xref: /freebsd/sys/vm/vm_map.c (revision 0b87f79976047c8f4332bbf7dc03146f6b0de79f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93 
94 /*
95  *	Virtual memory maps provide for the mapping, protection,
96  *	and sharing of virtual memory objects.  In addition,
97  *	this module provides for an efficient virtual copy of
98  *	memory from one map to another.
99  *
100  *	Synchronization is required prior to most operations.
101  *
102  *	Maps consist of an ordered doubly-linked list of simple
103  *	entries; a single hint is used to speed up lookups.
104  *
105  *	Since portions of maps are specified by start/end addresses,
106  *	which may not align with existing map entries, all
107  *	routines merely "clip" entries to these start/end values.
108  *	[That is, an entry is split into two, bordering at a
109  *	start or end value.]  Note that these clippings may not
110  *	always be necessary (as the two resulting entries are then
111  *	not changed); however, the clipping is done for convenience.
112  *
113  *	As mentioned above, virtual copy operations are performed
114  *	by copying VM object references from one map to
115  *	another, and then marking both regions as copy-on-write.
116  */
117 
118 /*
119  *	vm_map_startup:
120  *
121  *	Initialize the vm_map module.  Must be called before
122  *	any other vm_map routines.
123  *
124  *	Map and entry structures are allocated from the general
125  *	purpose memory pool with some exceptions:
126  *
127  *	- The kernel map and kmem submap are allocated statically.
128  *	- Kernel map entries are allocated out of a static pool.
129  *
130  *	These restrictions are necessary since malloc() uses the
131  *	maps and requires map entries.
132  */
133 
134 static uma_zone_t mapentzone;
135 static uma_zone_t kmapentzone;
136 static uma_zone_t mapzone;
137 static uma_zone_t vmspace_zone;
138 static struct vm_object kmapentobj;
139 static void vmspace_zinit(void *mem, int size);
140 static void vmspace_zfini(void *mem, int size);
141 static void vm_map_zinit(void *mem, int size);
142 static void vm_map_zfini(void *mem, int size);
143 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
144 
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 
150 void
151 vm_map_startup(void)
152 {
153 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
154 #ifdef INVARIANTS
155 	    vm_map_zdtor,
156 #else
157 	    NULL,
158 #endif
159 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
160 	uma_prealloc(mapzone, MAX_KMAP);
161 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
162 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
163 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
164 	uma_prealloc(kmapentzone, MAX_KMAPENT);
165 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
166 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
167 	uma_prealloc(mapentzone, MAX_MAPENT);
168 }
169 
170 static void
171 vmspace_zfini(void *mem, int size)
172 {
173 	struct vmspace *vm;
174 
175 	vm = (struct vmspace *)mem;
176 
177 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
178 }
179 
180 static void
181 vmspace_zinit(void *mem, int size)
182 {
183 	struct vmspace *vm;
184 
185 	vm = (struct vmspace *)mem;
186 
187 	vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
188 }
189 
190 static void
191 vm_map_zfini(void *mem, int size)
192 {
193 	vm_map_t map;
194 
195 	map = (vm_map_t)mem;
196 
197 	lockdestroy(&map->lock);
198 }
199 
200 static void
201 vm_map_zinit(void *mem, int size)
202 {
203 	vm_map_t map;
204 
205 	map = (vm_map_t)mem;
206 	map->nentries = 0;
207 	map->size = 0;
208 	map->infork = 0;
209 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
210 }
211 
212 #ifdef INVARIANTS
213 static void
214 vmspace_zdtor(void *mem, int size, void *arg)
215 {
216 	struct vmspace *vm;
217 
218 	vm = (struct vmspace *)mem;
219 
220 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
221 }
222 static void
223 vm_map_zdtor(void *mem, int size, void *arg)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	KASSERT(map->nentries == 0,
229 	    ("map %p nentries == %d on free.",
230 	    map, map->nentries));
231 	KASSERT(map->size == 0,
232 	    ("map %p size == %lu on free.",
233 	    map, (unsigned long)map->size));
234 	KASSERT(map->infork == 0,
235 	    ("map %p infork == %d on free.",
236 	    map, map->infork));
237 }
238 #endif	/* INVARIANTS */
239 
240 /*
241  * Allocate a vmspace structure, including a vm_map and pmap,
242  * and initialize those structures.  The refcnt is set to 1.
243  * The remaining fields must be initialized by the caller.
244  */
245 struct vmspace *
246 vmspace_alloc(min, max)
247 	vm_offset_t min, max;
248 {
249 	struct vmspace *vm;
250 
251 	GIANT_REQUIRED;
252 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
253 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
254 	_vm_map_init(&vm->vm_map, min, max);
255 	pmap_pinit(vmspace_pmap(vm));
256 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
257 	vm->vm_refcnt = 1;
258 	vm->vm_shm = NULL;
259 	vm->vm_freer = NULL;
260 	return (vm);
261 }
262 
263 void
264 vm_init2(void)
265 {
266 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
267 	    (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8);
268 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
269 #ifdef INVARIANTS
270 	    vmspace_zdtor,
271 #else
272 	    NULL,
273 #endif
274 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
275 	pmap_init2();
276 	vm_object_init2();
277 }
278 
279 static __inline void
280 vmspace_dofree(struct vmspace *vm)
281 {
282 	CTR1(KTR_VM, "vmspace_free: %p", vm);
283 	/*
284 	 * Lock the map, to wait out all other references to it.
285 	 * Delete all of the mappings and pages they hold, then call
286 	 * the pmap module to reclaim anything left.
287 	 */
288 	vm_map_lock(&vm->vm_map);
289 	(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
290 	    vm->vm_map.max_offset);
291 	vm_map_unlock(&vm->vm_map);
292 
293 	pmap_release(vmspace_pmap(vm));
294 	uma_zfree(vmspace_zone, vm);
295 }
296 
297 void
298 vmspace_free(struct vmspace *vm)
299 {
300 	GIANT_REQUIRED;
301 
302 	if (vm->vm_refcnt == 0)
303 		panic("vmspace_free: attempt to free already freed vmspace");
304 
305 	if (--vm->vm_refcnt == 0)
306 		vmspace_dofree(vm);
307 }
308 
309 void
310 vmspace_exitfree(struct proc *p)
311 {
312 	struct vmspace *vm;
313 
314 	GIANT_REQUIRED;
315 	if (p == p->p_vmspace->vm_freer) {
316 		vm = p->p_vmspace;
317 		p->p_vmspace = NULL;
318 		vmspace_dofree(vm);
319 	}
320 }
321 
322 /*
323  * vmspace_swap_count() - count the approximate swap useage in pages for a
324  *			  vmspace.
325  *
326  *	Swap useage is determined by taking the proportional swap used by
327  *	VM objects backing the VM map.  To make up for fractional losses,
328  *	if the VM object has any swap use at all the associated map entries
329  *	count for at least 1 swap page.
330  */
331 int
332 vmspace_swap_count(struct vmspace *vmspace)
333 {
334 	vm_map_t map = &vmspace->vm_map;
335 	vm_map_entry_t cur;
336 	int count = 0;
337 
338 	vm_map_lock_read(map);
339 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
340 		vm_object_t object;
341 
342 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
343 		    (object = cur->object.vm_object) != NULL &&
344 		    object->type == OBJT_SWAP
345 		) {
346 			int n = (cur->end - cur->start) / PAGE_SIZE;
347 
348 			if (object->un_pager.swp.swp_bcount) {
349 				count += object->un_pager.swp.swp_bcount *
350 				    SWAP_META_PAGES * n / object->size + 1;
351 			}
352 		}
353 	}
354 	vm_map_unlock_read(map);
355 	return (count);
356 }
357 
358 void
359 _vm_map_lock(vm_map_t map, const char *file, int line)
360 {
361 	int error;
362 
363 	if (map->system_map)
364 		GIANT_REQUIRED;
365 	error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
366 	KASSERT(error == 0, ("%s: failed to get lock", __func__));
367 	map->timestamp++;
368 }
369 
370 void
371 _vm_map_unlock(vm_map_t map, const char *file, int line)
372 {
373 
374 	lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
375 }
376 
377 void
378 _vm_map_lock_read(vm_map_t map, const char *file, int line)
379 {
380 	int error;
381 
382 	if (map->system_map)
383 		GIANT_REQUIRED;
384 	error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
385 	KASSERT(error == 0, ("%s: failed to get lock", __func__));
386 }
387 
388 void
389 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
390 {
391 
392 	lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
393 }
394 
395 int
396 _vm_map_trylock(vm_map_t map, const char *file, int line)
397 {
398 	int error;
399 
400 	if (map->system_map)
401 		GIANT_REQUIRED;
402 	error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread);
403 	return (error == 0);
404 }
405 
406 int
407 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
408 {
409 
410 	KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
411 		("%s: lock not held", __func__));
412 	map->timestamp++;
413 	return (0);
414 }
415 
416 void
417 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
418 {
419 
420 	KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
421 		("%s: lock not held", __func__));
422 }
423 
424 /*
425  *	vm_map_unlock_and_wait:
426  */
427 int
428 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
429 {
430 	int retval;
431 
432 	mtx_lock(&Giant);
433 	vm_map_unlock(map);
434 	retval = tsleep(&map->root, PVM, "vmmapw", 0);
435 	mtx_unlock(&Giant);
436 	return (retval);
437 }
438 
439 /*
440  *	vm_map_wakeup:
441  */
442 void
443 vm_map_wakeup(vm_map_t map)
444 {
445 
446 	/*
447 	 * Acquire and release Giant to prevent a wakeup() from being
448 	 * performed (and lost) between the vm_map_unlock() and the
449 	 * tsleep() in vm_map_unlock_and_wait().
450 	 */
451 	mtx_lock(&Giant);
452 	mtx_unlock(&Giant);
453 	wakeup(&map->root);
454 }
455 
456 long
457 vmspace_resident_count(struct vmspace *vmspace)
458 {
459 	return pmap_resident_count(vmspace_pmap(vmspace));
460 }
461 
462 /*
463  *	vm_map_create:
464  *
465  *	Creates and returns a new empty VM map with
466  *	the given physical map structure, and having
467  *	the given lower and upper address bounds.
468  */
469 vm_map_t
470 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
471 {
472 	vm_map_t result;
473 
474 	result = uma_zalloc(mapzone, M_WAITOK);
475 	CTR1(KTR_VM, "vm_map_create: %p", result);
476 	_vm_map_init(result, min, max);
477 	result->pmap = pmap;
478 	return (result);
479 }
480 
481 /*
482  * Initialize an existing vm_map structure
483  * such as that in the vmspace structure.
484  * The pmap is set elsewhere.
485  */
486 static void
487 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
488 {
489 
490 	map->header.next = map->header.prev = &map->header;
491 	map->needs_wakeup = FALSE;
492 	map->system_map = 0;
493 	map->min_offset = min;
494 	map->max_offset = max;
495 	map->first_free = &map->header;
496 	map->root = NULL;
497 	map->timestamp = 0;
498 }
499 
500 void
501 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
502 {
503 	_vm_map_init(map, min, max);
504 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
505 }
506 
507 /*
508  *	vm_map_entry_dispose:	[ internal use only ]
509  *
510  *	Inverse of vm_map_entry_create.
511  */
512 static void
513 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
514 {
515 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
516 }
517 
518 /*
519  *	vm_map_entry_create:	[ internal use only ]
520  *
521  *	Allocates a VM map entry for insertion.
522  *	No entry fields are filled in.
523  */
524 static vm_map_entry_t
525 vm_map_entry_create(vm_map_t map)
526 {
527 	vm_map_entry_t new_entry;
528 
529 	if (map->system_map)
530 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
531 	else
532 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
533 	if (new_entry == NULL)
534 		panic("vm_map_entry_create: kernel resources exhausted");
535 	return (new_entry);
536 }
537 
538 /*
539  *	vm_map_entry_set_behavior:
540  *
541  *	Set the expected access behavior, either normal, random, or
542  *	sequential.
