 mask = atop(pagesizes[p->psind]) - 1; 2420 if (tmpidx + mask < psize && 2421 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2422 p += mask; 2423 threshold += mask; 2424 } 2425 } 2426 } else if (p_start != NULL) { 2427 pmap_enter_object(map->pmap, start, addr + 2428 ptoa(tmpidx), p_start, prot); 2429 p_start = NULL; 2430 } 2431 } 2432 if (p_start != NULL) 2433 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2434 p_start, prot); 2435 VM_OBJECT_RUNLOCK(object); 2436 } 2437 2438 /* 2439 * vm_map_protect: 2440 * 2441 * Sets the protection of the specified address 2442 * region in the target map. If "set_max" is 2443 * specified, the maximum protection is to be set; 2444 * otherwise, only the current protection is affected. 2445 */ 2446 int 2447 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2448 vm_prot_t new_prot, boolean_t set_max) 2449 { 2450 vm_map_entry_t current, entry, in_tran; 2451 vm_object_t obj; 2452 struct ucred *cred; 2453 vm_prot_t old_prot; 2454 int rv; 2455 2456 if (start == end) 2457 return (KERN_SUCCESS); 2458 2459 again: 2460 in_tran = NULL; 2461 vm_map_lock(map); 2462 2463 /* 2464 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2465 * need to fault pages into the map and will drop the map lock while 2466 * doing so, and the VM object may end up in an inconsistent state if we 2467 * update the protection on the map entry in between faults. 2468 */ 2469 vm_map_wait_busy(map); 2470 2471 VM_MAP_RANGE_CHECK(map, start, end); 2472 2473 if (!vm_map_lookup_entry(map, start, &entry)) 2474 entry = entry->next; 2475 2476 /* 2477 * Make a first pass to check for protection violations. 2478 */ 2479 for (current = entry; current->start < end; current = current->next) { 2480 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2481 continue; 2482 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2483 vm_map_unlock(map); 2484 return (KERN_INVALID_ARGUMENT); 2485 } 2486 if ((new_prot & current->max_protection) != new_prot) { 2487 vm_map_unlock(map); 2488 return (KERN_PROTECTION_FAILURE); 2489 } 2490 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2491 in_tran = entry; 2492 } 2493 2494 /* 2495 * Postpone the operation until all in transition map entries 2496 * are stabilized. In-transition entry might already have its 2497 * pages wired and wired_count incremented, but 2498 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2499 * threads because the map lock is dropped. In this case we 2500 * would miss our call to vm_fault_copy_entry(). 2501 */ 2502 if (in_tran != NULL) { 2503 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2504 vm_map_unlock_and_wait(map, 0); 2505 goto again; 2506 } 2507 2508 /* 2509 * Before changing the protections, try to reserve swap space for any 2510 * private (i.e., copy-on-write) mappings that are transitioning from 2511 * read-only to read/write access. If a reservation fails, break out 2512 * of this loop early and let the next loop simplify the entries, since 2513 * some may now be mergeable. 2514 */ 2515 rv = KERN_SUCCESS; 2516 vm_map_clip_start(map, entry, start); 2517 for (current = entry; current->start < end; current = current->next) { 2518 2519 vm_map_clip_end(map, current, end); 2520 2521 if (set_max || 2522 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2523 ENTRY_CHARGED(current) || 2524 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2525 continue; 2526 } 2527 2528 cred = curthread->td_ucred; 2529 obj = current->object.vm_object; 2530 2531 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2532 if (!swap_reserve(current->end - current->start)) { 2533 rv = KERN_RESOURCE_SHORTAGE; 2534 end = current->end; 2535 break; 2536 } 2537 crhold(cred); 2538 current->cred = cred; 2539 continue; 2540 } 2541 2542 VM_OBJECT_WLOCK(obj); 2543 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2544 VM_OBJECT_WUNLOCK(obj); 2545 continue; 2546 } 2547 2548 /* 2549 * Charge for the whole object allocation now, since 2550 * we cannot distinguish between non-charged and 2551 * charged clipped mapping of the same object later. 2552 */ 2553 KASSERT(obj->charge == 0, 2554 ("vm_map_protect: object %p overcharged (entry %p)", 2555 obj, current)); 2556 if (!swap_reserve(ptoa(obj->size))) { 2557 VM_OBJECT_WUNLOCK(obj); 2558 rv = KERN_RESOURCE_SHORTAGE; 2559 end = current->end; 2560 break; 2561 } 2562 2563 crhold(cred); 2564 obj->cred = cred; 2565 obj->charge = ptoa(obj->size); 2566 VM_OBJECT_WUNLOCK(obj); 2567 } 2568 2569 /* 2570 * If enough swap space was available, go back and fix up protections. 2571 * Otherwise, just simplify entries, since some may have been modified. 2572 * [Note that clipping is not necessary the second time.] 2573 */ 2574 for (current = entry; current->start < end; 2575 vm_map_simplify_entry(map, current), current = current->next) { 2576 if (rv != KERN_SUCCESS || 2577 (current->eflags & MAP_ENTRY_GUARD) != 0) 2578 continue; 2579 2580 old_prot = current->protection; 2581 2582 if (set_max) 2583 current->protection = 2584 (current->max_protection = new_prot) & 2585 old_prot; 2586 else 2587 current->protection = new_prot; 2588 2589 /* 2590 * For user wired map entries, the normal lazy evaluation of 2591 * write access upgrades through soft page faults is 2592 * undesirable. Instead, immediately copy any pages that are 2593 * copy-on-write and enable write access in the physical map. 2594 */ 2595 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2596 (current->protection & VM_PROT_WRITE) != 0 && 2597 (old_prot & VM_PROT_WRITE) == 0) 2598 vm_fault_copy_entry(map, map, current, current, NULL); 2599 2600 /* 2601 * When restricting access, update the physical map. Worry 2602 * about copy-on-write here. 2603 */ 2604 if ((old_prot & ~current->protection) != 0) { 2605 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2606 VM_PROT_ALL) 2607 pmap_protect(map->pmap, current->start, 2608 current->end, 2609 current->protection & MASK(current)); 2610 #undef MASK 2611 } 2612 } 2613 vm_map_unlock(map); 2614 return (rv); 2615 } 2616 2617 /* 2618 * vm_map_madvise: 2619 * 2620 * This routine traverses a processes map handling the madvise 2621 * system call. Advisories are classified as either those effecting 2622 * the vm_map_entry structure, or those effecting the underlying 2623 * objects. 2624 */ 2625 int 2626 vm_map_madvise( 2627 vm_map_t map, 2628 vm_offset_t start, 2629 vm_offset_t end, 2630 int behav) 2631 { 2632 vm_map_entry_t current, entry; 2633 bool modify_map; 2634 2635 /* 2636 * Some madvise calls directly modify the vm_map_entry, in which case 2637 * we need to use an exclusive lock on the map and we need to perform 2638 * various clipping operations. Otherwise we only need a read-lock 2639 * on the map. 2640 */ 2641 switch(behav) { 2642 case MADV_NORMAL: 2643 case MADV_SEQUENTIAL: 2644 case MADV_RANDOM: 2645 case MADV_NOSYNC: 2646 case MADV_AUTOSYNC: 2647 case MADV_NOCORE: 2648 case MADV_CORE: 2649 if (start == end) 2650 return (0); 2651 modify_map = true; 2652 vm_map_lock(map); 2653 break; 2654 case MADV_WILLNEED: 2655 case MADV_DONTNEED: 2656 case MADV_FREE: 2657 if (start == end) 2658 return (0); 2659 modify_map = false; 2660 vm_map_lock_read(map); 2661 break; 2662 default: 2663 return (EINVAL); 2664 } 2665 2666 /* 2667 * Locate starting entry and clip if necessary. 2668 */ 2669 VM_MAP_RANGE_CHECK(map, start, end); 2670 2671 if (vm_map_lookup_entry(map, start, &entry)) { 2672 if (modify_map) 2673 vm_map_clip_start(map, entry, start); 2674 } else { 2675 entry = entry->next; 2676 } 2677 2678 if (modify_map) { 2679 /* 2680 * madvise behaviors that are implemented in the vm_map_entry. 2681 * 2682 * We clip the vm_map_entry so that behavioral changes are 2683 * limited to the specified address range. 2684 */ 2685 for (current = entry; current->start < end; 2686 current = current->next) { 2687 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2688 continue; 2689 2690 vm_map_clip_end(map, current, end); 2691 2692 switch (behav) { 2693 case MADV_NORMAL: 2694 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2695 break; 2696 case MADV_SEQUENTIAL: 2697 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2698 break; 2699 case MADV_RANDOM: 2700 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2701 break; 2702 case MADV_NOSYNC: 2703 current->eflags |= MAP_ENTRY_NOSYNC; 2704 break; 2705 case MADV_AUTOSYNC: 2706 current->eflags &= ~MAP_ENTRY_NOSYNC; 2707 break; 2708 case MADV_NOCORE: 2709 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2710 break; 2711 case MADV_CORE: 2712 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2713 break; 2714 default: 2715 break; 2716 } 2717 vm_map_simplify_entry(map, current); 2718 } 2719 vm_map_unlock(map); 2720 } else { 2721 vm_pindex_t pstart, pend; 2722 2723 /* 2724 * madvise behaviors that are implemented in the underlying 2725 * vm_object. 2726 * 2727 * Since we don't clip the vm_map_entry, we have to clip 2728 * the vm_object pindex and count. 