xref: /freebsd/sys/vm/vm_map.c (revision 09d325677d53a12c79a43664ff29871e92247629)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 
140 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143 
144 /*
145  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146  * stable.
147  */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150 
151 /*
152  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153  *
154  *	Asserts that the starting and ending region
155  *	addresses fall within the valid range of the map.
156  */
157 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
158 		{					\
159 		if (start < vm_map_min(map))		\
160 			start = vm_map_min(map);	\
161 		if (end > vm_map_max(map))		\
162 			end = vm_map_max(map);		\
163 		if (start > end)			\
164 			start = end;			\
165 		}
166 
167 /*
168  *	vm_map_startup:
169  *
170  *	Initialize the vm_map module.  Must be called before
171  *	any other vm_map routines.
172  *
173  *	Map and entry structures are allocated from the general
174  *	purpose memory pool with some exceptions:
175  *
176  *	- The kernel map and kmem submap are allocated statically.
177  *	- Kernel map entries are allocated out of a static pool.
178  *
179  *	These restrictions are necessary since malloc() uses the
180  *	maps and requires map entries.
181  */
182 
183 void
184 vm_map_startup(void)
185 {
186 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 	    vm_map_zdtor,
190 #else
191 	    NULL,
192 #endif
193 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_prealloc(mapzone, MAX_KMAP);
195 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 	    vmspace_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208 
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 	struct vmspace *vm;
213 
214 	vm = (struct vmspace *)mem;
215 
216 	vm->vm_map.pmap = NULL;
217 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 	PMAP_LOCK_INIT(vmspace_pmap(vm));
219 	return (0);
220 }
221 
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	memset(map, 0, sizeof(*map));
229 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 	sx_init(&map->lock, "vm map (user)");
231 	return (0);
232 }
233 
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 	struct vmspace *vm;
239 
240 	vm = (struct vmspace *)mem;
241 
242 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 	vm_map_t map;
248 
249 	map = (vm_map_t)mem;
250 	KASSERT(map->nentries == 0,
251 	    ("map %p nentries == %d on free.",
252 	    map, map->nentries));
253 	KASSERT(map->size == 0,
254 	    ("map %p size == %lu on free.",
255 	    map, (unsigned long)map->size));
256 }
257 #endif	/* INVARIANTS */
258 
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap,
261  * and initialize those structures.  The refcnt is set to 1.
262  *
263  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264  */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 	struct vmspace *vm;
269 
270 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271 
272 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273 
274 	if (pinit == NULL)
275 		pinit = &pmap_pinit;
276 
277 	if (!pinit(vmspace_pmap(vm))) {
278 		uma_zfree(vmspace_zone, vm);
279 		return (NULL);
280 	}
281 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 	vm->vm_refcnt = 1;
284 	vm->vm_shm = NULL;
285 	vm->vm_swrss = 0;
286 	vm->vm_tsize = 0;
287 	vm->vm_dsize = 0;
288 	vm->vm_ssize = 0;
289 	vm->vm_taddr = 0;
290 	vm->vm_daddr = 0;
291 	vm->vm_maxsaddr = 0;
292 	return (vm);
293 }
294 
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298 
299 #ifdef RACCT
300 	PROC_LOCK(p);
301 	racct_set(p, RACCT_DATA, 0);
302 	racct_set(p, RACCT_STACK, 0);
303 	racct_set(p, RACCT_RSS, 0);
304 	racct_set(p, RACCT_MEMLOCK, 0);
305 	racct_set(p, RACCT_VMEM, 0);
306 	PROC_UNLOCK(p);
307 #endif
308 }
309 
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313 
314 	CTR1(KTR_VM, "vmspace_free: %p", vm);
315 
316 	/*
317 	 * Make sure any SysV shm is freed, it might not have been in
318 	 * exit1().
319 	 */
320 	shmexit(vm);
321 
322 	/*
323 	 * Lock the map, to wait out all other references to it.
324 	 * Delete all of the mappings and pages they hold, then call
325 	 * the pmap module to reclaim anything left.
326 	 */
327 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 	    vm->vm_map.max_offset);
329 
330 	pmap_release(vmspace_pmap(vm));
331 	vm->vm_map.pmap = NULL;
332 	uma_zfree(vmspace_zone, vm);
333 }
334 
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338 
339 	if (vm->vm_refcnt == 0)
340 		panic("vmspace_free: attempt to free already freed vmspace");
341 
342 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 		vmspace_dofree(vm);
344 }
345 
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 	struct vmspace *vm;
350 
351 	PROC_VMSPACE_LOCK(p);
352 	vm = p->p_vmspace;
353 	p->p_vmspace = NULL;
354 	PROC_VMSPACE_UNLOCK(p);
355 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 	vmspace_free(vm);
357 }
358 
359 void
360 vmspace_exit(struct thread *td)
361 {
362 	int refcnt;
363 	struct vmspace *vm;
364 	struct proc *p;
365 
366 	/*
367 	 * Release user portion of address space.
