xref: /freebsd/sys/vm/vm_map.c (revision 0a10f22a30d61a6f32777a236a82d461129538cc)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
203 #ifdef INVARIANTS
204 	    vmspace_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 }
210 
211 static void
212 vmspace_zfini(void *mem, int size)
213 {
214 	struct vmspace *vm;
215 
216 	vm = (struct vmspace *)mem;
217 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
218 }
219 
220 static int
221 vmspace_zinit(void *mem, int size, int flags)
222 {
223 	struct vmspace *vm;
224 
225 	vm = (struct vmspace *)mem;
226 
227 	vm->vm_map.pmap = NULL;
228 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
229 	PMAP_LOCK_INIT(vmspace_pmap(vm));
230 	return (0);
231 }
232 
233 static void
234 vm_map_zfini(void *mem, int size)
235 {
236 	vm_map_t map;
237 
238 	map = (vm_map_t)mem;
239 	mtx_destroy(&map->system_mtx);
240 	sx_destroy(&map->lock);
241 }
242 
243 static int
244 vm_map_zinit(void *mem, int size, int flags)
245 {
246 	vm_map_t map;
247 
248 	map = (vm_map_t)mem;
249 	memset(map, 0, sizeof(*map));
250 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
251 	sx_init(&map->lock, "vm map (user)");
252 	return (0);
253 }
254 
255 #ifdef INVARIANTS
256 static void
257 vmspace_zdtor(void *mem, int size, void *arg)
258 {
259 	struct vmspace *vm;
260 
261 	vm = (struct vmspace *)mem;
262 
263 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
264 }
265 static void
266 vm_map_zdtor(void *mem, int size, void *arg)
267 {
268 	vm_map_t map;
269 
270 	map = (vm_map_t)mem;
271 	KASSERT(map->nentries == 0,
272 	    ("map %p nentries == %d on free.",
273 	    map, map->nentries));
274 	KASSERT(map->size == 0,
275 	    ("map %p size == %lu on free.",
276 	    map, (unsigned long)map->size));
277 }
278 #endif	/* INVARIANTS */
279 
280 /*
281  * Allocate a vmspace structure, including a vm_map and pmap,
282  * and initialize those structures.  The refcnt is set to 1.
283  */
284 struct vmspace *
285 vmspace_alloc(min, max)
286 	vm_offset_t min, max;
287 {
288 	struct vmspace *vm;
289 
290 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
291 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
292 		uma_zfree(vmspace_zone, vm);
293 		return (NULL);
294 	}
295 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
296 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
297 	vm->vm_refcnt = 1;
298 	vm->vm_shm = NULL;
299 	vm->vm_swrss = 0;
300 	vm->vm_tsize = 0;
301 	vm->vm_dsize = 0;
302 	vm->vm_ssize = 0;
303 	vm->vm_taddr = 0;
304 	vm->vm_daddr = 0;
305 	vm->vm_maxsaddr = 0;
306 	return (vm);
307 }
308 
309 static void
310 vmspace_container_reset(struct proc *p)
311 {
312 
313 #ifdef RACCT
314 	PROC_LOCK(p);
315 	racct_set(p, RACCT_DATA, 0);
316 	racct_set(p, RACCT_STACK, 0);
317 	racct_set(p, RACCT_RSS, 0);
318 	racct_set(p, RACCT_MEMLOCK, 0);
319 	racct_set(p, RACCT_VMEM, 0);
320 	PROC_UNLOCK(p);
321 #endif
322 }
323 
324 static inline void
325 vmspace_dofree(struct vmspace *vm)
326 {
327 
328 	CTR1(KTR_VM, "vmspace_free: %p", vm);
329 
330 	/*
331 	 * Make sure any SysV shm is freed, it might not have been in
332 	 * exit1().
333 	 */
334 	shmexit(vm);
335 
336 	/*
337 	 * Lock the map, to wait out all other references to it.
338 	 * Delete all of the mappings and pages they hold, then call
339 	 * the pmap module to reclaim anything left.
340 	 */
341 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
342 	    vm->vm_map.max_offset);
343 
344 	pmap_release(vmspace_pmap(vm));
345 	vm->vm_map.pmap = NULL;
346 	uma_zfree(vmspace_zone, vm);
347 }
348 
349 void
350 vmspace_free(struct vmspace *vm)
351 {
352 
353 	if (vm->vm_refcnt == 0)
354 		panic("vmspace_free: attempt to free already freed vmspace");
355 
356 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
357 		vmspace_dofree(vm);
358 }
359 
360 void
361 vmspace_exitfree(struct proc *p)
362 {
363 	struct vmspace *vm;
364 
365 	PROC_VMSPACE_LOCK(p);
366 	vm = p->p_vmspace;
367 	p->p_vmspace = NULL;
368 	PROC_VMSPACE_UNLOCK(p);
369 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
370 	vmspace_free(vm);
371 }
372 
373 void
374 vmspace_exit(struct thread *td)
375 {
376 	int refcnt;
377 	struct vmspace *vm;
378 	struct proc *p;
379 
380 	/*
381 	 * Release user portion of address space.
382 	 * This releases references to vnodes,
383 	 * which could cause I/O if the file has been unlinked.
384 	 * Need to do this early enough that we can still sleep.
385 	 *
386 	 * The last exiting process to reach this point releases as
387 	 * much of the environment as it can. vmspace_dofree() is the
388 	 * slower fallback in case another process had a temporary
389 	 * reference to the vmspace.
390 	 */
391 
392 	p = td->td_proc;
393 	vm = p->p_vmspace;
394 	atomic_add_int(&vmspace0.vm_refcnt, 1);
395 	do {
396 		refcnt = vm->vm_refcnt;
397 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
398 			/* Switch now since other proc might free vmspace */
399 			PROC_VMSPACE_LOCK(p);
400 			p->p_vmspace = &vmspace0;
401 			PROC_VMSPACE_UNLOCK(p);
402 			pmap_activate(td);
403 		}
404 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
405 	if (refcnt == 1) {
406 		if (p->p_vmspace != vm) {
407 			/* vmspace not yet freed, switch back */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = vm;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 		pmap_remove_pages(vmspace_pmap(vm));
414 		/* Switch now since this proc will free vmspace */
415 		PROC_VMSPACE_LOCK(p);
416 		p->p_vmspace = &vmspace0;
417 		PROC_VMSPACE_UNLOCK(p);
418 		pmap_activate(td);
419 		vmspace_dofree(vm);
420 	}
421 	vmspace_container_reset(p);
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	do {
439 		refcnt = vm->vm_refcnt;
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 void
455 _vm_map_lock(vm_map_t map, const char *file, int line)
456 {
457 
458 	if (map->system_map)
459 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
460 	else
461 		sx_xlock_(&map->lock, file, line);
462 	map->timestamp++;
463 }
464 
465 static void
466 vm_map_process_deferred(void)
467 {
468 	struct thread *td;
469 	vm_map_entry_t entry, next;
470 	vm_object_t object;
471 
472 	td = curthread;
473 	entry = td->td_map_def_user;
474 	td->td_map_def_user = NULL;
475 	while (entry != NULL) {
476 		next = entry->next;
477 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
478 			/*
479 			 * Decrement the object's writemappings and
480 			 * possibly the vnode's v_writecount.
481 			 */
482 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
483 			    ("Submap with writecount"));
484 			object = entry->object.vm_object;
485 			KASSERT(object != NULL, ("No object for writecount"));
486 			vnode_pager_release_writecount(object, entry->start,
487 			    entry->end);
488 		}
489 		vm_map_entry_deallocate(entry, FALSE);
490 		entry = next;
491 	}
492 }
493 
494 void
495 _vm_map_unlock(vm_map_t map, const char *file, int line)
496 {
497 
498 	if (map->system_map)
499 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
500 	else {
501 		sx_xunlock_(&map->lock, file, line);
502 		vm_map_process_deferred();
503 	}
504 }
505 
506 void
507 _vm_map_lock_read(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_slock_(&map->lock, file, line);
514 }
515 
516 void
517 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
518 {
519 
520 	if (map->system_map)
521 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
522 	else {
523 		sx_sunlock_(&map->lock, file, line);
524 		vm_map_process_deferred();
525 	}
526 }
527 
528 int
529 _vm_map_trylock(vm_map_t map, const char *file, int line)
530 {
531 	int error;
532 
533 	error = map->system_map ?
534 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
535 	    !sx_try_xlock_(&map->lock, file, line);
536 	if (error == 0)
537 		map->timestamp++;
538 	return (error == 0);
539 }
540 
541 int
542 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
543 {
544 	int error;
545 
546 	error = map->system_map ?
547 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
548 	    !sx_try_slock_(&map->lock, file, line);
549 	return (error == 0);
550 }
551 
552 /*
553  *	_vm_map_lock_upgrade:	[ internal use only ]
554  *
555  *	Tries to upgrade a read (shared) lock on the specified map to a write
556  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
557  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
558  *	returned without a read or write lock held.
559  *
560  *	Requires that the map be read locked.
561  */
562 int
563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
564 {
565 	unsigned int last_timestamp;
566 
567 	if (map->system_map) {
568 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
569 	} else {
570 		if (!sx_try_upgrade_(&map->lock, file, line)) {
571 			last_timestamp = map->timestamp;
572 			sx_sunlock_(&map->lock, file, line);
573 			vm_map_process_deferred();
574 			/*
575 			 * If the map's timestamp does not change while the
576 			 * map is unlocked, then the upgrade succeeds.
577 			 */
578 			sx_xlock_(&map->lock, file, line);
579 			if (last_timestamp != map->timestamp) {
580 				sx_xunlock_(&map->lock, file, line);
581 				return (1);
582 			}
583 		}
584 	}
585 	map->timestamp++;
586 	return (0);
587 }
588 
589 void
590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
591 {
592 
593 	if (map->system_map) {
594 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
595 	} else
596 		sx_downgrade_(&map->lock, file, line);
597 }
598 
599 /*
600  *	vm_map_locked:
601  *
602  *	Returns a non-zero value if the caller holds a write (exclusive) lock
603  *	on the specified map and the value "0" otherwise.
604  */
605 int
606 vm_map_locked(vm_map_t map)
607 {
608 
609 	if (map->system_map)
610 		return (mtx_owned(&map->system_mtx));
611 	else
612 		return (sx_xlocked(&map->lock));
613 }
614 
615 #ifdef INVARIANTS
616 static void
617 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
618 {
619 
620 	if (map->system_map)
621 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
622 	else
623 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
624 }
625 
626 #define	VM_MAP_ASSERT_LOCKED(map) \
627     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
628 #else
629 #define	VM_MAP_ASSERT_LOCKED(map)
630 #endif
631 
632 /*
633  *	_vm_map_unlock_and_wait:
634  *
635  *	Atomically releases the lock on the specified map and puts the calling
636  *	thread to sleep.  The calling thread will remain asleep until either
637  *	vm_map_wakeup() is performed on the map or the specified timeout is
638  *	exceeded.
639  *
640  *	WARNING!  This function does not perform deferred deallocations of
641  *	objects and map	entries.  Therefore, the calling thread is expected to
642  *	reacquire the map lock after reawakening and later perform an ordinary
643  *	unlock operation, such as vm_map_unlock(), before completing its
644  *	operation on the map.
645  */
646 int
647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
648 {
649 
650 	mtx_lock(&map_sleep_mtx);
651 	if (map->system_map)
652 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
653 	else
654 		sx_xunlock_(&map->lock, file, line);
655 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
656 	    timo));
657 }
658 
659 /*
660  *	vm_map_wakeup:
661  *
662  *	Awaken any threads that have slept on the map using
663  *	vm_map_unlock_and_wait().
664  */
665 void
666 vm_map_wakeup(vm_map_t map)
667 {
668 
669 	/*
670 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
671 	 * from being performed (and lost) between the map unlock
672 	 * and the msleep() in _vm_map_unlock_and_wait().
673 	 */
674 	mtx_lock(&map_sleep_mtx);
675 	mtx_unlock(&map_sleep_mtx);
676 	wakeup(&map->root);
677 }
678 
679 void
680 vm_map_busy(vm_map_t map)
681 {
682 
683 	VM_MAP_ASSERT_LOCKED(map);
684 	map->busy++;
685 }
686 
687 void
688 vm_map_unbusy(vm_map_t map)
689 {
690 
691 	VM_MAP_ASSERT_LOCKED(map);
692 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
693 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
694 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
695 		wakeup(&map->busy);
696 	}
697 }
698 
699 void
700 vm_map_wait_busy(vm_map_t map)
701 {
702 
703 	VM_MAP_ASSERT_LOCKED(map);
704 	while (map->busy) {
705 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
706 		if (map->system_map)
707 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
708 		else
709 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
710 	}
711 	map->timestamp++;
712 }
713 
714 long
715 vmspace_resident_count(struct vmspace *vmspace)
716 {
717 	return pmap_resident_count(vmspace_pmap(vmspace));
718 }
719 
720 /*
721  *	vm_map_create:
722  *
723  *	Creates and returns a new empty VM map with
724  *	the given physical map structure, and having
725  *	the given lower and upper address bounds.
726  */
727 vm_map_t
728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
729 {
730 	vm_map_t result;
731 
732 	result = uma_zalloc(mapzone, M_WAITOK);
733 	CTR1(KTR_VM, "vm_map_create: %p", result);
734 	_vm_map_init(result, pmap, min, max);
735 	return (result);
736 }
737 
738 /*
739  * Initialize an existing vm_map structure
740  * such as that in the vmspace structure.
741  */
742 static void
743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
744 {
745 
746 	map->header.next = map->header.prev = &map->header;
747 	map->needs_wakeup = FALSE;
748 	map->system_map = 0;
749 	map->pmap = pmap;
750 	map->min_offset = min;
751 	map->max_offset = max;
752 	map->flags = 0;
753 	map->root = NULL;
754 	map->timestamp = 0;
755 	map->busy = 0;
756 }
757 
758 void
759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
760 {
761 
762 	_vm_map_init(map, pmap, min, max);
763 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
764 	sx_init(&map->lock, "user map");
765 }
766 
767 /*
768  *	vm_map_entry_dispose:	[ internal use only ]
769  *
770  *	Inverse of vm_map_entry_create.
771  */
772 static void
773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
774 {
775 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
776 }
777 
778 /*
779  *	vm_map_entry_create:	[ internal use only ]
780  *
781  *	Allocates a VM map entry for insertion.
782  *	No entry fields are filled in.
783  */
784 static vm_map_entry_t
785 vm_map_entry_create(vm_map_t map)
786 {
787 	vm_map_entry_t new_entry;
788 
789 	if (map->system_map)
790 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
791 	else
792 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
793 	if (new_entry == NULL)
794 		panic("vm_map_entry_create: kernel resources exhausted");
795 	return (new_entry);
796 }
797 
798 /*
799  *	vm_map_entry_set_behavior:
800  *
801  *	Set the expected access behavior, either normal, random, or
802  *	sequential.
803  */
804 static inline void
805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
806 {
807 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
808 	    (behavior & MAP_ENTRY_BEHAV_MASK);
809 }
810 
811 /*
812  *	vm_map_entry_set_max_free:
813  *
814  *	Set the max_free field in a vm_map_entry.
815  */
816 static inline void
817 vm_map_entry_set_max_free(vm_map_entry_t entry)
818 {
819 
820 	entry->max_free = entry->adj_free;
821 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
822 		entry->max_free = entry->left->max_free;
823 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
824 		entry->max_free = entry->right->max_free;
825 }
826 
827 /*
828  *	vm_map_entry_splay:
829  *
830  *	The Sleator and Tarjan top-down splay algorithm with the
831  *	following variation.  Max_free must be computed bottom-up, so
832  *	on the downward pass, maintain the left and right spines in
833  *	reverse order.  Then, make a second pass up each side to fix
834  *	the pointers and compute max_free.  The time bound is O(log n)
835  *	amortized.