2729 */ 2730 for (current = entry; current->start < end; 2731 current = current->next) { 2732 vm_offset_t useEnd, useStart; 2733 2734 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2735 continue; 2736 2737 pstart = OFF_TO_IDX(current->offset); 2738 pend = pstart + atop(current->end - current->start); 2739 useStart = current->start; 2740 useEnd = current->end; 2741 2742 if (current->start < start) { 2743 pstart += atop(start - current->start); 2744 useStart = start; 2745 } 2746 if (current->end > end) { 2747 pend -= atop(current->end - end); 2748 useEnd = end; 2749 } 2750 2751 if (pstart >= pend) 2752 continue; 2753 2754 /* 2755 * Perform the pmap_advise() before clearing 2756 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2757 * concurrent pmap operation, such as pmap_remove(), 2758 * could clear a reference in the pmap and set 2759 * PGA_REFERENCED on the page before the pmap_advise() 2760 * had completed. Consequently, the page would appear 2761 * referenced based upon an old reference that 2762 * occurred before this pmap_advise() ran. 2763 */ 2764 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2765 pmap_advise(map->pmap, useStart, useEnd, 2766 behav); 2767 2768 vm_object_madvise(current->object.vm_object, pstart, 2769 pend, behav); 2770 2771 /* 2772 * Pre-populate paging structures in the 2773 * WILLNEED case. For wired entries, the 2774 * paging structures are already populated. 2775 */ 2776 if (behav == MADV_WILLNEED && 2777 current->wired_count == 0) { 2778 vm_map_pmap_enter(map, 2779 useStart, 2780 current->protection, 2781 current->object.vm_object, 2782 pstart, 2783 ptoa(pend - pstart), 2784 MAP_PREFAULT_MADVISE 2785 ); 2786 } 2787 } 2788 vm_map_unlock_read(map); 2789 } 2790 return (0); 2791 } 2792 2793 2794 /* 2795 * vm_map_inherit: 2796 * 2797 * Sets the inheritance of the specified address 2798 * range in the target map. Inheritance 2799 * affects how the map will be shared with 2800 * child maps at the time of vmspace_fork. 2801 */ 2802 int 2803 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2804 vm_inherit_t new_inheritance) 2805 { 2806 vm_map_entry_t entry; 2807 vm_map_entry_t temp_entry; 2808 2809 switch (new_inheritance) { 2810 case VM_INHERIT_NONE: 2811 case VM_INHERIT_COPY: 2812 case VM_INHERIT_SHARE: 2813 case VM_INHERIT_ZERO: 2814 break; 2815 default: 2816 return (KERN_INVALID_ARGUMENT); 2817 } 2818 if (start == end) 2819 return (KERN_SUCCESS); 2820 vm_map_lock(map); 2821 VM_MAP_RANGE_CHECK(map, start, end); 2822 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2823 entry = temp_entry; 2824 vm_map_clip_start(map, entry, start); 2825 } else 2826 entry = temp_entry->next; 2827 while (entry->start < end) { 2828 vm_map_clip_end(map, entry, end); 2829 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2830 new_inheritance != VM_INHERIT_ZERO) 2831 entry->inheritance = new_inheritance; 2832 vm_map_simplify_entry(map, entry); 2833 entry = entry->next; 2834 } 2835 vm_map_unlock(map); 2836 return (KERN_SUCCESS); 2837 } 2838 2839 /* 2840 * vm_map_entry_in_transition: 2841 * 2842 * Release the map lock, and sleep until the entry is no longer in 2843 * transition. Awake and acquire the map lock. If the map changed while 2844 * another held the lock, lookup a possibly-changed entry at or after the 2845 * 'start' position of the old entry. 2846 */ 2847 static vm_map_entry_t 2848 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 2849 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 2850 { 2851 vm_map_entry_t entry; 2852 vm_offset_t start; 2853 u_int last_timestamp; 2854 2855 VM_MAP_ASSERT_LOCKED(map); 2856 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2857 ("not in-tranition map entry %p", in_entry)); 2858 /* 2859 * We have not yet clipped the entry. 2860 */ 2861 start = MAX(in_start, in_entry->start); 2862 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2863 last_timestamp = map->timestamp; 2864 if (vm_map_unlock_and_wait(map, 0)) { 2865 /* 2866 * Allow interruption of user wiring/unwiring? 2867 */ 2868 } 2869 vm_map_lock(map); 2870 if (last_timestamp + 1 == map->timestamp) 2871 return (in_entry); 2872 2873 /* 2874 * Look again for the entry because the map was modified while it was 2875 * unlocked. Specifically, the entry may have been clipped, merged, or 2876 * deleted. 2877 */ 2878 if (!vm_map_lookup_entry(map, start, &entry)) { 2879 if (!holes_ok) { 2880 *io_end = start; 2881 return (NULL); 2882 } 2883 entry = entry->next; 2884 } 2885 return (entry); 2886 } 2887 2888 /* 2889 * vm_map_unwire: 2890 * 2891 * Implements both kernel and user unwiring. 2892 */ 2893 int 2894 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2895 int flags) 2896 { 2897 vm_map_entry_t entry, first_entry; 2898 int rv; 2899 bool first_iteration, holes_ok, need_wakeup, user_unwire; 2900 2901 if (start == end) 2902 return (KERN_SUCCESS); 2903 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 2904 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 2905 vm_map_lock(map); 2906 VM_MAP_RANGE_CHECK(map, start, end); 2907 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2908 if (holes_ok) 2909 first_entry = first_entry->next; 2910 else { 2911 vm_map_unlock(map); 2912 return (KERN_INVALID_ADDRESS); 2913 } 2914 } 2915 first_iteration = true; 2916 entry = first_entry; 2917 rv = KERN_SUCCESS; 2918 while (entry->start < end) { 2919 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2920 /* 2921 * We have not yet clipped the entry. 2922 */ 2923 entry = vm_map_entry_in_transition(map, start, &end, 2924 holes_ok, entry); 2925 if (entry == NULL) { 2926 if (first_iteration) { 2927 vm_map_unlock(map); 2928 return (KERN_INVALID_ADDRESS); 2929 } 2930 rv = KERN_INVALID_ADDRESS; 2931 break; 2932 } 2933 first_entry = first_iteration ? entry : NULL; 2934 continue; 2935 } 2936 first_iteration = false; 2937 vm_map_clip_start(map, entry, start); 2938 vm_map_clip_end(map, entry, end); 2939 /* 2940 * Mark the entry in case the map lock is released. (See 2941 * above.) 2942 */ 2943 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2944 entry->wiring_thread == NULL, 2945 ("owned map entry %p", entry)); 2946 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2947 entry->wiring_thread = curthread; 2948 /* 2949 * Check the map for holes in the specified region. 2950 * If holes_ok, skip this check. 2951 */ 2952 if (!holes_ok && 2953 (entry->end < end && entry->next->start > entry->end)) { 2954 end = entry->end; 2955 rv = KERN_INVALID_ADDRESS; 2956 break; 2957 } 2958 /* 2959 * If system unwiring, require that the entry is system wired. 2960 */ 2961 if (!user_unwire && 2962 vm_map_entry_system_wired_count(entry) == 0) { 2963 end = entry->end; 2964 rv = KERN_INVALID_ARGUMENT; 2965 break; 2966 } 2967 entry = entry->next; 2968 } 2969 need_wakeup = false; 2970 if (first_entry == NULL && 2971 !vm_map_lookup_entry(map, start, &first_entry)) { 2972 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 2973 first_entry = first_entry->next; 2974 } 2975 for (entry = first_entry; entry->start < end; entry = entry->next) { 2976 /* 2977 * If holes_ok was specified, an empty 2978 * space in the unwired region could have been mapped 2979 * while the map lock was dropped for draining 2980 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2981 * could be simultaneously wiring this new mapping 2982 * entry. Detect these cases and skip any entries 2983 * marked as in transition by us. 2984 */ 2985 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2986 entry->wiring_thread != curthread) { 2987 KASSERT(holes_ok, 2988 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2989 continue; 2990 } 2991 2992 if (rv == KERN_SUCCESS && (!user_unwire || 2993 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2994 if (entry->wired_count == 1) 2995 vm_map_entry_unwire(map, entry); 2996 else 2997 entry->wired_count--; 2998 if (user_unwire) 2999 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3000 } 3001 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3002 ("vm_map_unwire: in-transition flag missing %p", entry)); 3003 KASSERT(entry->wiring_thread == curthread, 3004 ("vm_map_unwire: alien wire %p", entry)); 3005 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3006 entry->wiring_thread = NULL; 3007 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3008 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3009 need_wakeup = true; 3010 } 3011 vm_map_simplify_entry(map, entry); 3012 } 3013 vm_map_unlock(map); 3014 if (need_wakeup) 3015 vm_map_wakeup(map); 3016 return (rv); 3017 } 3018 3019 static void 3020 vm_map_wire_user_count_sub(u_long npages) 3021 { 3022 3023 atomic_subtract_long(&vm_user_wire_count, npages); 3024 } 3025 3026 static bool 3027 vm_map_wire_user_count_add(u_long npages) 3028 { 3029 u_long wired; 3030 3031 wired = vm_user_wire_count; 3032 do { 3033 if (npages + wired > vm_page_max_user_wired) 3034 return (false); 3035 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3036 npages + wired)); 3037 3038 return (true); 3039 } 3040 3041 /* 3042 * vm_map_wire_entry_failure: 3043 * 3044 * Handle a wiring failure on the given entry. 3045 * 3046 * The map should be locked. 