368 	 * This releases references to vnodes,
369 	 * which could cause I/O if the file has been unlinked.
370 	 * Need to do this early enough that we can still sleep.
371 	 *
372 	 * The last exiting process to reach this point releases as
373 	 * much of the environment as it can. vmspace_dofree() is the
374 	 * slower fallback in case another process had a temporary
375 	 * reference to the vmspace.
376 	 */
377 
378 	p = td->td_proc;
379 	vm = p->p_vmspace;
380 	atomic_add_int(&vmspace0.vm_refcnt, 1);
381 	do {
382 		refcnt = vm->vm_refcnt;
383 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 			/* Switch now since other proc might free vmspace */
385 			PROC_VMSPACE_LOCK(p);
386 			p->p_vmspace = &vmspace0;
387 			PROC_VMSPACE_UNLOCK(p);
388 			pmap_activate(td);
389 		}
390 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 	if (refcnt == 1) {
392 		if (p->p_vmspace != vm) {
393 			/* vmspace not yet freed, switch back */
394 			PROC_VMSPACE_LOCK(p);
395 			p->p_vmspace = vm;
396 			PROC_VMSPACE_UNLOCK(p);
397 			pmap_activate(td);
398 		}
399 		pmap_remove_pages(vmspace_pmap(vm));
400 		/* Switch now since this proc will free vmspace */
401 		PROC_VMSPACE_LOCK(p);
402 		p->p_vmspace = &vmspace0;
403 		PROC_VMSPACE_UNLOCK(p);
404 		pmap_activate(td);
405 		vmspace_dofree(vm);
406 	}
407 	vmspace_container_reset(p);
408 }
409 
410 /* Acquire reference to vmspace owned by another process. */
411 
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 	struct vmspace *vm;
416 	int refcnt;
417 
418 	PROC_VMSPACE_LOCK(p);
419 	vm = p->p_vmspace;
420 	if (vm == NULL) {
421 		PROC_VMSPACE_UNLOCK(p);
422 		return (NULL);
423 	}
424 	do {
425 		refcnt = vm->vm_refcnt;
426 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427 			PROC_VMSPACE_UNLOCK(p);
428 			return (NULL);
429 		}
430 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 	if (vm != p->p_vmspace) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		vmspace_free(vm);
434 		return (NULL);
435 	}
436 	PROC_VMSPACE_UNLOCK(p);
437 	return (vm);
438 }
439 
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443 
444 	if (map->system_map)
445 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 	else
447 		sx_xlock_(&map->lock, file, line);
448 	map->timestamp++;
449 }
450 
451 static void
452 vm_map_process_deferred(void)
453 {
454 	struct thread *td;
455 	vm_map_entry_t entry, next;
456 	vm_object_t object;
457 
458 	td = curthread;
459 	entry = td->td_map_def_user;
460 	td->td_map_def_user = NULL;
461 	while (entry != NULL) {
462 		next = entry->next;
463 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 			/*
465 			 * Decrement the object's writemappings and
466 			 * possibly the vnode's v_writecount.
467 			 */
468 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 			    ("Submap with writecount"));
470 			object = entry->object.vm_object;
471 			KASSERT(object != NULL, ("No object for writecount"));
472 			vnode_pager_release_writecount(object, entry->start,
473 			    entry->end);
474 		}
475 		vm_map_entry_deallocate(entry, FALSE);
476 		entry = next;
477 	}
478 }
479 
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483 
484 	if (map->system_map)
485 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 	else {
487 		sx_xunlock_(&map->lock, file, line);
488 		vm_map_process_deferred();
489 	}
490 }
491 
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495 
496 	if (map->system_map)
497 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 	else
499 		sx_slock_(&map->lock, file, line);
500 }
501 
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_sunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 	int error;
518 
519 	error = map->system_map ?
520 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 	    !sx_try_xlock_(&map->lock, file, line);
522 	if (error == 0)
523 		map->timestamp++;
524 	return (error == 0);
525 }
526 
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 	int error;
531 
532 	error = map->system_map ?
533 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 	    !sx_try_slock_(&map->lock, file, line);
535 	return (error == 0);
536 }
537 
538 /*
539  *	_vm_map_lock_upgrade:	[ internal use only ]
540  *
541  *	Tries to upgrade a read (shared) lock on the specified map to a write
542  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544  *	returned without a read or write lock held.
545  *
546  *	Requires that the map be read locked.
547  */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 	unsigned int last_timestamp;
552 
553 	if (map->system_map) {
554 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 	} else {
556 		if (!sx_try_upgrade_(&map->lock, file, line)) {
557 			last_timestamp = map->timestamp;
558 			sx_sunlock_(&map->lock, file, line);
559 			vm_map_process_deferred();
560 			/*
561 			 * If the map's timestamp does not change while the
562 			 * map is unlocked, then the upgrade succeeds.