836  *
837  *	The new root is the vm_map_entry containing "addr", or else an
838  *	adjacent entry (lower or higher) if addr is not in the tree.
839  *
840  *	The map must be locked, and leaves it so.
841  *
842  *	Returns: the new root.
843  */
844 static vm_map_entry_t
845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
846 {
847 	vm_map_entry_t llist, rlist;
848 	vm_map_entry_t ltree, rtree;
849 	vm_map_entry_t y;
850 
851 	/* Special case of empty tree. */
852 	if (root == NULL)
853 		return (root);
854 
855 	/*
856 	 * Pass One: Splay down the tree until we find addr or a NULL
857 	 * pointer where addr would go.  llist and rlist are the two
858 	 * sides in reverse order (bottom-up), with llist linked by
859 	 * the right pointer and rlist linked by the left pointer in
860 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
861 	 * the two spines.
862 	 */
863 	llist = NULL;
864 	rlist = NULL;
865 	for (;;) {
866 		/* root is never NULL in here. */
867 		if (addr < root->start) {
868 			y = root->left;
869 			if (y == NULL)
870 				break;
871 			if (addr < y->start && y->left != NULL) {
872 				/* Rotate right and put y on rlist. */
873 				root->left = y->right;
874 				y->right = root;
875 				vm_map_entry_set_max_free(root);
876 				root = y->left;
877 				y->left = rlist;
878 				rlist = y;
879 			} else {
880 				/* Put root on rlist. */
881 				root->left = rlist;
882 				rlist = root;
883 				root = y;
884 			}
885 		} else if (addr >= root->end) {
886 			y = root->right;
887 			if (y == NULL)
888 				break;
889 			if (addr >= y->end && y->right != NULL) {
890 				/* Rotate left and put y on llist. */
891 				root->right = y->left;
892 				y->left = root;
893 				vm_map_entry_set_max_free(root);
894 				root = y->right;
895 				y->right = llist;
896 				llist = y;
897 			} else {
898 				/* Put root on llist. */
899 				root->right = llist;
900 				llist = root;
901 				root = y;
902 			}
903 		} else
904 			break;
905 	}
906 
907 	/*
908 	 * Pass Two: Walk back up the two spines, flip the pointers
909 	 * and set max_free.  The subtrees of the root go at the
910 	 * bottom of llist and rlist.
911 	 */
912 	ltree = root->left;
913 	while (llist != NULL) {
914 		y = llist->right;
915 		llist->right = ltree;
916 		vm_map_entry_set_max_free(llist);
917 		ltree = llist;
918 		llist = y;
919 	}
920 	rtree = root->right;
921 	while (rlist != NULL) {
922 		y = rlist->left;
923 		rlist->left = rtree;
924 		vm_map_entry_set_max_free(rlist);
925 		rtree = rlist;
926 		rlist = y;
927 	}
928 
929 	/*
930 	 * Final assembly: add ltree and rtree as subtrees of root.
931 	 */
932 	root->left = ltree;
933 	root->right = rtree;
934 	vm_map_entry_set_max_free(root);
935 
936 	return (root);
937 }
938 
939 /*
940  *	vm_map_entry_{un,}link:
941  *
942  *	Insert/remove entries from maps.
943  */
944 static void
945 vm_map_entry_link(vm_map_t map,
946 		  vm_map_entry_t after_where,
947 		  vm_map_entry_t entry)
948 {
949 
950 	CTR4(KTR_VM,
951 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
952 	    map->nentries, entry, after_where);
953 	VM_MAP_ASSERT_LOCKED(map);
954 	map->nentries++;
955 	entry->prev = after_where;
956 	entry->next = after_where->next;
957 	entry->next->prev = entry;
958 	after_where->next = entry;
959 
960 	if (after_where != &map->header) {
961 		if (after_where != map->root)
962 			vm_map_entry_splay(after_where->start, map->root);
963 		entry->right = after_where->right;
964 		entry->left = after_where;
965 		after_where->right = NULL;
966 		after_where->adj_free = entry->start - after_where->end;
967 		vm_map_entry_set_max_free(after_where);
968 	} else {
969 		entry->right = map->root;
970 		entry->left = NULL;
971 	}
972 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
973 	    entry->next->start) - entry->end;
974 	vm_map_entry_set_max_free(entry);
975 	map->root = entry;
976 }
977 
978 static void
979 vm_map_entry_unlink(vm_map_t map,
980 		    vm_map_entry_t entry)
981 {
982 	vm_map_entry_t next, prev, root;
983 
984 	VM_MAP_ASSERT_LOCKED(map);
985 	if (entry != map->root)
986 		vm_map_entry_splay(entry->start, map->root);
987 	if (entry->left == NULL)
988 		root = entry->right;
989 	else {
990 		root = vm_map_entry_splay(entry->start, entry->left);
991 		root->right = entry->right;
992 		root->adj_free = (entry->next == &map->header ? map->max_offset :
993 		    entry->next->start) - root->end;
994 		vm_map_entry_set_max_free(root);
995 	}
996 	map->root = root;
997 
998 	prev = entry->prev;
999 	next = entry->next;
1000 	next->prev = prev;
1001 	prev->next = next;
1002 	map->nentries--;
1003 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1004 	    map->nentries, entry);
1005 }
1006 
1007 /*
1008  *	vm_map_entry_resize_free:
1009  *
1010  *	Recompute the amount of free space following a vm_map_entry
1011  *	and propagate that value up the tree.  Call this function after
1012  *	resizing a map entry in-place, that is, without a call to
1013  *	vm_map_entry_link() or _unlink().
1014  *
1015  *	The map must be locked, and leaves it so.
1016  */
1017 static void
1018 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1019 {
1020 
1021 	/*
1022 	 * Using splay trees without parent pointers, propagating
1023 	 * max_free up the tree is done by moving the entry to the
1024 	 * root and making the change there.
1025 	 */
1026 	if (entry != map->root)
1027 		map->root = vm_map_entry_splay(entry->start, map->root);
1028 
1029 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1030 	    entry->next->start) - entry->end;
1031 	vm_map_entry_set_max_free(entry);
1032 }
1033 
1034 /*
1035  *	vm_map_lookup_entry:	[ internal use only ]
1036  *
1037  *	Finds the map entry containing (or
1038  *	immediately preceding) the specified address
1039  *	in the given map; the entry is returned
1040  *	in the "entry" parameter.  The boolean
1041  *	result indicates whether the address is
1042  *	actually contained in the map.
1043  */
1044 boolean_t
1045 vm_map_lookup_entry(
1046 	vm_map_t map,
1047 	vm_offset_t address,
1048 	vm_map_entry_t *entry)	/* OUT */
1049 {
1050 	vm_map_entry_t cur;
1051 	boolean_t locked;
1052 
1053 	/*
1054 	 * If the map is empty, then the map entry immediately preceding
1055 	 * "address" is the map's header.
1056 	 */
1057 	cur = map->root;
1058 	if (cur == NULL)
1059 		*entry = &map->header;
1060 	else if (address >= cur->start && cur->end > address) {
1061 		*entry = cur;
1062 		return (TRUE);
1063 	} else if ((locked = vm_map_locked(map)) ||
1064 	    sx_try_upgrade(&map->lock)) {
1065 		/*
1066 		 * Splay requires a write lock on the map.  However, it only
1067 		 * restructures the binary search tree; it does not otherwise
1068 		 * change the map.  Thus, the map's timestamp need not change
1069 		 * on a temporary upgrade.
1070 		 */
1071 		map->root = cur = vm_map_entry_splay(address, cur);
1072 		if (!locked)
1073 			sx_downgrade(&map->lock);
1074 
1075 		/*
1076 		 * If "address" is contained within a map entry, the new root
1077 		 * is that map entry.  Otherwise, the new root is a map entry
1078 		 * immediately before or after "address".
1079 		 */
1080 		if (address >= cur->start) {
1081 			*entry = cur;
1082 			if (cur->end > address)
1083 				return (TRUE);
1084 		} else
1085 			*entry = cur->prev;
1086 	} else
1087 		/*
1088 		 * Since the map is only locked for read access, perform a
1089 		 * standard binary search tree lookup for "address".
1090 		 */
1091 		for (;;) {
1092 			if (address < cur->start) {
1093 				if (cur->left == NULL) {
1094 					*entry = cur->prev;
1095 					break;
1096 				}
1097 				cur = cur->left;
1098 			} else if (cur->end > address) {
1099 				*entry = cur;
1100 				return (TRUE);
1101 			} else {
1102 				if (cur->right == NULL) {
1103 					*entry = cur;
1104 					break;
1105 				}
1106 				cur = cur->right;
1107 			}
1108 		}
1109 	return (FALSE);
1110 }
1111 
1112 /*
1113  *	vm_map_insert:
1114  *
1115  *	Inserts the given whole VM object into the target
1116  *	map at the specified address range.  The object's
1117  *	size should match that of the address range.
1118  *
1119  *	Requires that the map be locked, and leaves it so.
1120  *
1121  *	If object is non-NULL, ref count must be bumped by caller
1122  *	prior to making call to account for the new entry.
1123  */
1124 int
1125 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1126 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1127 	      int cow)
1128 {
1129 	vm_map_entry_t new_entry;
1130 	vm_map_entry_t prev_entry;
1131 	vm_map_entry_t temp_entry;
1132 	vm_eflags_t protoeflags;
1133 	struct ucred *cred;
1134 	vm_inherit_t inheritance;
1135 	boolean_t charge_prev_obj;
1136 
1137 	VM_MAP_ASSERT_LOCKED(map);
1138 
1139 	/*
1140 	 * Check that the start and end points are not bogus.
1141 	 */
1142 	if ((start < map->min_offset) || (end > map->max_offset) ||
1143 	    (start >= end))
1144 		return (KERN_INVALID_ADDRESS);
1145 
1146 	/*
1147 	 * Find the entry prior to the proposed starting address; if it's part
1148 	 * of an existing entry, this range is bogus.
1149 	 */
1150 	if (vm_map_lookup_entry(map, start, &temp_entry))
1151 		return (KERN_NO_SPACE);
1152 
1153 	prev_entry = temp_entry;
1154 
1155 	/*
1156 	 * Assert that the next entry doesn't overlap the end point.
1157 	 */
1158 	if ((prev_entry->next != &map->header) &&
1159 	    (prev_entry->next->start < end))
1160 		return (KERN_NO_SPACE);
1161 
1162 	protoeflags = 0;
1163 	charge_prev_obj = FALSE;
1164 
1165 	if (cow & MAP_COPY_ON_WRITE)
1166 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1167 
1168 	if (cow & MAP_NOFAULT) {
1169 		protoeflags |= MAP_ENTRY_NOFAULT;
1170 
1171 		KASSERT(object == NULL,
1172 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1173 	}
1174 	if (cow & MAP_DISABLE_SYNCER)
1175 		protoeflags |= MAP_ENTRY_NOSYNC;
1176 	if (cow & MAP_DISABLE_COREDUMP)
1177 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1178 	if (cow & MAP_VN_WRITECOUNT)
1179 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1180 	if (cow & MAP_INHERIT_SHARE)
1181 		inheritance = VM_INHERIT_SHARE;
1182 	else
1183 		inheritance = VM_INHERIT_DEFAULT;
1184 
1185 	cred = NULL;
1186 	KASSERT((object != kmem_object && object != kernel_object) ||
1187 	    ((object == kmem_object || object == kernel_object) &&
1188 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1189 	    ("kmem or kernel object and cow"));
1190 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1191 		goto charged;
1192 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1193 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1194 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1195 			return (KERN_RESOURCE_SHORTAGE);
1196 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1197 		    object->cred == NULL,
1198 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1199 		cred = curthread->td_ucred;
1200 		crhold(cred);
1201 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1202 			charge_prev_obj = TRUE;
1203 	}
1204 
1205 charged:
1206 	/* Expand the kernel pmap, if necessary. */
1207 	if (map == kernel_map && end > kernel_vm_end)
1208 		pmap_growkernel(end);
1209 	if (object != NULL) {
1210 		/*
1211 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1212 		 * is trivially proven to be the only mapping for any
1213 		 * of the object's pages.  (Object granularity
1214 		 * reference counting is insufficient to recognize
1215 		 * aliases with precision.)
1216 		 */
1217 		VM_OBJECT_WLOCK(object);
1218 		if (object->ref_count > 1 || object->shadow_count != 0)
1219 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1220 		VM_OBJECT_WUNLOCK(object);
1221 	}
1222 	else if ((prev_entry != &map->header) &&
1223 		 (prev_entry->eflags == protoeflags) &&
1224 		 (prev_entry->end == start) &&
1225 		 (prev_entry->wired_count == 0) &&
1226 		 (prev_entry->cred == cred ||
1227 		  (prev_entry->object.vm_object != NULL &&
1228 		   (prev_entry->object.vm_object->cred == cred))) &&
1229 		   vm_object_coalesce(prev_entry->object.vm_object,
1230 		       prev_entry->offset,
1231 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1232 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1233 		/*
1234 		 * We were able to extend the object.  Determine if we
1235 		 * can extend the previous map entry to include the
1236 		 * new range as well.
1237 		 */
1238 		if ((prev_entry->inheritance == inheritance) &&
1239 		    (prev_entry->protection == prot) &&
1240 		    (prev_entry->max_protection == max)) {
1241 			map->size += (end - prev_entry->end);
1242 			prev_entry->end = end;
1243 			vm_map_entry_resize_free(map, prev_entry);
1244 			vm_map_simplify_entry(map, prev_entry);
1245 			if (cred != NULL)
1246 				crfree(cred);
1247 			return (KERN_SUCCESS);
1248 		}
1249 
1250 		/*
1251 		 * If we can extend the object but cannot extend the
1252 		 * map entry, we have to create a new map entry.  We
1253 		 * must bump the ref count on the extended object to
1254 		 * account for it.  object may be NULL.
1255 		 */
1256 		object = prev_entry->object.vm_object;
1257 		offset = prev_entry->offset +
1258 			(prev_entry->end - prev_entry->start);
1259 		vm_object_reference(object);
1260 		if (cred != NULL && object != NULL && object->cred != NULL &&
1261 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1262 			/* Object already accounts for this uid. */
1263 			crfree(cred);
1264 			cred = NULL;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1270 	 * in things like the buffer map where we manage kva but do not manage
1271 	 * backing objects.
1272 	 */
1273 
1274 	/*
1275 	 * Create a new entry
1276 	 */
1277 	new_entry = vm_map_entry_create(map);
1278 	new_entry->start = start;
1279 	new_entry->end = end;
1280 	new_entry->cred = NULL;
1281 
1282 	new_entry->eflags = protoeflags;
1283 	new_entry->object.vm_object = object;
1284 	new_entry->offset = offset;
1285 	new_entry->avail_ssize = 0;
1286 
1287 	new_entry->inheritance = inheritance;
1288 	new_entry->protection = prot;
1289 	new_entry->max_protection = max;
1290 	new_entry->wired_count = 0;
1291 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1292 	new_entry->next_read = OFF_TO_IDX(offset);
1293 
1294 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1295 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1296 	new_entry->cred = cred;
1297 
1298 	/*
1299 	 * Insert the new entry into the list
1300 	 */
1301 	vm_map_entry_link(map, prev_entry, new_entry);
1302 	map->size += new_entry->end - new_entry->start;
1303 
1304 	/*
1305 	 * It may be possible to merge the new entry with the next and/or
1306 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1307 	 * panic can result from merging such entries.
1308 	 */
1309 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1310 		vm_map_simplify_entry(map, new_entry);
1311 
1312 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1313 		vm_map_pmap_enter(map, start, prot,
1314 				    object, OFF_TO_IDX(offset), end - start,
1315 				    cow & MAP_PREFAULT_PARTIAL);
1316 	}
1317 
1318 	return (KERN_SUCCESS);
1319 }
1320 
1321 /*
1322  *	vm_map_findspace:
1323  *
1324  *	Find the first fit (lowest VM address) for "length" free bytes
1325  *	beginning at address >= start in the given map.