543  */
544 static __inline void
545 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
546 {
547 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
548 	    (behavior & MAP_ENTRY_BEHAV_MASK);
549 }
550 
551 /*
552  *	vm_map_entry_splay:
553  *
554  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
555  *	the vm_map_entry containing the given address.  If, however, that
556  *	address is not found in the vm_map, returns a vm_map_entry that is
557  *	adjacent to the address, coming before or after it.
558  */
559 static vm_map_entry_t
560 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root)
561 {
562 	struct vm_map_entry dummy;
563 	vm_map_entry_t lefttreemax, righttreemin, y;
564 
565 	if (root == NULL)
566 		return (root);
567 	lefttreemax = righttreemin = &dummy;
568 	for (;; root = y) {
569 		if (address < root->start) {
570 			if ((y = root->left) == NULL)
571 				break;
572 			if (address < y->start) {
573 				/* Rotate right. */
574 				root->left = y->right;
575 				y->right = root;
576 				root = y;
577 				if ((y = root->left) == NULL)
578 					break;
579 			}
580 			/* Link into the new root's right tree. */
581 			righttreemin->left = root;
582 			righttreemin = root;
583 		} else if (address >= root->end) {
584 			if ((y = root->right) == NULL)
585 				break;
586 			if (address >= y->end) {
587 				/* Rotate left. */
588 				root->right = y->left;
589 				y->left = root;
590 				root = y;
591 				if ((y = root->right) == NULL)
592 					break;
593 			}
594 			/* Link into the new root's left tree. */
595 			lefttreemax->right = root;
596 			lefttreemax = root;
597 		} else
598 			break;
599 	}
600 	/* Assemble the new root. */
601 	lefttreemax->right = root->left;
602 	righttreemin->left = root->right;
603 	root->left = dummy.right;
604 	root->right = dummy.left;
605 	return (root);
606 }
607 
608 /*
609  *	vm_map_entry_{un,}link:
610  *
611  *	Insert/remove entries from maps.
612  */
613 static void
614 vm_map_entry_link(vm_map_t map,
615 		  vm_map_entry_t after_where,
616 		  vm_map_entry_t entry)
617 {
618 
619 	CTR4(KTR_VM,
620 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
621 	    map->nentries, entry, after_where);
622 	map->nentries++;
623 	entry->prev = after_where;
624 	entry->next = after_where->next;
625 	entry->next->prev = entry;
626 	after_where->next = entry;
627 
628 	if (after_where != &map->header) {
629 		if (after_where != map->root)
630 			vm_map_entry_splay(after_where->start, map->root);
631 		entry->right = after_where->right;
632 		entry->left = after_where;
633 		after_where->right = NULL;
634 	} else {
635 		entry->right = map->root;
636 		entry->left = NULL;
637 	}
638 	map->root = entry;
639 }
640 
641 static void
642 vm_map_entry_unlink(vm_map_t map,
643 		    vm_map_entry_t entry)
644 {
645 	vm_map_entry_t next, prev, root;
646 
647 	if (entry != map->root)
648 		vm_map_entry_splay(entry->start, map->root);
649 	if (entry->left == NULL)
650 		root = entry->right;
651 	else {
652 		root = vm_map_entry_splay(entry->start, entry->left);
653 		root->right = entry->right;
654 	}
655 	map->root = root;
656 
657 	prev = entry->prev;
658 	next = entry->next;
659 	next->prev = prev;
660 	prev->next = next;
661 	map->nentries--;
662 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
663 	    map->nentries, entry);
664 }
665 
666 /*
667  *	vm_map_lookup_entry:	[ internal use only ]
668  *
669  *	Finds the map entry containing (or
670  *	immediately preceding) the specified address
671  *	in the given map; the entry is returned
672  *	in the "entry" parameter.  The boolean
673  *	result indicates whether the address is
674  *	actually contained in the map.
675  */
676 boolean_t
677 vm_map_lookup_entry(
678 	vm_map_t map,
679 	vm_offset_t address,
680 	vm_map_entry_t *entry)	/* OUT */
681 {
682 	vm_map_entry_t cur;
683 
684 	cur = vm_map_entry_splay(address, map->root);
685 	if (cur == NULL)
686 		*entry = &map->header;
687 	else {
688 		map->root = cur;
689 
690 		if (address >= cur->start) {
691 			*entry = cur;
692 			if (cur->end > address)
693 				return (TRUE);
694 		} else
695 			*entry = cur->prev;
696 	}
697 	return (FALSE);
698 }
699 
700 /*
701  *	vm_map_insert:
702  *
703  *	Inserts the given whole VM object into the target
704  *	map at the specified address range.  The object's
705  *	size should match that of the address range.
706  *
707  *	Requires that the map be locked, and leaves it so.
708  *
709  *	If object is non-NULL, ref count must be bumped by caller
710  *	prior to making call to account for the new entry.
711  */
712 int
713 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
714 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
715 	      int cow)
716 {
717 	vm_map_entry_t new_entry;
718 	vm_map_entry_t prev_entry;
719 	vm_map_entry_t temp_entry;
720 	vm_eflags_t protoeflags;
721 
722 	/*
723 	 * Check that the start and end points are not bogus.
724 	 */
725 	if ((start < map->min_offset) || (end > map->max_offset) ||
726 	    (start >= end))
727 		return (KERN_INVALID_ADDRESS);
728 
729 	/*
730 	 * Find the entry prior to the proposed starting address; if it's part
731 	 * of an existing entry, this range is bogus.
732 	 */
733 	if (vm_map_lookup_entry(map, start, &temp_entry))
734 		return (KERN_NO_SPACE);
735 
736 	prev_entry = temp_entry;
737 
738 	/*
739 	 * Assert that the next entry doesn't overlap the end point.
740 	 */
741 	if ((prev_entry->next != &map->header) &&
742 	    (prev_entry->next->start < end))
743 		return (KERN_NO_SPACE);
744 
745 	protoeflags = 0;
746 
747 	if (cow & MAP_COPY_ON_WRITE)
748 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
749 
750 	if (cow & MAP_NOFAULT) {
751 		protoeflags |= MAP_ENTRY_NOFAULT;
752 
753 		KASSERT(object == NULL,
754 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
755 	}
756 	if (cow & MAP_DISABLE_SYNCER)
757 		protoeflags |= MAP_ENTRY_NOSYNC;
758 	if (cow & MAP_DISABLE_COREDUMP)
759 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
760 
761 	if (object) {
762 		/*
763 		 * When object is non-NULL, it could be shared with another
764 		 * process.  We have to set or clear OBJ_ONEMAPPING
765 		 * appropriately.
766 		 */
767 		mtx_lock(&Giant);
768 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
769 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
770 		}
771 		mtx_unlock(&Giant);
772 	}
773 	else if ((prev_entry != &map->header) &&
774 		 (prev_entry->eflags == protoeflags) &&
775 		 (prev_entry->end == start) &&
776 		 (prev_entry->wired_count == 0) &&
777 		 ((prev_entry->object.vm_object == NULL) ||
778 		  vm_object_coalesce(prev_entry->object.vm_object,
779 				     OFF_TO_IDX(prev_entry->offset),
780 				     (vm_size_t)(prev_entry->end - prev_entry->start),
781 				     (vm_size_t)(end - prev_entry->end)))) {
782 		/*
783 		 * We were able to extend the object.  Determine if we
784 		 * can extend the previous map entry to include the
785 		 * new range as well.
786 		 */
787 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
788 		    (prev_entry->protection == prot) &&
789 		    (prev_entry->max_protection == max)) {
790 			map->size += (end - prev_entry->end);
791 			prev_entry->end = end;
792 			vm_map_simplify_entry(map, prev_entry);
793 			return (KERN_SUCCESS);
794 		}
795 
796 		/*
797 		 * If we can extend the object but cannot extend the
798 		 * map entry, we have to create a new map entry.  We
799 		 * must bump the ref count on the extended object to
800 		 * account for it.  object may be NULL.
801 		 */
802 		object = prev_entry->object.vm_object;
803 		offset = prev_entry->offset +
804 			(prev_entry->end - prev_entry->start);
805 		vm_object_reference(object);
806 	}
807 
808 	/*
809 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
810 	 * in things like the buffer map where we manage kva but do not manage
811 	 * backing objects.
812 	 */
813 
814 	/*
815 	 * Create a new entry
816 	 */
817 	new_entry = vm_map_entry_create(map);
818 	new_entry->start = start;
819 	new_entry->end = end;
820 
821 	new_entry->eflags = protoeflags;
822 	new_entry->object.vm_object = object;
823 	new_entry->offset = offset;
824 	new_entry->avail_ssize = 0;
825 
826 	new_entry->inheritance = VM_INHERIT_DEFAULT;
827 	new_entry->protection = prot;
828 	new_entry->max_protection = max;
829 	new_entry->wired_count = 0;
830 
831 	/*
832 	 * Insert the new entry into the list
833 	 */
834 	vm_map_entry_link(map, prev_entry, new_entry);
835 	map->size += new_entry->end - new_entry->start;
836 
837 	/*
838 	 * Update the free space hint
839 	 */
840 	if ((map->first_free == prev_entry) &&
841 	    (prev_entry->end >= new_entry->start)) {
842 		map->first_free = new_entry;
843 	}
844 
845 #if 0
846 	/*
847 	 * Temporarily removed to avoid MAP_STACK panic, due to
848 	 * MAP_STACK being a huge hack.  Will be added back in
849 	 * when MAP_STACK (and the user stack mapping) is fixed.
850 	 */
851 	/*
852 	 * It may be possible to simplify the entry
853 	 */
854 	vm_map_simplify_entry(map, new_entry);
855 #endif
856 
857 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
858 		mtx_lock(&Giant);
859 		pmap_object_init_pt(map->pmap, start,
860 				    object, OFF_TO_IDX(offset), end - start,
861 				    cow & MAP_PREFAULT_PARTIAL);
862 		mtx_unlock(&Giant);
863 	}
864 
865 	return (KERN_SUCCESS);
866 }
867 
868 /*
869  * Find sufficient space for `length' bytes in the given map, starting at
870  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
871  */
872 int
873 vm_map_findspace(
874 	vm_map_t map,
875 	vm_offset_t start,
876 	vm_size_t length,
877 	vm_offset_t *addr)
878 {
879 	vm_map_entry_t entry, next;
880 	vm_offset_t end;
881 
882 	if (start < map->min_offset)
883 		start = map->min_offset;
884 	if (start > map->max_offset)
885 		return (1);
886 
887 	/*
888 	 * Look for the first possible address; if there's already something
889 	 * at this address, we have to start after it.
890 	 */
891 	if (start == map->min_offset) {
892 		if ((entry = map->first_free) != &map->header)
893 			start = entry->end;
894 	} else {
895 		vm_map_entry_t tmp;
896 
897 		if (vm_map_lookup_entry(map, start, &tmp))
898 			start = tmp->end;
899 		entry = tmp;
900 	}
901 
902 	/*
903 	 * Look through the rest of the map, trying to fit a new region in the
904 	 * gap between existing regions, or after the very last region.
905 	 */
906 	for (;; start = (entry = next)->end) {
907 		/*
908 		 * Find the end of the proposed new region.  Be sure we didn't
909 		 * go beyond the end of the map, or wrap around the address;
910 		 * if so, we lose.  Otherwise, if this is the last entry, or
911 		 * if the proposed new region fits before the next entry, we
912 		 * win.
913 		 */
914 		end = start + length;
915 		if (end > map->max_offset || end < start)
916 			return (1);
917 		next = entry->next;
918 		if (next == &map->header || next->start >= end)
919 			break;
920 	}
921 	*addr = start;
922 	if (map == kernel_map) {
923 		vm_offset_t ksize;
924 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
925 			mtx_lock(&Giant);
926 			pmap_growkernel(ksize);
927 			mtx_unlock(&Giant);
928 		}
929 	}
930 	return (0);
931 }
932 
933 /*
934  *	vm_map_find finds an unallocated region in the target address
935  *	map with the given length.  The search is defined to be
936  *	first-fit from the specified address; the region found is
937  *	returned in the same parameter.