3047 */ 3048 static void 3049 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3050 vm_offset_t failed_addr) 3051 { 3052 3053 VM_MAP_ASSERT_LOCKED(map); 3054 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3055 entry->wired_count == 1, 3056 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3057 KASSERT(failed_addr < entry->end, 3058 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3059 3060 /* 3061 * If any pages at the start of this entry were successfully wired, 3062 * then unwire them. 3063 */ 3064 if (failed_addr > entry->start) { 3065 pmap_unwire(map->pmap, entry->start, failed_addr); 3066 vm_object_unwire(entry->object.vm_object, entry->offset, 3067 failed_addr - entry->start, PQ_ACTIVE); 3068 } 3069 3070 /* 3071 * Assign an out-of-range value to represent the failure to wire this 3072 * entry. 3073 */ 3074 entry->wired_count = -1; 3075 } 3076 3077 int 3078 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3079 { 3080 int rv; 3081 3082 vm_map_lock(map); 3083 rv = vm_map_wire_locked(map, start, end, flags); 3084 vm_map_unlock(map); 3085 return (rv); 3086 } 3087 3088 3089 /* 3090 * vm_map_wire_locked: 3091 * 3092 * Implements both kernel and user wiring. Returns with the map locked, 3093 * the map lock may be dropped. 3094 */ 3095 int 3096 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3097 { 3098 vm_map_entry_t entry, first_entry, tmp_entry; 3099 vm_offset_t faddr, saved_end, saved_start; 3100 u_long npages; 3101 u_int last_timestamp; 3102 int rv; 3103 bool first_iteration, holes_ok, need_wakeup, user_wire; 3104 vm_prot_t prot; 3105 3106 VM_MAP_ASSERT_LOCKED(map); 3107 3108 if (start == end) 3109 return (KERN_SUCCESS); 3110 prot = 0; 3111 if (flags & VM_MAP_WIRE_WRITE) 3112 prot |= VM_PROT_WRITE; 3113 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3114 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3115 VM_MAP_RANGE_CHECK(map, start, end); 3116 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3117 if (holes_ok) 3118 first_entry = first_entry->next; 3119 else 3120 return (KERN_INVALID_ADDRESS); 3121 } 3122 first_iteration = true; 3123 entry = first_entry; 3124 while (entry->start < end) { 3125 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3126 /* 3127 * We have not yet clipped the entry. 3128 */ 3129 entry = vm_map_entry_in_transition(map, start, &end, 3130 holes_ok, entry); 3131 if (entry == NULL) { 3132 if (first_iteration) 3133 return (KERN_INVALID_ADDRESS); 3134 rv = KERN_INVALID_ADDRESS; 3135 goto done; 3136 } 3137 first_entry = first_iteration ? entry : NULL; 3138 continue; 3139 } 3140 first_iteration = false; 3141 vm_map_clip_start(map, entry, start); 3142 vm_map_clip_end(map, entry, end); 3143 /* 3144 * Mark the entry in case the map lock is released. (See 3145 * above.) 3146 */ 3147 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3148 entry->wiring_thread == NULL, 3149 ("owned map entry %p", entry)); 3150 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3151 entry->wiring_thread = curthread; 3152 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3153 || (entry->protection & prot) != prot) { 3154 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3155 if (!holes_ok) { 3156 end = entry->end; 3157 rv = KERN_INVALID_ADDRESS; 3158 goto done; 3159 } 3160 } else if (entry->wired_count == 0) { 3161 entry->wired_count++; 3162 3163 npages = atop(entry->end - entry->start); 3164 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3165 vm_map_wire_entry_failure(map, entry, 3166 entry->start); 3167 end = entry->end; 3168 rv = KERN_RESOURCE_SHORTAGE; 3169 goto done; 3170 } 3171 3172 /* 3173 * Release the map lock, relying on the in-transition 3174 * mark. Mark the map busy for fork. 3175 */ 3176 saved_start = entry->start; 3177 saved_end = entry->end; 3178 last_timestamp = map->timestamp; 3179 vm_map_busy(map); 3180 vm_map_unlock(map); 3181 3182 faddr = saved_start; 3183 do { 3184 /* 3185 * Simulate a fault to get the page and enter 3186 * it into the physical map. 3187 */ 3188 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3189 VM_FAULT_WIRE)) != KERN_SUCCESS) 3190 break; 3191 } while ((faddr += PAGE_SIZE) < saved_end); 3192 vm_map_lock(map); 3193 vm_map_unbusy(map); 3194 if (last_timestamp + 1 != map->timestamp) { 3195 /* 3196 * Look again for the entry because the map was 3197 * modified while it was unlocked. The entry 3198 * may have been clipped, but NOT merged or 3199 * deleted. 3200 */ 3201 if (!vm_map_lookup_entry(map, saved_start, 3202 &tmp_entry)) 3203 KASSERT(false, 3204 ("vm_map_wire: lookup failed")); 3205 if (entry == first_entry) 3206 first_entry = tmp_entry; 3207 else 3208 first_entry = NULL; 3209 entry = tmp_entry; 3210 while (entry->end < saved_end) { 3211 /* 3212 * In case of failure, handle entries 3213 * that were not fully wired here; 3214 * fully wired entries are handled 3215 * later. 3216 */ 3217 if (rv != KERN_SUCCESS && 3218 faddr < entry->end) 3219 vm_map_wire_entry_failure(map, 3220 entry, faddr); 3221 entry = entry->next; 3222 } 3223 } 3224 if (rv != KERN_SUCCESS) { 3225 vm_map_wire_entry_failure(map, entry, faddr); 3226 if (user_wire) 3227 vm_map_wire_user_count_sub(npages); 3228 end = entry->end; 3229 goto done; 3230 } 3231 } else if (!user_wire || 3232 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3233 entry->wired_count++; 3234 } 3235 /* 3236 * Check the map for holes in the specified region. 3237 * If holes_ok was specified, skip this check. 3238 */ 3239 if (!holes_ok && 3240 entry->end < end && entry->next->start > entry->end) { 3241 end = entry->end; 3242 rv = KERN_INVALID_ADDRESS; 3243 goto done; 3244 } 3245 entry = entry->next; 3246 } 3247 rv = KERN_SUCCESS; 3248 done: 3249 need_wakeup = false; 3250 if (first_entry == NULL && 3251 !vm_map_lookup_entry(map, start, &first_entry)) { 3252 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3253 first_entry = first_entry->next; 3254 } 3255 for (entry = first_entry; entry->start < end; entry = entry->next) { 3256 /* 3257 * If holes_ok was specified, an empty 3258 * space in the unwired region could have been mapped 3259 * while the map lock was dropped for faulting in the 3260 * pages or draining MAP_ENTRY_IN_TRANSITION. 3261 * Moreover, another thread could be simultaneously 3262 * wiring this new mapping entry. Detect these cases 3263 * and skip any entries marked as in transition not by us. 3264 */ 3265 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3266 entry->wiring_thread != curthread) { 3267 KASSERT(holes_ok, 3268 ("vm_map_wire: !HOLESOK and new/changed entry")); 3269 continue; 3270 } 3271 3272 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3273 /* do nothing */ 3274 } else if (rv == KERN_SUCCESS) { 3275 if (user_wire) 3276 entry->eflags |= MAP_ENTRY_USER_WIRED; 3277 } else if (entry->wired_count == -1) { 3278 /* 3279 * Wiring failed on this entry. Thus, unwiring is 3280 * unnecessary. 3281 */ 3282 entry->wired_count = 0; 3283 } else if (!user_wire || 3284 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3285 /* 3286 * Undo the wiring. Wiring succeeded on this entry 3287 * but failed on a later entry. 3288 */ 3289 if (entry->wired_count == 1) { 3290 vm_map_entry_unwire(map, entry); 3291 if (user_wire) 3292 vm_map_wire_user_count_sub( 3293 atop(entry->end - entry->start)); 3294 } else 3295 entry->wired_count--; 3296 } 3297 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3298 ("vm_map_wire: in-transition flag missing %p", entry)); 3299 KASSERT(entry->wiring_thread == curthread, 3300 ("vm_map_wire: alien wire %p", entry)); 3301 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3302 MAP_ENTRY_WIRE_SKIPPED); 3303 entry->wiring_thread = NULL; 3304 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3305 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3306 need_wakeup = true; 3307 } 3308 vm_map_simplify_entry(map, entry); 3309 } 3310 if (need_wakeup) 3311 vm_map_wakeup(map); 3312 return (rv); 3313 } 3314 3315 /* 3316 * vm_map_sync 3317 * 3318 * Push any dirty cached pages in the address range to their pager. 3319 * If syncio is TRUE, dirty pages are written synchronously. 3320 * If invalidate is TRUE, any cached pages are freed as well. 3321 * 3322 * If the size of the region from start to end is zero, we are 3323 * supposed to flush all modified pages within the region containing 3324 * start. Unfortunately, a region can be split or coalesced with 3325 * neighboring regions, making it difficult to determine what the 3326 * original region was. Therefore, we approximate this requirement by 3327 * flushing the current region containing start. 3328 * 3329 * Returns an error if any part of the specified range is not mapped. 3330 */ 3331 int 3332 vm_map_sync( 3333 vm_map_t map, 3334 vm_offset_t start, 3335 vm_offset_t end, 3336 boolean_t syncio, 3337 boolean_t invalidate) 3338 { 3339 vm_map_entry_t current; 3340 vm_map_entry_t entry; 3341 vm_size_t size; 3342 vm_object_t object; 3343 vm_ooffset_t offset; 3344 unsigned int last_timestamp; 3345 boolean_t failed; 3346 3347 vm_map_lock_read(map); 3348 VM_MAP_RANGE_CHECK(map, start, end); 3349 if (!vm_map_lookup_entry(map, start, &entry)) { 3350 vm_map_unlock_read(map); 3351 return (KERN_INVALID_ADDRESS); 3352 } else if (start == end) { 3353 start = entry->start; 3354 end = entry->end; 3355 } 3356 /* 3357 * Make a first pass to check for user-wired memory and holes. 