1326  *
1327  *	In a vm_map_entry, "adj_free" is the amount of free space
1328  *	adjacent (higher address) to this entry, and "max_free" is the
1329  *	maximum amount of contiguous free space in its subtree.  This
1330  *	allows finding a free region in one path down the tree, so
1331  *	O(log n) amortized with splay trees.
1332  *
1333  *	The map must be locked, and leaves it so.
1334  *
1335  *	Returns: 0 on success, and starting address in *addr,
1336  *		 1 if insufficient space.
1337  */
1338 int
1339 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1340     vm_offset_t *addr)	/* OUT */
1341 {
1342 	vm_map_entry_t entry;
1343 	vm_offset_t st;
1344 
1345 	/*
1346 	 * Request must fit within min/max VM address and must avoid
1347 	 * address wrap.
1348 	 */
1349 	if (start < map->min_offset)
1350 		start = map->min_offset;
1351 	if (start + length > map->max_offset || start + length < start)
1352 		return (1);
1353 
1354 	/* Empty tree means wide open address space. */
1355 	if (map->root == NULL) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * After splay, if start comes before root node, then there
1362 	 * must be a gap from start to the root.
1363 	 */
1364 	map->root = vm_map_entry_splay(start, map->root);
1365 	if (start + length <= map->root->start) {
1366 		*addr = start;
1367 		return (0);
1368 	}
1369 
1370 	/*
1371 	 * Root is the last node that might begin its gap before
1372 	 * start, and this is the last comparison where address
1373 	 * wrap might be a problem.
1374 	 */
1375 	st = (start > map->root->end) ? start : map->root->end;
1376 	if (length <= map->root->end + map->root->adj_free - st) {
1377 		*addr = st;
1378 		return (0);
1379 	}
1380 
1381 	/* With max_free, can immediately tell if no solution. */
1382 	entry = map->root->right;
1383 	if (entry == NULL || length > entry->max_free)
1384 		return (1);
1385 
1386 	/*
1387 	 * Search the right subtree in the order: left subtree, root,
1388 	 * right subtree (first fit).  The previous splay implies that
1389 	 * all regions in the right subtree have addresses > start.
1390 	 */
1391 	while (entry != NULL) {
1392 		if (entry->left != NULL && entry->left->max_free >= length)
1393 			entry = entry->left;
1394 		else if (entry->adj_free >= length) {
1395 			*addr = entry->end;
1396 			return (0);
1397 		} else
1398 			entry = entry->right;
1399 	}
1400 
1401 	/* Can't get here, so panic if we do. */
1402 	panic("vm_map_findspace: max_free corrupt");
1403 }
1404 
1405 int
1406 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1407     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1408     vm_prot_t max, int cow)
1409 {
1410 	vm_offset_t end;
1411 	int result;
1412 
1413 	end = start + length;
1414 	vm_map_lock(map);
1415 	VM_MAP_RANGE_CHECK(map, start, end);
1416 	(void) vm_map_delete(map, start, end);
1417 	result = vm_map_insert(map, object, offset, start, end, prot,
1418 	    max, cow);
1419 	vm_map_unlock(map);
1420 	return (result);
1421 }
1422 
1423 /*
1424  *	vm_map_find finds an unallocated region in the target address
1425  *	map with the given length.  The search is defined to be
1426  *	first-fit from the specified address; the region found is
1427  *	returned in the same parameter.
1428  *
1429  *	If object is non-NULL, ref count must be bumped by caller
1430  *	prior to making call to account for the new entry.
1431  */
1432 int
1433 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1434 	    vm_offset_t *addr,	/* IN/OUT */
1435 	    vm_size_t length, int find_space, vm_prot_t prot,
1436 	    vm_prot_t max, int cow)
1437 {
1438 	vm_offset_t alignment, initial_addr, start;
1439 	int result;
1440 
1441 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1442 	    (object->flags & OBJ_COLORED) == 0))
1443 		find_space = VMFS_ANY_SPACE;
1444 	if (find_space >> 8 != 0) {
1445 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1446 		alignment = (vm_offset_t)1 << (find_space >> 8);
1447 	} else
1448 		alignment = 0;
1449 	initial_addr = *addr;
1450 again:
1451 	start = initial_addr;
1452 	vm_map_lock(map);
1453 	do {
1454 		if (find_space != VMFS_NO_SPACE) {
1455 			if (vm_map_findspace(map, start, length, addr)) {
1456 				vm_map_unlock(map);
1457 				if (find_space == VMFS_OPTIMAL_SPACE) {
1458 					find_space = VMFS_ANY_SPACE;
1459 					goto again;
1460 				}
1461 				return (KERN_NO_SPACE);
1462 			}
1463 			switch (find_space) {
1464 			case VMFS_SUPER_SPACE:
1465 			case VMFS_OPTIMAL_SPACE:
1466 				pmap_align_superpage(object, offset, addr,
1467 				    length);
1468 				break;
1469 			case VMFS_ANY_SPACE:
1470 				break;
1471 			default:
1472 				if ((*addr & (alignment - 1)) != 0) {
1473 					*addr &= ~(alignment - 1);
1474 					*addr += alignment;
1475 				}
1476 				break;
1477 			}
1478 
1479 			start = *addr;
1480 		}
1481 		result = vm_map_insert(map, object, offset, start, start +
1482 		    length, prot, max, cow);
1483 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1484 	    find_space != VMFS_ANY_SPACE);
1485 	vm_map_unlock(map);
1486 	return (result);
1487 }
1488 
1489 /*
1490  *	vm_map_simplify_entry:
1491  *
1492  *	Simplify the given map entry by merging with either neighbor.  This
1493  *	routine also has the ability to merge with both neighbors.
1494  *
1495  *	The map must be locked.
1496  *
1497  *	This routine guarentees that the passed entry remains valid (though
1498  *	possibly extended).  When merging, this routine may delete one or
1499  *	both neighbors.
1500  */
1501 void
1502 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1503 {
1504 	vm_map_entry_t next, prev;
1505 	vm_size_t prevsize, esize;
1506 
1507 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1508 		return;
1509 
1510 	prev = entry->prev;
1511 	if (prev != &map->header) {
1512 		prevsize = prev->end - prev->start;
1513 		if ( (prev->end == entry->start) &&
1514 		     (prev->object.vm_object == entry->object.vm_object) &&
1515 		     (!prev->object.vm_object ||
1516 			(prev->offset + prevsize == entry->offset)) &&
1517 		     (prev->eflags == entry->eflags) &&
1518 		     (prev->protection == entry->protection) &&
1519 		     (prev->max_protection == entry->max_protection) &&
1520 		     (prev->inheritance == entry->inheritance) &&
1521 		     (prev->wired_count == entry->wired_count) &&
1522 		     (prev->cred == entry->cred)) {
1523 			vm_map_entry_unlink(map, prev);
1524 			entry->start = prev->start;
1525 			entry->offset = prev->offset;
1526 			if (entry->prev != &map->header)
1527 				vm_map_entry_resize_free(map, entry->prev);
1528 
1529 			/*
1530 			 * If the backing object is a vnode object,
1531 			 * vm_object_deallocate() calls vrele().
1532 			 * However, vrele() does not lock the vnode
1533 			 * because the vnode has additional
1534 			 * references.  Thus, the map lock can be kept
1535 			 * without causing a lock-order reversal with
1536 			 * the vnode lock.
1537 			 *
1538 			 * Since we count the number of virtual page
1539 			 * mappings in object->un_pager.vnp.writemappings,
1540 			 * the writemappings value should not be adjusted
1541 			 * when the entry is disposed of.
1542 			 */
1543 			if (prev->object.vm_object)
1544 				vm_object_deallocate(prev->object.vm_object);
1545 			if (prev->cred != NULL)
1546 				crfree(prev->cred);
1547 			vm_map_entry_dispose(map, prev);
1548 		}
1549 	}
1550 
1551 	next = entry->next;
1552 	if (next != &map->header) {
1553 		esize = entry->end - entry->start;
1554 		if ((entry->end == next->start) &&
1555 		    (next->object.vm_object == entry->object.vm_object) &&
1556 		     (!entry->object.vm_object ||
1557 			(entry->offset + esize == next->offset)) &&
1558 		    (next->eflags == entry->eflags) &&
1559 		    (next->protection == entry->protection) &&
1560 		    (next->max_protection == entry->max_protection) &&
1561 		    (next->inheritance == entry->inheritance) &&
1562 		    (next->wired_count == entry->wired_count) &&
1563 		    (next->cred == entry->cred)) {
1564 			vm_map_entry_unlink(map, next);
1565 			entry->end = next->end;
1566 			vm_map_entry_resize_free(map, entry);
1567 
1568 			/*
1569 			 * See comment above.
1570 			 */
1571 			if (next->object.vm_object)
1572 				vm_object_deallocate(next->object.vm_object);
1573 			if (next->cred != NULL)
1574 				crfree(next->cred);
1575 			vm_map_entry_dispose(map, next);
1576 		}
1577 	}
1578 }
1579 /*
1580  *	vm_map_clip_start:	[ internal use only ]
1581  *
1582  *	Asserts that the given entry begins at or after
1583  *	the specified address; if necessary,
1584  *	it splits the entry into two.
1585  */
1586 #define vm_map_clip_start(map, entry, startaddr) \
1587 { \
1588 	if (startaddr > entry->start) \
1589 		_vm_map_clip_start(map, entry, startaddr); \
1590 }
1591 
1592 /*
1593  *	This routine is called only when it is known that
1594  *	the entry must be split.
1595  */
1596 static void
1597 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1598 {
1599 	vm_map_entry_t new_entry;
1600 
1601 	VM_MAP_ASSERT_LOCKED(map);
1602 
1603 	/*
1604 	 * Split off the front portion -- note that we must insert the new
1605 	 * entry BEFORE this one, so that this entry has the specified
1606 	 * starting address.
1607 	 */
1608 	vm_map_simplify_entry(map, entry);
1609 
1610 	/*
1611 	 * If there is no object backing this entry, we might as well create
1612 	 * one now.  If we defer it, an object can get created after the map
1613 	 * is clipped, and individual objects will be created for the split-up
1614 	 * map.  This is a bit of a hack, but is also about the best place to
1615 	 * put this improvement.
1616 	 */
1617 	if (entry->object.vm_object == NULL && !map->system_map) {
1618 		vm_object_t object;
1619 		object = vm_object_allocate(OBJT_DEFAULT,
1620 				atop(entry->end - entry->start));
1621 		entry->object.vm_object = object;
1622 		entry->offset = 0;
1623 		if (entry->cred != NULL) {
1624 			object->cred = entry->cred;
1625 			object->charge = entry->end - entry->start;
1626 			entry->cred = NULL;
1627 		}
1628 	} else if (entry->object.vm_object != NULL &&
1629 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1630 		   entry->cred != NULL) {
1631 		VM_OBJECT_WLOCK(entry->object.vm_object);
1632 		KASSERT(entry->object.vm_object->cred == NULL,
1633 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1634 		entry->object.vm_object->cred = entry->cred;
1635 		entry->object.vm_object->charge = entry->end - entry->start;
1636 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1637 		entry->cred = NULL;
1638 	}
1639 
1640 	new_entry = vm_map_entry_create(map);
1641 	*new_entry = *entry;
1642 
1643 	new_entry->end = start;
1644 	entry->offset += (start - entry->start);
1645 	entry->start = start;
1646 	if (new_entry->cred != NULL)
1647 		crhold(entry->cred);
1648 
1649 	vm_map_entry_link(map, entry->prev, new_entry);
1650 
1651 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1652 		vm_object_reference(new_entry->object.vm_object);
1653 		/*
1654 		 * The object->un_pager.vnp.writemappings for the
1655 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1656 		 * kept as is here.  The virtual pages are
1657 		 * re-distributed among the clipped entries, so the sum is
1658 		 * left the same.
1659 		 */
1660 	}
1661 }
1662 
1663 /*
1664  *	vm_map_clip_end:	[ internal use only ]
1665  *
1666  *	Asserts that the given entry ends at or before
1667  *	the specified address; if necessary,
1668  *	it splits the entry into two.
1669  */
1670 #define vm_map_clip_end(map, entry, endaddr) \
1671 { \
1672 	if ((endaddr) < (entry->end)) \
1673 		_vm_map_clip_end((map), (entry), (endaddr)); \
1674 }
1675 
1676 /*
1677  *	This routine is called only when it is known that
1678  *	the entry must be split.
1679  */
1680 static void
1681 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1682 {
1683 	vm_map_entry_t new_entry;
1684 
1685 	VM_MAP_ASSERT_LOCKED(map);
1686 
1687 	/*
1688 	 * If there is no object backing this entry, we might as well create
1689 	 * one now.  If we defer it, an object can get created after the map
1690 	 * is clipped, and individual objects will be created for the split-up
1691 	 * map.  This is a bit of a hack, but is also about the best place to
1692 	 * put this improvement.
1693 	 */
1694 	if (entry->object.vm_object == NULL && !map->system_map) {
1695 		vm_object_t object;
1696 		object = vm_object_allocate(OBJT_DEFAULT,
1697 				atop(entry->end - entry->start));
1698 		entry->object.vm_object = object;
1699 		entry->offset = 0;
1700 		if (entry->cred != NULL) {
1701 			object->cred = entry->cred;
1702 			object->charge = entry->end - entry->start;
1703 			entry->cred = NULL;
1704 		}
1705 	} else if (entry->object.vm_object != NULL &&
1706 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1707 		   entry->cred != NULL) {
1708 		VM_OBJECT_WLOCK(entry->object.vm_object);
1709 		KASSERT(entry->object.vm_object->cred == NULL,
1710 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1711 		entry->object.vm_object->cred = entry->cred;
1712 		entry->object.vm_object->charge = entry->end - entry->start;
1713 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1714 		entry->cred = NULL;
1715 	}
1716 
1717 	/*
1718 	 * Create a new entry and insert it AFTER the specified entry
1719 	 */
1720 	new_entry = vm_map_entry_create(map);
1721 	*new_entry = *entry;
1722 
1723 	new_entry->start = entry->end = end;
1724 	new_entry->offset += (end - entry->start);
1725 	if (new_entry->cred != NULL)
1726 		crhold(entry->cred);
1727 
1728 	vm_map_entry_link(map, entry, new_entry);
1729 
1730 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1731 		vm_object_reference(new_entry->object.vm_object);
1732 	}
1733 }
1734 
1735 /*
1736  *	vm_map_submap:		[ kernel use only ]
1737  *
1738  *	Mark the given range as handled by a subordinate map.
1739  *
1740  *	This range must have been created with vm_map_find,
1741  *	and no other operations may have been performed on this
1742  *	range prior to calling vm_map_submap.
1743  *
1744  *	Only a limited number of operations can be performed
1745  *	within this rage after calling vm_map_submap:
1746  *		vm_fault
1747  *	[Don't try vm_map_copy!]
1748  *
1749  *	To remove a submapping, one must first remove the
1750  *	range from the superior map, and then destroy the
1751  *	submap (if desired).  [Better yet, don't try it.]
1752  */
1753 int
1754 vm_map_submap(
1755 	vm_map_t map,
1756 	vm_offset_t start,
1757 	vm_offset_t end,
1758 	vm_map_t submap)
1759 {
1760 	vm_map_entry_t entry;
1761 	int result = KERN_INVALID_ARGUMENT;
1762 
1763 	vm_map_lock(map);
1764 
1765 	VM_MAP_RANGE_CHECK(map, start, end);
1766 
1767 	if (vm_map_lookup_entry(map, start, &entry)) {
1768 		vm_map_clip_start(map, entry, start);
1769 	} else
1770 		entry = entry->next;
1771 
1772 	vm_map_clip_end(map, entry, end);
1773 
1774 	if ((entry->start == start) && (entry->end == end) &&
1775 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1776 	    (entry->object.vm_object == NULL)) {
1777 		entry->object.sub_map = submap;
1778 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1779 		result = KERN_SUCCESS;
1780 	}
1781 	vm_map_unlock(map);
1782 
1783 	return (result);
1784 }
1785 
1786 /*
1787  * The maximum number of pages to map
1788  */
1789 #define	MAX_INIT_PT	96
1790 
1791 /*
1792  *	vm_map_pmap_enter:
1793  *
1794  *	Preload read-only mappings for the specified object's resident pages
1795  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1796  *	the resident pages within the address range [addr, addr + ulmin(size,
1797  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1798  *	the specified address range are mapped.  This eliminates many soft
1799  *	faults on process startup and immediately after an mmap(2).  Because
1800  *	these are speculative mappings, cached pages are not reactivated and
1801  *	mapped.