563 			 */
564 			sx_xlock_(&map->lock, file, line);
565 			if (last_timestamp != map->timestamp) {
566 				sx_xunlock_(&map->lock, file, line);
567 				return (1);
568 			}
569 		}
570 	}
571 	map->timestamp++;
572 	return (0);
573 }
574 
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578 
579 	if (map->system_map) {
580 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 	} else
582 		sx_downgrade_(&map->lock, file, line);
583 }
584 
585 /*
586  *	vm_map_locked:
587  *
588  *	Returns a non-zero value if the caller holds a write (exclusive) lock
589  *	on the specified map and the value "0" otherwise.
590  */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594 
595 	if (map->system_map)
596 		return (mtx_owned(&map->system_mtx));
597 	else
598 		return (sx_xlocked(&map->lock));
599 }
600 
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605 
606 	if (map->system_map)
607 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 	else
609 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611 
612 #define	VM_MAP_ASSERT_LOCKED(map) \
613     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define	VM_MAP_ASSERT_LOCKED(map)
616 #endif
617 
618 /*
619  *	_vm_map_unlock_and_wait:
620  *
621  *	Atomically releases the lock on the specified map and puts the calling
622  *	thread to sleep.  The calling thread will remain asleep until either
623  *	vm_map_wakeup() is performed on the map or the specified timeout is
624  *	exceeded.
625  *
626  *	WARNING!  This function does not perform deferred deallocations of
627  *	objects and map	entries.  Therefore, the calling thread is expected to
628  *	reacquire the map lock after reawakening and later perform an ordinary
629  *	unlock operation, such as vm_map_unlock(), before completing its
630  *	operation on the map.
631  */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635 
636 	mtx_lock(&map_sleep_mtx);
637 	if (map->system_map)
638 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 	else
640 		sx_xunlock_(&map->lock, file, line);
641 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 	    timo));
643 }
644 
645 /*
646  *	vm_map_wakeup:
647  *
648  *	Awaken any threads that have slept on the map using
649  *	vm_map_unlock_and_wait().
650  */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654 
655 	/*
656 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 	 * from being performed (and lost) between the map unlock
658 	 * and the msleep() in _vm_map_unlock_and_wait().
659 	 */
660 	mtx_lock(&map_sleep_mtx);
661 	mtx_unlock(&map_sleep_mtx);
662 	wakeup(&map->root);
663 }
664 
665 void
666 vm_map_busy(vm_map_t map)
667 {
668 
669 	VM_MAP_ASSERT_LOCKED(map);
670 	map->busy++;
671 }
672 
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 		wakeup(&map->busy);
682 	}
683 }
684 
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	while (map->busy) {
691 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 		if (map->system_map)
693 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 		else
695 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 	}
697 	map->timestamp++;
698 }
699 
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 	return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705 
706 /*
707  *	vm_map_create:
708  *
709  *	Creates and returns a new empty VM map with
710  *	the given physical map structure, and having
711  *	the given lower and upper address bounds.
712  */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 	vm_map_t result;
717 
718 	result = uma_zalloc(mapzone, M_WAITOK);
719 	CTR1(KTR_VM, "vm_map_create: %p", result);
720 	_vm_map_init(result, pmap, min, max);
721 	return (result);
722 }
723 
724 /*
725  * Initialize an existing vm_map structure
726  * such as that in the vmspace structure.
727  */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731 
732 	map->header.next = map->header.prev = &map->header;
733 	map->needs_wakeup = FALSE;
734 	map->system_map = 0;
735 	map->pmap = pmap;
736 	map->min_offset = min;
737 	map->max_offset = max;
738 	map->flags = 0;
739 	map->root = NULL;
740 	map->timestamp = 0;
741 	map->busy = 0;
742 }
743 
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747 
748 	_vm_map_init(map, pmap, min, max);
749 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 	sx_init(&map->lock, "user map");
751 }
752 
753 /*
754  *	vm_map_entry_dispose:	[ internal use only ]
755  *
756  *	Inverse of vm_map_entry_create.
757  */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763 
764 /*
765  *	vm_map_entry_create:	[ internal use only ]
766  *
767  *	Allocates a VM map entry for insertion.
768  *	No entry fields are filled in.
769  */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 	vm_map_entry_t new_entry;
774 
775 	if (map->system_map)
776 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 	else
778 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 	if (new_entry == NULL)
780 		panic("vm_map_entry_create: kernel resources exhausted");
781 	return (new_entry);
782 }
783 
784 /*
785  *	vm_map_entry_set_behavior:
786  *
787  *	Set the expected access behavior, either normal, random, or
788  *	sequential.
789  */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 	    (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796 
797 /*
798  *	vm_map_entry_set_max_free:
799  *
800  *	Set the max_free field in a vm_map_entry.
801  */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805 
806 	entry->max_free = entry->adj_free;
807 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 		entry->max_free = entry->left->max_free;
809 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 		entry->max_free = entry->right->max_free;
811 }
812 
813 /*
814  *	vm_map_entry_splay:
815  *
816  *	The Sleator and Tarjan top-down splay algorithm with the
817  *	following variation.  Max_free must be computed bottom-up, so
818  *	on the downward pass, maintain the left and right spines in
819  *	reverse order.  Then, make a second pass up each side to fix
820  *	the pointers and compute max_free.  The time bound is O(log n)
821  *	amortized.