3358 */ 3359 for (current = entry; current->start < end; current = current->next) { 3360 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3361 vm_map_unlock_read(map); 3362 return (KERN_INVALID_ARGUMENT); 3363 } 3364 if (end > current->end && 3365 current->end != current->next->start) { 3366 vm_map_unlock_read(map); 3367 return (KERN_INVALID_ADDRESS); 3368 } 3369 } 3370 3371 if (invalidate) 3372 pmap_remove(map->pmap, start, end); 3373 failed = FALSE; 3374 3375 /* 3376 * Make a second pass, cleaning/uncaching pages from the indicated 3377 * objects as we go. 3378 */ 3379 for (current = entry; current->start < end;) { 3380 offset = current->offset + (start - current->start); 3381 size = (end <= current->end ? end : current->end) - start; 3382 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3383 vm_map_t smap; 3384 vm_map_entry_t tentry; 3385 vm_size_t tsize; 3386 3387 smap = current->object.sub_map; 3388 vm_map_lock_read(smap); 3389 (void) vm_map_lookup_entry(smap, offset, &tentry); 3390 tsize = tentry->end - offset; 3391 if (tsize < size) 3392 size = tsize; 3393 object = tentry->object.vm_object; 3394 offset = tentry->offset + (offset - tentry->start); 3395 vm_map_unlock_read(smap); 3396 } else { 3397 object = current->object.vm_object; 3398 } 3399 vm_object_reference(object); 3400 last_timestamp = map->timestamp; 3401 vm_map_unlock_read(map); 3402 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3403 failed = TRUE; 3404 start += size; 3405 vm_object_deallocate(object); 3406 vm_map_lock_read(map); 3407 if (last_timestamp == map->timestamp || 3408 !vm_map_lookup_entry(map, start, ¤t)) 3409 current = current->next; 3410 } 3411 3412 vm_map_unlock_read(map); 3413 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3414 } 3415 3416 /* 3417 * vm_map_entry_unwire: [ internal use only ] 3418 * 3419 * Make the region specified by this entry pageable. 3420 * 3421 * The map in question should be locked. 3422 * [This is the reason for this routine's existence.] 3423 */ 3424 static void 3425 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3426 { 3427 vm_size_t size; 3428 3429 VM_MAP_ASSERT_LOCKED(map); 3430 KASSERT(entry->wired_count > 0, 3431 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3432 3433 size = entry->end - entry->start; 3434 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3435 vm_map_wire_user_count_sub(atop(size)); 3436 pmap_unwire(map->pmap, entry->start, entry->end); 3437 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3438 PQ_ACTIVE); 3439 entry->wired_count = 0; 3440 } 3441 3442 static void 3443 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3444 { 3445 3446 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3447 vm_object_deallocate(entry->object.vm_object); 3448 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3449 } 3450 3451 /* 3452 * vm_map_entry_delete: [ internal use only ] 3453 * 3454 * Deallocate the given entry from the target map. 3455 */ 3456 static void 3457 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3458 { 3459 vm_object_t object; 3460 vm_pindex_t offidxstart, offidxend, count, size1; 3461 vm_size_t size; 3462 3463 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3464 object = entry->object.vm_object; 3465 3466 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3467 MPASS(entry->cred == NULL); 3468 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3469 MPASS(object == NULL); 3470 vm_map_entry_deallocate(entry, map->system_map); 3471 return; 3472 } 3473 3474 size = entry->end - entry->start; 3475 map->size -= size; 3476 3477 if (entry->cred != NULL) { 3478 swap_release_by_cred(size, entry->cred); 3479 crfree(entry->cred); 3480 } 3481 3482 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3483 (object != NULL)) { 3484 KASSERT(entry->cred == NULL || object->cred == NULL || 3485 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3486 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3487 count = atop(size); 3488 offidxstart = OFF_TO_IDX(entry->offset); 3489 offidxend = offidxstart + count; 3490 VM_OBJECT_WLOCK(object); 3491 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3492 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3493 object == kernel_object)) { 3494 vm_object_collapse(object); 3495 3496 /* 3497 * The option OBJPR_NOTMAPPED can be passed here 3498 * because vm_map_delete() already performed 3499 * pmap_remove() on the only mapping to this range 3500 * of pages. 3501 */ 3502 vm_object_page_remove(object, offidxstart, offidxend, 3503 OBJPR_NOTMAPPED); 3504 if (object->type == OBJT_SWAP) 3505 swap_pager_freespace(object, offidxstart, 3506 count); 3507 if (offidxend >= object->size && 3508 offidxstart < object->size) { 3509 size1 = object->size; 3510 object->size = offidxstart; 3511 if (object->cred != NULL) { 3512 size1 -= object->size; 3513 KASSERT(object->charge >= ptoa(size1), 3514 ("object %p charge < 0", object)); 3515 swap_release_by_cred(ptoa(size1), 3516 object->cred); 3517 object->charge -= ptoa(size1); 3518 } 3519 } 3520 } 3521 VM_OBJECT_WUNLOCK(object); 3522 } else 3523 entry->object.vm_object = NULL; 3524 if (map->system_map) 3525 vm_map_entry_deallocate(entry, TRUE); 3526 else { 3527 entry->next = curthread->td_map_def_user; 3528 curthread->td_map_def_user = entry; 3529 } 3530 } 3531 3532 /* 3533 * vm_map_delete: [ internal use only ] 3534 * 3535 * Deallocates the given address range from the target 3536 * map. 3537 */ 3538 int 3539 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3540 { 3541 vm_map_entry_t entry; 3542 vm_map_entry_t first_entry; 3543 3544 VM_MAP_ASSERT_LOCKED(map); 3545 if (start == end) 3546 return (KERN_SUCCESS); 3547 3548 /* 3549 * Find the start of the region, and clip it 3550 */ 3551 if (!vm_map_lookup_entry(map, start, &first_entry)) 3552 entry = first_entry->next; 3553 else { 3554 entry = first_entry; 3555 vm_map_clip_start(map, entry, start); 3556 } 3557 3558 /* 3559 * Step through all entries in this region 3560 */ 3561 while (entry->start < end) { 3562 vm_map_entry_t next; 3563 3564 /* 3565 * Wait for wiring or unwiring of an entry to complete. 3566 * Also wait for any system wirings to disappear on 3567 * user maps. 3568 */ 3569 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3570 (vm_map_pmap(map) != kernel_pmap && 3571 vm_map_entry_system_wired_count(entry) != 0)) { 3572 unsigned int last_timestamp; 3573 vm_offset_t saved_start; 3574 vm_map_entry_t tmp_entry; 3575 3576 saved_start = entry->start; 3577 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3578 last_timestamp = map->timestamp; 3579 (void) vm_map_unlock_and_wait(map, 0); 3580 vm_map_lock(map); 3581 if (last_timestamp + 1 != map->timestamp) { 3582 /* 3583 * Look again for the entry because the map was 3584 * modified while it was unlocked. 3585 * Specifically, the entry may have been 3586 * clipped, merged, or deleted. 3587 */ 3588 if (!vm_map_lookup_entry(map, saved_start, 3589 &tmp_entry)) 3590 entry = tmp_entry->next; 3591 else { 3592 entry = tmp_entry; 3593 vm_map_clip_start(map, entry, 3594 saved_start); 3595 } 3596 } 3597 continue; 3598 } 3599 vm_map_clip_end(map, entry, end); 3600 3601 next = entry->next; 3602 3603 /* 3604 * Unwire before removing addresses from the pmap; otherwise, 3605 * unwiring will put the entries back in the pmap. 3606 */ 3607 if (entry->wired_count != 0) 3608 vm_map_entry_unwire(map, entry); 3609 3610 /* 3611 * Remove mappings for the pages, but only if the 3612 * mappings could exist. For instance, it does not 3613 * make sense to call pmap_remove() for guard entries. 3614 */ 3615 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3616 entry->object.vm_object != NULL) 3617 pmap_remove(map->pmap, entry->start, entry->end); 3618 3619 if (entry->end == map->anon_loc) 3620 map->anon_loc = entry->start; 3621 3622 /* 3623 * Delete the entry only after removing all pmap 3624 * entries pointing to its pages. (Otherwise, its 3625 * page frames may be reallocated, and any modify bits 3626 * will be set in the wrong object!) 3627 */ 3628 vm_map_entry_delete(map, entry); 3629 entry = next; 3630 } 3631 return (KERN_SUCCESS); 3632 } 3633 3634 /* 3635 * vm_map_remove: 3636 * 3637 * Remove the given address range from the target map. 3638 * This is the exported form of vm_map_delete. 3639 */ 3640 int 3641 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3642 { 3643 int result; 3644 3645 vm_map_lock(map); 3646 VM_MAP_RANGE_CHECK(map, start, end); 3647 result = vm_map_delete(map, start, end); 3648 vm_map_unlock(map); 3649 return (result); 3650 } 3651 3652 /* 3653 * vm_map_check_protection: 3654 * 3655 * Assert that the target map allows the specified privilege on the 3656 * entire address region given. The entire region must be allocated. 3657 * 3658 * WARNING! This code does not and should not check whether the 3659 * contents of the region is accessible. For example a smaller file 3660 * might be mapped into a larger address space. 3661 * 3662 * NOTE! This code is also called by munmap(). 3663 * 3664 * The map must be locked. A read lock is sufficient. 3665 */ 3666 boolean_t 3667 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3668 vm_prot_t protection) 3669 { 3670 vm_map_entry_t entry; 3671 vm_map_entry_t tmp_entry; 3672 3673 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3674 return (FALSE); 3675 entry = tmp_entry; 3676 3677 while (start < end) { 3678 /* 3679 * No holes allowed! 