1802  */
1803 void
1804 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1805     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1806 {
1807 	vm_offset_t start;
1808 	vm_page_t p, p_start;
1809 	vm_pindex_t psize, tmpidx;
1810 
1811 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1812 		return;
1813 	VM_OBJECT_RLOCK(object);
1814 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1815 		VM_OBJECT_RUNLOCK(object);
1816 		VM_OBJECT_WLOCK(object);
1817 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1818 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1819 			    size);
1820 			VM_OBJECT_WUNLOCK(object);
1821 			return;
1822 		}
1823 		VM_OBJECT_LOCK_DOWNGRADE(object);
1824 	}
1825 
1826 	psize = atop(size);
1827 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1828 		psize = MAX_INIT_PT;
1829 	if (psize + pindex > object->size) {
1830 		if (object->size < pindex) {
1831 			VM_OBJECT_RUNLOCK(object);
1832 			return;
1833 		}
1834 		psize = object->size - pindex;
1835 	}
1836 
1837 	start = 0;
1838 	p_start = NULL;
1839 
1840 	p = vm_page_find_least(object, pindex);
1841 	/*
1842 	 * Assert: the variable p is either (1) the page with the
1843 	 * least pindex greater than or equal to the parameter pindex
1844 	 * or (2) NULL.
1845 	 */
1846 	for (;
1847 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1848 	     p = TAILQ_NEXT(p, listq)) {
1849 		/*
1850 		 * don't allow an madvise to blow away our really
1851 		 * free pages allocating pv entries.
1852 		 */
1853 		if ((flags & MAP_PREFAULT_MADVISE) &&
1854 		    cnt.v_free_count < cnt.v_free_reserved) {
1855 			psize = tmpidx;
1856 			break;
1857 		}
1858 		if (p->valid == VM_PAGE_BITS_ALL) {
1859 			if (p_start == NULL) {
1860 				start = addr + ptoa(tmpidx);
1861 				p_start = p;
1862 			}
1863 		} else if (p_start != NULL) {
1864 			pmap_enter_object(map->pmap, start, addr +
1865 			    ptoa(tmpidx), p_start, prot);
1866 			p_start = NULL;
1867 		}
1868 	}
1869 	if (p_start != NULL)
1870 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1871 		    p_start, prot);
1872 	VM_OBJECT_RUNLOCK(object);
1873 }
1874 
1875 /*
1876  *	vm_map_protect:
1877  *
1878  *	Sets the protection of the specified address
1879  *	region in the target map.  If "set_max" is
1880  *	specified, the maximum protection is to be set;
1881  *	otherwise, only the current protection is affected.
1882  */
1883 int
1884 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1885 	       vm_prot_t new_prot, boolean_t set_max)
1886 {
1887 	vm_map_entry_t current, entry;
1888 	vm_object_t obj;
1889 	struct ucred *cred;
1890 	vm_prot_t old_prot;
1891 
1892 	vm_map_lock(map);
1893 
1894 	VM_MAP_RANGE_CHECK(map, start, end);
1895 
1896 	if (vm_map_lookup_entry(map, start, &entry)) {
1897 		vm_map_clip_start(map, entry, start);
1898 	} else {
1899 		entry = entry->next;
1900 	}
1901 
1902 	/*
1903 	 * Make a first pass to check for protection violations.
1904 	 */
1905 	current = entry;
1906 	while ((current != &map->header) && (current->start < end)) {
1907 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1908 			vm_map_unlock(map);
1909 			return (KERN_INVALID_ARGUMENT);
1910 		}
1911 		if ((new_prot & current->max_protection) != new_prot) {
1912 			vm_map_unlock(map);
1913 			return (KERN_PROTECTION_FAILURE);
1914 		}
1915 		current = current->next;
1916 	}
1917 
1918 
1919 	/*
1920 	 * Do an accounting pass for private read-only mappings that
1921 	 * now will do cow due to allowed write (e.g. debugger sets
1922 	 * breakpoint on text segment)
1923 	 */
1924 	for (current = entry; (current != &map->header) &&
1925 	     (current->start < end); current = current->next) {
1926 
1927 		vm_map_clip_end(map, current, end);
1928 
1929 		if (set_max ||
1930 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1931 		    ENTRY_CHARGED(current)) {
1932 			continue;
1933 		}
1934 
1935 		cred = curthread->td_ucred;
1936 		obj = current->object.vm_object;
1937 
1938 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1939 			if (!swap_reserve(current->end - current->start)) {
1940 				vm_map_unlock(map);
1941 				return (KERN_RESOURCE_SHORTAGE);
1942 			}
1943 			crhold(cred);
1944 			current->cred = cred;
1945 			continue;
1946 		}
1947 
1948 		VM_OBJECT_WLOCK(obj);
1949 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1950 			VM_OBJECT_WUNLOCK(obj);
1951 			continue;
1952 		}
1953 
1954 		/*
1955 		 * Charge for the whole object allocation now, since
1956 		 * we cannot distinguish between non-charged and
1957 		 * charged clipped mapping of the same object later.
1958 		 */
1959 		KASSERT(obj->charge == 0,
1960 		    ("vm_map_protect: object %p overcharged\n", obj));
1961 		if (!swap_reserve(ptoa(obj->size))) {
1962 			VM_OBJECT_WUNLOCK(obj);
1963 			vm_map_unlock(map);
1964 			return (KERN_RESOURCE_SHORTAGE);
1965 		}
1966 
1967 		crhold(cred);
1968 		obj->cred = cred;
1969 		obj->charge = ptoa(obj->size);
1970 		VM_OBJECT_WUNLOCK(obj);
1971 	}
1972 
1973 	/*
1974 	 * Go back and fix up protections. [Note that clipping is not
1975 	 * necessary the second time.]
1976 	 */
1977 	current = entry;
1978 	while ((current != &map->header) && (current->start < end)) {
1979 		old_prot = current->protection;
1980 
1981 		if (set_max)
1982 			current->protection =
1983 			    (current->max_protection = new_prot) &
1984 			    old_prot;
1985 		else
1986 			current->protection = new_prot;
1987 
1988 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1989 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1990 		    (current->protection & VM_PROT_WRITE) != 0 &&
1991 		    (old_prot & VM_PROT_WRITE) == 0) {
1992 			vm_fault_copy_entry(map, map, current, current, NULL);
1993 		}
1994 
1995 		/*
1996 		 * When restricting access, update the physical map.  Worry
1997 		 * about copy-on-write here.
1998 		 */
1999 		if ((old_prot & ~current->protection) != 0) {
2000 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2001 							VM_PROT_ALL)
2002 			pmap_protect(map->pmap, current->start,
2003 			    current->end,
2004 			    current->protection & MASK(current));
2005 #undef	MASK
2006 		}
2007 		vm_map_simplify_entry(map, current);
2008 		current = current->next;
2009 	}
2010 	vm_map_unlock(map);
2011 	return (KERN_SUCCESS);
2012 }
2013 
2014 /*
2015  *	vm_map_madvise:
2016  *
2017  *	This routine traverses a processes map handling the madvise
2018  *	system call.  Advisories are classified as either those effecting
2019  *	the vm_map_entry structure, or those effecting the underlying
2020  *	objects.
2021  */
2022 int
2023 vm_map_madvise(
2024 	vm_map_t map,
2025 	vm_offset_t start,
2026 	vm_offset_t end,
2027 	int behav)
2028 {
2029 	vm_map_entry_t current, entry;
2030 	int modify_map = 0;
2031 
2032 	/*
2033 	 * Some madvise calls directly modify the vm_map_entry, in which case
2034 	 * we need to use an exclusive lock on the map and we need to perform
2035 	 * various clipping operations.  Otherwise we only need a read-lock
2036 	 * on the map.
2037 	 */
2038 	switch(behav) {
2039 	case MADV_NORMAL:
2040 	case MADV_SEQUENTIAL:
2041 	case MADV_RANDOM:
2042 	case MADV_NOSYNC:
2043 	case MADV_AUTOSYNC:
2044 	case MADV_NOCORE:
2045 	case MADV_CORE:
2046 		modify_map = 1;
2047 		vm_map_lock(map);
2048 		break;
2049 	case MADV_WILLNEED:
2050 	case MADV_DONTNEED:
2051 	case MADV_FREE:
2052 		vm_map_lock_read(map);
2053 		break;
2054 	default:
2055 		return (KERN_INVALID_ARGUMENT);
2056 	}
2057 
2058 	/*
2059 	 * Locate starting entry and clip if necessary.
2060 	 */
2061 	VM_MAP_RANGE_CHECK(map, start, end);
2062 
2063 	if (vm_map_lookup_entry(map, start, &entry)) {
2064 		if (modify_map)
2065 			vm_map_clip_start(map, entry, start);
2066 	} else {
2067 		entry = entry->next;
2068 	}
2069 
2070 	if (modify_map) {
2071 		/*
2072 		 * madvise behaviors that are implemented in the vm_map_entry.
2073 		 *
2074 		 * We clip the vm_map_entry so that behavioral changes are
2075 		 * limited to the specified address range.
2076 		 */
2077 		for (current = entry;
2078 		     (current != &map->header) && (current->start < end);
2079 		     current = current->next
2080 		) {
2081 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2082 				continue;
2083 
2084 			vm_map_clip_end(map, current, end);
2085 
2086 			switch (behav) {
2087 			case MADV_NORMAL:
2088 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2089 				break;
2090 			case MADV_SEQUENTIAL:
2091 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2092 				break;
2093 			case MADV_RANDOM:
2094 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2095 				break;
2096 			case MADV_NOSYNC:
2097 				current->eflags |= MAP_ENTRY_NOSYNC;
2098 				break;
2099 			case MADV_AUTOSYNC:
2100 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2101 				break;
2102 			case MADV_NOCORE:
2103 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2104 				break;
2105 			case MADV_CORE:
2106 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2107 				break;
2108 			default:
2109 				break;
2110 			}
2111 			vm_map_simplify_entry(map, current);
2112 		}
2113 		vm_map_unlock(map);
2114 	} else {
2115 		vm_pindex_t pstart, pend;
2116 
2117 		/*
2118 		 * madvise behaviors that are implemented in the underlying
2119 		 * vm_object.
2120 		 *
2121 		 * Since we don't clip the vm_map_entry, we have to clip
2122 		 * the vm_object pindex and count.
2123 		 */
2124 		for (current = entry;
2125 		     (current != &map->header) && (current->start < end);
2126 		     current = current->next
2127 		) {
2128 			vm_offset_t useEnd, useStart;
2129 
2130 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2131 				continue;
2132 
2133 			pstart = OFF_TO_IDX(current->offset);
2134 			pend = pstart + atop(current->end - current->start);
2135 			useStart = current->start;
2136 			useEnd = current->end;
2137 
2138 			if (current->start < start) {
2139 				pstart += atop(start - current->start);
2140 				useStart = start;
2141 			}
2142 			if (current->end > end) {
2143 				pend -= atop(current->end - end);
2144 				useEnd = end;
2145 			}
2146 
2147 			if (pstart >= pend)
2148 				continue;
2149 
2150 			/*
2151 			 * Perform the pmap_advise() before clearing
2152 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2153 			 * concurrent pmap operation, such as pmap_remove(),
2154 			 * could clear a reference in the pmap and set
2155 			 * PGA_REFERENCED on the page before the pmap_advise()
2156 			 * had completed.  Consequently, the page would appear
2157 			 * referenced based upon an old reference that
2158 			 * occurred before this pmap_advise() ran.
2159 			 */
2160 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2161 				pmap_advise(map->pmap, useStart, useEnd,
2162 				    behav);
2163 
2164 			vm_object_madvise(current->object.vm_object, pstart,
2165 			    pend, behav);
2166 			if (behav == MADV_WILLNEED) {
2167 				vm_map_pmap_enter(map,
2168 				    useStart,
2169 				    current->protection,
2170 				    current->object.vm_object,
2171 				    pstart,
2172 				    ptoa(pend - pstart),
2173 				    MAP_PREFAULT_MADVISE
2174 				);
2175 			}
2176 		}
2177 		vm_map_unlock_read(map);
2178 	}
2179 	return (0);
2180 }
2181 
2182 
2183 /*
2184  *	vm_map_inherit:
2185  *
2186  *	Sets the inheritance of the specified address
2187  *	range in the target map.  Inheritance
2188  *	affects how the map will be shared with
2189  *	child maps at the time of vmspace_fork.
2190  */
2191 int
2192 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2193 	       vm_inherit_t new_inheritance)
2194 {
2195 	vm_map_entry_t entry;
2196 	vm_map_entry_t temp_entry;
2197 
2198 	switch (new_inheritance) {
2199 	case VM_INHERIT_NONE:
2200 	case VM_INHERIT_COPY:
2201 	case VM_INHERIT_SHARE:
2202 		break;
2203 	default:
2204 		return (KERN_INVALID_ARGUMENT);
2205 	}
2206 	vm_map_lock(map);
2207 	VM_MAP_RANGE_CHECK(map, start, end);
2208 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2209 		entry = temp_entry;
2210 		vm_map_clip_start(map, entry, start);
2211 	} else
2212 		entry = temp_entry->next;
2213 	while ((entry != &map->header) && (entry->start < end)) {
2214 		vm_map_clip_end(map, entry, end);
2215 		entry->inheritance = new_inheritance;
2216 		vm_map_simplify_entry(map, entry);
2217 		entry = entry->next;
2218 	}
2219 	vm_map_unlock(map);
2220 	return (KERN_SUCCESS);
2221 }
2222 
2223 /*
2224  *	vm_map_unwire:
2225  *
2226  *	Implements both kernel and user unwiring.
2227  */
2228 int
2229 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2230     int flags)
2231 {
2232 	vm_map_entry_t entry, first_entry, tmp_entry;
2233 	vm_offset_t saved_start;
2234 	unsigned int last_timestamp;
2235 	int rv;
2236 	boolean_t need_wakeup, result, user_unwire;
2237 
2238 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2239 	vm_map_lock(map);
2240 	VM_MAP_RANGE_CHECK(map, start, end);
2241 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2242 		if (flags & VM_MAP_WIRE_HOLESOK)
2243 			first_entry = first_entry->next;
2244 		else {
2245 			vm_map_unlock(map);
2246 			return (KERN_INVALID_ADDRESS);
2247 		}
2248 	}
2249 	last_timestamp = map->timestamp;
2250 	entry = first_entry;
2251 	while (entry != &map->header && entry->start < end) {
2252 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2253 			/*
2254 			 * We have not yet clipped the entry.
2255 			 */
2256 			saved_start = (start >= entry->start) ? start :
2257 			    entry->start;
2258 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2259 			if (vm_map_unlock_and_wait(map, 0)) {
2260 				/*
2261 				 * Allow interruption of user unwiring?
2262 				 */
2263 			}
2264 			vm_map_lock(map);
2265 			if (last_timestamp+1 != map->timestamp) {
2266 				/*
2267 				 * Look again for the entry because the map was
2268 				 * modified while it was unlocked.
2269 				 * Specifically, the entry may have been
2270 				 * clipped, merged, or deleted.