822  *
823  *	The new root is the vm_map_entry containing "addr", or else an
824  *	adjacent entry (lower or higher) if addr is not in the tree.
825  *
826  *	The map must be locked, and leaves it so.
827  *
828  *	Returns: the new root.
829  */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 	vm_map_entry_t llist, rlist;
834 	vm_map_entry_t ltree, rtree;
835 	vm_map_entry_t y;
836 
837 	/* Special case of empty tree. */
838 	if (root == NULL)
839 		return (root);
840 
841 	/*
842 	 * Pass One: Splay down the tree until we find addr or a NULL
843 	 * pointer where addr would go.  llist and rlist are the two
844 	 * sides in reverse order (bottom-up), with llist linked by
845 	 * the right pointer and rlist linked by the left pointer in
846 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847 	 * the two spines.
848 	 */
849 	llist = NULL;
850 	rlist = NULL;
851 	for (;;) {
852 		/* root is never NULL in here. */
853 		if (addr < root->start) {
854 			y = root->left;
855 			if (y == NULL)
856 				break;
857 			if (addr < y->start && y->left != NULL) {
858 				/* Rotate right and put y on rlist. */
859 				root->left = y->right;
860 				y->right = root;
861 				vm_map_entry_set_max_free(root);
862 				root = y->left;
863 				y->left = rlist;
864 				rlist = y;
865 			} else {
866 				/* Put root on rlist. */
867 				root->left = rlist;
868 				rlist = root;
869 				root = y;
870 			}
871 		} else if (addr >= root->end) {
872 			y = root->right;
873 			if (y == NULL)
874 				break;
875 			if (addr >= y->end && y->right != NULL) {
876 				/* Rotate left and put y on llist. */
877 				root->right = y->left;
878 				y->left = root;
879 				vm_map_entry_set_max_free(root);
880 				root = y->right;
881 				y->right = llist;
882 				llist = y;
883 			} else {
884 				/* Put root on llist. */
885 				root->right = llist;
886 				llist = root;
887 				root = y;
888 			}
889 		} else
890 			break;
891 	}
892 
893 	/*
894 	 * Pass Two: Walk back up the two spines, flip the pointers
895 	 * and set max_free.  The subtrees of the root go at the
896 	 * bottom of llist and rlist.
897 	 */
898 	ltree = root->left;
899 	while (llist != NULL) {
900 		y = llist->right;
901 		llist->right = ltree;
902 		vm_map_entry_set_max_free(llist);
903 		ltree = llist;
904 		llist = y;
905 	}
906 	rtree = root->right;
907 	while (rlist != NULL) {
908 		y = rlist->left;
909 		rlist->left = rtree;
910 		vm_map_entry_set_max_free(rlist);
911 		rtree = rlist;
912 		rlist = y;
913 	}
914 
915 	/*
916 	 * Final assembly: add ltree and rtree as subtrees of root.
917 	 */
918 	root->left = ltree;
919 	root->right = rtree;
920 	vm_map_entry_set_max_free(root);
921 
922 	return (root);
923 }
924 
925 /*
926  *	vm_map_entry_{un,}link:
927  *
928  *	Insert/remove entries from maps.
929  */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 		  vm_map_entry_t after_where,
933 		  vm_map_entry_t entry)
934 {
935 
936 	CTR4(KTR_VM,
937 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 	    map->nentries, entry, after_where);
939 	VM_MAP_ASSERT_LOCKED(map);
940 	map->nentries++;
941 	entry->prev = after_where;
942 	entry->next = after_where->next;
943 	entry->next->prev = entry;
944 	after_where->next = entry;
945 
946 	if (after_where != &map->header) {
947 		if (after_where != map->root)
948 			vm_map_entry_splay(after_where->start, map->root);
949 		entry->right = after_where->right;
950 		entry->left = after_where;
951 		after_where->right = NULL;
952 		after_where->adj_free = entry->start - after_where->end;
953 		vm_map_entry_set_max_free(after_where);
954 	} else {
955 		entry->right = map->root;
956 		entry->left = NULL;
957 	}
958 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 	    entry->next->start) - entry->end;
960 	vm_map_entry_set_max_free(entry);
961 	map->root = entry;
962 }
963 
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 		    vm_map_entry_t entry)
967 {
968 	vm_map_entry_t next, prev, root;
969 
970 	VM_MAP_ASSERT_LOCKED(map);
971 	if (entry != map->root)
972 		vm_map_entry_splay(entry->start, map->root);
973 	if (entry->left == NULL)
974 		root = entry->right;
975 	else {
976 		root = vm_map_entry_splay(entry->start, entry->left);
977 		root->right = entry->right;
978 		root->adj_free = (entry->next == &map->header ? map->max_offset :
979 		    entry->next->start) - root->end;
980 		vm_map_entry_set_max_free(root);
981 	}
982 	map->root = root;
983 
984 	prev = entry->prev;
985 	next = entry->next;
986 	next->prev = prev;
987 	prev->next = next;
988 	map->nentries--;
989 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 	    map->nentries, entry);
991 }
992 
993 /*
994  *	vm_map_entry_resize_free:
995  *
996  *	Recompute the amount of free space following a vm_map_entry
997  *	and propagate that value up the tree.  Call this function after
998  *	resizing a map entry in-place, that is, without a call to
999  *	vm_map_entry_link() or _unlink().