3680 */ 3681 if (start < entry->start) 3682 return (FALSE); 3683 /* 3684 * Check protection associated with entry. 3685 */ 3686 if ((entry->protection & protection) != protection) 3687 return (FALSE); 3688 /* go to next entry */ 3689 start = entry->end; 3690 entry = entry->next; 3691 } 3692 return (TRUE); 3693 } 3694 3695 /* 3696 * vm_map_copy_entry: 3697 * 3698 * Copies the contents of the source entry to the destination 3699 * entry. The entries *must* be aligned properly. 3700 */ 3701 static void 3702 vm_map_copy_entry( 3703 vm_map_t src_map, 3704 vm_map_t dst_map, 3705 vm_map_entry_t src_entry, 3706 vm_map_entry_t dst_entry, 3707 vm_ooffset_t *fork_charge) 3708 { 3709 vm_object_t src_object; 3710 vm_map_entry_t fake_entry; 3711 vm_offset_t size; 3712 struct ucred *cred; 3713 int charged; 3714 3715 VM_MAP_ASSERT_LOCKED(dst_map); 3716 3717 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3718 return; 3719 3720 if (src_entry->wired_count == 0 || 3721 (src_entry->protection & VM_PROT_WRITE) == 0) { 3722 /* 3723 * If the source entry is marked needs_copy, it is already 3724 * write-protected. 3725 */ 3726 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3727 (src_entry->protection & VM_PROT_WRITE) != 0) { 3728 pmap_protect(src_map->pmap, 3729 src_entry->start, 3730 src_entry->end, 3731 src_entry->protection & ~VM_PROT_WRITE); 3732 } 3733 3734 /* 3735 * Make a copy of the object. 3736 */ 3737 size = src_entry->end - src_entry->start; 3738 if ((src_object = src_entry->object.vm_object) != NULL) { 3739 VM_OBJECT_WLOCK(src_object); 3740 charged = ENTRY_CHARGED(src_entry); 3741 if (src_object->handle == NULL && 3742 (src_object->type == OBJT_DEFAULT || 3743 src_object->type == OBJT_SWAP)) { 3744 vm_object_collapse(src_object); 3745 if ((src_object->flags & (OBJ_NOSPLIT | 3746 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3747 vm_object_split(src_entry); 3748 src_object = 3749 src_entry->object.vm_object; 3750 } 3751 } 3752 vm_object_reference_locked(src_object); 3753 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3754 if (src_entry->cred != NULL && 3755 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3756 KASSERT(src_object->cred == NULL, 3757 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3758 src_object)); 3759 src_object->cred = src_entry->cred; 3760 src_object->charge = size; 3761 } 3762 VM_OBJECT_WUNLOCK(src_object); 3763 dst_entry->object.vm_object = src_object; 3764 if (charged) { 3765 cred = curthread->td_ucred; 3766 crhold(cred); 3767 dst_entry->cred = cred; 3768 *fork_charge += size; 3769 if (!(src_entry->eflags & 3770 MAP_ENTRY_NEEDS_COPY)) { 3771 crhold(cred); 3772 src_entry->cred = cred; 3773 *fork_charge += size; 3774 } 3775 } 3776 src_entry->eflags |= MAP_ENTRY_COW | 3777 MAP_ENTRY_NEEDS_COPY; 3778 dst_entry->eflags |= MAP_ENTRY_COW | 3779 MAP_ENTRY_NEEDS_COPY; 3780 dst_entry->offset = src_entry->offset; 3781 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3782 /* 3783 * MAP_ENTRY_VN_WRITECNT cannot 3784 * indicate write reference from 3785 * src_entry, since the entry is 3786 * marked as needs copy. Allocate a 3787 * fake entry that is used to 3788 * decrement object->un_pager.vnp.writecount 3789 * at the appropriate time. Attach 3790 * fake_entry to the deferred list. 3791 */ 3792 fake_entry = vm_map_entry_create(dst_map); 3793 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3794 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3795 vm_object_reference(src_object); 3796 fake_entry->object.vm_object = src_object; 3797 fake_entry->start = src_entry->start; 3798 fake_entry->end = src_entry->end; 3799 fake_entry->next = curthread->td_map_def_user; 3800 curthread->td_map_def_user = fake_entry; 3801 } 3802 3803 pmap_copy(dst_map->pmap, src_map->pmap, 3804 dst_entry->start, dst_entry->end - dst_entry->start, 3805 src_entry->start); 3806 } else { 3807 dst_entry->object.vm_object = NULL; 3808 dst_entry->offset = 0; 3809 if (src_entry->cred != NULL) { 3810 dst_entry->cred = curthread->td_ucred; 3811 crhold(dst_entry->cred); 3812 *fork_charge += size; 3813 } 3814 } 3815 } else { 3816 /* 3817 * We don't want to make writeable wired pages copy-on-write. 3818 * Immediately copy these pages into the new map by simulating 3819 * page faults. The new pages are pageable. 3820 */ 3821 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3822 fork_charge); 3823 } 3824 } 3825 3826 /* 3827 * vmspace_map_entry_forked: 3828 * Update the newly-forked vmspace each time a map entry is inherited 3829 * or copied. The values for vm_dsize and vm_tsize are approximate 3830 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3831 */ 3832 static void 3833 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3834 vm_map_entry_t entry) 3835 { 3836 vm_size_t entrysize; 3837 vm_offset_t newend; 3838 3839 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3840 return; 3841 entrysize = entry->end - entry->start; 3842 vm2->vm_map.size += entrysize; 3843 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3844 vm2->vm_ssize += btoc(entrysize); 3845 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3846 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3847 newend = MIN(entry->end, 3848 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3849 vm2->vm_dsize += btoc(newend - entry->start); 3850 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3851 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3852 newend = MIN(entry->end, 3853 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3854 vm2->vm_tsize += btoc(newend - entry->start); 3855 } 3856 } 3857 3858 /* 3859 * vmspace_fork: 3860 * Create a new process vmspace structure and vm_map 3861 * based on those of an existing process. The new map 3862 * is based on the old map, according to the inheritance 3863 * values on the regions in that map. 3864 * 3865 * XXX It might be worth coalescing the entries added to the new vmspace. 3866 * 3867 * The source map must not be locked. 3868 */ 3869 struct vmspace * 3870 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3871 { 3872 struct vmspace *vm2; 3873 vm_map_t new_map, old_map; 3874 vm_map_entry_t new_entry, old_entry; 3875 vm_object_t object; 3876 int error, locked; 3877 vm_inherit_t inh; 3878 3879 old_map = &vm1->vm_map; 3880 /* Copy immutable fields of vm1 to vm2. */ 3881 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3882 pmap_pinit); 3883 if (vm2 == NULL) 3884 return (NULL); 3885 3886 vm2->vm_taddr = vm1->vm_taddr; 3887 vm2->vm_daddr = vm1->vm_daddr; 3888 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3889 vm_map_lock(old_map); 3890 if (old_map->busy) 3891 vm_map_wait_busy(old_map); 3892 new_map = &vm2->vm_map; 3893 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3894 KASSERT(locked, ("vmspace_fork: lock failed")); 3895 3896 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3897 if (error != 0) { 3898 sx_xunlock(&old_map->lock); 3899 sx_xunlock(&new_map->lock); 3900 vm_map_process_deferred(); 3901 vmspace_free(vm2); 3902 return (NULL); 3903 } 3904 3905 new_map->anon_loc = old_map->anon_loc; 3906 3907 old_entry = old_map->header.next; 3908 3909 while (old_entry != &old_map->header) { 3910 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3911 panic("vm_map_fork: encountered a submap"); 3912 3913 inh = old_entry->inheritance; 3914 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3915 inh != VM_INHERIT_NONE) 3916 inh = VM_INHERIT_COPY; 3917 3918 switch (inh) { 3919 case VM_INHERIT_NONE: 3920 break; 3921 3922 case VM_INHERIT_SHARE: 3923 /* 3924 * Clone the entry, creating the shared object if necessary. 3925 */ 3926 object = old_entry->object.vm_object; 3927 if (object == NULL) { 3928 vm_map_entry_back(old_entry); 3929 object = old_entry->object.vm_object; 3930 } 3931 3932 /* 3933 * Add the reference before calling vm_object_shadow 3934 * to insure that a shadow object is created. 3935 */ 3936 vm_object_reference(object); 3937 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3938 vm_object_shadow(&old_entry->object.vm_object, 3939 &old_entry->offset, 3940 old_entry->end - old_entry->start); 3941 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3942 /* Transfer the second reference too. */ 3943 vm_object_reference( 3944 old_entry->object.vm_object); 3945 3946 /* 3947 * As in vm_map_simplify_entry(), the 3948 * vnode lock will not be acquired in 3949 * this call to vm_object_deallocate(). 3950 */ 3951 vm_object_deallocate(object); 3952 object = old_entry->object.vm_object; 3953 } 3954 VM_OBJECT_WLOCK(object); 3955 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3956 if (old_entry->cred != NULL) { 3957 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3958 object->cred = old_entry->cred; 3959 object->charge = old_entry->end - old_entry->start; 3960 old_entry->cred = NULL; 3961 } 3962 3963 /* 3964 * Assert the correct state of the vnode 3965 * v_writecount while the object is locked, to 3966 * not relock it later for the assertion 3967 * correctness. 3968 */ 3969 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3970 object->type == OBJT_VNODE) { 3971 KASSERT(((struct vnode *)object->handle)-> 3972 v_writecount > 0, 3973 ("vmspace_fork: v_writecount %p", object)); 3974 KASSERT(object->un_pager.vnp.writemappings > 0, 3975 ("vmspace_fork: vnp.writecount %p", 3976 object)); 3977 } 3978 VM_OBJECT_WUNLOCK(object); 3979 3980 /* 3981 * Clone the entry, referencing the shared object. 