938  *
939  *	If object is non-NULL, ref count must be bumped by caller
940  *	prior to making call to account for the new entry.
941  */
942 int
943 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
944 	    vm_offset_t *addr,	/* IN/OUT */
945 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
946 	    vm_prot_t max, int cow)
947 {
948 	vm_offset_t start;
949 	int result, s = 0;
950 
951 	start = *addr;
952 
953 	if (map == kmem_map)
954 		s = splvm();
955 
956 	vm_map_lock(map);
957 	if (find_space) {
958 		if (vm_map_findspace(map, start, length, addr)) {
959 			vm_map_unlock(map);
960 			if (map == kmem_map)
961 				splx(s);
962 			return (KERN_NO_SPACE);
963 		}
964 		start = *addr;
965 	}
966 	result = vm_map_insert(map, object, offset,
967 		start, start + length, prot, max, cow);
968 	vm_map_unlock(map);
969 
970 	if (map == kmem_map)
971 		splx(s);
972 
973 	return (result);
974 }
975 
976 /*
977  *	vm_map_simplify_entry:
978  *
979  *	Simplify the given map entry by merging with either neighbor.  This
980  *	routine also has the ability to merge with both neighbors.
981  *
982  *	The map must be locked.
983  *
984  *	This routine guarentees that the passed entry remains valid (though
985  *	possibly extended).  When merging, this routine may delete one or
986  *	both neighbors.
987  */
988 void
989 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
990 {
991 	vm_map_entry_t next, prev;
992 	vm_size_t prevsize, esize;
993 
994 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
995 		return;
996 
997 	prev = entry->prev;
998 	if (prev != &map->header) {
999 		prevsize = prev->end - prev->start;
1000 		if ( (prev->end == entry->start) &&
1001 		     (prev->object.vm_object == entry->object.vm_object) &&
1002 		     (!prev->object.vm_object ||
1003 			(prev->offset + prevsize == entry->offset)) &&
1004 		     (prev->eflags == entry->eflags) &&
1005 		     (prev->protection == entry->protection) &&
1006 		     (prev->max_protection == entry->max_protection) &&
1007 		     (prev->inheritance == entry->inheritance) &&
1008 		     (prev->wired_count == entry->wired_count)) {
1009 			if (map->first_free == prev)
1010 				map->first_free = entry;
1011 			vm_map_entry_unlink(map, prev);
1012 			entry->start = prev->start;
1013 			entry->offset = prev->offset;
1014 			if (prev->object.vm_object)
1015 				vm_object_deallocate(prev->object.vm_object);
1016 			vm_map_entry_dispose(map, prev);
1017 		}
1018 	}
1019 
1020 	next = entry->next;
1021 	if (next != &map->header) {
1022 		esize = entry->end - entry->start;
1023 		if ((entry->end == next->start) &&
1024 		    (next->object.vm_object == entry->object.vm_object) &&
1025 		     (!entry->object.vm_object ||
1026 			(entry->offset + esize == next->offset)) &&
1027 		    (next->eflags == entry->eflags) &&
1028 		    (next->protection == entry->protection) &&
1029 		    (next->max_protection == entry->max_protection) &&
1030 		    (next->inheritance == entry->inheritance) &&
1031 		    (next->wired_count == entry->wired_count)) {
1032 			if (map->first_free == next)
1033 				map->first_free = entry;
1034 			vm_map_entry_unlink(map, next);
1035 			entry->end = next->end;
1036 			if (next->object.vm_object)
1037 				vm_object_deallocate(next->object.vm_object);
1038 			vm_map_entry_dispose(map, next);
1039 	        }
1040 	}
1041 }
1042 /*
1043  *	vm_map_clip_start:	[ internal use only ]
1044  *
1045  *	Asserts that the given entry begins at or after
1046  *	the specified address; if necessary,
1047  *	it splits the entry into two.
1048  */
1049 #define vm_map_clip_start(map, entry, startaddr) \
1050 { \
1051 	if (startaddr > entry->start) \
1052 		_vm_map_clip_start(map, entry, startaddr); \
1053 }
1054 
1055 /*
1056  *	This routine is called only when it is known that
1057  *	the entry must be split.
1058  */
1059 static void
1060 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1061 {
1062 	vm_map_entry_t new_entry;
1063 
1064 	/*
1065 	 * Split off the front portion -- note that we must insert the new
1066 	 * entry BEFORE this one, so that this entry has the specified
1067 	 * starting address.
1068 	 */
1069 	vm_map_simplify_entry(map, entry);
1070 
1071 	/*
1072 	 * If there is no object backing this entry, we might as well create
1073 	 * one now.  If we defer it, an object can get created after the map
1074 	 * is clipped, and individual objects will be created for the split-up
1075 	 * map.  This is a bit of a hack, but is also about the best place to
1076 	 * put this improvement.
1077 	 */
1078 	if (entry->object.vm_object == NULL && !map->system_map) {
1079 		vm_object_t object;
1080 		object = vm_object_allocate(OBJT_DEFAULT,
1081 				atop(entry->end - entry->start));
1082 		entry->object.vm_object = object;
1083 		entry->offset = 0;
1084 	}
1085 
1086 	new_entry = vm_map_entry_create(map);
1087 	*new_entry = *entry;
1088 
1089 	new_entry->end = start;
1090 	entry->offset += (start - entry->start);
1091 	entry->start = start;
1092 
1093 	vm_map_entry_link(map, entry->prev, new_entry);
1094 
1095 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1096 		vm_object_reference(new_entry->object.vm_object);
1097 	}
1098 }
1099 
1100 /*
1101  *	vm_map_clip_end:	[ internal use only ]
1102  *
1103  *	Asserts that the given entry ends at or before
1104  *	the specified address; if necessary,
1105  *	it splits the entry into two.
1106  */
1107 #define vm_map_clip_end(map, entry, endaddr) \
1108 { \
1109 	if (endaddr < entry->end) \
1110 		_vm_map_clip_end(map, entry, endaddr); \
1111 }
1112 
1113 /*
1114  *	This routine is called only when it is known that
1115  *	the entry must be split.
1116  */
1117 static void
1118 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1119 {
1120 	vm_map_entry_t new_entry;
1121 
1122 	/*
1123 	 * If there is no object backing this entry, we might as well create
1124 	 * one now.  If we defer it, an object can get created after the map
1125 	 * is clipped, and individual objects will be created for the split-up
1126 	 * map.  This is a bit of a hack, but is also about the best place to
1127 	 * put this improvement.
1128 	 */
1129 	if (entry->object.vm_object == NULL && !map->system_map) {
1130 		vm_object_t object;
1131 		object = vm_object_allocate(OBJT_DEFAULT,
1132 				atop(entry->end - entry->start));
1133 		entry->object.vm_object = object;
1134 		entry->offset = 0;
1135 	}
1136 
1137 	/*
1138 	 * Create a new entry and insert it AFTER the specified entry
1139 	 */
1140 	new_entry = vm_map_entry_create(map);
1141 	*new_entry = *entry;
1142 
1143 	new_entry->start = entry->end = end;
1144 	new_entry->offset += (end - entry->start);
1145 
1146 	vm_map_entry_link(map, entry, new_entry);
1147 
1148 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1149 		vm_object_reference(new_entry->object.vm_object);
1150 	}
1151 }
1152 
1153 /*
1154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1155  *
1156  *	Asserts that the starting and ending region
1157  *	addresses fall within the valid range of the map.
1158  */
1159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1160 		{					\
1161 		if (start < vm_map_min(map))		\
1162 			start = vm_map_min(map);	\
1163 		if (end > vm_map_max(map))		\
1164 			end = vm_map_max(map);		\
1165 		if (start > end)			\
1166 			start = end;			\
1167 		}
1168 
1169 /*
1170  *	vm_map_submap:		[ kernel use only ]
1171  *
1172  *	Mark the given range as handled by a subordinate map.
1173  *
1174  *	This range must have been created with vm_map_find,
1175  *	and no other operations may have been performed on this
1176  *	range prior to calling vm_map_submap.
1177  *
1178  *	Only a limited number of operations can be performed
1179  *	within this rage after calling vm_map_submap:
1180  *		vm_fault
1181  *	[Don't try vm_map_copy!]
1182  *
1183  *	To remove a submapping, one must first remove the
1184  *	range from the superior map, and then destroy the
1185  *	submap (if desired).  [Better yet, don't try it.]
1186  */
1187 int
1188 vm_map_submap(
1189 	vm_map_t map,
1190 	vm_offset_t start,
1191 	vm_offset_t end,
1192 	vm_map_t submap)
1193 {
1194 	vm_map_entry_t entry;
1195 	int result = KERN_INVALID_ARGUMENT;
1196 
1197 	vm_map_lock(map);
1198 
1199 	VM_MAP_RANGE_CHECK(map, start, end);
1200 
1201 	if (vm_map_lookup_entry(map, start, &entry)) {
1202 		vm_map_clip_start(map, entry, start);
1203 	} else
1204 		entry = entry->next;
1205 
1206 	vm_map_clip_end(map, entry, end);
1207 
1208 	if ((entry->start == start) && (entry->end == end) &&
1209 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1210 	    (entry->object.vm_object == NULL)) {
1211 		entry->object.sub_map = submap;
1212 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1213 		result = KERN_SUCCESS;
1214 	}
1215 	vm_map_unlock(map);
1216 
1217 	return (result);
1218 }
1219 
1220 /*
1221  *	vm_map_protect:
1222  *
1223  *	Sets the protection of the specified address
1224  *	region in the target map.  If "set_max" is
1225  *	specified, the maximum protection is to be set;
1226  *	otherwise, only the current protection is affected.
1227  */
1228 int
1229 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1230 	       vm_prot_t new_prot, boolean_t set_max)
1231 {
1232 	vm_map_entry_t current;
1233 	vm_map_entry_t entry;
1234 
1235 	vm_map_lock(map);
1236 
1237 	VM_MAP_RANGE_CHECK(map, start, end);
1238 
1239 	if (vm_map_lookup_entry(map, start, &entry)) {
1240 		vm_map_clip_start(map, entry, start);
1241 	} else {
1242 		entry = entry->next;
1243 	}
1244 
1245 	/*
1246 	 * Make a first pass to check for protection violations.
1247 	 */
1248 	current = entry;
1249 	while ((current != &map->header) && (current->start < end)) {
1250 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1251 			vm_map_unlock(map);
1252 			return (KERN_INVALID_ARGUMENT);
1253 		}
1254 		if ((new_prot & current->max_protection) != new_prot) {
1255 			vm_map_unlock(map);
1256 			return (KERN_PROTECTION_FAILURE);
1257 		}
1258 		current = current->next;
1259 	}
1260 
1261 	/*
1262 	 * Go back and fix up protections. [Note that clipping is not
1263 	 * necessary the second time.]
1264 	 */
1265 	current = entry;
1266 	while ((current != &map->header) && (current->start < end)) {
1267 		vm_prot_t old_prot;
1268 
1269 		vm_map_clip_end(map, current, end);
1270 
1271 		old_prot = current->protection;
1272 		if (set_max)
1273 			current->protection =
1274 			    (current->max_protection = new_prot) &
1275 			    old_prot;
1276 		else
1277 			current->protection = new_prot;
1278 
1279 		/*
1280 		 * Update physical map if necessary. Worry about copy-on-write
1281 		 * here -- CHECK THIS XXX
1282 		 */
1283 		if (current->protection != old_prot) {
1284 			mtx_lock(&Giant);
1285 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1286 							VM_PROT_ALL)
1287 			pmap_protect(map->pmap, current->start,
1288 			    current->end,
1289 			    current->protection & MASK(current));
1290 #undef	MASK
1291 			mtx_unlock(&Giant);
1292 		}
1293 		vm_map_simplify_entry(map, current);
1294 		current = current->next;
1295 	}
1296 	vm_map_unlock(map);
1297 	return (KERN_SUCCESS);
1298 }
1299 
1300 /*
1301  *	vm_map_madvise:
1302  *
1303  * 	This routine traverses a processes map handling the madvise
1304  *	system call.  Advisories are classified as either those effecting
1305  *	the vm_map_entry structure, or those effecting the underlying
1306  *	objects.