1000  *
1001  *	The map must be locked, and leaves it so.
1002  */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006 
1007 	/*
1008 	 * Using splay trees without parent pointers, propagating
1009 	 * max_free up the tree is done by moving the entry to the
1010 	 * root and making the change there.
1011 	 */
1012 	if (entry != map->root)
1013 		map->root = vm_map_entry_splay(entry->start, map->root);
1014 
1015 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 	    entry->next->start) - entry->end;
1017 	vm_map_entry_set_max_free(entry);
1018 }
1019 
1020 /*
1021  *	vm_map_lookup_entry:	[ internal use only ]
1022  *
1023  *	Finds the map entry containing (or
1024  *	immediately preceding) the specified address
1025  *	in the given map; the entry is returned
1026  *	in the "entry" parameter.  The boolean
1027  *	result indicates whether the address is
1028  *	actually contained in the map.
1029  */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 	vm_map_t map,
1033 	vm_offset_t address,
1034 	vm_map_entry_t *entry)	/* OUT */
1035 {
1036 	vm_map_entry_t cur;
1037 	boolean_t locked;
1038 
1039 	/*
1040 	 * If the map is empty, then the map entry immediately preceding
1041 	 * "address" is the map's header.
1042 	 */
1043 	cur = map->root;
1044 	if (cur == NULL)
1045 		*entry = &map->header;
1046 	else if (address >= cur->start && cur->end > address) {
1047 		*entry = cur;
1048 		return (TRUE);
1049 	} else if ((locked = vm_map_locked(map)) ||
1050 	    sx_try_upgrade(&map->lock)) {
1051 		/*
1052 		 * Splay requires a write lock on the map.  However, it only
1053 		 * restructures the binary search tree; it does not otherwise
1054 		 * change the map.  Thus, the map's timestamp need not change
1055 		 * on a temporary upgrade.
1056 		 */
1057 		map->root = cur = vm_map_entry_splay(address, cur);
1058 		if (!locked)
1059 			sx_downgrade(&map->lock);
1060 
1061 		/*
1062 		 * If "address" is contained within a map entry, the new root
1063 		 * is that map entry.  Otherwise, the new root is a map entry
1064 		 * immediately before or after "address".
1065 		 */
1066 		if (address >= cur->start) {
1067 			*entry = cur;
1068 			if (cur->end > address)
1069 				return (TRUE);
1070 		} else
1071 			*entry = cur->prev;
1072 	} else
1073 		/*
1074 		 * Since the map is only locked for read access, perform a
1075 		 * standard binary search tree lookup for "address".
1076 		 */
1077 		for (;;) {
1078 			if (address < cur->start) {
1079 				if (cur->left == NULL) {
1080 					*entry = cur->prev;
1081 					break;
1082 				}
1083 				cur = cur->left;
1084 			} else if (cur->end > address) {
1085 				*entry = cur;
1086 				return (TRUE);
1087 			} else {
1088 				if (cur->right == NULL) {
1089 					*entry = cur;
1090 					break;
1091 				}
1092 				cur = cur->right;
1093 			}
1094 		}
1095 	return (FALSE);
1096 }
1097 
1098 /*
1099  *	vm_map_insert:
1100  *
1101  *	Inserts the given whole VM object into the target
1102  *	map at the specified address range.  The object's
1103  *	size should match that of the address range.
1104  *
1105  *	Requires that the map be locked, and leaves it so.
1106  *
1107  *	If object is non-NULL, ref count must be bumped by caller
1108  *	prior to making call to account for the new entry.
1109  */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 	      int cow)
1114 {
1115 	vm_map_entry_t new_entry;
1116 	vm_map_entry_t prev_entry;
1117 	vm_map_entry_t temp_entry;
1118 	vm_eflags_t protoeflags;
1119 	struct ucred *cred;
1120 	vm_inherit_t inheritance;
1121 	boolean_t charge_prev_obj;
1122 
1123 	VM_MAP_ASSERT_LOCKED(map);
1124 
1125 	/*
1126 	 * Check that the start and end points are not bogus.
1127 	 */
1128 	if ((start < map->min_offset) || (end > map->max_offset) ||
1129 	    (start >= end))
1130 		return (KERN_INVALID_ADDRESS);
1131 
1132 	/*
1133 	 * Find the entry prior to the proposed starting address; if it's part
1134 	 * of an existing entry, this range is bogus.