3982 */ 3983 new_entry = vm_map_entry_create(new_map); 3984 *new_entry = *old_entry; 3985 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3986 MAP_ENTRY_IN_TRANSITION); 3987 new_entry->wiring_thread = NULL; 3988 new_entry->wired_count = 0; 3989 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3990 vnode_pager_update_writecount(object, 3991 new_entry->start, new_entry->end); 3992 } 3993 vm_map_entry_set_vnode_text(new_entry, true); 3994 3995 /* 3996 * Insert the entry into the new map -- we know we're 3997 * inserting at the end of the new map. 3998 */ 3999 vm_map_entry_link(new_map, new_entry); 4000 vmspace_map_entry_forked(vm1, vm2, new_entry); 4001 4002 /* 4003 * Update the physical map 4004 */ 4005 pmap_copy(new_map->pmap, old_map->pmap, 4006 new_entry->start, 4007 (old_entry->end - old_entry->start), 4008 old_entry->start); 4009 break; 4010 4011 case VM_INHERIT_COPY: 4012 /* 4013 * Clone the entry and link into the map. 4014 */ 4015 new_entry = vm_map_entry_create(new_map); 4016 *new_entry = *old_entry; 4017 /* 4018 * Copied entry is COW over the old object. 4019 */ 4020 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4021 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 4022 new_entry->wiring_thread = NULL; 4023 new_entry->wired_count = 0; 4024 new_entry->object.vm_object = NULL; 4025 new_entry->cred = NULL; 4026 vm_map_entry_link(new_map, new_entry); 4027 vmspace_map_entry_forked(vm1, vm2, new_entry); 4028 vm_map_copy_entry(old_map, new_map, old_entry, 4029 new_entry, fork_charge); 4030 vm_map_entry_set_vnode_text(new_entry, true); 4031 break; 4032 4033 case VM_INHERIT_ZERO: 4034 /* 4035 * Create a new anonymous mapping entry modelled from 4036 * the old one. 4037 */ 4038 new_entry = vm_map_entry_create(new_map); 4039 memset(new_entry, 0, sizeof(*new_entry)); 4040 4041 new_entry->start = old_entry->start; 4042 new_entry->end = old_entry->end; 4043 new_entry->eflags = old_entry->eflags & 4044 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4045 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4046 new_entry->protection = old_entry->protection; 4047 new_entry->max_protection = old_entry->max_protection; 4048 new_entry->inheritance = VM_INHERIT_ZERO; 4049 4050 vm_map_entry_link(new_map, new_entry); 4051 vmspace_map_entry_forked(vm1, vm2, new_entry); 4052 4053 new_entry->cred = curthread->td_ucred; 4054 crhold(new_entry->cred); 4055 *fork_charge += (new_entry->end - new_entry->start); 4056 4057 break; 4058 } 4059 old_entry = old_entry->next; 4060 } 4061 /* 4062 * Use inlined vm_map_unlock() to postpone handling the deferred 4063 * map entries, which cannot be done until both old_map and 4064 * new_map locks are released. 4065 */ 4066 sx_xunlock(&old_map->lock); 4067 sx_xunlock(&new_map->lock); 4068 vm_map_process_deferred(); 4069 4070 return (vm2); 4071 } 4072 4073 /* 4074 * Create a process's stack for exec_new_vmspace(). This function is never 4075 * asked to wire the newly created stack. 4076 */ 4077 int 4078 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4079 vm_prot_t prot, vm_prot_t max, int cow) 4080 { 4081 vm_size_t growsize, init_ssize; 4082 rlim_t vmemlim; 4083 int rv; 4084 4085 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4086 growsize = sgrowsiz; 4087 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4088 vm_map_lock(map); 4089 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4090 /* If we would blow our VMEM resource limit, no go */ 4091 if (map->size + init_ssize > vmemlim) { 4092 rv = KERN_NO_SPACE; 4093 goto out; 4094 } 4095 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4096 max, cow); 4097 out: 4098 vm_map_unlock(map); 4099 return (rv); 4100 } 4101 4102 static int stack_guard_page = 1; 4103 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4104 &stack_guard_page, 0, 4105 "Specifies the number of guard pages for a stack that grows"); 4106 4107 static int 4108 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4109 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4110 { 4111 vm_map_entry_t new_entry, prev_entry; 4112 vm_offset_t bot, gap_bot, gap_top, top; 4113 vm_size_t init_ssize, sgp; 4114 int orient, rv; 4115 4116 /* 4117 * The stack orientation is piggybacked with the cow argument. 4118 * Extract it into orient and mask the cow argument so that we 4119 * don't pass it around further. 4120 */ 4121 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4122 KASSERT(orient != 0, ("No stack grow direction")); 4123 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4124 ("bi-dir stack")); 4125 4126 if (addrbos < vm_map_min(map) || 4127 addrbos + max_ssize > vm_map_max(map) || 4128 addrbos + max_ssize <= addrbos) 4129 return (KERN_INVALID_ADDRESS); 4130 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4131 if (sgp >= max_ssize) 4132 return (KERN_INVALID_ARGUMENT); 4133 4134 init_ssize = growsize; 4135 if (max_ssize < init_ssize + sgp) 4136 init_ssize = max_ssize - sgp; 4137 4138 /* If addr is already mapped, no go */ 4139 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4140 return (KERN_NO_SPACE); 4141 4142 /* 4143 * If we can't accommodate max_ssize in the current mapping, no go. 4144 */ 4145 if (prev_entry->next->start < addrbos + max_ssize) 4146 return (KERN_NO_SPACE); 4147 4148 /* 4149 * We initially map a stack of only init_ssize. We will grow as 4150 * needed later. Depending on the orientation of the stack (i.e. 4151 * the grow direction) we either map at the top of the range, the 4152 * bottom of the range or in the middle. 4153 * 4154 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4155 * and cow to be 0. Possibly we should eliminate these as input 4156 * parameters, and just pass these values here in the insert call. 4157 */ 4158 if (orient == MAP_STACK_GROWS_DOWN) { 4159 bot = addrbos + max_ssize - init_ssize; 4160 top = bot + init_ssize; 4161 gap_bot = addrbos; 4162 gap_top = bot; 4163 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4164 bot = addrbos; 4165 top = bot + init_ssize; 4166 gap_bot = top; 4167 gap_top = addrbos + max_ssize; 4168 } 4169 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4170 if (rv != KERN_SUCCESS) 4171 return (rv); 4172 new_entry = prev_entry->next; 4173 KASSERT(new_entry->end == top || new_entry->start == bot, 4174 ("Bad entry start/end for new stack entry")); 4175 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4176 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4177 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4178 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4179 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4180 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4181 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4182 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4183 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4184 if (rv != KERN_SUCCESS) 4185 (void)vm_map_delete(map, bot, top); 4186 return (rv); 4187 } 4188 4189 /* 4190 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4191 * successfully grow the stack. 4192 */ 4193 static int 4194 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4195 { 4196 vm_map_entry_t stack_entry; 4197 struct proc *p; 4198 struct vmspace *vm; 4199 struct ucred *cred; 4200 vm_offset_t gap_end, gap_start, grow_start; 4201 vm_size_t grow_amount, guard, max_grow; 4202 rlim_t lmemlim, stacklim, vmemlim; 4203 int rv, rv1; 4204 bool gap_deleted, grow_down, is_procstack; 4205 #ifdef notyet 4206 uint64_t limit; 4207 #endif 4208 #ifdef RACCT 4209 int error; 4210 #endif 4211 4212 p = curproc; 4213 vm = p->p_vmspace; 4214 4215 /* 4216 * Disallow stack growth when the access is performed by a 4217 * debugger or AIO daemon. The reason is that the wrong 4218 * resource limits are applied. 4219 */ 4220 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4221 return (KERN_FAILURE); 4222 4223 MPASS(!map->system_map); 4224 4225 guard = stack_guard_page * PAGE_SIZE; 4226 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4227 stacklim = lim_cur(curthread, RLIMIT_STACK); 4228 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4229 retry: 4230 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4231 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4232 return (KERN_FAILURE); 4233 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4234 return (KERN_SUCCESS); 4235 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4236 stack_entry = gap_entry->next; 4237 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4238 stack_entry->start != gap_entry->end) 4239 return (KERN_FAILURE); 4240 grow_amount = round_page(stack_entry->start - addr); 4241 grow_down = true; 4242 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4243 stack_entry = gap_entry->prev; 4244 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4245 stack_entry->end != gap_entry->start) 4246 return (KERN_FAILURE); 4247 grow_amount = round_page(addr + 1 - stack_entry->end); 4248 grow_down = false; 4249 } else { 4250 return (KERN_FAILURE); 4251 } 4252 max_grow = gap_entry->end - gap_entry->start; 4253 if (guard > max_grow) 4254 return (KERN_NO_SPACE); 4255 max_grow -= guard; 4256 if (grow_amount > max_grow) 4257 return (KERN_NO_SPACE); 4258 4259 /* 4260 * If this is the main process stack, see if we're over the stack 4261 * limit. 