2271 				 */
2272 				if (!vm_map_lookup_entry(map, saved_start,
2273 				    &tmp_entry)) {
2274 					if (flags & VM_MAP_WIRE_HOLESOK)
2275 						tmp_entry = tmp_entry->next;
2276 					else {
2277 						if (saved_start == start) {
2278 							/*
2279 							 * First_entry has been deleted.
2280 							 */
2281 							vm_map_unlock(map);
2282 							return (KERN_INVALID_ADDRESS);
2283 						}
2284 						end = saved_start;
2285 						rv = KERN_INVALID_ADDRESS;
2286 						goto done;
2287 					}
2288 				}
2289 				if (entry == first_entry)
2290 					first_entry = tmp_entry;
2291 				else
2292 					first_entry = NULL;
2293 				entry = tmp_entry;
2294 			}
2295 			last_timestamp = map->timestamp;
2296 			continue;
2297 		}
2298 		vm_map_clip_start(map, entry, start);
2299 		vm_map_clip_end(map, entry, end);
2300 		/*
2301 		 * Mark the entry in case the map lock is released.  (See
2302 		 * above.)
2303 		 */
2304 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2305 		entry->wiring_thread = curthread;
2306 		/*
2307 		 * Check the map for holes in the specified region.
2308 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2309 		 */
2310 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2311 		    (entry->end < end && (entry->next == &map->header ||
2312 		    entry->next->start > entry->end))) {
2313 			end = entry->end;
2314 			rv = KERN_INVALID_ADDRESS;
2315 			goto done;
2316 		}
2317 		/*
2318 		 * If system unwiring, require that the entry is system wired.
2319 		 */
2320 		if (!user_unwire &&
2321 		    vm_map_entry_system_wired_count(entry) == 0) {
2322 			end = entry->end;
2323 			rv = KERN_INVALID_ARGUMENT;
2324 			goto done;
2325 		}
2326 		entry = entry->next;
2327 	}
2328 	rv = KERN_SUCCESS;
2329 done:
2330 	need_wakeup = FALSE;
2331 	if (first_entry == NULL) {
2332 		result = vm_map_lookup_entry(map, start, &first_entry);
2333 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2334 			first_entry = first_entry->next;
2335 		else
2336 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2337 	}
2338 	for (entry = first_entry; entry != &map->header && entry->start < end;
2339 	    entry = entry->next) {
2340 		/*
2341 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2342 		 * space in the unwired region could have been mapped
2343 		 * while the map lock was dropped for draining
2344 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2345 		 * could be simultaneously wiring this new mapping
2346 		 * entry.  Detect these cases and skip any entries
2347 		 * marked as in transition by us.
2348 		 */
2349 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2350 		    entry->wiring_thread != curthread) {
2351 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2352 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2353 			continue;
2354 		}
2355 
2356 		if (rv == KERN_SUCCESS && (!user_unwire ||
2357 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2358 			if (user_unwire)
2359 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2360 			entry->wired_count--;
2361 			if (entry->wired_count == 0) {
2362 				/*
2363 				 * Retain the map lock.
2364 				 */
2365 				vm_fault_unwire(map, entry->start, entry->end,
2366 				    entry->object.vm_object != NULL &&
2367 				    (entry->object.vm_object->flags &
2368 				    OBJ_FICTITIOUS) != 0);
2369 			}
2370 		}
2371 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2372 		    ("vm_map_unwire: in-transition flag missing"));
2373 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2374 		entry->wiring_thread = NULL;
2375 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2376 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2377 			need_wakeup = TRUE;
2378 		}
2379 		vm_map_simplify_entry(map, entry);
2380 	}
2381 	vm_map_unlock(map);
2382 	if (need_wakeup)
2383 		vm_map_wakeup(map);
2384 	return (rv);
2385 }
2386 
2387 /*
2388  *	vm_map_wire:
2389  *
2390  *	Implements both kernel and user wiring.
2391  */
2392 int
2393 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2394     int flags)
2395 {
2396 	vm_map_entry_t entry, first_entry, tmp_entry;
2397 	vm_offset_t saved_end, saved_start;
2398 	unsigned int last_timestamp;
2399 	int rv;
2400 	boolean_t fictitious, need_wakeup, result, user_wire;
2401 	vm_prot_t prot;
2402 
2403 	prot = 0;
2404 	if (flags & VM_MAP_WIRE_WRITE)
2405 		prot |= VM_PROT_WRITE;
2406 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2407 	vm_map_lock(map);
2408 	VM_MAP_RANGE_CHECK(map, start, end);
2409 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2410 		if (flags & VM_MAP_WIRE_HOLESOK)
2411 			first_entry = first_entry->next;
2412 		else {
2413 			vm_map_unlock(map);
2414 			return (KERN_INVALID_ADDRESS);
2415 		}
2416 	}
2417 	last_timestamp = map->timestamp;
2418 	entry = first_entry;
2419 	while (entry != &map->header && entry->start < end) {
2420 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2421 			/*
2422 			 * We have not yet clipped the entry.
2423 			 */
2424 			saved_start = (start >= entry->start) ? start :
2425 			    entry->start;
2426 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2427 			if (vm_map_unlock_and_wait(map, 0)) {
2428 				/*
2429 				 * Allow interruption of user wiring?
2430 				 */
2431 			}
2432 			vm_map_lock(map);
2433 			if (last_timestamp + 1 != map->timestamp) {
2434 				/*
2435 				 * Look again for the entry because the map was
2436 				 * modified while it was unlocked.
2437 				 * Specifically, the entry may have been
2438 				 * clipped, merged, or deleted.
2439 				 */
2440 				if (!vm_map_lookup_entry(map, saved_start,
2441 				    &tmp_entry)) {
2442 					if (flags & VM_MAP_WIRE_HOLESOK)
2443 						tmp_entry = tmp_entry->next;
2444 					else {
2445 						if (saved_start == start) {
2446 							/*
2447 							 * first_entry has been deleted.
2448 							 */
2449 							vm_map_unlock(map);
2450 							return (KERN_INVALID_ADDRESS);
2451 						}
2452 						end = saved_start;
2453 						rv = KERN_INVALID_ADDRESS;
2454 						goto done;
2455 					}
2456 				}
2457 				if (entry == first_entry)
2458 					first_entry = tmp_entry;
2459 				else
2460 					first_entry = NULL;
2461 				entry = tmp_entry;
2462 			}
2463 			last_timestamp = map->timestamp;
2464 			continue;
2465 		}
2466 		vm_map_clip_start(map, entry, start);
2467 		vm_map_clip_end(map, entry, end);
2468 		/*
2469 		 * Mark the entry in case the map lock is released.  (See
2470 		 * above.)
2471 		 */
2472 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2473 		entry->wiring_thread = curthread;
2474 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2475 		    || (entry->protection & prot) != prot) {
2476 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2477 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2478 				end = entry->end;
2479 				rv = KERN_INVALID_ADDRESS;
2480 				goto done;
2481 			}
2482 			goto next_entry;
2483 		}
2484 		if (entry->wired_count == 0) {
2485 			entry->wired_count++;
2486 			saved_start = entry->start;
2487 			saved_end = entry->end;
2488 			fictitious = entry->object.vm_object != NULL &&
2489 			    (entry->object.vm_object->flags &
2490 			    OBJ_FICTITIOUS) != 0;
2491 			/*
2492 			 * Release the map lock, relying on the in-transition
2493 			 * mark.  Mark the map busy for fork.
2494 			 */
2495 			vm_map_busy(map);
2496 			vm_map_unlock(map);
2497 			rv = vm_fault_wire(map, saved_start, saved_end,
2498 			    fictitious);
2499 			vm_map_lock(map);
2500 			vm_map_unbusy(map);
2501 			if (last_timestamp + 1 != map->timestamp) {
2502 				/*
2503 				 * Look again for the entry because the map was
2504 				 * modified while it was unlocked.  The entry
2505 				 * may have been clipped, but NOT merged or
2506 				 * deleted.
2507 				 */
2508 				result = vm_map_lookup_entry(map, saved_start,
2509 				    &tmp_entry);
2510 				KASSERT(result, ("vm_map_wire: lookup failed"));
2511 				if (entry == first_entry)
2512 					first_entry = tmp_entry;
2513 				else
2514 					first_entry = NULL;
2515 				entry = tmp_entry;
2516 				while (entry->end < saved_end) {
2517 					if (rv != KERN_SUCCESS) {
2518 						KASSERT(entry->wired_count == 1,
2519 						    ("vm_map_wire: bad count"));
2520 						entry->wired_count = -1;
2521 					}
2522 					entry = entry->next;
2523 				}
2524 			}
2525 			last_timestamp = map->timestamp;
2526 			if (rv != KERN_SUCCESS) {
2527 				KASSERT(entry->wired_count == 1,
2528 				    ("vm_map_wire: bad count"));
2529 				/*
2530 				 * Assign an out-of-range value to represent
2531 				 * the failure to wire this entry.
2532 				 */
2533 				entry->wired_count = -1;
2534 				end = entry->end;
2535 				goto done;
2536 			}
2537 		} else if (!user_wire ||
2538 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2539 			entry->wired_count++;
2540 		}
2541 		/*
2542 		 * Check the map for holes in the specified region.
2543 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2544 		 */
2545 	next_entry:
2546 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2547 		    (entry->end < end && (entry->next == &map->header ||
2548 		    entry->next->start > entry->end))) {
2549 			end = entry->end;
2550 			rv = KERN_INVALID_ADDRESS;
2551 			goto done;
2552 		}
2553 		entry = entry->next;
2554 	}
2555 	rv = KERN_SUCCESS;
2556 done:
2557 	need_wakeup = FALSE;
2558 	if (first_entry == NULL) {
2559 		result = vm_map_lookup_entry(map, start, &first_entry);
2560 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2561 			first_entry = first_entry->next;
2562 		else
2563 			KASSERT(result, ("vm_map_wire: lookup failed"));
2564 	}
2565 	for (entry = first_entry; entry != &map->header && entry->start < end;
2566 	    entry = entry->next) {
2567 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2568 			goto next_entry_done;
2569 
2570 		/*
2571 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2572 		 * space in the unwired region could have been mapped
2573 		 * while the map lock was dropped for faulting in the
2574 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2575 		 * Moreover, another thread could be simultaneously
2576 		 * wiring this new mapping entry.  Detect these cases
2577 		 * and skip any entries marked as in transition by us.
2578 		 */
2579 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2580 		    entry->wiring_thread != curthread) {
2581 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2582 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2583 			continue;
2584 		}
2585 
2586 		if (rv == KERN_SUCCESS) {
2587 			if (user_wire)
2588 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2589 		} else if (entry->wired_count == -1) {
2590 			/*
2591 			 * Wiring failed on this entry.  Thus, unwiring is
2592 			 * unnecessary.
2593 			 */
2594 			entry->wired_count = 0;
2595 		} else {
2596 			if (!user_wire ||
2597 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2598 				entry->wired_count--;
2599 			if (entry->wired_count == 0) {
2600 				/*
2601 				 * Retain the map lock.
2602 				 */
2603 				vm_fault_unwire(map, entry->start, entry->end,
2604 				    entry->object.vm_object != NULL &&
2605 				    (entry->object.vm_object->flags &
2606 				    OBJ_FICTITIOUS) != 0);
2607 			}
2608 		}
2609 	next_entry_done:
2610 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2611 		    ("vm_map_wire: in-transition flag missing %p", entry));
2612 		KASSERT(entry->wiring_thread == curthread,
2613 		    ("vm_map_wire: alien wire %p", entry));
2614 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2615 		    MAP_ENTRY_WIRE_SKIPPED);
2616 		entry->wiring_thread = NULL;
2617 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2618 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2619 			need_wakeup = TRUE;
2620 		}
2621 		vm_map_simplify_entry(map, entry);
2622 	}
2623 	vm_map_unlock(map);
2624 	if (need_wakeup)
2625 		vm_map_wakeup(map);
2626 	return (rv);
2627 }
2628 
2629 /*
2630  * vm_map_sync
2631  *
2632  * Push any dirty cached pages in the address range to their pager.
2633  * If syncio is TRUE, dirty pages are written synchronously.
2634  * If invalidate is TRUE, any cached pages are freed as well.
2635  *
2636  * If the size of the region from start to end is zero, we are
2637  * supposed to flush all modified pages within the region containing
2638  * start.  Unfortunately, a region can be split or coalesced with
2639  * neighboring regions, making it difficult to determine what the
2640  * original region was.  Therefore, we approximate this requirement by
2641  * flushing the current region containing start.
2642  *
2643  * Returns an error if any part of the specified range is not mapped.
2644  */
2645 int
2646 vm_map_sync(
2647 	vm_map_t map,
2648 	vm_offset_t start,
2649 	vm_offset_t end,
2650 	boolean_t syncio,
2651 	boolean_t invalidate)
2652 {
2653 	vm_map_entry_t current;
2654 	vm_map_entry_t entry;
2655 	vm_size_t size;
2656 	vm_object_t object;
2657 	vm_ooffset_t offset;
2658 	unsigned int last_timestamp;
2659 	boolean_t failed;
2660 
2661 	vm_map_lock_read(map);
2662 	VM_MAP_RANGE_CHECK(map, start, end);
2663 	if (!vm_map_lookup_entry(map, start, &entry)) {
2664 		vm_map_unlock_read(map);
2665 		return (KERN_INVALID_ADDRESS);
2666 	} else if (start == end) {
2667 		start = entry->start;
2668 		end = entry->end;
2669 	}
2670 	/*
2671 	 * Make a first pass to check for user-wired memory and holes.
2672 	 */
2673 	for (current = entry; current != &map->header && current->start < end;
2674 	    current = current->next) {
2675 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2676 			vm_map_unlock_read(map);
2677 			return (KERN_INVALID_ARGUMENT);
2678 		}
2679 		if (end > current->end &&
2680 		    (current->next == &map->header ||
2681 			current->end != current->next->start)) {
2682 			vm_map_unlock_read(map);
2683 			return (KERN_INVALID_ADDRESS);
2684 		}
2685 	}
2686 
2687 	if (invalidate)
2688 		pmap_remove(map->pmap, start, end);
2689 	failed = FALSE;
2690 
2691 	/*
2692 	 * Make a second pass, cleaning/uncaching pages from the indicated
2693 	 * objects as we go.
2694 	 */
2695 	for (current = entry; current != &map->header && current->start < end;) {
2696 		offset = current->offset + (start - current->start);
2697 		size = (end <= current->end ? end : current->end) - start;
2698 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2699 			vm_map_t smap;
2700 			vm_map_entry_t tentry;
2701 			vm_size_t tsize;
2702 
2703 			smap = current->object.sub_map;
2704 			vm_map_lock_read(smap);
2705 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2706 			tsize = tentry->end - offset;
2707 			if (tsize < size)
2708 				size = tsize;
2709 			object = tentry->object.vm_object;
2710 			offset = tentry->offset + (offset - tentry->start);
2711 			vm_map_unlock_read(smap);
2712 		} else {
2713 			object = current->object.vm_object;
2714 		}
2715 		vm_object_reference(object);
2716 		last_timestamp = map->timestamp;
2717 		vm_map_unlock_read(map);
2718 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2719 			failed = TRUE;
2720 		start += size;
2721 		vm_object_deallocate(object);
2722 		vm_map_lock_read(map);
2723 		if (last_timestamp == map->timestamp ||
2724 		    !vm_map_lookup_entry(map, start, &current))
2725 			current = current->next;
2726 	}
2727 
2728 	vm_map_unlock_read(map);
2729 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2730 }
2731 
2732 /*
2733  *	vm_map_entry_unwire:	[ internal use only ]
2734  *
2735  *	Make the region specified by this entry pageable.
2736  *
2737  *	The map in question should be locked.
2738  *	[This is the reason for this routine's existence.]