1135 	 */
1136 	if (vm_map_lookup_entry(map, start, &temp_entry))
1137 		return (KERN_NO_SPACE);
1138 
1139 	prev_entry = temp_entry;
1140 
1141 	/*
1142 	 * Assert that the next entry doesn't overlap the end point.
1143 	 */
1144 	if ((prev_entry->next != &map->header) &&
1145 	    (prev_entry->next->start < end))
1146 		return (KERN_NO_SPACE);
1147 
1148 	protoeflags = 0;
1149 	charge_prev_obj = FALSE;
1150 
1151 	if (cow & MAP_COPY_ON_WRITE)
1152 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153 
1154 	if (cow & MAP_NOFAULT) {
1155 		protoeflags |= MAP_ENTRY_NOFAULT;
1156 
1157 		KASSERT(object == NULL,
1158 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 	}
1160 	if (cow & MAP_DISABLE_SYNCER)
1161 		protoeflags |= MAP_ENTRY_NOSYNC;
1162 	if (cow & MAP_DISABLE_COREDUMP)
1163 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 	if (cow & MAP_VN_WRITECOUNT)
1165 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 	if (cow & MAP_INHERIT_SHARE)
1167 		inheritance = VM_INHERIT_SHARE;
1168 	else
1169 		inheritance = VM_INHERIT_DEFAULT;
1170 
1171 	cred = NULL;
1172 	KASSERT((object != kmem_object && object != kernel_object) ||
1173 	    ((object == kmem_object || object == kernel_object) &&
1174 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 	    ("kmem or kernel object and cow"));
1176 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 		goto charged;
1178 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 			return (KERN_RESOURCE_SHORTAGE);
1182 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 		    object->cred == NULL,
1184 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185 		cred = curthread->td_ucred;
1186 		crhold(cred);
1187 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 			charge_prev_obj = TRUE;
1189 	}
1190 
1191 charged:
1192 	/* Expand the kernel pmap, if necessary. */
1193 	if (map == kernel_map && end > kernel_vm_end)
1194 		pmap_growkernel(end);
1195 	if (object != NULL) {
1196 		/*
1197 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 		 * is trivially proven to be the only mapping for any
1199 		 * of the object's pages.  (Object granularity
1200 		 * reference counting is insufficient to recognize
1201 		 * aliases with precision.)
1202 		 */
1203 		VM_OBJECT_WLOCK(object);
1204 		if (object->ref_count > 1 || object->shadow_count != 0)
1205 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 		VM_OBJECT_WUNLOCK(object);
1207 	}
1208 	else if ((prev_entry != &map->header) &&
1209 		 (prev_entry->eflags == protoeflags) &&
1210 		 (prev_entry->end == start) &&
1211 		 (prev_entry->wired_count == 0) &&
1212 		 (prev_entry->cred == cred ||
1213 		  (prev_entry->object.vm_object != NULL &&
1214 		   (prev_entry->object.vm_object->cred == cred))) &&
1215 		   vm_object_coalesce(prev_entry->object.vm_object,
1216 		       prev_entry->offset,
1217 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1218 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1219 		/*
1220 		 * We were able to extend the object.  Determine if we
1221 		 * can extend the previous map entry to include the
1222 		 * new range as well.
1223 		 */
1224 		if ((prev_entry->inheritance == inheritance) &&
1225 		    (prev_entry->protection == prot) &&
1226 		    (prev_entry->max_protection == max)) {
1227 			map->size += (end - prev_entry->end);
1228 			prev_entry->end = end;
1229 			vm_map_entry_resize_free(map, prev_entry);
1230 			vm_map_simplify_entry(map, prev_entry);
1231 			if (cred != NULL)
1232 				crfree(cred);
1233 			return (KERN_SUCCESS);
1234 		}
1235 
1236 		/*
1237 		 * If we can extend the object but cannot extend the
1238 		 * map entry, we have to create a new map entry.  We
1239 		 * must bump the ref count on the extended object to
1240 		 * account for it.  object may be NULL.
1241 		 */
1242 		object = prev_entry->object.vm_object;
1243 		offset = prev_entry->offset +
1244 			(prev_entry->end - prev_entry->start);
1245 		vm_object_reference(object);
1246 		if (cred != NULL && object != NULL && object->cred != NULL &&
1247 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1248 			/* Object already accounts for this uid. */
1249 			crfree(cred);
1250 			cred = NULL;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1256 	 * in things like the buffer map where we manage kva but do not manage
1257 	 * backing objects.