4262 */ 4263 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4264 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4265 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4266 return (KERN_NO_SPACE); 4267 4268 #ifdef RACCT 4269 if (racct_enable) { 4270 PROC_LOCK(p); 4271 if (is_procstack && racct_set(p, RACCT_STACK, 4272 ctob(vm->vm_ssize) + grow_amount)) { 4273 PROC_UNLOCK(p); 4274 return (KERN_NO_SPACE); 4275 } 4276 PROC_UNLOCK(p); 4277 } 4278 #endif 4279 4280 grow_amount = roundup(grow_amount, sgrowsiz); 4281 if (grow_amount > max_grow) 4282 grow_amount = max_grow; 4283 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4284 grow_amount = trunc_page((vm_size_t)stacklim) - 4285 ctob(vm->vm_ssize); 4286 } 4287 4288 #ifdef notyet 4289 PROC_LOCK(p); 4290 limit = racct_get_available(p, RACCT_STACK); 4291 PROC_UNLOCK(p); 4292 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4293 grow_amount = limit - ctob(vm->vm_ssize); 4294 #endif 4295 4296 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4297 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4298 rv = KERN_NO_SPACE; 4299 goto out; 4300 } 4301 #ifdef RACCT 4302 if (racct_enable) { 4303 PROC_LOCK(p); 4304 if (racct_set(p, RACCT_MEMLOCK, 4305 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4306 PROC_UNLOCK(p); 4307 rv = KERN_NO_SPACE; 4308 goto out; 4309 } 4310 PROC_UNLOCK(p); 4311 } 4312 #endif 4313 } 4314 4315 /* If we would blow our VMEM resource limit, no go */ 4316 if (map->size + grow_amount > vmemlim) { 4317 rv = KERN_NO_SPACE; 4318 goto out; 4319 } 4320 #ifdef RACCT 4321 if (racct_enable) { 4322 PROC_LOCK(p); 4323 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4324 PROC_UNLOCK(p); 4325 rv = KERN_NO_SPACE; 4326 goto out; 4327 } 4328 PROC_UNLOCK(p); 4329 } 4330 #endif 4331 4332 if (vm_map_lock_upgrade(map)) { 4333 gap_entry = NULL; 4334 vm_map_lock_read(map); 4335 goto retry; 4336 } 4337 4338 if (grow_down) { 4339 grow_start = gap_entry->end - grow_amount; 4340 if (gap_entry->start + grow_amount == gap_entry->end) { 4341 gap_start = gap_entry->start; 4342 gap_end = gap_entry->end; 4343 vm_map_entry_delete(map, gap_entry); 4344 gap_deleted = true; 4345 } else { 4346 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4347 vm_map_entry_resize(map, gap_entry, -grow_amount); 4348 gap_deleted = false; 4349 } 4350 rv = vm_map_insert(map, NULL, 0, grow_start, 4351 grow_start + grow_amount, 4352 stack_entry->protection, stack_entry->max_protection, 4353 MAP_STACK_GROWS_DOWN); 4354 if (rv != KERN_SUCCESS) { 4355 if (gap_deleted) { 4356 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4357 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4358 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4359 MPASS(rv1 == KERN_SUCCESS); 4360 } else 4361 vm_map_entry_resize(map, gap_entry, 4362 grow_amount); 4363 } 4364 } else { 4365 grow_start = stack_entry->end; 4366 cred = stack_entry->cred; 4367 if (cred == NULL && stack_entry->object.vm_object != NULL) 4368 cred = stack_entry->object.vm_object->cred; 4369 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4370 rv = KERN_NO_SPACE; 4371 /* Grow the underlying object if applicable. */ 4372 else if (stack_entry->object.vm_object == NULL || 4373 vm_object_coalesce(stack_entry->object.vm_object, 4374 stack_entry->offset, 4375 (vm_size_t)(stack_entry->end - stack_entry->start), 4376 grow_amount, cred != NULL)) { 4377 if (gap_entry->start + grow_amount == gap_entry->end) { 4378 vm_map_entry_delete(map, gap_entry); 4379 vm_map_entry_resize(map, stack_entry, 4380 grow_amount); 4381 } else { 4382 gap_entry->start += grow_amount; 4383 stack_entry->end += grow_amount; 4384 } 4385 map->size += grow_amount; 4386 rv = KERN_SUCCESS; 4387 } else 4388 rv = KERN_FAILURE; 4389 } 4390 if (rv == KERN_SUCCESS && is_procstack) 4391 vm->vm_ssize += btoc(grow_amount); 4392 4393 /* 4394 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4395 */ 4396 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4397 rv = vm_map_wire_locked(map, grow_start, 4398 grow_start + grow_amount, 4399 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4400 } 4401 vm_map_lock_downgrade(map); 4402 4403 out: 4404 #ifdef RACCT 4405 if (racct_enable && rv != KERN_SUCCESS) { 4406 PROC_LOCK(p); 4407 error = racct_set(p, RACCT_VMEM, map->size); 4408 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4409 if (!old_mlock) { 4410 error = racct_set(p, RACCT_MEMLOCK, 4411 ptoa(pmap_wired_count(map->pmap))); 4412 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4413 } 4414 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4415 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4416 PROC_UNLOCK(p); 4417 } 4418 #endif 4419 4420 return (rv); 4421 } 4422 4423 /* 4424 * Unshare the specified VM space for exec. If other processes are 4425 * mapped to it, then create a new one. The new vmspace is null. 4426 */ 4427 int 4428 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4429 { 4430 struct vmspace *oldvmspace = p->p_vmspace; 4431 struct vmspace *newvmspace; 4432 4433 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4434 ("vmspace_exec recursed")); 4435 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4436 if (newvmspace == NULL) 4437 return (ENOMEM); 4438 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4439 /* 4440 * This code is written like this for prototype purposes. The 4441 * goal is to avoid running down the vmspace here, but let the 4442 * other process's that are still using the vmspace to finally 4443 * run it down. Even though there is little or no chance of blocking 4444 * here, it is a good idea to keep this form for future mods. 4445 */ 4446 PROC_VMSPACE_LOCK(p); 4447 p->p_vmspace = newvmspace; 4448 PROC_VMSPACE_UNLOCK(p); 4449 if (p == curthread->td_proc) 4450 pmap_activate(curthread); 4451 curthread->td_pflags |= TDP_EXECVMSPC; 4452 return (0); 4453 } 4454 4455 /* 4456 * Unshare the specified VM space for forcing COW. This 4457 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4458 */ 4459 int 4460 vmspace_unshare(struct proc *p) 4461 { 4462 struct vmspace *oldvmspace = p->p_vmspace; 4463 struct vmspace *newvmspace; 4464 vm_ooffset_t fork_charge; 4465 4466 if (oldvmspace->vm_refcnt == 1) 4467 return (0); 4468 fork_charge = 0; 4469 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4470 if (newvmspace == NULL) 4471 return (ENOMEM); 4472 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4473 vmspace_free(newvmspace); 4474 return (ENOMEM); 4475 } 4476 PROC_VMSPACE_LOCK(p); 4477 p->p_vmspace = newvmspace; 4478 PROC_VMSPACE_UNLOCK(p); 4479 if (p == curthread->td_proc) 4480 pmap_activate(curthread); 4481 vmspace_free(oldvmspace); 4482 return (0); 4483 } 4484 4485 /* 4486 * vm_map_lookup: 4487 * 4488 * Finds the VM object, offset, and 4489 * protection for a given virtual address in the 4490 * specified map, assuming a page fault of the 4491 * type specified. 4492 * 4493 * Leaves the map in question locked for read; return 4494 * values are guaranteed until a vm_map_lookup_done 4495 * call is performed. Note that the map argument 4496 * is in/out; the returned map must be used in 4497 * the call to vm_map_lookup_done. 4498 * 4499 * A handle (out_entry) is returned for use in 4500 * vm_map_lookup_done, to make that fast. 4501 * 4502 * If a lookup is requested with "write protection" 4503 * specified, the map may be changed to perform virtual 4504 * copying operations, although the data referenced will 4505 * remain the same. 4506 */ 4507 int 4508 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4509 vm_offset_t vaddr, 4510 vm_prot_t fault_typea, 4511 vm_map_entry_t *out_entry, /* OUT */ 4512 vm_object_t *object, /* OUT */ 4513 vm_pindex_t *pindex, /* OUT */ 4514 vm_prot_t *out_prot, /* OUT */ 4515 boolean_t *wired) /* OUT */ 4516 { 4517 vm_map_entry_t entry; 4518 vm_map_t map = *var_map; 4519 vm_prot_t prot; 4520 vm_prot_t fault_type = fault_typea; 4521 vm_object_t eobject; 4522 vm_size_t size; 4523 struct ucred *cred; 4524 4525 RetryLookup: 4526 4527 vm_map_lock_read(map); 4528 4529 RetryLookupLocked: 4530 /* 4531 * Lookup the faulting address. 4532 */ 4533 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4534 vm_map_unlock_read(map); 4535 return (KERN_INVALID_ADDRESS); 4536 } 4537 4538 entry = *out_entry; 4539 4540 /* 4541 * Handle submaps. 