2739  */
2740 static void
2741 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2742 {
2743 	vm_fault_unwire(map, entry->start, entry->end,
2744 	    entry->object.vm_object != NULL &&
2745 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2746 	entry->wired_count = 0;
2747 }
2748 
2749 static void
2750 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2751 {
2752 
2753 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2754 		vm_object_deallocate(entry->object.vm_object);
2755 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2756 }
2757 
2758 /*
2759  *	vm_map_entry_delete:	[ internal use only ]
2760  *
2761  *	Deallocate the given entry from the target map.
2762  */
2763 static void
2764 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2765 {
2766 	vm_object_t object;
2767 	vm_pindex_t offidxstart, offidxend, count, size1;
2768 	vm_ooffset_t size;
2769 
2770 	vm_map_entry_unlink(map, entry);
2771 	object = entry->object.vm_object;
2772 	size = entry->end - entry->start;
2773 	map->size -= size;
2774 
2775 	if (entry->cred != NULL) {
2776 		swap_release_by_cred(size, entry->cred);
2777 		crfree(entry->cred);
2778 	}
2779 
2780 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2781 	    (object != NULL)) {
2782 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2783 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2784 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2785 		count = OFF_TO_IDX(size);
2786 		offidxstart = OFF_TO_IDX(entry->offset);
2787 		offidxend = offidxstart + count;
2788 		VM_OBJECT_WLOCK(object);
2789 		if (object->ref_count != 1 &&
2790 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2791 		    object == kernel_object || object == kmem_object)) {
2792 			vm_object_collapse(object);
2793 
2794 			/*
2795 			 * The option OBJPR_NOTMAPPED can be passed here
2796 			 * because vm_map_delete() already performed
2797 			 * pmap_remove() on the only mapping to this range
2798 			 * of pages.
2799 			 */
2800 			vm_object_page_remove(object, offidxstart, offidxend,
2801 			    OBJPR_NOTMAPPED);
2802 			if (object->type == OBJT_SWAP)
2803 				swap_pager_freespace(object, offidxstart, count);
2804 			if (offidxend >= object->size &&
2805 			    offidxstart < object->size) {
2806 				size1 = object->size;
2807 				object->size = offidxstart;
2808 				if (object->cred != NULL) {
2809 					size1 -= object->size;
2810 					KASSERT(object->charge >= ptoa(size1),
2811 					    ("vm_map_entry_delete: object->charge < 0"));
2812 					swap_release_by_cred(ptoa(size1), object->cred);
2813 					object->charge -= ptoa(size1);
2814 				}
2815 			}
2816 		}
2817 		VM_OBJECT_WUNLOCK(object);
2818 	} else
2819 		entry->object.vm_object = NULL;
2820 	if (map->system_map)
2821 		vm_map_entry_deallocate(entry, TRUE);
2822 	else {
2823 		entry->next = curthread->td_map_def_user;
2824 		curthread->td_map_def_user = entry;
2825 	}
2826 }
2827 
2828 /*
2829  *	vm_map_delete:	[ internal use only ]
2830  *
2831  *	Deallocates the given address range from the target
2832  *	map.
2833  */
2834 int
2835 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2836 {
2837 	vm_map_entry_t entry;
2838 	vm_map_entry_t first_entry;
2839 
2840 	VM_MAP_ASSERT_LOCKED(map);
2841 
2842 	/*
2843 	 * Find the start of the region, and clip it
2844 	 */
2845 	if (!vm_map_lookup_entry(map, start, &first_entry))
2846 		entry = first_entry->next;
2847 	else {
2848 		entry = first_entry;
2849 		vm_map_clip_start(map, entry, start);
2850 	}
2851 
2852 	/*
2853 	 * Step through all entries in this region
2854 	 */
2855 	while ((entry != &map->header) && (entry->start < end)) {
2856 		vm_map_entry_t next;
2857 
2858 		/*
2859 		 * Wait for wiring or unwiring of an entry to complete.
2860 		 * Also wait for any system wirings to disappear on
2861 		 * user maps.
2862 		 */
2863 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2864 		    (vm_map_pmap(map) != kernel_pmap &&
2865 		    vm_map_entry_system_wired_count(entry) != 0)) {
2866 			unsigned int last_timestamp;
2867 			vm_offset_t saved_start;
2868 			vm_map_entry_t tmp_entry;
2869 
2870 			saved_start = entry->start;
2871 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2872 			last_timestamp = map->timestamp;
2873 			(void) vm_map_unlock_and_wait(map, 0);
2874 			vm_map_lock(map);
2875 			if (last_timestamp + 1 != map->timestamp) {
2876 				/*
2877 				 * Look again for the entry because the map was
2878 				 * modified while it was unlocked.
2879 				 * Specifically, the entry may have been
2880 				 * clipped, merged, or deleted.
2881 				 */
2882 				if (!vm_map_lookup_entry(map, saved_start,
2883 							 &tmp_entry))
2884 					entry = tmp_entry->next;
2885 				else {
2886 					entry = tmp_entry;
2887 					vm_map_clip_start(map, entry,
2888 							  saved_start);
2889 				}
2890 			}
2891 			continue;
2892 		}
2893 		vm_map_clip_end(map, entry, end);
2894 
2895 		next = entry->next;
2896 
2897 		/*
2898 		 * Unwire before removing addresses from the pmap; otherwise,
2899 		 * unwiring will put the entries back in the pmap.
2900 		 */
2901 		if (entry->wired_count != 0) {
2902 			vm_map_entry_unwire(map, entry);
2903 		}
2904 
2905 		pmap_remove(map->pmap, entry->start, entry->end);
2906 
2907 		/*
2908 		 * Delete the entry only after removing all pmap
2909 		 * entries pointing to its pages.  (Otherwise, its
2910 		 * page frames may be reallocated, and any modify bits
2911 		 * will be set in the wrong object!)
2912 		 */
2913 		vm_map_entry_delete(map, entry);
2914 		entry = next;
2915 	}
2916 	return (KERN_SUCCESS);
2917 }
2918 
2919 /*
2920  *	vm_map_remove:
2921  *
2922  *	Remove the given address range from the target map.
2923  *	This is the exported form of vm_map_delete.
2924  */
2925 int
2926 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2927 {
2928 	int result;
2929 
2930 	vm_map_lock(map);
2931 	VM_MAP_RANGE_CHECK(map, start, end);
2932 	result = vm_map_delete(map, start, end);
2933 	vm_map_unlock(map);
2934 	return (result);
2935 }
2936 
2937 /*
2938  *	vm_map_check_protection:
2939  *
2940  *	Assert that the target map allows the specified privilege on the
2941  *	entire address region given.  The entire region must be allocated.
2942  *
2943  *	WARNING!  This code does not and should not check whether the
2944  *	contents of the region is accessible.  For example a smaller file
2945  *	might be mapped into a larger address space.
2946  *
2947  *	NOTE!  This code is also called by munmap().
2948  *
2949  *	The map must be locked.  A read lock is sufficient.
2950  */
2951 boolean_t
2952 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2953 			vm_prot_t protection)
2954 {
2955 	vm_map_entry_t entry;
2956 	vm_map_entry_t tmp_entry;
2957 
2958 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2959 		return (FALSE);
2960 	entry = tmp_entry;
2961 
2962 	while (start < end) {
2963 		if (entry == &map->header)
2964 			return (FALSE);
2965 		/*
2966 		 * No holes allowed!
2967 		 */
2968 		if (start < entry->start)
2969 			return (FALSE);
2970 		/*
2971 		 * Check protection associated with entry.
2972 		 */
2973 		if ((entry->protection & protection) != protection)
2974 			return (FALSE);
2975 		/* go to next entry */
2976 		start = entry->end;
2977 		entry = entry->next;
2978 	}
2979 	return (TRUE);
2980 }
2981 
2982 /*
2983  *	vm_map_copy_entry:
2984  *
2985  *	Copies the contents of the source entry to the destination
2986  *	entry.  The entries *must* be aligned properly.
2987  */
2988 static void
2989 vm_map_copy_entry(
2990 	vm_map_t src_map,
2991 	vm_map_t dst_map,
2992 	vm_map_entry_t src_entry,
2993 	vm_map_entry_t dst_entry,
2994 	vm_ooffset_t *fork_charge)
2995 {
2996 	vm_object_t src_object;
2997 	vm_map_entry_t fake_entry;
2998 	vm_offset_t size;
2999 	struct ucred *cred;
3000 	int charged;
3001 
3002 	VM_MAP_ASSERT_LOCKED(dst_map);
3003 
3004 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3005 		return;
3006 
3007 	if (src_entry->wired_count == 0) {
3008 
3009 		/*
3010 		 * If the source entry is marked needs_copy, it is already
3011 		 * write-protected.
3012 		 */
3013 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3014 			pmap_protect(src_map->pmap,
3015 			    src_entry->start,
3016 			    src_entry->end,
3017 			    src_entry->protection & ~VM_PROT_WRITE);
3018 		}
3019 
3020 		/*
3021 		 * Make a copy of the object.
3022 		 */
3023 		size = src_entry->end - src_entry->start;
3024 		if ((src_object = src_entry->object.vm_object) != NULL) {
3025 			VM_OBJECT_WLOCK(src_object);
3026 			charged = ENTRY_CHARGED(src_entry);
3027 			if ((src_object->handle == NULL) &&
3028 				(src_object->type == OBJT_DEFAULT ||
3029 				 src_object->type == OBJT_SWAP)) {
3030 				vm_object_collapse(src_object);
3031 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3032 					vm_object_split(src_entry);
3033 					src_object = src_entry->object.vm_object;
3034 				}
3035 			}
3036 			vm_object_reference_locked(src_object);
3037 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3038 			if (src_entry->cred != NULL &&
3039 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3040 				KASSERT(src_object->cred == NULL,
3041 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3042 				     src_object));
3043 				src_object->cred = src_entry->cred;
3044 				src_object->charge = size;
3045 			}
3046 			VM_OBJECT_WUNLOCK(src_object);
3047 			dst_entry->object.vm_object = src_object;
3048 			if (charged) {
3049 				cred = curthread->td_ucred;
3050 				crhold(cred);
3051 				dst_entry->cred = cred;
3052 				*fork_charge += size;
3053 				if (!(src_entry->eflags &
3054 				      MAP_ENTRY_NEEDS_COPY)) {
3055 					crhold(cred);
3056 					src_entry->cred = cred;
3057 					*fork_charge += size;
3058 				}
3059 			}
3060 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3061 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3062 			dst_entry->offset = src_entry->offset;
3063 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3064 				/*
3065 				 * MAP_ENTRY_VN_WRITECNT cannot
3066 				 * indicate write reference from
3067 				 * src_entry, since the entry is
3068 				 * marked as needs copy.  Allocate a
3069 				 * fake entry that is used to
3070 				 * decrement object->un_pager.vnp.writecount
3071 				 * at the appropriate time.  Attach
3072 				 * fake_entry to the deferred list.
3073 				 */
3074 				fake_entry = vm_map_entry_create(dst_map);
3075 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3076 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3077 				vm_object_reference(src_object);
3078 				fake_entry->object.vm_object = src_object;
3079 				fake_entry->start = src_entry->start;
3080 				fake_entry->end = src_entry->end;
3081 				fake_entry->next = curthread->td_map_def_user;
3082 				curthread->td_map_def_user = fake_entry;
3083 			}
3084 		} else {
3085 			dst_entry->object.vm_object = NULL;
3086 			dst_entry->offset = 0;
3087 			if (src_entry->cred != NULL) {
3088 				dst_entry->cred = curthread->td_ucred;
3089 				crhold(dst_entry->cred);
3090 				*fork_charge += size;
3091 			}
3092 		}
3093 
3094 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3095 		    dst_entry->end - dst_entry->start, src_entry->start);
3096 	} else {
3097 		/*
3098 		 * Of course, wired down pages can't be set copy-on-write.
3099 		 * Cause wired pages to be copied into the new map by
3100 		 * simulating faults (the new pages are pageable)
3101 		 */
3102 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3103 		    fork_charge);
3104 	}
3105 }
3106 
3107 /*
3108  * vmspace_map_entry_forked:
3109  * Update the newly-forked vmspace each time a map entry is inherited
3110  * or copied.  The values for vm_dsize and vm_tsize are approximate
3111  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3112  */
3113 static void
3114 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3115     vm_map_entry_t entry)
3116 {
3117 	vm_size_t entrysize;
3118 	vm_offset_t newend;
3119 
3120 	entrysize = entry->end - entry->start;
3121 	vm2->vm_map.size += entrysize;
3122 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3123 		vm2->vm_ssize += btoc(entrysize);
3124 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3125 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3126 		newend = MIN(entry->end,
3127 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3128 		vm2->vm_dsize += btoc(newend - entry->start);
3129 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3130 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3131 		newend = MIN(entry->end,
3132 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3133 		vm2->vm_tsize += btoc(newend - entry->start);
3134 	}
3135 }
3136 
3137 /*
3138  * vmspace_fork:
3139  * Create a new process vmspace structure and vm_map
3140  * based on those of an existing process.  The new map
3141  * is based on the old map, according to the inheritance
3142  * values on the regions in that map.
3143  *
3144  * XXX It might be worth coalescing the entries added to the new vmspace.
3145  *
3146  * The source map must not be locked.
3147  */
3148 struct vmspace *
3149 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3150 {
3151 	struct vmspace *vm2;
3152 	vm_map_t new_map, old_map;
3153 	vm_map_entry_t new_entry, old_entry;
3154 	vm_object_t object;
3155 	int locked;
3156 
3157 	old_map = &vm1->vm_map;
3158 	/* Copy immutable fields of vm1 to vm2. */
3159 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3160 	if (vm2 == NULL)
3161 		return (NULL);
3162 	vm2->vm_taddr = vm1->vm_taddr;
3163 	vm2->vm_daddr = vm1->vm_daddr;
3164 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3165 	vm_map_lock(old_map);
3166 	if (old_map->busy)
3167 		vm_map_wait_busy(old_map);
3168 	new_map = &vm2->vm_map;
3169 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3170 	KASSERT(locked, ("vmspace_fork: lock failed"));
3171 
3172 	old_entry = old_map->header.next;
3173 
3174 	while (old_entry != &old_map->header) {
3175 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3176 			panic("vm_map_fork: encountered a submap");
3177 
3178 		switch (old_entry->inheritance) {
3179 		case VM_INHERIT_NONE:
3180 			break;
3181 
3182 		case VM_INHERIT_SHARE:
3183 			/*
3184 			 * Clone the entry, creating the shared object if necessary.
3185 			 */
3186 			object = old_entry->object.vm_object;
3187 			if (object == NULL) {
3188 				object = vm_object_allocate(OBJT_DEFAULT,
3189 					atop(old_entry->end - old_entry->start));
3190 				old_entry->object.vm_object = object;
3191 				old_entry->offset = 0;
3192 				if (old_entry->cred != NULL) {
3193 					object->cred = old_entry->cred;
3194 					object->charge = old_entry->end -
3195 					    old_entry->start;
3196 					old_entry->cred = NULL;
3197 				}
3198 			}
3199 
3200 			/*
3201 			 * Add the reference before calling vm_object_shadow
3202 			 * to insure that a shadow object is created.
3203 			 */
3204 			vm_object_reference(object);
3205 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3206 				vm_object_shadow(&old_entry->object.vm_object,
3207 				    &old_entry->offset,
3208 				    old_entry->end - old_entry->start);
3209 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3210 				/* Transfer the second reference too. */
3211 				vm_object_reference(
3212 				    old_entry->object.vm_object);
3213 
3214 				/*
3215 				 * As in vm_map_simplify_entry(), the
3216 				 * vnode lock will not be acquired in
3217 				 * this call to vm_object_deallocate().
3218 				 */
3219 				vm_object_deallocate(object);
3220 				object = old_entry->object.vm_object;
3221 			}
3222 			VM_OBJECT_WLOCK(object);
3223 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3224 			if (old_entry->cred != NULL) {
3225 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3226 				object->cred = old_entry->cred;
3227 				object->charge = old_entry->end - old_entry->start;
3228 				old_entry->cred = NULL;
3229 			}
3230 
3231 			/*
3232 			 * Assert the correct state of the vnode
3233 			 * v_writecount while the object is locked, to
3234 			 * not relock it later for the assertion
3235 			 * correctness.