1307  */
1308 int
1309 vm_map_madvise(
1310 	vm_map_t map,
1311 	vm_offset_t start,
1312 	vm_offset_t end,
1313 	int behav)
1314 {
1315 	vm_map_entry_t current, entry;
1316 	int modify_map = 0;
1317 
1318 	/*
1319 	 * Some madvise calls directly modify the vm_map_entry, in which case
1320 	 * we need to use an exclusive lock on the map and we need to perform
1321 	 * various clipping operations.  Otherwise we only need a read-lock
1322 	 * on the map.
1323 	 */
1324 	switch(behav) {
1325 	case MADV_NORMAL:
1326 	case MADV_SEQUENTIAL:
1327 	case MADV_RANDOM:
1328 	case MADV_NOSYNC:
1329 	case MADV_AUTOSYNC:
1330 	case MADV_NOCORE:
1331 	case MADV_CORE:
1332 		modify_map = 1;
1333 		vm_map_lock(map);
1334 		break;
1335 	case MADV_WILLNEED:
1336 	case MADV_DONTNEED:
1337 	case MADV_FREE:
1338 		vm_map_lock_read(map);
1339 		break;
1340 	default:
1341 		return (KERN_INVALID_ARGUMENT);
1342 	}
1343 
1344 	/*
1345 	 * Locate starting entry and clip if necessary.
1346 	 */
1347 	VM_MAP_RANGE_CHECK(map, start, end);
1348 
1349 	if (vm_map_lookup_entry(map, start, &entry)) {
1350 		if (modify_map)
1351 			vm_map_clip_start(map, entry, start);
1352 	} else {
1353 		entry = entry->next;
1354 	}
1355 
1356 	if (modify_map) {
1357 		/*
1358 		 * madvise behaviors that are implemented in the vm_map_entry.
1359 		 *
1360 		 * We clip the vm_map_entry so that behavioral changes are
1361 		 * limited to the specified address range.
1362 		 */
1363 		for (current = entry;
1364 		     (current != &map->header) && (current->start < end);
1365 		     current = current->next
1366 		) {
1367 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1368 				continue;
1369 
1370 			vm_map_clip_end(map, current, end);
1371 
1372 			switch (behav) {
1373 			case MADV_NORMAL:
1374 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1375 				break;
1376 			case MADV_SEQUENTIAL:
1377 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1378 				break;
1379 			case MADV_RANDOM:
1380 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1381 				break;
1382 			case MADV_NOSYNC:
1383 				current->eflags |= MAP_ENTRY_NOSYNC;
1384 				break;
1385 			case MADV_AUTOSYNC:
1386 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1387 				break;
1388 			case MADV_NOCORE:
1389 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1390 				break;
1391 			case MADV_CORE:
1392 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1393 				break;
1394 			default:
1395 				break;
1396 			}
1397 			vm_map_simplify_entry(map, current);
1398 		}
1399 		vm_map_unlock(map);
1400 	} else {
1401 		vm_pindex_t pindex;
1402 		int count;
1403 
1404 		/*
1405 		 * madvise behaviors that are implemented in the underlying
1406 		 * vm_object.
1407 		 *
1408 		 * Since we don't clip the vm_map_entry, we have to clip
1409 		 * the vm_object pindex and count.
1410 		 */
1411 		for (current = entry;
1412 		     (current != &map->header) && (current->start < end);
1413 		     current = current->next
1414 		) {
1415 			vm_offset_t useStart;
1416 
1417 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1418 				continue;
1419 
1420 			pindex = OFF_TO_IDX(current->offset);
1421 			count = atop(current->end - current->start);
1422 			useStart = current->start;
1423 
1424 			if (current->start < start) {
1425 				pindex += atop(start - current->start);
1426 				count -= atop(start - current->start);
1427 				useStart = start;
1428 			}
1429 			if (current->end > end)
1430 				count -= atop(current->end - end);
1431 
1432 			if (count <= 0)
1433 				continue;
1434 
1435 			vm_object_madvise(current->object.vm_object,
1436 					  pindex, count, behav);
1437 			if (behav == MADV_WILLNEED) {
1438 				mtx_lock(&Giant);
1439 				pmap_object_init_pt(
1440 				    map->pmap,
1441 				    useStart,
1442 				    current->object.vm_object,
1443 				    pindex,
1444 				    (count << PAGE_SHIFT),
1445 				    MAP_PREFAULT_MADVISE
1446 				);
1447 				mtx_unlock(&Giant);
1448 			}
1449 		}
1450 		vm_map_unlock_read(map);
1451 	}
1452 	return (0);
1453 }
1454 
1455 
1456 /*
1457  *	vm_map_inherit:
1458  *
1459  *	Sets the inheritance of the specified address
1460  *	range in the target map.  Inheritance
1461  *	affects how the map will be shared with
1462  *	child maps at the time of vm_map_fork.
1463  */
1464 int
1465 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1466 	       vm_inherit_t new_inheritance)
1467 {
1468 	vm_map_entry_t entry;
1469 	vm_map_entry_t temp_entry;
1470 
1471 	switch (new_inheritance) {
1472 	case VM_INHERIT_NONE:
1473 	case VM_INHERIT_COPY:
1474 	case VM_INHERIT_SHARE:
1475 		break;
1476 	default:
1477 		return (KERN_INVALID_ARGUMENT);
1478 	}
1479 	vm_map_lock(map);
1480 	VM_MAP_RANGE_CHECK(map, start, end);
1481 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1482 		entry = temp_entry;
1483 		vm_map_clip_start(map, entry, start);
1484 	} else
1485 		entry = temp_entry->next;
1486 	while ((entry != &map->header) && (entry->start < end)) {
1487 		vm_map_clip_end(map, entry, end);
1488 		entry->inheritance = new_inheritance;
1489 		vm_map_simplify_entry(map, entry);
1490 		entry = entry->next;
1491 	}
1492 	vm_map_unlock(map);
1493 	return (KERN_SUCCESS);
1494 }
1495 
1496 /*
1497  *	vm_map_unwire:
1498  *
1499  *	Implements both kernel and user unwiring.
1500  */
1501 int
1502 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1503 	boolean_t user_unwire)
1504 {
1505 	vm_map_entry_t entry, first_entry, tmp_entry;
1506 	vm_offset_t saved_start;
1507 	unsigned int last_timestamp;
1508 	int rv;
1509 	boolean_t need_wakeup, result;
1510 
1511 	vm_map_lock(map);
1512 	VM_MAP_RANGE_CHECK(map, start, end);
1513 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1514 		vm_map_unlock(map);
1515 		return (KERN_INVALID_ADDRESS);
1516 	}
1517 	last_timestamp = map->timestamp;
1518 	entry = first_entry;
1519 	while (entry != &map->header && entry->start < end) {
1520 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1521 			/*
1522 			 * We have not yet clipped the entry.
1523 			 */
1524 			saved_start = (start >= entry->start) ? start :
1525 			    entry->start;
1526 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1527 			if (vm_map_unlock_and_wait(map, user_unwire)) {
1528 				/*
1529 				 * Allow interruption of user unwiring?
1530 				 */
1531 			}
1532 			vm_map_lock(map);
1533 			if (last_timestamp+1 != map->timestamp) {
1534 				/*
1535 				 * Look again for the entry because the map was
1536 				 * modified while it was unlocked.
1537 				 * Specifically, the entry may have been
1538 				 * clipped, merged, or deleted.
1539 				 */
1540 				if (!vm_map_lookup_entry(map, saved_start,
1541 				    &tmp_entry)) {
1542 					if (saved_start == start) {
1543 						/*
1544 						 * First_entry has been deleted.
1545 						 */
1546 						vm_map_unlock(map);
1547 						return (KERN_INVALID_ADDRESS);
1548 					}
1549 					end = saved_start;
1550 					rv = KERN_INVALID_ADDRESS;
1551 					goto done;
1552 				}
1553 				if (entry == first_entry)
1554 					first_entry = tmp_entry;
1555 				else
1556 					first_entry = NULL;
1557 				entry = tmp_entry;
1558 			}
1559 			last_timestamp = map->timestamp;
1560 			continue;
1561 		}
1562 		vm_map_clip_start(map, entry, start);
1563 		vm_map_clip_end(map, entry, end);
1564 		/*
1565 		 * Mark the entry in case the map lock is released.  (See
1566 		 * above.)
1567 		 */
1568 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1569 		/*
1570 		 * Check the map for holes in the specified region.
1571 		 */
1572 		if (entry->end < end && (entry->next == &map->header ||
1573 		    entry->next->start > entry->end)) {
1574 			end = entry->end;
1575 			rv = KERN_INVALID_ADDRESS;
1576 			goto done;
1577 		}
1578 		/*
1579 		 * Require that the entry is wired.
1580 		 */
1581 		if (entry->wired_count == 0 || (user_unwire &&
1582 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) {
1583 			end = entry->end;
1584 			rv = KERN_INVALID_ARGUMENT;
1585 			goto done;
1586 		}
1587 		entry = entry->next;
1588 	}
1589 	rv = KERN_SUCCESS;
1590 done:
1591 	need_wakeup = FALSE;
1592 	if (first_entry == NULL) {
1593 		result = vm_map_lookup_entry(map, start, &first_entry);
1594 		KASSERT(result, ("vm_map_unwire: lookup failed"));
1595 	}
1596 	entry = first_entry;
1597 	while (entry != &map->header && entry->start < end) {
1598 		if (rv == KERN_SUCCESS) {
1599 			if (user_unwire)
1600 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1601 			entry->wired_count--;
1602 			if (entry->wired_count == 0) {
1603 				/*
1604 				 * Retain the map lock.
1605 				 */
1606 				vm_fault_unwire(map, entry->start, entry->end);
1607 			}
1608 		}
1609 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1610 			("vm_map_unwire: in-transition flag missing"));
1611 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1612 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1613 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1614 			need_wakeup = TRUE;
1615 		}
1616 		vm_map_simplify_entry(map, entry);
1617 		entry = entry->next;
1618 	}
1619 	vm_map_unlock(map);
1620 	if (need_wakeup)
1621 		vm_map_wakeup(map);
1622 	return (rv);
1623 }
1624 
1625 /*
1626  *	vm_map_wire:
1627  *
1628  *	Implements both kernel and user wiring.
1629  */
1630 int
1631 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1632 	boolean_t user_wire)
1633 {
1634 	vm_map_entry_t entry, first_entry, tmp_entry;
1635 	vm_offset_t saved_end, saved_start;
1636 	unsigned int last_timestamp;
1637 	int rv;
1638 	boolean_t need_wakeup, result;
1639 
1640 	vm_map_lock(map);
1641 	VM_MAP_RANGE_CHECK(map, start, end);
1642 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1643 		vm_map_unlock(map);
1644 		return (KERN_INVALID_ADDRESS);
1645 	}
1646 	last_timestamp = map->timestamp;
1647 	entry = first_entry;
1648 	while (entry != &map->header && entry->start < end) {
1649 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1650 			/*
1651 			 * We have not yet clipped the entry.
1652 			 */
1653 			saved_start = (start >= entry->start) ? start :
1654 			    entry->start;
1655 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1656 			if (vm_map_unlock_and_wait(map, user_wire)) {
1657 				/*
1658 				 * Allow interruption of user wiring?
1659 				 */
1660 			}
1661 			vm_map_lock(map);
1662 			if (last_timestamp + 1 != map->timestamp) {
1663 				/*
1664 				 * Look again for the entry because the map was
1665 				 * modified while it was unlocked.
1666 				 * Specifically, the entry may have been
1667 				 * clipped, merged, or deleted.
1668 				 */
1669 				if (!vm_map_lookup_entry(map, saved_start,
1670 				    &tmp_entry)) {
1671 					if (saved_start == start) {
1672 						/*
1673 						 * first_entry has been deleted.