4542 */ 4543 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4544 vm_map_t old_map = map; 4545 4546 *var_map = map = entry->object.sub_map; 4547 vm_map_unlock_read(old_map); 4548 goto RetryLookup; 4549 } 4550 4551 /* 4552 * Check whether this task is allowed to have this page. 4553 */ 4554 prot = entry->protection; 4555 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4556 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4557 if (prot == VM_PROT_NONE && map != kernel_map && 4558 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4559 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4560 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4561 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4562 goto RetryLookupLocked; 4563 } 4564 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4565 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4566 vm_map_unlock_read(map); 4567 return (KERN_PROTECTION_FAILURE); 4568 } 4569 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4570 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4571 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4572 ("entry %p flags %x", entry, entry->eflags)); 4573 if ((fault_typea & VM_PROT_COPY) != 0 && 4574 (entry->max_protection & VM_PROT_WRITE) == 0 && 4575 (entry->eflags & MAP_ENTRY_COW) == 0) { 4576 vm_map_unlock_read(map); 4577 return (KERN_PROTECTION_FAILURE); 4578 } 4579 4580 /* 4581 * If this page is not pageable, we have to get it for all possible 4582 * accesses. 4583 */ 4584 *wired = (entry->wired_count != 0); 4585 if (*wired) 4586 fault_type = entry->protection; 4587 size = entry->end - entry->start; 4588 /* 4589 * If the entry was copy-on-write, we either ... 4590 */ 4591 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4592 /* 4593 * If we want to write the page, we may as well handle that 4594 * now since we've got the map locked. 4595 * 4596 * If we don't need to write the page, we just demote the 4597 * permissions allowed. 4598 */ 4599 if ((fault_type & VM_PROT_WRITE) != 0 || 4600 (fault_typea & VM_PROT_COPY) != 0) { 4601 /* 4602 * Make a new object, and place it in the object 4603 * chain. Note that no new references have appeared 4604 * -- one just moved from the map to the new 4605 * object. 4606 */ 4607 if (vm_map_lock_upgrade(map)) 4608 goto RetryLookup; 4609 4610 if (entry->cred == NULL) { 4611 /* 4612 * The debugger owner is charged for 4613 * the memory. 4614 */ 4615 cred = curthread->td_ucred; 4616 crhold(cred); 4617 if (!swap_reserve_by_cred(size, cred)) { 4618 crfree(cred); 4619 vm_map_unlock(map); 4620 return (KERN_RESOURCE_SHORTAGE); 4621 } 4622 entry->cred = cred; 4623 } 4624 vm_object_shadow(&entry->object.vm_object, 4625 &entry->offset, size); 4626 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4627 eobject = entry->object.vm_object; 4628 if (eobject->cred != NULL) { 4629 /* 4630 * The object was not shadowed. 4631 */ 4632 swap_release_by_cred(size, entry->cred); 4633 crfree(entry->cred); 4634 entry->cred = NULL; 4635 } else if (entry->cred != NULL) { 4636 VM_OBJECT_WLOCK(eobject); 4637 eobject->cred = entry->cred; 4638 eobject->charge = size; 4639 VM_OBJECT_WUNLOCK(eobject); 4640 entry->cred = NULL; 4641 } 4642 4643 vm_map_lock_downgrade(map); 4644 } else { 4645 /* 4646 * We're attempting to read a copy-on-write page -- 4647 * don't allow writes. 4648 */ 4649 prot &= ~VM_PROT_WRITE; 4650 } 4651 } 4652 4653 /* 4654 * Create an object if necessary. 4655 */ 4656 if (entry->object.vm_object == NULL && 4657 !map->system_map) { 4658 if (vm_map_lock_upgrade(map)) 4659 goto RetryLookup; 4660 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4661 atop(size)); 4662 entry->offset = 0; 4663 if (entry->cred != NULL) { 4664 VM_OBJECT_WLOCK(entry->object.vm_object); 4665 entry->object.vm_object->cred = entry->cred; 4666 entry->object.vm_object->charge = size; 4667 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4668 entry->cred = NULL; 4669 } 4670 vm_map_lock_downgrade(map); 4671 } 4672 4673 /* 4674 * Return the object/offset from this entry. If the entry was 4675 * copy-on-write or empty, it has been fixed up. 4676 */ 4677 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4678 *object = entry->object.vm_object; 4679 4680 *out_prot = prot; 4681 return (KERN_SUCCESS); 4682 } 4683 4684 /* 4685 * vm_map_lookup_locked: 4686 * 4687 * Lookup the faulting address. A version of vm_map_lookup that returns 4688 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4689 */ 4690 int 4691 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4692 vm_offset_t vaddr, 4693 vm_prot_t fault_typea, 4694 vm_map_entry_t *out_entry, /* OUT */ 4695 vm_object_t *object, /* OUT */ 4696 vm_pindex_t *pindex, /* OUT */ 4697 vm_prot_t *out_prot, /* OUT */ 4698 boolean_t *wired) /* OUT */ 4699 { 4700 vm_map_entry_t entry; 4701 vm_map_t map = *var_map; 4702 vm_prot_t prot; 4703 vm_prot_t fault_type = fault_typea; 4704 4705 /* 4706 * Lookup the faulting address. 4707 */ 4708 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4709 return (KERN_INVALID_ADDRESS); 4710 4711 entry = *out_entry; 4712 4713 /* 4714 * Fail if the entry refers to a submap. 4715 */ 4716 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4717 return (KERN_FAILURE); 4718 4719 /* 4720 * Check whether this task is allowed to have this page. 4721 */ 4722 prot = entry->protection; 4723 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4724 if ((fault_type & prot) != fault_type) 4725 return (KERN_PROTECTION_FAILURE); 4726 4727 /* 4728 * If this page is not pageable, we have to get it for all possible 4729 * accesses. 4730 */ 4731 *wired = (entry->wired_count != 0); 4732 if (*wired) 4733 fault_type = entry->protection; 4734 4735 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4736 /* 4737 * Fail if the entry was copy-on-write for a write fault. 4738 */ 4739 if (fault_type & VM_PROT_WRITE) 4740 return (KERN_FAILURE); 4741 /* 4742 * We're attempting to read a copy-on-write page -- 4743 * don't allow writes. 4744 */ 4745 prot &= ~VM_PROT_WRITE; 4746 } 4747 4748 /* 4749 * Fail if an object should be created. 4750 */ 4751 if (entry->object.vm_object == NULL && !map->system_map) 4752 return (KERN_FAILURE); 4753 4754 /* 4755 * Return the object/offset from this entry. If the entry was 4756 * copy-on-write or empty, it has been fixed up. 4757 */ 4758 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4759 *object = entry->object.vm_object; 4760 4761 *out_prot = prot; 4762 return (KERN_SUCCESS); 4763 } 4764 4765 /* 4766 * vm_map_lookup_done: 4767 * 4768 * Releases locks acquired by a vm_map_lookup 4769 * (according to the handle returned by that lookup). 4770 */ 4771 void 4772 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4773 { 4774 /* 4775 * Unlock the main-level map 4776 */ 4777 vm_map_unlock_read(map); 4778 } 4779 4780 vm_offset_t 4781 vm_map_max_KBI(const struct vm_map *map) 4782 { 4783 4784 return (vm_map_max(map)); 4785 } 4786 4787 vm_offset_t 4788 vm_map_min_KBI(const struct vm_map *map) 4789 { 4790 4791 return (vm_map_min(map)); 4792 } 4793 4794 pmap_t 4795 vm_map_pmap_KBI(vm_map_t map) 4796 { 4797 4798 return (map->pmap); 4799 } 4800 4801 #include "opt_ddb.h" 4802 #ifdef DDB 4803 #include <sys/kernel.h> 4804 4805 #include <ddb/ddb.h> 4806 4807 static void 4808 vm_map_print(vm_map_t map) 4809 { 4810 vm_map_entry_t entry, prev; 4811 4812 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4813 (void *)map, 4814 (void *)map->pmap, map->nentries, map->timestamp); 4815 4816 db_indent += 2; 4817 for (prev = &map->header; (entry = prev->next) != &map->header; 4818 prev = entry) { 4819 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4820 (void *)entry, (void *)entry->start, (void *)entry->end, 4821 entry->eflags); 4822 { 4823 static char *inheritance_name[4] = 4824 {"share", "copy", "none", "donate_copy"}; 4825 4826 db_iprintf(" prot=%x/%x/%s", 4827 entry->protection, 4828 entry->max_protection, 4829 inheritance_name[(int)(unsigned char) 4830 entry->inheritance]); 4831 if (entry->wired_count != 0) 4832 db_printf(", wired"); 4833 } 4834 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4835 db_printf(", share=%p, offset=0x%jx\n", 4836 (void *)entry->object.sub_map, 4837 (uintmax_t)entry->offset); 4838 if (prev == &map->header || 4839 prev->object.sub_map != 4840 entry->object.sub_map) { 4841 db_indent += 2; 4842 vm_map_print((vm_map_t)entry->object.sub_map); 4843 db_indent -= 2; 4844 } 4845 } else { 4846 if (entry->cred != NULL) 4847 db_printf(", ruid %d", entry->cred->cr_ruid); 4848 db_printf(", object=%p, offset=0x%jx", 4849 (void *)entry->object.vm_object, 4850 (uintmax_t)entry->offset); 4851 if (entry->object.vm_object && entry->object.vm_object->cred) 4852 db_printf(", obj ruid %d charge %jx", 4853 entry->object.vm_object->cred->cr_ruid, 4854 (uintmax_t)entry->object.vm_object->charge); 4855 if (entry->eflags & MAP_ENTRY_COW) 4856 db_printf(", copy (%s)", 4857 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4858 db_printf("\n"); 4859 4860 if (prev == &map->header || 4861 prev->object.vm_object != 4862 entry->object.vm_object) { 4863 db_indent += 2; 4864 vm_object_print((db_expr_t)(intptr_t) 4865 entry->object.vm_object, 4866 0, 0, (char *)0); 4867 db_indent -= 2; 4868 } 4869 } 4870 } 4871 db_indent -= 2; 4872 } 4873 4874 DB_SHOW_COMMAND(map, map) 4875 { 4876 4877 if (!have_addr) { 4878 db_printf("usage: show map <addr>\n"); 4879 return; 4880 } 4881 vm_map_print((vm_map_t)addr); 4882 } 4883 4884 DB_SHOW_COMMAND(procvm, procvm) 4885 { 4886 struct proc *p; 4887 4888 if (have_addr) { 4889 p = db_lookup_proc(addr); 4890 } else { 4891 p = curproc; 4892 } 4893 4894 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4895 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4896 (void *)vmspace_pmap(p->p_vmspace)); 4897 4898 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4899 } 4900 4901 #endif /* DDB */ 4902