1258 	 */
1259 
1260 	/*
1261 	 * Create a new entry
1262 	 */
1263 	new_entry = vm_map_entry_create(map);
1264 	new_entry->start = start;
1265 	new_entry->end = end;
1266 	new_entry->cred = NULL;
1267 
1268 	new_entry->eflags = protoeflags;
1269 	new_entry->object.vm_object = object;
1270 	new_entry->offset = offset;
1271 	new_entry->avail_ssize = 0;
1272 
1273 	new_entry->inheritance = inheritance;
1274 	new_entry->protection = prot;
1275 	new_entry->max_protection = max;
1276 	new_entry->wired_count = 0;
1277 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1278 	new_entry->next_read = OFF_TO_IDX(offset);
1279 
1280 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1281 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1282 	new_entry->cred = cred;
1283 
1284 	/*
1285 	 * Insert the new entry into the list
1286 	 */
1287 	vm_map_entry_link(map, prev_entry, new_entry);
1288 	map->size += new_entry->end - new_entry->start;
1289 
1290 	/*
1291 	 * It may be possible to merge the new entry with the next and/or
1292 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1293 	 * panic can result from merging such entries.
1294 	 */
1295 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1296 		vm_map_simplify_entry(map, new_entry);
1297 
1298 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1299 		vm_map_pmap_enter(map, start, prot,
1300 				    object, OFF_TO_IDX(offset), end - start,
1301 				    cow & MAP_PREFAULT_PARTIAL);
1302 	}
1303 
1304 	return (KERN_SUCCESS);
1305 }
1306 
1307 /*
1308  *	vm_map_findspace:
1309  *
1310  *	Find the first fit (lowest VM address) for "length" free bytes
1311  *	beginning at address >= start in the given map.
1312  *
1313  *	In a vm_map_entry, "adj_free" is the amount of free space
1314  *	adjacent (higher address) to this entry, and "max_free" is the
1315  *	maximum amount of contiguous free space in its subtree.  This
1316  *	allows finding a free region in one path down the tree, so
1317  *	O(log n) amortized with splay trees.
1318  *
1319  *	The map must be locked, and leaves it so.
1320  *
1321  *	Returns: 0 on success, and starting address in *addr,
1322  *		 1 if insufficient space.
1323  */
1324 int
1325 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1326     vm_offset_t *addr)	/* OUT */
1327 {
1328 	vm_map_entry_t entry;
1329 	vm_offset_t st;
1330 
1331 	/*
1332 	 * Request must fit within min/max VM address and must avoid
1333 	 * address wrap.
1334 	 */
1335 	if (start < map->min_offset)
1336 		start = map->min_offset;
1337 	if (start + length > map->max_offset || start + length < start)
1338 		return (1);
1339 
1340 	/* Empty tree means wide open address space. */
1341 	if (map->root == NULL) {
1342 		*addr = start;
1343 		return (0);
1344 	}
1345 
1346 	/*
1347 	 * After splay, if start comes before root node, then there
1348 	 * must be a gap from start to the root.
1349 	 */
1350 	map->root = vm_map_entry_splay(start, map->root);
1351 	if (start + length <= map->root->start) {
1352 		*addr = start;
1353 		return (0);
1354 	}
1355 
1356 	/*
1357 	 * Root is the last node that might begin its gap before
1358 	 * start, and this is the last comparison where address
1359 	 * wrap might be a problem.
1360 	 */
1361 	st = (start > map->root->end) ? start : map->root->end;
1362 	if (length <= map->root->end + map->root->adj_free - st) {
1363 		*addr = st;
1364 		return (0);
1365 	}
1366 
1367 	/* With max_free, can immediately tell if no solution. */
1368 	entry = map->root->right;
1369 	if (entry == NULL || length > entry->max_free)
1370 		return (1);
1371 
1372 	/*
1373 	 * Search the right subtree in the order: left subtree, root,
1374 	 * right subtree (first fit).  The previous splay implies that
1375 	 * all regions in the right subtree have addresses > start.
1376 	 */
1377 	while (entry != NULL) {
1378 		if (entry->left != NULL && entry->left->max_free >= length)
1379 			entry = entry->left;
1380 		else if (entry->adj_free >= length) {
1381 			*addr = entry->end;
1382 			return (0);
1383 		} else
1384 			entry = entry->right;
1385 	}
1386 
1387 	/* Can't get here, so panic if we do. */
1388 	panic("vm_map_findspace: max_free corrupt");
1389 }
1390 
1391 int
1392 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1393     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1394     vm_prot_t max, int cow)
1395 {
1396 	vm_offset_t end;
1397 	int result;
1398 
1399 	end = start + length;
1400 	vm_map_lock(map);
1401 	VM_MAP_RANGE_CHECK(map, start, end);
1402 	(void) vm_map_delete(map, start, end);
1403 	result = vm_map_insert(map, object, offset, start, end, prot,
1404 	    max, cow);
1405 	vm_map_unlock(map);
1406 	return (result);
1407 }
1408 
1409 /*
1410  *	vm_map_find finds an unallocated region in the target address
1411  *	map with the given length.  The search is defined to be
1412  *	first-fit from the specified address; the region found is
1413  *	returned in the same parameter.
1414  *
1415  *	If object is non-NULL, ref count must be bumped by caller
1416  *	prior to making call to account for the new entry.