3236 			 */
3237 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3238 			    object->type == OBJT_VNODE) {
3239 				KASSERT(((struct vnode *)object->handle)->
3240 				    v_writecount > 0,
3241 				    ("vmspace_fork: v_writecount %p", object));
3242 				KASSERT(object->un_pager.vnp.writemappings > 0,
3243 				    ("vmspace_fork: vnp.writecount %p",
3244 				    object));
3245 			}
3246 			VM_OBJECT_WUNLOCK(object);
3247 
3248 			/*
3249 			 * Clone the entry, referencing the shared object.
3250 			 */
3251 			new_entry = vm_map_entry_create(new_map);
3252 			*new_entry = *old_entry;
3253 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3254 			    MAP_ENTRY_IN_TRANSITION);
3255 			new_entry->wiring_thread = NULL;
3256 			new_entry->wired_count = 0;
3257 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3258 				vnode_pager_update_writecount(object,
3259 				    new_entry->start, new_entry->end);
3260 			}
3261 
3262 			/*
3263 			 * Insert the entry into the new map -- we know we're
3264 			 * inserting at the end of the new map.
3265 			 */
3266 			vm_map_entry_link(new_map, new_map->header.prev,
3267 			    new_entry);
3268 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3269 
3270 			/*
3271 			 * Update the physical map
3272 			 */
3273 			pmap_copy(new_map->pmap, old_map->pmap,
3274 			    new_entry->start,
3275 			    (old_entry->end - old_entry->start),
3276 			    old_entry->start);
3277 			break;
3278 
3279 		case VM_INHERIT_COPY:
3280 			/*
3281 			 * Clone the entry and link into the map.
3282 			 */
3283 			new_entry = vm_map_entry_create(new_map);
3284 			*new_entry = *old_entry;
3285 			/*
3286 			 * Copied entry is COW over the old object.
3287 			 */
3288 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3289 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3290 			new_entry->wiring_thread = NULL;
3291 			new_entry->wired_count = 0;
3292 			new_entry->object.vm_object = NULL;
3293 			new_entry->cred = NULL;
3294 			vm_map_entry_link(new_map, new_map->header.prev,
3295 			    new_entry);
3296 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3297 			vm_map_copy_entry(old_map, new_map, old_entry,
3298 			    new_entry, fork_charge);
3299 			break;
3300 		}
3301 		old_entry = old_entry->next;
3302 	}
3303 	/*
3304 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3305 	 * map entries, which cannot be done until both old_map and
3306 	 * new_map locks are released.
3307 	 */
3308 	sx_xunlock(&old_map->lock);
3309 	sx_xunlock(&new_map->lock);
3310 	vm_map_process_deferred();
3311 
3312 	return (vm2);
3313 }
3314 
3315 int
3316 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3317     vm_prot_t prot, vm_prot_t max, int cow)
3318 {
3319 	vm_map_entry_t new_entry, prev_entry;
3320 	vm_offset_t bot, top;
3321 	vm_size_t growsize, init_ssize;
3322 	int orient, rv;
3323 	rlim_t lmemlim, vmemlim;
3324 
3325 	/*
3326 	 * The stack orientation is piggybacked with the cow argument.
3327 	 * Extract it into orient and mask the cow argument so that we
3328 	 * don't pass it around further.
3329 	 * NOTE: We explicitly allow bi-directional stacks.
3330 	 */
3331 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3332 	cow &= ~orient;
3333 	KASSERT(orient != 0, ("No stack grow direction"));
3334 
3335 	if (addrbos < vm_map_min(map) ||
3336 	    addrbos > vm_map_max(map) ||
3337 	    addrbos + max_ssize < addrbos)
3338 		return (KERN_NO_SPACE);
3339 
3340 	growsize = sgrowsiz;
3341 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3342 
3343 	PROC_LOCK(curproc);
3344 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3345 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3346 	PROC_UNLOCK(curproc);
3347 
3348 	vm_map_lock(map);
3349 
3350 	/* If addr is already mapped, no go */
3351 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3352 		vm_map_unlock(map);
3353 		return (KERN_NO_SPACE);
3354 	}
3355 
3356 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3357 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3358 			vm_map_unlock(map);
3359 			return (KERN_NO_SPACE);
3360 		}
3361 	}
3362 
3363 	/* If we would blow our VMEM resource limit, no go */
3364 	if (map->size + init_ssize > vmemlim) {
3365 		vm_map_unlock(map);
3366 		return (KERN_NO_SPACE);
3367 	}
3368 
3369 	/*
3370 	 * If we can't accomodate max_ssize in the current mapping, no go.
3371 	 * However, we need to be aware that subsequent user mappings might
3372 	 * map into the space we have reserved for stack, and currently this
3373 	 * space is not protected.
3374 	 *
3375 	 * Hopefully we will at least detect this condition when we try to
3376 	 * grow the stack.
3377 	 */
3378 	if ((prev_entry->next != &map->header) &&
3379 	    (prev_entry->next->start < addrbos + max_ssize)) {
3380 		vm_map_unlock(map);
3381 		return (KERN_NO_SPACE);
3382 	}
3383 
3384 	/*
3385 	 * We initially map a stack of only init_ssize.  We will grow as
3386 	 * needed later.  Depending on the orientation of the stack (i.e.
3387 	 * the grow direction) we either map at the top of the range, the
3388 	 * bottom of the range or in the middle.
3389 	 *
3390 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3391 	 * and cow to be 0.  Possibly we should eliminate these as input
3392 	 * parameters, and just pass these values here in the insert call.
3393 	 */
3394 	if (orient == MAP_STACK_GROWS_DOWN)
3395 		bot = addrbos + max_ssize - init_ssize;
3396 	else if (orient == MAP_STACK_GROWS_UP)
3397 		bot = addrbos;
3398 	else
3399 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3400 	top = bot + init_ssize;
3401 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3402 
3403 	/* Now set the avail_ssize amount. */
3404 	if (rv == KERN_SUCCESS) {
3405 		if (prev_entry != &map->header)
3406 			vm_map_clip_end(map, prev_entry, bot);
3407 		new_entry = prev_entry->next;
3408 		if (new_entry->end != top || new_entry->start != bot)
3409 			panic("Bad entry start/end for new stack entry");
3410 
3411 		new_entry->avail_ssize = max_ssize - init_ssize;
3412 		if (orient & MAP_STACK_GROWS_DOWN)
3413 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3414 		if (orient & MAP_STACK_GROWS_UP)
3415 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3416 	}
3417 
3418 	vm_map_unlock(map);
3419 	return (rv);
3420 }
3421 
3422 static int stack_guard_page = 0;
3423 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3424 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3425     &stack_guard_page, 0,
3426     "Insert stack guard page ahead of the growable segments.");
3427 
3428 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3429  * desired address is already mapped, or if we successfully grow
3430  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3431  * stack range (this is strange, but preserves compatibility with
3432  * the grow function in vm_machdep.c).
3433  */
3434 int
3435 vm_map_growstack(struct proc *p, vm_offset_t addr)
3436 {
3437 	vm_map_entry_t next_entry, prev_entry;
3438 	vm_map_entry_t new_entry, stack_entry;
3439 	struct vmspace *vm = p->p_vmspace;
3440 	vm_map_t map = &vm->vm_map;
3441 	vm_offset_t end;
3442 	vm_size_t growsize;
3443 	size_t grow_amount, max_grow;
3444 	rlim_t lmemlim, stacklim, vmemlim;
3445 	int is_procstack, rv;
3446 	struct ucred *cred;
3447 #ifdef notyet
3448 	uint64_t limit;
3449 #endif
3450 #ifdef RACCT
3451 	int error;
3452 #endif
3453 
3454 Retry:
3455 	PROC_LOCK(p);
3456 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3457 	stacklim = lim_cur(p, RLIMIT_STACK);
3458 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3459 	PROC_UNLOCK(p);
3460 
3461 	vm_map_lock_read(map);
3462 
3463 	/* If addr is already in the entry range, no need to grow.*/
3464 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3465 		vm_map_unlock_read(map);
3466 		return (KERN_SUCCESS);
3467 	}
3468 
3469 	next_entry = prev_entry->next;
3470 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3471 		/*
3472 		 * This entry does not grow upwards. Since the address lies
3473 		 * beyond this entry, the next entry (if one exists) has to
3474 		 * be a downward growable entry. The entry list header is
3475 		 * never a growable entry, so it suffices to check the flags.
3476 		 */
3477 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3478 			vm_map_unlock_read(map);
3479 			return (KERN_SUCCESS);
3480 		}
3481 		stack_entry = next_entry;
3482 	} else {
3483 		/*
3484 		 * This entry grows upward. If the next entry does not at
3485 		 * least grow downwards, this is the entry we need to grow.
3486 		 * otherwise we have two possible choices and we have to
3487 		 * select one.
3488 		 */
3489 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3490 			/*
3491 			 * We have two choices; grow the entry closest to
3492 			 * the address to minimize the amount of growth.
3493 			 */
3494 			if (addr - prev_entry->end <= next_entry->start - addr)
3495 				stack_entry = prev_entry;
3496 			else
3497 				stack_entry = next_entry;
3498 		} else
3499 			stack_entry = prev_entry;
3500 	}
3501 
3502 	if (stack_entry == next_entry) {
3503 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3504 		KASSERT(addr < stack_entry->start, ("foo"));
3505 		end = (prev_entry != &map->header) ? prev_entry->end :
3506 		    stack_entry->start - stack_entry->avail_ssize;
3507 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3508 		max_grow = stack_entry->start - end;
3509 	} else {
3510 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3511 		KASSERT(addr >= stack_entry->end, ("foo"));
3512 		end = (next_entry != &map->header) ? next_entry->start :
3513 		    stack_entry->end + stack_entry->avail_ssize;
3514 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3515 		max_grow = end - stack_entry->end;
3516 	}
3517 
3518 	if (grow_amount > stack_entry->avail_ssize) {
3519 		vm_map_unlock_read(map);
3520 		return (KERN_NO_SPACE);
3521 	}
3522 
3523 	/*
3524 	 * If there is no longer enough space between the entries nogo, and
3525 	 * adjust the available space.  Note: this  should only happen if the
3526 	 * user has mapped into the stack area after the stack was created,
3527 	 * and is probably an error.
3528 	 *
3529 	 * This also effectively destroys any guard page the user might have
3530 	 * intended by limiting the stack size.
3531 	 */
3532 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3533 		if (vm_map_lock_upgrade(map))
3534 			goto Retry;
3535 
3536 		stack_entry->avail_ssize = max_grow;
3537 
3538 		vm_map_unlock(map);
3539 		return (KERN_NO_SPACE);
3540 	}
3541 
3542 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3543 
3544 	/*
3545 	 * If this is the main process stack, see if we're over the stack
3546 	 * limit.
3547 	 */
3548 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3549 		vm_map_unlock_read(map);
3550 		return (KERN_NO_SPACE);
3551 	}
3552 #ifdef RACCT
3553 	PROC_LOCK(p);
3554 	if (is_procstack &&
3555 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3556 		PROC_UNLOCK(p);
3557 		vm_map_unlock_read(map);
3558 		return (KERN_NO_SPACE);
3559 	}
3560 	PROC_UNLOCK(p);
3561 #endif
3562 
3563 	/* Round up the grow amount modulo sgrowsiz */
3564 	growsize = sgrowsiz;
3565 	grow_amount = roundup(grow_amount, growsize);
3566 	if (grow_amount > stack_entry->avail_ssize)
3567 		grow_amount = stack_entry->avail_ssize;
3568 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3569 		grow_amount = trunc_page((vm_size_t)stacklim) -
3570 		    ctob(vm->vm_ssize);
3571 	}
3572 #ifdef notyet
3573 	PROC_LOCK(p);
3574 	limit = racct_get_available(p, RACCT_STACK);
3575 	PROC_UNLOCK(p);
3576 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3577 		grow_amount = limit - ctob(vm->vm_ssize);
3578 #endif
3579 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3580 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3581 			vm_map_unlock_read(map);
3582 			rv = KERN_NO_SPACE;
3583 			goto out;
3584 		}
3585 #ifdef RACCT
3586 		PROC_LOCK(p);
3587 		if (racct_set(p, RACCT_MEMLOCK,
3588 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3589 			PROC_UNLOCK(p);
3590 			vm_map_unlock_read(map);
3591 			rv = KERN_NO_SPACE;
3592 			goto out;
3593 		}
3594 		PROC_UNLOCK(p);
3595 #endif
3596 	}
3597 	/* If we would blow our VMEM resource limit, no go */
3598 	if (map->size + grow_amount > vmemlim) {
3599 		vm_map_unlock_read(map);
3600 		rv = KERN_NO_SPACE;
3601 		goto out;
3602 	}
3603 #ifdef RACCT
3604 	PROC_LOCK(p);
3605 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3606 		PROC_UNLOCK(p);
3607 		vm_map_unlock_read(map);
3608 		rv = KERN_NO_SPACE;
3609 		goto out;
3610 	}
3611 	PROC_UNLOCK(p);
3612 #endif
3613 
3614 	if (vm_map_lock_upgrade(map))
3615 		goto Retry;
3616 
3617 	if (stack_entry == next_entry) {
3618 		/*
3619 		 * Growing downward.
3620 		 */
3621 		/* Get the preliminary new entry start value */
3622 		addr = stack_entry->start - grow_amount;
3623 
3624 		/*
3625 		 * If this puts us into the previous entry, cut back our
3626 		 * growth to the available space. Also, see the note above.
3627 		 */
3628 		if (addr < end) {
3629 			stack_entry->avail_ssize = max_grow;
3630 			addr = end;
3631 			if (stack_guard_page)
3632 				addr += PAGE_SIZE;
3633 		}
3634 
3635 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3636 		    next_entry->protection, next_entry->max_protection, 0);
3637 
3638 		/* Adjust the available stack space by the amount we grew. */
3639 		if (rv == KERN_SUCCESS) {
3640 			if (prev_entry != &map->header)
3641 				vm_map_clip_end(map, prev_entry, addr);
3642 			new_entry = prev_entry->next;
3643 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3644 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3645 			KASSERT(new_entry->start == addr, ("foo"));
3646 			grow_amount = new_entry->end - new_entry->start;
3647 			new_entry->avail_ssize = stack_entry->avail_ssize -
3648 			    grow_amount;
3649 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3650 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3651 		}
3652 	} else {
3653 		/*
3654 		 * Growing upward.
3655 		 */
3656 		addr = stack_entry->end + grow_amount;
3657 
3658 		/*
3659 		 * If this puts us into the next entry, cut back our growth
3660 		 * to the available space. Also, see the note above.