1674 						 */
1675 						vm_map_unlock(map);
1676 						return (KERN_INVALID_ADDRESS);
1677 					}
1678 					end = saved_start;
1679 					rv = KERN_INVALID_ADDRESS;
1680 					goto done;
1681 				}
1682 				if (entry == first_entry)
1683 					first_entry = tmp_entry;
1684 				else
1685 					first_entry = NULL;
1686 				entry = tmp_entry;
1687 			}
1688 			last_timestamp = map->timestamp;
1689 			continue;
1690 		}
1691 		vm_map_clip_start(map, entry, start);
1692 		vm_map_clip_end(map, entry, end);
1693 		/*
1694 		 * Mark the entry in case the map lock is released.  (See
1695 		 * above.)
1696 		 */
1697 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1698 		/*
1699 		 *
1700 		 */
1701 		if (entry->wired_count == 0) {
1702 			entry->wired_count++;
1703 			saved_start = entry->start;
1704 			saved_end = entry->end;
1705 			/*
1706 			 * Release the map lock, relying on the in-transition
1707 			 * mark.
1708 			 */
1709 			vm_map_unlock(map);
1710 			if (user_wire)
1711 				rv = vm_fault_user_wire(map, saved_start,
1712 				    saved_end);
1713 			else
1714 				rv = vm_fault_wire(map, saved_start, saved_end);
1715 			vm_map_lock(map);
1716 			if (last_timestamp + 1 != map->timestamp) {
1717 				/*
1718 				 * Look again for the entry because the map was
1719 				 * modified while it was unlocked.  The entry
1720 				 * may have been clipped, but NOT merged or
1721 				 * deleted.
1722 				 */
1723 				result = vm_map_lookup_entry(map, saved_start,
1724 				    &tmp_entry);
1725 				KASSERT(result, ("vm_map_wire: lookup failed"));
1726 				if (entry == first_entry)
1727 					first_entry = tmp_entry;
1728 				else
1729 					first_entry = NULL;
1730 				entry = tmp_entry;
1731 				while (entry->end < saved_end) {
1732 					if (rv != KERN_SUCCESS) {
1733 						KASSERT(entry->wired_count == 1,
1734 						    ("vm_map_wire: bad count"));
1735 						entry->wired_count = -1;
1736 					}
1737 					entry = entry->next;
1738 				}
1739 			}
1740 			last_timestamp = map->timestamp;
1741 			if (rv != KERN_SUCCESS) {
1742 				KASSERT(entry->wired_count == 1,
1743 				    ("vm_map_wire: bad count"));
1744 				/*
1745 				 * Assign an out-of-range value to represent
1746 				 * the failure to wire this entry.
1747 				 */
1748 				entry->wired_count = -1;
1749 				end = entry->end;
1750 				goto done;
1751 			}
1752 		} else if (!user_wire ||
1753 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1754 			entry->wired_count++;
1755 		}
1756 		/*
1757 		 * Check the map for holes in the specified region.
1758 		 */
1759 		if (entry->end < end && (entry->next == &map->header ||
1760 		    entry->next->start > entry->end)) {
1761 			end = entry->end;
1762 			rv = KERN_INVALID_ADDRESS;
1763 			goto done;
1764 		}
1765 		entry = entry->next;
1766 	}
1767 	rv = KERN_SUCCESS;
1768 done:
1769 	need_wakeup = FALSE;
1770 	if (first_entry == NULL) {
1771 		result = vm_map_lookup_entry(map, start, &first_entry);
1772 		KASSERT(result, ("vm_map_wire: lookup failed"));
1773 	}
1774 	entry = first_entry;
1775 	while (entry != &map->header && entry->start < end) {
1776 		if (rv == KERN_SUCCESS) {
1777 			if (user_wire)
1778 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1779 		} else if (entry->wired_count == -1) {
1780 			/*
1781 			 * Wiring failed on this entry.  Thus, unwiring is
1782 			 * unnecessary.
1783 			 */
1784 			entry->wired_count = 0;
1785 		} else {
1786 			if (!user_wire || (entry->wired_count == 1 &&
1787 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0))
1788 				entry->wired_count--;
1789 			if (entry->wired_count == 0) {
1790 				/*
1791 				 * Retain the map lock.
1792 				 */
1793 				vm_fault_unwire(map, entry->start, entry->end);
1794 			}
1795 		}
1796 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1797 			("vm_map_wire: in-transition flag missing"));
1798 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1799 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1800 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1801 			need_wakeup = TRUE;
1802 		}
1803 		vm_map_simplify_entry(map, entry);
1804 		entry = entry->next;
1805 	}
1806 	vm_map_unlock(map);
1807 	if (need_wakeup)
1808 		vm_map_wakeup(map);
1809 	return (rv);
1810 }
1811 
1812 /*
1813  * vm_map_clean
1814  *
1815  * Push any dirty cached pages in the address range to their pager.
1816  * If syncio is TRUE, dirty pages are written synchronously.
1817  * If invalidate is TRUE, any cached pages are freed as well.
1818  *
1819  * Returns an error if any part of the specified range is not mapped.
1820  */
1821 int
1822 vm_map_clean(
1823 	vm_map_t map,
1824 	vm_offset_t start,
1825 	vm_offset_t end,
1826 	boolean_t syncio,
1827 	boolean_t invalidate)
1828 {
1829 	vm_map_entry_t current;
1830 	vm_map_entry_t entry;
1831 	vm_size_t size;
1832 	vm_object_t object;
1833 	vm_ooffset_t offset;
1834 
1835 	GIANT_REQUIRED;
1836 
1837 	vm_map_lock_read(map);
1838 	VM_MAP_RANGE_CHECK(map, start, end);
1839 	if (!vm_map_lookup_entry(map, start, &entry)) {
1840 		vm_map_unlock_read(map);
1841 		return (KERN_INVALID_ADDRESS);
1842 	}
1843 	/*
1844 	 * Make a first pass to check for holes.
1845 	 */
1846 	for (current = entry; current->start < end; current = current->next) {
1847 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1848 			vm_map_unlock_read(map);
1849 			return (KERN_INVALID_ARGUMENT);
1850 		}
1851 		if (end > current->end &&
1852 		    (current->next == &map->header ||
1853 			current->end != current->next->start)) {
1854 			vm_map_unlock_read(map);
1855 			return (KERN_INVALID_ADDRESS);
1856 		}
1857 	}
1858 
1859 	if (invalidate)
1860 		pmap_remove(vm_map_pmap(map), start, end);
1861 	/*
1862 	 * Make a second pass, cleaning/uncaching pages from the indicated
1863 	 * objects as we go.
1864 	 */
1865 	for (current = entry; current->start < end; current = current->next) {
1866 		offset = current->offset + (start - current->start);
1867 		size = (end <= current->end ? end : current->end) - start;
1868 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1869 			vm_map_t smap;
1870 			vm_map_entry_t tentry;
1871 			vm_size_t tsize;
1872 
1873 			smap = current->object.sub_map;
1874 			vm_map_lock_read(smap);
1875 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1876 			tsize = tentry->end - offset;
1877 			if (tsize < size)
1878 				size = tsize;
1879 			object = tentry->object.vm_object;
1880 			offset = tentry->offset + (offset - tentry->start);
1881 			vm_map_unlock_read(smap);
1882 		} else {
1883 			object = current->object.vm_object;
1884 		}
1885 		/*
1886 		 * Note that there is absolutely no sense in writing out
1887 		 * anonymous objects, so we track down the vnode object
1888 		 * to write out.
1889 		 * We invalidate (remove) all pages from the address space
1890 		 * anyway, for semantic correctness.
1891 		 *
1892 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1893 		 * may start out with a NULL object.
1894 		 */
1895 		while (object && object->backing_object) {
1896 			object = object->backing_object;
1897 			offset += object->backing_object_offset;
1898 			if (object->size < OFF_TO_IDX(offset + size))
1899 				size = IDX_TO_OFF(object->size) - offset;
1900 		}
1901 		if (object && (object->type == OBJT_VNODE) &&
1902 		    (current->protection & VM_PROT_WRITE)) {
1903 			/*
1904 			 * Flush pages if writing is allowed, invalidate them
1905 			 * if invalidation requested.  Pages undergoing I/O
1906 			 * will be ignored by vm_object_page_remove().
1907 			 *
1908 			 * We cannot lock the vnode and then wait for paging
1909 			 * to complete without deadlocking against vm_fault.
1910 			 * Instead we simply call vm_object_page_remove() and
1911 			 * allow it to block internally on a page-by-page
1912 			 * basis when it encounters pages undergoing async
1913 			 * I/O.
1914 			 */
1915 			int flags;
1916 
1917 			vm_object_reference(object);
1918 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1919 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1920 			flags |= invalidate ? OBJPC_INVAL : 0;
1921 			vm_object_page_clean(object,
1922 			    OFF_TO_IDX(offset),
1923 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1924 			    flags);
1925 			if (invalidate) {
1926 				/*vm_object_pip_wait(object, "objmcl");*/
1927 				vm_object_page_remove(object,
1928 				    OFF_TO_IDX(offset),
1929 				    OFF_TO_IDX(offset + size + PAGE_MASK),
1930 				    FALSE);
1931 			}
1932 			VOP_UNLOCK(object->handle, 0, curthread);
1933 			vm_object_deallocate(object);
1934 		}
1935 		start += size;
1936 	}
1937 
1938 	vm_map_unlock_read(map);
1939 	return (KERN_SUCCESS);
1940 }
1941 
1942 /*
1943  *	vm_map_entry_unwire:	[ internal use only ]
1944  *
1945  *	Make the region specified by this entry pageable.
1946  *
1947  *	The map in question should be locked.
1948  *	[This is the reason for this routine's existence.]
1949  */
1950 static void
1951 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
1952 {
1953 	vm_fault_unwire(map, entry->start, entry->end);
1954 	entry->wired_count = 0;
1955 }
1956 
1957 /*
1958  *	vm_map_entry_delete:	[ internal use only ]
1959  *
1960  *	Deallocate the given entry from the target map.
1961  */
1962 static void
1963 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
1964 {
1965 	vm_map_entry_unlink(map, entry);
1966 	map->size -= entry->end - entry->start;
1967 
1968 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1969 		vm_object_deallocate(entry->object.vm_object);
1970 	}
1971 
1972 	vm_map_entry_dispose(map, entry);
1973 }
1974 
1975 /*
1976  *	vm_map_delete:	[ internal use only ]
1977  *
1978  *	Deallocates the given address range from the target
1979  *	map.
1980  */
1981 int
1982 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
1983 {
1984 	vm_object_t object;
1985 	vm_map_entry_t entry;
1986 	vm_map_entry_t first_entry;
1987 
1988 	/*
1989 	 * Find the start of the region, and clip it
1990 	 */
1991 	if (!vm_map_lookup_entry(map, start, &first_entry))
1992 		entry = first_entry->next;
1993 	else {
1994 		entry = first_entry;
1995 		vm_map_clip_start(map, entry, start);
1996 	}
1997 
1998 	/*
1999 	 * Save the free space hint
2000 	 */
2001 	if (entry == &map->header) {
2002 		map->first_free = &map->header;
2003 	} else if (map->first_free->start >= start) {
2004 		map->first_free = entry->prev;
2005 	}
2006 
2007 	/*
2008 	 * Step through all entries in this region
2009 	 */
2010 	while ((entry != &map->header) && (entry->start < end)) {
2011 		vm_map_entry_t next;
2012 		vm_offset_t s, e;
2013 		vm_pindex_t offidxstart, offidxend, count;
2014 
2015 		/*
2016 		 * Wait for wiring or unwiring of an entry to complete.
2017 		 */
2018 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) {
2019 			unsigned int last_timestamp;
2020 			vm_offset_t saved_start;
2021 			vm_map_entry_t tmp_entry;
2022 
2023 			saved_start = entry->start;
2024 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2025 			last_timestamp = map->timestamp;
2026 			(void) vm_map_unlock_and_wait(map, FALSE);
2027 			vm_map_lock(map);
2028 			if (last_timestamp + 1 != map->timestamp) {
2029 				/*
2030 				 * Look again for the entry because the map was
2031 				 * modified while it was unlocked.
2032 				 * Specifically, the entry may have been
2033 				 * clipped, merged, or deleted.