3661 		 */
3662 		if (addr > end) {
3663 			stack_entry->avail_ssize = end - stack_entry->end;
3664 			addr = end;
3665 			if (stack_guard_page)
3666 				addr -= PAGE_SIZE;
3667 		}
3668 
3669 		grow_amount = addr - stack_entry->end;
3670 		cred = stack_entry->cred;
3671 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3672 			cred = stack_entry->object.vm_object->cred;
3673 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3674 			rv = KERN_NO_SPACE;
3675 		/* Grow the underlying object if applicable. */
3676 		else if (stack_entry->object.vm_object == NULL ||
3677 			 vm_object_coalesce(stack_entry->object.vm_object,
3678 			 stack_entry->offset,
3679 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3680 			 (vm_size_t)grow_amount, cred != NULL)) {
3681 			map->size += (addr - stack_entry->end);
3682 			/* Update the current entry. */
3683 			stack_entry->end = addr;
3684 			stack_entry->avail_ssize -= grow_amount;
3685 			vm_map_entry_resize_free(map, stack_entry);
3686 			rv = KERN_SUCCESS;
3687 
3688 			if (next_entry != &map->header)
3689 				vm_map_clip_start(map, next_entry, addr);
3690 		} else
3691 			rv = KERN_FAILURE;
3692 	}
3693 
3694 	if (rv == KERN_SUCCESS && is_procstack)
3695 		vm->vm_ssize += btoc(grow_amount);
3696 
3697 	vm_map_unlock(map);
3698 
3699 	/*
3700 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3701 	 */
3702 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3703 		vm_map_wire(map,
3704 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3705 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3706 		    (p->p_flag & P_SYSTEM)
3707 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3708 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3709 	}
3710 
3711 out:
3712 #ifdef RACCT
3713 	if (rv != KERN_SUCCESS) {
3714 		PROC_LOCK(p);
3715 		error = racct_set(p, RACCT_VMEM, map->size);
3716 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3717 		if (!old_mlock) {
3718 			error = racct_set(p, RACCT_MEMLOCK,
3719 			    ptoa(pmap_wired_count(map->pmap)));
3720 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3721 		}
3722 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3723 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3724 		PROC_UNLOCK(p);
3725 	}
3726 #endif
3727 
3728 	return (rv);
3729 }
3730 
3731 /*
3732  * Unshare the specified VM space for exec.  If other processes are
3733  * mapped to it, then create a new one.  The new vmspace is null.
3734  */
3735 int
3736 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3737 {
3738 	struct vmspace *oldvmspace = p->p_vmspace;
3739 	struct vmspace *newvmspace;
3740 
3741 	newvmspace = vmspace_alloc(minuser, maxuser);
3742 	if (newvmspace == NULL)
3743 		return (ENOMEM);
3744 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3745 	/*
3746 	 * This code is written like this for prototype purposes.  The
3747 	 * goal is to avoid running down the vmspace here, but let the
3748 	 * other process's that are still using the vmspace to finally
3749 	 * run it down.  Even though there is little or no chance of blocking
3750 	 * here, it is a good idea to keep this form for future mods.
3751 	 */
3752 	PROC_VMSPACE_LOCK(p);
3753 	p->p_vmspace = newvmspace;
3754 	PROC_VMSPACE_UNLOCK(p);
3755 	if (p == curthread->td_proc)
3756 		pmap_activate(curthread);
3757 	vmspace_free(oldvmspace);
3758 	return (0);
3759 }
3760 
3761 /*
3762  * Unshare the specified VM space for forcing COW.  This
3763  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3764  */
3765 int
3766 vmspace_unshare(struct proc *p)
3767 {
3768 	struct vmspace *oldvmspace = p->p_vmspace;
3769 	struct vmspace *newvmspace;
3770 	vm_ooffset_t fork_charge;
3771 
3772 	if (oldvmspace->vm_refcnt == 1)
3773 		return (0);
3774 	fork_charge = 0;
3775 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3776 	if (newvmspace == NULL)
3777 		return (ENOMEM);
3778 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3779 		vmspace_free(newvmspace);
3780 		return (ENOMEM);
3781 	}
3782 	PROC_VMSPACE_LOCK(p);
3783 	p->p_vmspace = newvmspace;
3784 	PROC_VMSPACE_UNLOCK(p);
3785 	if (p == curthread->td_proc)
3786 		pmap_activate(curthread);
3787 	vmspace_free(oldvmspace);
3788 	return (0);
3789 }
3790 
3791 /*
3792  *	vm_map_lookup:
3793  *
3794  *	Finds the VM object, offset, and
3795  *	protection for a given virtual address in the
3796  *	specified map, assuming a page fault of the
3797  *	type specified.
3798  *
3799  *	Leaves the map in question locked for read; return
3800  *	values are guaranteed until a vm_map_lookup_done
3801  *	call is performed.  Note that the map argument
3802  *	is in/out; the returned map must be used in
3803  *	the call to vm_map_lookup_done.
3804  *
3805  *	A handle (out_entry) is returned for use in
3806  *	vm_map_lookup_done, to make that fast.
3807  *
3808  *	If a lookup is requested with "write protection"
3809  *	specified, the map may be changed to perform virtual
3810  *	copying operations, although the data referenced will
3811  *	remain the same.
3812  */
3813 int
3814 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3815 	      vm_offset_t vaddr,
3816 	      vm_prot_t fault_typea,
3817 	      vm_map_entry_t *out_entry,	/* OUT */
3818 	      vm_object_t *object,		/* OUT */
3819 	      vm_pindex_t *pindex,		/* OUT */
3820 	      vm_prot_t *out_prot,		/* OUT */
3821 	      boolean_t *wired)			/* OUT */
3822 {
3823 	vm_map_entry_t entry;
3824 	vm_map_t map = *var_map;
3825 	vm_prot_t prot;
3826 	vm_prot_t fault_type = fault_typea;
3827 	vm_object_t eobject;
3828 	vm_size_t size;
3829 	struct ucred *cred;
3830 
3831 RetryLookup:;
3832 
3833 	vm_map_lock_read(map);
3834 
3835 	/*
3836 	 * Lookup the faulting address.
3837 	 */
3838 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3839 		vm_map_unlock_read(map);
3840 		return (KERN_INVALID_ADDRESS);
3841 	}
3842 
3843 	entry = *out_entry;
3844 
3845 	/*
3846 	 * Handle submaps.
3847 	 */
3848 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3849 		vm_map_t old_map = map;
3850 
3851 		*var_map = map = entry->object.sub_map;
3852 		vm_map_unlock_read(old_map);
3853 		goto RetryLookup;
3854 	}
3855 
3856 	/*
3857 	 * Check whether this task is allowed to have this page.
3858 	 */
3859 	prot = entry->protection;
3860 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3861 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3862 		vm_map_unlock_read(map);
3863 		return (KERN_PROTECTION_FAILURE);
3864 	}
3865 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3866 	    (entry->eflags & MAP_ENTRY_COW) &&
3867 	    (fault_type & VM_PROT_WRITE)) {
3868 		vm_map_unlock_read(map);
3869 		return (KERN_PROTECTION_FAILURE);
3870 	}
3871 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3872 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3873 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3874 		vm_map_unlock_read(map);
3875 		return (KERN_PROTECTION_FAILURE);
3876 	}
3877 
3878 	/*
3879 	 * If this page is not pageable, we have to get it for all possible
3880 	 * accesses.
3881 	 */
3882 	*wired = (entry->wired_count != 0);
3883 	if (*wired)
3884 		fault_type = entry->protection;
3885 	size = entry->end - entry->start;
3886 	/*
3887 	 * If the entry was copy-on-write, we either ...
3888 	 */
3889 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3890 		/*
3891 		 * If we want to write the page, we may as well handle that
3892 		 * now since we've got the map locked.
3893 		 *
3894 		 * If we don't need to write the page, we just demote the
3895 		 * permissions allowed.
3896 		 */
3897 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3898 		    (fault_typea & VM_PROT_COPY) != 0) {
3899 			/*
3900 			 * Make a new object, and place it in the object
3901 			 * chain.  Note that no new references have appeared
3902 			 * -- one just moved from the map to the new
3903 			 * object.
3904 			 */
3905 			if (vm_map_lock_upgrade(map))
3906 				goto RetryLookup;
3907 
3908 			if (entry->cred == NULL) {
3909 				/*
3910 				 * The debugger owner is charged for
3911 				 * the memory.
3912 				 */
3913 				cred = curthread->td_ucred;
3914 				crhold(cred);
3915 				if (!swap_reserve_by_cred(size, cred)) {
3916 					crfree(cred);
3917 					vm_map_unlock(map);
3918 					return (KERN_RESOURCE_SHORTAGE);
3919 				}
3920 				entry->cred = cred;
3921 			}
3922 			vm_object_shadow(&entry->object.vm_object,
3923 			    &entry->offset, size);
3924 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3925 			eobject = entry->object.vm_object;
3926 			if (eobject->cred != NULL) {
3927 				/*
3928 				 * The object was not shadowed.
3929 				 */
3930 				swap_release_by_cred(size, entry->cred);
3931 				crfree(entry->cred);
3932 				entry->cred = NULL;
3933 			} else if (entry->cred != NULL) {
3934 				VM_OBJECT_WLOCK(eobject);
3935 				eobject->cred = entry->cred;
3936 				eobject->charge = size;
3937 				VM_OBJECT_WUNLOCK(eobject);
3938 				entry->cred = NULL;
3939 			}
3940 
3941 			vm_map_lock_downgrade(map);
3942 		} else {
3943 			/*
3944 			 * We're attempting to read a copy-on-write page --
3945 			 * don't allow writes.
3946 			 */
3947 			prot &= ~VM_PROT_WRITE;
3948 		}
3949 	}
3950 
3951 	/*
3952 	 * Create an object if necessary.
3953 	 */
3954 	if (entry->object.vm_object == NULL &&
3955 	    !map->system_map) {
3956 		if (vm_map_lock_upgrade(map))
3957 			goto RetryLookup;
3958 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3959 		    atop(size));
3960 		entry->offset = 0;
3961 		if (entry->cred != NULL) {
3962 			VM_OBJECT_WLOCK(entry->object.vm_object);
3963 			entry->object.vm_object->cred = entry->cred;
3964 			entry->object.vm_object->charge = size;
3965 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3966 			entry->cred = NULL;
3967 		}
3968 		vm_map_lock_downgrade(map);
3969 	}
3970 
3971 	/*
3972 	 * Return the object/offset from this entry.  If the entry was
3973 	 * copy-on-write or empty, it has been fixed up.
3974 	 */
3975 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3976 	*object = entry->object.vm_object;
3977 
3978 	*out_prot = prot;
3979 	return (KERN_SUCCESS);
3980 }
3981 
3982 /*
3983  *	vm_map_lookup_locked:
3984  *
3985  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3986  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3987  */
3988 int
3989 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3990 		     vm_offset_t vaddr,
3991 		     vm_prot_t fault_typea,
3992 		     vm_map_entry_t *out_entry,	/* OUT */
3993 		     vm_object_t *object,	/* OUT */
3994 		     vm_pindex_t *pindex,	/* OUT */
3995 		     vm_prot_t *out_prot,	/* OUT */
3996 		     boolean_t *wired)		/* OUT */
3997 {
3998 	vm_map_entry_t entry;
3999 	vm_map_t map = *var_map;
4000 	vm_prot_t prot;
4001 	vm_prot_t fault_type = fault_typea;
4002 
4003 	/*
4004 	 * Lookup the faulting address.
4005 	 */
4006 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4007 		return (KERN_INVALID_ADDRESS);
4008 
4009 	entry = *out_entry;
4010 
4011 	/*
4012 	 * Fail if the entry refers to a submap.
4013 	 */
4014 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4015 		return (KERN_FAILURE);
4016 
4017 	/*
4018 	 * Check whether this task is allowed to have this page.
4019 	 */
4020 	prot = entry->protection;
4021 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4022 	if ((fault_type & prot) != fault_type)
4023 		return (KERN_PROTECTION_FAILURE);
4024 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4025 	    (entry->eflags & MAP_ENTRY_COW) &&
4026 	    (fault_type & VM_PROT_WRITE))
4027 		return (KERN_PROTECTION_FAILURE);
4028 
4029 	/*
4030 	 * If this page is not pageable, we have to get it for all possible
4031 	 * accesses.
4032 	 */
4033 	*wired = (entry->wired_count != 0);
4034 	if (*wired)
4035 		fault_type = entry->protection;
4036 
4037 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4038 		/*
4039 		 * Fail if the entry was copy-on-write for a write fault.
4040 		 */
4041 		if (fault_type & VM_PROT_WRITE)
4042 			return (KERN_FAILURE);
4043 		/*
4044 		 * We're attempting to read a copy-on-write page --
4045 		 * don't allow writes.
4046 		 */
4047 		prot &= ~VM_PROT_WRITE;
4048 	}
4049 
4050 	/*
4051 	 * Fail if an object should be created.
4052 	 */
4053 	if (entry->object.vm_object == NULL && !map->system_map)
4054 		return (KERN_FAILURE);
4055 
4056 	/*
4057 	 * Return the object/offset from this entry.  If the entry was
4058 	 * copy-on-write or empty, it has been fixed up.
4059 	 */
4060 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4061 	*object = entry->object.vm_object;
4062 
4063 	*out_prot = prot;
4064 	return (KERN_SUCCESS);
4065 }
4066 
4067 /*
4068  *	vm_map_lookup_done:
4069  *
4070  *	Releases locks acquired by a vm_map_lookup
4071  *	(according to the handle returned by that lookup).
4072  */
4073 void
4074 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4075 {
4076 	/*
4077 	 * Unlock the main-level map
4078 	 */
4079 	vm_map_unlock_read(map);
4080 }
4081 
4082 #include "opt_ddb.h"
4083 #ifdef DDB
4084 #include <sys/kernel.h>
4085 
4086 #include <ddb/ddb.h>
4087 
4088 static void
4089 vm_map_print(vm_map_t map)
4090 {
4091 	vm_map_entry_t entry;
4092 
4093 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4094 	    (void *)map,
4095 	    (void *)map->pmap, map->nentries, map->timestamp);
4096 
4097 	db_indent += 2;
4098 	for (entry = map->header.next; entry != &map->header;
4099 	    entry = entry->next) {
4100 		db_iprintf("map entry %p: start=%p, end=%p\n",
4101 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4102 		{
4103 			static char *inheritance_name[4] =
4104 			{"share", "copy", "none", "donate_copy"};
4105 
4106 			db_iprintf(" prot=%x/%x/%s",
4107 			    entry->protection,
4108 			    entry->max_protection,
4109 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4110 			if (entry->wired_count != 0)
4111 				db_printf(", wired");
4112 		}
4113 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4114 			db_printf(", share=%p, offset=0x%jx\n",
4115 			    (void *)entry->object.sub_map,
4116 			    (uintmax_t)entry->offset);
4117 			if ((entry->prev == &map->header) ||
4118 			    (entry->prev->object.sub_map !=
4119 				entry->object.sub_map)) {
4120 				db_indent += 2;
4121 				vm_map_print((vm_map_t)entry->object.sub_map);
4122 				db_indent -= 2;
4123 			}
4124 		} else {
4125 			if (entry->cred != NULL)
4126 				db_printf(", ruid %d", entry->cred->cr_ruid);
4127 			db_printf(", object=%p, offset=0x%jx",
4128 			    (void *)entry->object.vm_object,
4129 			    (uintmax_t)entry->offset);
4130 			if (entry->object.vm_object && entry->object.vm_object->cred)
4131 				db_printf(", obj ruid %d charge %jx",
4132 				    entry->object.vm_object->cred->cr_ruid,
4133 				    (uintmax_t)entry->object.vm_object->charge);
4134 			if (entry->eflags & MAP_ENTRY_COW)
4135 				db_printf(", copy (%s)",
4136 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4137 			db_printf("\n");
4138 
4139 			if ((entry->prev == &map->header) ||
4140 			    (entry->prev->object.vm_object !=
4141 				entry->object.vm_object)) {
4142 				db_indent += 2;
4143 				vm_object_print((db_expr_t)(intptr_t)
4144 						entry->object.vm_object,
4145 						1, 0, (char *)0);
4146 				db_indent -= 2;
4147 			}
4148 		}
4149 	}
4150 	db_indent -= 2;
4151 }
4152 
4153 DB_SHOW_COMMAND(map, map)
4154 {
4155 
4156 	if (!have_addr) {
4157 		db_printf("usage: show map <addr>\n");
4158 		return;
4159 	}
4160 	vm_map_print((vm_map_t)addr);
4161 }
4162 
4163 DB_SHOW_COMMAND(procvm, procvm)
4164 {
4165 	struct proc *p;
4166 
4167 	if (have_addr) {
4168 		p = (struct proc *) addr;
4169 	} else {
4170 		p = curproc;
4171 	}
4172 
4173 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4174 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4175 	    (void *)vmspace_pmap(p->p_vmspace));
4176 
4177 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4178 }
4179 
4180 #endif /* DDB */
4181