2034 				 */
2035 				if (!vm_map_lookup_entry(map, saved_start,
2036 							 &tmp_entry))
2037 					entry = tmp_entry->next;
2038 				else {
2039 					entry = tmp_entry;
2040 					vm_map_clip_start(map, entry,
2041 							  saved_start);
2042 				}
2043 			}
2044 			continue;
2045 		}
2046 		vm_map_clip_end(map, entry, end);
2047 
2048 		s = entry->start;
2049 		e = entry->end;
2050 		next = entry->next;
2051 
2052 		offidxstart = OFF_TO_IDX(entry->offset);
2053 		count = OFF_TO_IDX(e - s);
2054 		object = entry->object.vm_object;
2055 
2056 		/*
2057 		 * Unwire before removing addresses from the pmap; otherwise,
2058 		 * unwiring will put the entries back in the pmap.
2059 		 */
2060 		if (entry->wired_count != 0) {
2061 			vm_map_entry_unwire(map, entry);
2062 		}
2063 
2064 		offidxend = offidxstart + count;
2065 
2066 		if ((object == kernel_object) || (object == kmem_object)) {
2067 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2068 		} else {
2069 			mtx_lock(&Giant);
2070 			pmap_remove(map->pmap, s, e);
2071 			if (object != NULL &&
2072 			    object->ref_count != 1 &&
2073 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2074 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2075 				vm_object_collapse(object);
2076 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2077 				if (object->type == OBJT_SWAP) {
2078 					swap_pager_freespace(object, offidxstart, count);
2079 				}
2080 				if (offidxend >= object->size &&
2081 				    offidxstart < object->size) {
2082 					object->size = offidxstart;
2083 				}
2084 			}
2085 			mtx_unlock(&Giant);
2086 		}
2087 
2088 		/*
2089 		 * Delete the entry (which may delete the object) only after
2090 		 * removing all pmap entries pointing to its pages.
2091 		 * (Otherwise, its page frames may be reallocated, and any
2092 		 * modify bits will be set in the wrong object!)
2093 		 */
2094 		vm_map_entry_delete(map, entry);
2095 		entry = next;
2096 	}
2097 	return (KERN_SUCCESS);
2098 }
2099 
2100 /*
2101  *	vm_map_remove:
2102  *
2103  *	Remove the given address range from the target map.
2104  *	This is the exported form of vm_map_delete.
2105  */
2106 int
2107 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2108 {
2109 	int result, s = 0;
2110 
2111 	if (map == kmem_map)
2112 		s = splvm();
2113 
2114 	vm_map_lock(map);
2115 	VM_MAP_RANGE_CHECK(map, start, end);
2116 	result = vm_map_delete(map, start, end);
2117 	vm_map_unlock(map);
2118 
2119 	if (map == kmem_map)
2120 		splx(s);
2121 
2122 	return (result);
2123 }
2124 
2125 /*
2126  *	vm_map_check_protection:
2127  *
2128  *	Assert that the target map allows the specified
2129  *	privilege on the entire address region given.
2130  *	The entire region must be allocated.
2131  */
2132 boolean_t
2133 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2134 			vm_prot_t protection)
2135 {
2136 	vm_map_entry_t entry;
2137 	vm_map_entry_t tmp_entry;
2138 
2139 	vm_map_lock_read(map);
2140 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2141 		vm_map_unlock_read(map);
2142 		return (FALSE);
2143 	}
2144 	entry = tmp_entry;
2145 
2146 	while (start < end) {
2147 		if (entry == &map->header) {
2148 			vm_map_unlock_read(map);
2149 			return (FALSE);
2150 		}
2151 		/*
2152 		 * No holes allowed!
2153 		 */
2154 		if (start < entry->start) {
2155 			vm_map_unlock_read(map);
2156 			return (FALSE);
2157 		}
2158 		/*
2159 		 * Check protection associated with entry.
2160 		 */
2161 		if ((entry->protection & protection) != protection) {
2162 			vm_map_unlock_read(map);
2163 			return (FALSE);
2164 		}
2165 		/* go to next entry */
2166 		start = entry->end;
2167 		entry = entry->next;
2168 	}
2169 	vm_map_unlock_read(map);
2170 	return (TRUE);
2171 }
2172 
2173 /*
2174  *	vm_map_copy_entry:
2175  *
2176  *	Copies the contents of the source entry to the destination
2177  *	entry.  The entries *must* be aligned properly.
2178  */
2179 static void
2180 vm_map_copy_entry(
2181 	vm_map_t src_map,
2182 	vm_map_t dst_map,
2183 	vm_map_entry_t src_entry,
2184 	vm_map_entry_t dst_entry)
2185 {
2186 	vm_object_t src_object;
2187 
2188 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2189 		return;
2190 
2191 	if (src_entry->wired_count == 0) {
2192 
2193 		/*
2194 		 * If the source entry is marked needs_copy, it is already
2195 		 * write-protected.
2196 		 */
2197 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2198 			pmap_protect(src_map->pmap,
2199 			    src_entry->start,
2200 			    src_entry->end,
2201 			    src_entry->protection & ~VM_PROT_WRITE);
2202 		}
2203 
2204 		/*
2205 		 * Make a copy of the object.
2206 		 */
2207 		if ((src_object = src_entry->object.vm_object) != NULL) {
2208 
2209 			if ((src_object->handle == NULL) &&
2210 				(src_object->type == OBJT_DEFAULT ||
2211 				 src_object->type == OBJT_SWAP)) {
2212 				vm_object_collapse(src_object);
2213 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2214 					vm_object_split(src_entry);
2215 					src_object = src_entry->object.vm_object;
2216 				}
2217 			}
2218 
2219 			vm_object_reference(src_object);
2220 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2221 			dst_entry->object.vm_object = src_object;
2222 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2223 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2224 			dst_entry->offset = src_entry->offset;
2225 		} else {
2226 			dst_entry->object.vm_object = NULL;
2227 			dst_entry->offset = 0;
2228 		}
2229 
2230 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2231 		    dst_entry->end - dst_entry->start, src_entry->start);
2232 	} else {
2233 		/*
2234 		 * Of course, wired down pages can't be set copy-on-write.
2235 		 * Cause wired pages to be copied into the new map by
2236 		 * simulating faults (the new pages are pageable)
2237 		 */
2238 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2239 	}
2240 }
2241 
2242 /*
2243  * vmspace_fork:
2244  * Create a new process vmspace structure and vm_map
2245  * based on those of an existing process.  The new map
2246  * is based on the old map, according to the inheritance
2247  * values on the regions in that map.
2248  *
2249  * The source map must not be locked.
2250  */
2251 struct vmspace *
2252 vmspace_fork(struct vmspace *vm1)
2253 {
2254 	struct vmspace *vm2;
2255 	vm_map_t old_map = &vm1->vm_map;
2256 	vm_map_t new_map;
2257 	vm_map_entry_t old_entry;
2258 	vm_map_entry_t new_entry;
2259 	vm_object_t object;
2260 
2261 	GIANT_REQUIRED;
2262 
2263 	vm_map_lock(old_map);
2264 	old_map->infork = 1;
2265 
2266 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2267 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2268 	    (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2269 	new_map = &vm2->vm_map;	/* XXX */
2270 	new_map->timestamp = 1;
2271 
2272 	old_entry = old_map->header.next;
2273 
2274 	while (old_entry != &old_map->header) {
2275 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2276 			panic("vm_map_fork: encountered a submap");
2277 
2278 		switch (old_entry->inheritance) {
2279 		case VM_INHERIT_NONE:
2280 			break;
2281 
2282 		case VM_INHERIT_SHARE:
2283 			/*
2284 			 * Clone the entry, creating the shared object if necessary.
2285 			 */
2286 			object = old_entry->object.vm_object;
2287 			if (object == NULL) {
2288 				object = vm_object_allocate(OBJT_DEFAULT,
2289 					atop(old_entry->end - old_entry->start));
2290 				old_entry->object.vm_object = object;
2291 				old_entry->offset = (vm_offset_t) 0;
2292 			}
2293 
2294 			/*
2295 			 * Add the reference before calling vm_object_shadow
2296 			 * to insure that a shadow object is created.
2297 			 */
2298 			vm_object_reference(object);
2299 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2300 				vm_object_shadow(&old_entry->object.vm_object,
2301 					&old_entry->offset,
2302 					atop(old_entry->end - old_entry->start));
2303 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2304 				/* Transfer the second reference too. */
2305 				vm_object_reference(
2306 				    old_entry->object.vm_object);
2307 				vm_object_deallocate(object);
2308 				object = old_entry->object.vm_object;
2309 			}
2310 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2311 
2312 			/*
2313 			 * Clone the entry, referencing the shared object.
2314 			 */
2315 			new_entry = vm_map_entry_create(new_map);
2316 			*new_entry = *old_entry;
2317 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2318 			new_entry->wired_count = 0;
2319 
2320 			/*
2321 			 * Insert the entry into the new map -- we know we're
2322 			 * inserting at the end of the new map.
2323 			 */
2324 			vm_map_entry_link(new_map, new_map->header.prev,
2325 			    new_entry);
2326 
2327 			/*
2328 			 * Update the physical map
2329 			 */
2330 			pmap_copy(new_map->pmap, old_map->pmap,
2331 			    new_entry->start,
2332 			    (old_entry->end - old_entry->start),
2333 			    old_entry->start);
2334 			break;
2335 
2336 		case VM_INHERIT_COPY:
2337 			/*
2338 			 * Clone the entry and link into the map.
2339 			 */
2340 			new_entry = vm_map_entry_create(new_map);
2341 			*new_entry = *old_entry;
2342 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2343 			new_entry->wired_count = 0;
2344 			new_entry->object.vm_object = NULL;
2345 			vm_map_entry_link(new_map, new_map->header.prev,
2346 			    new_entry);
2347 			vm_map_copy_entry(old_map, new_map, old_entry,
2348 			    new_entry);
2349 			break;
2350 		}
2351 		old_entry = old_entry->next;
2352 	}
2353 
2354 	new_map->size = old_map->size;
2355 	old_map->infork = 0;
2356 	vm_map_unlock(old_map);
2357 
2358 	return (vm2);
2359 }
2360 
2361 int
2362 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2363 	      vm_prot_t prot, vm_prot_t max, int cow)
2364 {
2365 	vm_map_entry_t prev_entry;
2366 	vm_map_entry_t new_stack_entry;
2367 	vm_size_t      init_ssize;
2368 	int            rv;
2369 
2370 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2371 		return (KERN_NO_SPACE);
2372 
2373 	if (max_ssize < sgrowsiz)
2374 		init_ssize = max_ssize;
2375 	else
2376 		init_ssize = sgrowsiz;
2377 
2378 	vm_map_lock(map);
2379 
2380 	/* If addr is already mapped, no go */
2381 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2382 		vm_map_unlock(map);
2383 		return (KERN_NO_SPACE);
2384 	}
2385 
2386 	/* If we would blow our VMEM resource limit, no go */
2387 	if (map->size + init_ssize >
2388 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2389 		vm_map_unlock(map);
2390 		return (KERN_NO_SPACE);
2391 	}
2392 
2393 	/* If we can't accomodate max_ssize in the current mapping,
2394 	 * no go.  However, we need to be aware that subsequent user
2395 	 * mappings might map into the space we have reserved for
2396 	 * stack, and currently this space is not protected.
2397 	 *
2398 	 * Hopefully we will at least detect this condition
2399 	 * when we try to grow the stack.
2400 	 */
2401 	if ((prev_entry->next != &map->header) &&
2402 	    (prev_entry->next->start < addrbos + max_ssize)) {
2403 		vm_map_unlock(map);
2404 		return (KERN_NO_SPACE);
2405 	}
2406 
2407 	/* We initially map a stack of only init_ssize.  We will
2408 	 * grow as needed later.  Since this is to be a grow
2409 	 * down stack, we map at the top of the range.
2410 	 *
2411 	 * Note: we would normally expect prot and max to be
2412 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2413 	 * eliminate these as input parameters, and just
2414 	 * pass these values here in the insert call.
2415 	 */
2416 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2417 	                   addrbos + max_ssize, prot, max, cow);
2418 
2419 	/* Now set the avail_ssize amount */
2420 	if (rv == KERN_SUCCESS){
2421 		if (prev_entry != &map->header)
2422 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2423 		new_stack_entry = prev_entry->next;
2424 		if (new_stack_entry->end   != addrbos + max_ssize ||
2425 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2426 			panic ("Bad entry start/end for new stack entry");
2427 		else
2428 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2429 	}
2430 
2431 	vm_map_unlock(map);
2432 	return (rv);
2433 }
2434 
2435 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2436  * desired address is already mapped, or if we successfully grow
2437  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2438  * stack range (this is strange, but preserves compatibility with
2439  * the grow function in vm_machdep.c).
2440  */
2441 int
2442 vm_map_growstack (struct proc *p, vm_offset_t addr)
2443 {
2444 	vm_map_entry_t prev_entry;
2445 	vm_map_entry_t stack_entry;
2446 	vm_map_entry_t new_stack_entry;
2447 	struct vmspace *vm = p->p_vmspace;
2448 	vm_map_t map = &vm->vm_map;
2449 	vm_offset_t    end;
2450 	int      grow_amount;
2451 	int      rv;
2452 	int      is_procstack;
2453 
2454 	GIANT_REQUIRED;
2455 
2456 Retry:
2457 	vm_map_lock_read(map);
2458 
2459 	/* If addr is already in the entry range, no need to grow.*/
2460 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2461 		vm_map_unlock_read(map);
2462 		return (KERN_SUCCESS);
2463 	}
2464 
2465 	if ((stack_entry = prev_entry->next) == &map->header) {
2466 		vm_map_unlock_read(map);
2467 		return (KERN_SUCCESS);
2468 	}
2469 	if (prev_entry == &map->header)
2470 		end = stack_entry->start - stack_entry->avail_ssize;
2471 	else
2472 		end = prev_entry->end;
2473 
2474 	/* This next test mimics the old grow function in vm_machdep.c.
2475 	 * It really doesn't quite make sense, but we do it anyway
2476 	 * for compatibility.
2477 	 *
2478 	 * If not growable stack, return success.  This signals the
2479 	 * caller to proceed as he would normally with normal vm.
2480 	 */
2481 	if (stack_entry->avail_ssize < 1 ||
2482 	    addr >= stack_entry->start ||
2483 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2484 		vm_map_unlock_read(map);
2485 		return (KERN_SUCCESS);
2486 	}
2487 
2488 	/* Find the minimum grow amount */
2489 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2490 	if (grow_amount > stack_entry->avail_ssize) {
2491 		vm_map_unlock_read(map);
2492 		return (KERN_NO_SPACE);
2493 	}
2494 
2495 	/* If there is no longer enough space between the entries
2496 	 * nogo, and adjust the available space.  Note: this
2497 	 * should only happen if the user has mapped into the
2498 	 * stack area after the stack was created, and is
2499 	 * probably an error.
2500 	 *
2501 	 * This also effectively destroys any guard page the user
2502 	 * might have intended by limiting the stack size.
2503 	 */
2504 	if (grow_amount > stack_entry->start - end) {
2505 		if (vm_map_lock_upgrade(map))
2506 			goto Retry;
2507 
2508 		stack_entry->avail_ssize = stack_entry->start - end;
2509 
2510 		vm_map_unlock(map);
2511 		return (KERN_NO_SPACE);
2512 	}
2513 
2514 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2515 
2516 	/* If this is the main process stack, see if we're over the
2517 	 * stack limit.
2518 	 */
2519 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2520 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2521 		vm_map_unlock_read(map);
2522 		return (KERN_NO_SPACE);
2523 	}
2524 
2525 	/* Round up the grow amount modulo SGROWSIZ */
2526 	grow_amount = roundup (grow_amount, sgrowsiz);
2527 	if (grow_amount > stack_entry->avail_ssize) {
2528 		grow_amount = stack_entry->avail_ssize;
2529 	}
2530 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2531 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2532 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2533 		              ctob(vm->vm_ssize);
2534 	}
2535 
2536 	/* If we would blow our VMEM resource limit, no go */
2537 	if (map->size + grow_amount >
2538 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2539 		vm_map_unlock_read(map);
2540 		return (KERN_NO_SPACE);
2541 	}
2542 
2543 	if (vm_map_lock_upgrade(map))
2544 		goto Retry;
2545 
2546 	/* Get the preliminary new entry start value */
2547 	addr = stack_entry->start - grow_amount;
2548 
2549 	/* If this puts us into the previous entry, cut back our growth
2550 	 * to the available space.  Also, see the note above.
2551 	 */
2552 	if (addr < end) {
2553 		stack_entry->avail_ssize = stack_entry->start - end;
2554 		addr = end;
2555 	}
2556 
2557 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2558 			   VM_PROT_ALL,
2559 			   VM_PROT_ALL,
2560 			   0);
2561 
2562 	/* Adjust the available stack space by the amount we grew. */
2563 	if (rv == KERN_SUCCESS) {
2564 		if (prev_entry != &map->header)
2565 			vm_map_clip_end(map, prev_entry, addr);
2566 		new_stack_entry = prev_entry->next;
2567 		if (new_stack_entry->end   != stack_entry->start  ||
2568 		    new_stack_entry->start != addr)
2569 			panic ("Bad stack grow start/end in new stack entry");
2570 		else {
2571 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2572 							(new_stack_entry->end -
2573 							 new_stack_entry->start);
2574 			if (is_procstack)
2575 				vm->vm_ssize += btoc(new_stack_entry->end -
2576 						     new_stack_entry->start);
2577 		}
2578 	}
2579 
2580 	vm_map_unlock(map);
2581 	return (rv);
2582 }
2583 
2584 /*
2585  * Unshare the specified VM space for exec.  If other processes are
2586  * mapped to it, then create a new one.  The new vmspace is null.
2587  */
2588 void
2589 vmspace_exec(struct proc *p)
2590 {
2591 	struct vmspace *oldvmspace = p->p_vmspace;
2592 	struct vmspace *newvmspace;
2593 	vm_map_t map = &p->p_vmspace->vm_map;
2594 
2595 	GIANT_REQUIRED;
2596 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2597 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2598 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2599 	/*
2600 	 * This code is written like this for prototype purposes.  The
2601 	 * goal is to avoid running down the vmspace here, but let the
2602 	 * other process's that are still using the vmspace to finally
2603 	 * run it down.  Even though there is little or no chance of blocking
2604 	 * here, it is a good idea to keep this form for future mods.
2605 	 */
2606 	p->p_vmspace = newvmspace;
2607 	pmap_pinit2(vmspace_pmap(newvmspace));
2608 	vmspace_free(oldvmspace);
2609 	if (p == curthread->td_proc)		/* XXXKSE ? */
2610 		pmap_activate(curthread);
2611 }
2612 
2613 /*
2614  * Unshare the specified VM space for forcing COW.  This
2615  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2616  */
2617 void
2618 vmspace_unshare(struct proc *p)
2619 {
2620 	struct vmspace *oldvmspace = p->p_vmspace;
2621 	struct vmspace *newvmspace;
2622 
2623 	GIANT_REQUIRED;
2624 	if (oldvmspace->vm_refcnt == 1)
2625 		return;
2626 	newvmspace = vmspace_fork(oldvmspace);
2627 	p->p_vmspace = newvmspace;
2628 	pmap_pinit2(vmspace_pmap(newvmspace));
2629 	vmspace_free(oldvmspace);
2630 	if (p == curthread->td_proc)		/* XXXKSE ? */
2631 		pmap_activate(curthread);
2632 }
2633 
2634 /*
2635  *	vm_map_lookup:
2636  *
2637  *	Finds the VM object, offset, and
2638  *	protection for a given virtual address in the
2639  *	specified map, assuming a page fault of the
2640  *	type specified.
2641  *
2642  *	Leaves the map in question locked for read; return
2643  *	values are guaranteed until a vm_map_lookup_done
2644  *	call is performed.  Note that the map argument
2645  *	is in/out; the returned map must be used in
2646  *	the call to vm_map_lookup_done.
2647  *
2648  *	A handle (out_entry) is returned for use in
2649  *	vm_map_lookup_done, to make that fast.
2650  *
2651  *	If a lookup is requested with "write protection"
2652  *	specified, the map may be changed to perform virtual
2653  *	copying operations, although the data referenced will
2654  *	remain the same.
2655  */
2656 int
2657 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2658 	      vm_offset_t vaddr,
2659 	      vm_prot_t fault_typea,
2660 	      vm_map_entry_t *out_entry,	/* OUT */
2661 	      vm_object_t *object,		/* OUT */
2662 	      vm_pindex_t *pindex,		/* OUT */
2663 	      vm_prot_t *out_prot,		/* OUT */
2664 	      boolean_t *wired)			/* OUT */
2665 {
2666 	vm_map_entry_t entry;
2667 	vm_map_t map = *var_map;
2668 	vm_prot_t prot;
2669 	vm_prot_t fault_type = fault_typea;
2670 
2671 RetryLookup:;
2672 	/*
2673 	 * Lookup the faulting address.
2674 	 */
2675 
2676 	vm_map_lock_read(map);
2677 #define	RETURN(why) \
2678 		{ \
2679 		vm_map_unlock_read(map); \
2680 		return (why); \
2681 		}
2682 
2683 	/*
2684 	 * If the map has an interesting hint, try it before calling full
2685 	 * blown lookup routine.
2686 	 */
2687 	entry = map->root;
2688 	*out_entry = entry;
2689 	if (entry == NULL ||
2690 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2691 		/*
2692 		 * Entry was either not a valid hint, or the vaddr was not
2693 		 * contained in the entry, so do a full lookup.
2694 		 */
2695 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
2696 			RETURN(KERN_INVALID_ADDRESS);
2697 
2698 		entry = *out_entry;
2699 	}
2700 
2701 	/*
2702 	 * Handle submaps.
2703 	 */
2704 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2705 		vm_map_t old_map = map;
2706 
2707 		*var_map = map = entry->object.sub_map;
2708 		vm_map_unlock_read(old_map);
2709 		goto RetryLookup;
2710 	}
2711 
2712 	/*
2713 	 * Check whether this task is allowed to have this page.
2714 	 * Note the special case for MAP_ENTRY_COW
2715 	 * pages with an override.  This is to implement a forced
2716 	 * COW for debuggers.
2717 	 */
2718 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2719 		prot = entry->max_protection;
2720 	else
2721 		prot = entry->protection;
2722 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2723 	if ((fault_type & prot) != fault_type) {
2724 			RETURN(KERN_PROTECTION_FAILURE);
2725 	}
2726 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2727 	    (entry->eflags & MAP_ENTRY_COW) &&
2728 	    (fault_type & VM_PROT_WRITE) &&
2729 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2730 		RETURN(KERN_PROTECTION_FAILURE);
2731 	}
2732 
2733 	/*
2734 	 * If this page is not pageable, we have to get it for all possible
2735 	 * accesses.
2736 	 */
2737 	*wired = (entry->wired_count != 0);
2738 	if (*wired)
2739 		prot = fault_type = entry->protection;
2740 
2741 	/*
2742 	 * If the entry was copy-on-write, we either ...
2743 	 */
2744 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2745 		/*
2746 		 * If we want to write the page, we may as well handle that
2747 		 * now since we've got the map locked.
2748 		 *
2749 		 * If we don't need to write the page, we just demote the
2750 		 * permissions allowed.
2751 		 */
2752 		if (fault_type & VM_PROT_WRITE) {
2753 			/*
2754 			 * Make a new object, and place it in the object
2755 			 * chain.  Note that no new references have appeared
2756 			 * -- one just moved from the map to the new
2757 			 * object.
2758 			 */
2759 			if (vm_map_lock_upgrade(map))
2760 				goto RetryLookup;
2761 
2762 			vm_object_shadow(
2763 			    &entry->object.vm_object,
2764 			    &entry->offset,
2765 			    atop(entry->end - entry->start));
2766 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2767 
2768 			vm_map_lock_downgrade(map);
2769 		} else {
2770 			/*
2771 			 * We're attempting to read a copy-on-write page --
2772 			 * don't allow writes.
2773 			 */
2774 			prot &= ~VM_PROT_WRITE;
2775 		}
2776 	}
2777 
2778 	/*
2779 	 * Create an object if necessary.
2780 	 */
2781 	if (entry->object.vm_object == NULL &&
2782 	    !map->system_map) {
2783 		if (vm_map_lock_upgrade(map))
2784 			goto RetryLookup;
2785 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2786 		    atop(entry->end - entry->start));
2787 		entry->offset = 0;
2788 		vm_map_lock_downgrade(map);
2789 	}
2790 
2791 	/*
2792 	 * Return the object/offset from this entry.  If the entry was
2793 	 * copy-on-write or empty, it has been fixed up.
2794 	 */
2795 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2796 	*object = entry->object.vm_object;
2797 
2798 	/*
2799 	 * Return whether this is the only map sharing this data.
2800 	 */
2801 	*out_prot = prot;
2802 	return (KERN_SUCCESS);
2803 
2804 #undef	RETURN
2805 }
2806 
2807 /*
2808  *	vm_map_lookup_done:
2809  *
2810  *	Releases locks acquired by a vm_map_lookup
2811  *	(according to the handle returned by that lookup).
2812  */
2813 void
2814 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2815 {
2816 	/*
2817 	 * Unlock the main-level map
2818 	 */
2819 	vm_map_unlock_read(map);
2820 }
2821 
2822 #ifdef ENABLE_VFS_IOOPT
2823 /*
2824  * Experimental support for zero-copy I/O
2825  *
2826  * Implement uiomove with VM operations.  This handles (and collateral changes)
2827  * support every combination of source object modification, and COW type
2828  * operations.
2829  */
2830 int
2831 vm_uiomove(
2832 	vm_map_t mapa,
2833 	vm_object_t srcobject,
2834 	off_t cp,
2835 	int cnta,
2836 	vm_offset_t uaddra,
2837 	int *npages)
2838 {
2839 	vm_map_t map;
2840 	vm_object_t first_object, oldobject, object;
2841 	vm_map_entry_t entry;
2842 	vm_prot_t prot;
2843 	boolean_t wired;
2844 	int tcnt, rv;
2845 	vm_offset_t uaddr, start, end, tend;
2846 	vm_pindex_t first_pindex, oindex;
2847 	vm_size_t osize;
2848 	off_t ooffset;
2849 	int cnt;
2850 
2851 	GIANT_REQUIRED;
2852 
2853 	if (npages)
2854 		*npages = 0;
2855 
2856 	cnt = cnta;
2857 	uaddr = uaddra;
2858 
2859 	while (cnt > 0) {
2860 		map = mapa;
2861 
2862 		if ((vm_map_lookup(&map, uaddr,
2863 			VM_PROT_READ, &entry, &first_object,
2864 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2865 			return EFAULT;
2866 		}
2867 
2868 		vm_map_clip_start(map, entry, uaddr);
2869 
2870 		tcnt = cnt;
2871 		tend = uaddr + tcnt;
2872 		if (tend > entry->end) {
2873 			tcnt = entry->end - uaddr;
2874 			tend = entry->end;
2875 		}
2876 
2877 		vm_map_clip_end(map, entry, tend);
2878 
2879 		start = entry->start;
2880 		end = entry->end;
2881 
2882 		osize = atop(tcnt);
2883 
2884 		oindex = OFF_TO_IDX(cp);
2885 		if (npages) {
2886 			vm_size_t idx;
2887 			for (idx = 0; idx < osize; idx++) {
2888 				vm_page_t m;
2889 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2890 					vm_map_lookup_done(map, entry);
2891 					return 0;
2892 				}
2893 				/*
2894 				 * disallow busy or invalid pages, but allow
2895 				 * m->busy pages if they are entirely valid.
2896 				 */
2897 				if ((m->flags & PG_BUSY) ||
2898 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2899 					vm_map_lookup_done(map, entry);
2900 					return 0;
2901 				}
2902 			}
2903 		}
2904 
2905 /*
2906  * If we are changing an existing map entry, just redirect
2907  * the object, and change mappings.
2908  */
2909 		if ((first_object->type == OBJT_VNODE) &&
2910 			((oldobject = entry->object.vm_object) == first_object)) {
2911 
2912 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2913 				/*
2914    				* Remove old window into the file
2915    				*/
2916 				pmap_remove (map->pmap, uaddr, tend);
2917 
2918 				/*
2919    				* Force copy on write for mmaped regions
2920    				*/
2921 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2922 
2923 				/*
2924    				* Point the object appropriately
2925    				*/
2926 				if (oldobject != srcobject) {
2927 
2928 				/*
2929    				* Set the object optimization hint flag
2930    				*/
2931 					vm_object_set_flag(srcobject, OBJ_OPT);
2932 					vm_object_reference(srcobject);
2933 					entry->object.vm_object = srcobject;
2934 
2935 					if (oldobject) {
2936 						vm_object_deallocate(oldobject);
2937 					}
2938 				}
2939 
2940 				entry->offset = cp;
2941 				map->timestamp++;
2942 			} else {
2943 				pmap_remove (map->pmap, uaddr, tend);
2944 			}
2945 
2946 		} else if ((first_object->ref_count == 1) &&
2947 			(first_object->size == osize) &&
2948 			((first_object->type == OBJT_DEFAULT) ||
2949 				(first_object->type == OBJT_SWAP)) ) {
2950 
2951 			oldobject = first_object->backing_object;
2952 
2953 			if ((first_object->backing_object_offset != cp) ||
2954 				(oldobject != srcobject)) {
2955 				/*
2956    				* Remove old window into the file
2957    				*/
2958 				pmap_remove (map->pmap, uaddr, tend);
2959 
2960 				/*
2961 				 * Remove unneeded old pages
2962 				 */
2963 				vm_object_page_remove(first_object, 0, 0, 0);
2964 
2965 				/*
2966 				 * Invalidate swap space
2967 				 */
2968 				if (first_object->type == OBJT_SWAP) {
2969 					swap_pager_freespace(first_object,
2970 						0,
2971 						first_object->size);
2972 				}
2973 
2974 				/*
2975    				 * Force copy on write for mmaped regions
2976    				 */
2977 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2978 
2979 				/*
2980    				 * Point the object appropriately
2981    				 */
2982 				if (oldobject != srcobject) {
2983 					/*
2984    					 * Set the object optimization hint flag
2985    					 */
2986 					vm_object_set_flag(srcobject, OBJ_OPT);
2987 					vm_object_reference(srcobject);
2988 
2989 					if (oldobject) {
2990 						TAILQ_REMOVE(&oldobject->shadow_head,
2991 							first_object, shadow_list);
2992 						oldobject->shadow_count--;
2993 						/* XXX bump generation? */
2994 						vm_object_deallocate(oldobject);
2995 					}
2996 
2997 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2998 						first_object, shadow_list);
2999 					srcobject->shadow_count++;
3000 					/* XXX bump generation? */
3001 
3002 					first_object->backing_object = srcobject;
3003 				}
3004 				first_object->backing_object_offset = cp;
3005 				map->timestamp++;
3006 			} else {
3007 				pmap_remove (map->pmap, uaddr, tend);
3008 			}
3009 /*
3010  * Otherwise, we have to do a logical mmap.
3011  */
3012 		} else {
3013 
3014 			vm_object_set_flag(srcobject, OBJ_OPT);
3015 			vm_object_reference(srcobject);
3016 
3017 			pmap_remove (map->pmap, uaddr, tend);
3018 
3019 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3020 			vm_map_lock_upgrade(map);
3021 
3022 			if (entry == &map->header) {
3023 				map->first_free = &map->header;
3024 			} else if (map->first_free->start >= start) {
3025 				map->first_free = entry->prev;
3026 			}
3027 
3028 			vm_map_entry_delete(map, entry);
3029 
3030 			object = srcobject;
3031 			ooffset = cp;
3032 
3033 			rv = vm_map_insert(map, object, ooffset, start, tend,
3034 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3035 
3036 			if (rv != KERN_SUCCESS)
3037 				panic("vm_uiomove: could not insert new entry: %d", rv);
3038 		}
3039 
3040 /*
3041  * Map the window directly, if it is already in memory
3042  */
3043 		pmap_object_init_pt(map->pmap, uaddr,
3044 			srcobject, oindex, tcnt, 0);
3045 
3046 		map->timestamp++;
3047 		vm_map_unlock(map);
3048 
3049 		cnt -= tcnt;
3050 		uaddr += tcnt;
3051 		cp += tcnt;
3052 		if (npages)
3053 			*npages += osize;
3054 	}
3055 	return 0;
3056 }
3057 #endif
3058 
3059 #include "opt_ddb.h"
3060 #ifdef DDB
3061 #include <sys/kernel.h>
3062 
3063 #include <ddb/ddb.h>
3064 
3065 /*
3066  *	vm_map_print:	[ debug ]
3067  */
3068 DB_SHOW_COMMAND(map, vm_map_print)
3069 {
3070 	static int nlines;
3071 	/* XXX convert args. */
3072 	vm_map_t map = (vm_map_t)addr;
3073 	boolean_t full = have_addr;
3074 
3075 	vm_map_entry_t entry;
3076 
3077 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3078 	    (void *)map,
3079 	    (void *)map->pmap, map->nentries, map->timestamp);
3080 	nlines++;
3081 
3082 	if (!full && db_indent)
3083 		return;
3084 
3085 	db_indent += 2;
3086 	for (entry = map->header.next; entry != &map->header;
3087 	    entry = entry->next) {
3088 		db_iprintf("map entry %p: start=%p, end=%p\n",
3089 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3090 		nlines++;
3091 		{
3092 			static char *inheritance_name[4] =
3093 			{"share", "copy", "none", "donate_copy"};
3094 
3095 			db_iprintf(" prot=%x/%x/%s",
3096 			    entry->protection,
3097 			    entry->max_protection,
3098 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3099 			if (entry->wired_count != 0)
3100 				db_printf(", wired");
3101 		}
3102 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3103 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3104 			db_printf(", share=%p, offset=0x%lx\n",
3105 			    (void *)entry->object.sub_map,
3106 			    (long)entry->offset);
3107 			nlines++;
3108 			if ((entry->prev == &map->header) ||
3109 			    (entry->prev->object.sub_map !=
3110 				entry->object.sub_map)) {
3111 				db_indent += 2;
3112 				vm_map_print((db_expr_t)(intptr_t)
3113 					     entry->object.sub_map,
3114 					     full, 0, (char *)0);
3115 				db_indent -= 2;
3116 			}
3117 		} else {
3118 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3119 			db_printf(", object=%p, offset=0x%lx",
3120 			    (void *)entry->object.vm_object,
3121 			    (long)entry->offset);
3122 			if (entry->eflags & MAP_ENTRY_COW)
3123 				db_printf(", copy (%s)",
3124 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3125 			db_printf("\n");
3126 			nlines++;
3127 
3128 			if ((entry->prev == &map->header) ||
3129 			    (entry->prev->object.vm_object !=
3130 				entry->object.vm_object)) {
3131 				db_indent += 2;
3132 				vm_object_print((db_expr_t)(intptr_t)
3133 						entry->object.vm_object,
3134 						full, 0, (char *)0);
3135 				nlines += 4;
3136 				db_indent -= 2;
3137 			}
3138 		}
3139 	}
3140 	db_indent -= 2;
3141 	if (db_indent == 0)
3142 		nlines = 0;
3143 }
3144 
3145 
3146 DB_SHOW_COMMAND(procvm, procvm)
3147 {
3148 	struct proc *p;
3149 
3150 	if (have_addr) {
3151 		p = (struct proc *) addr;
3152 	} else {
3153 		p = curproc;
3154 	}
3155 
3156 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3157 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3158 	    (void *)vmspace_pmap(p->p_vmspace));
3159 
3160 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3161 }
3162 
3163 #endif /* DDB */
3164