1417  */
1418 int
1419 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1420 	    vm_offset_t *addr,	/* IN/OUT */
1421 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1422 	    vm_prot_t prot, vm_prot_t max, int cow)
1423 {
1424 	vm_offset_t alignment, initial_addr, start;
1425 	int result;
1426 
1427 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1428 	    (object->flags & OBJ_COLORED) == 0))
1429 		find_space = VMFS_ANY_SPACE;
1430 	if (find_space >> 8 != 0) {
1431 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1432 		alignment = (vm_offset_t)1 << (find_space >> 8);
1433 	} else
1434 		alignment = 0;
1435 	initial_addr = *addr;
1436 again:
1437 	start = initial_addr;
1438 	vm_map_lock(map);
1439 	do {
1440 		if (find_space != VMFS_NO_SPACE) {
1441 			if (vm_map_findspace(map, start, length, addr) ||
1442 			    (max_addr != 0 && *addr + length > max_addr)) {
1443 				vm_map_unlock(map);
1444 				if (find_space == VMFS_OPTIMAL_SPACE) {
1445 					find_space = VMFS_ANY_SPACE;
1446 					goto again;
1447 				}
1448 				return (KERN_NO_SPACE);
1449 			}
1450 			switch (find_space) {
1451 			case VMFS_SUPER_SPACE:
1452 			case VMFS_OPTIMAL_SPACE:
1453 				pmap_align_superpage(object, offset, addr,
1454 				    length);
1455 				break;
1456 			case VMFS_ANY_SPACE:
1457 				break;
1458 			default:
1459 				if ((*addr & (alignment - 1)) != 0) {
1460 					*addr &= ~(alignment - 1);
1461 					*addr += alignment;
1462 				}
1463 				break;
1464 			}
1465 
1466 			start = *addr;
1467 		}
1468 		result = vm_map_insert(map, object, offset, start, start +
1469 		    length, prot, max, cow);
1470 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1471 	    find_space != VMFS_ANY_SPACE);
1472 	vm_map_unlock(map);
1473 	return (result);
1474 }
1475 
1476 /*
1477  *	vm_map_simplify_entry:
1478  *
1479  *	Simplify the given map entry by merging with either neighbor.  This
1480  *	routine also has the ability to merge with both neighbors.
1481  *
1482  *	The map must be locked.
1483  *
1484  *	This routine guarentees that the passed entry remains valid (though
1485  *	possibly extended).  When merging, this routine may delete one or
1486  *	both neighbors.
1487  */
1488 void
1489 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1490 {
1491 	vm_map_entry_t next, prev;
1492 	vm_size_t prevsize, esize;
1493 
1494 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1495 		return;
1496 
1497 	prev = entry->prev;
1498 	if (prev != &map->header) {
1499 		prevsize = prev->end - prev->start;
1500 		if ( (prev->end == entry->start) &&
1501 		     (prev->object.vm_object == entry->object.vm_object) &&
1502 		     (!prev->object.vm_object ||
1503 			(prev->offset + prevsize == entry->offset)) &&
1504 		     (prev->eflags == entry->eflags) &&
1505 		     (prev->protection == entry->protection) &&
1506 		     (prev->max_protection == entry->max_protection) &&
1507 		     (prev->inheritance == entry->inheritance) &&
1508 		     (prev->wired_count == entry->wired_count) &&
1509 		     (prev->cred == entry->cred)) {
1510 			vm_map_entry_unlink(map, prev);
1511 			entry->start = prev->start;
1512 			entry->offset = prev->offset;
1513 			if (entry->prev != &map->header)
1514 				vm_map_entry_resize_free(map, entry->prev);
1515 
1516 			/*
1517 			 * If the backing object is a vnode object,
1518 			 * vm_object_deallocate() calls vrele().
1519 			 * However, vrele() does not lock the vnode
1520 			 * because the vnode has additional
1521 			 * references.  Thus, the map lock can be kept
1522 			 * without causing a lock-order reversal with
1523 			 * the vnode lock.
1524 			 *
1525 			 * Since we count the number of virtual page
1526 			 * mappings in object->un_pager.vnp.writemappings,
1527 			 * the writemappings value should not be adjusted
1528 			 * when the entry is disposed of.
1529 			 */
1530 			if (prev->object.vm_object)
1531 				vm_object_deallocate(prev->object.vm_object);
1532 			if (prev->cred != NULL)
1533 				crfree(prev->cred);
1534 			vm_map_entry_dispose(map, prev);
1535 		}
1536 	}
1537 
1538 	next = entry->next;
1539 	if (next != &map->header) {
1540 		esize = entry->end - entry->start;
1541 		if ((entry->end == next->start) &&
1542 		    (next->object.vm_object == entry->object.vm_object) &&
1543 		     (!entry->object.vm_object ||
1544 			(entry->offset + esize == next->offset)) &&
1545 		    (next->eflags == entry->eflags) &&
1546 		    (next->protection == entry->protection) &&
1547 		    (next->max_protection == entry->max_protection) &&
1548 		    (next->inheritance == entry->inheritance) &&
1549 		    (next->wired_count == entry->wired_count) &&
1550 		    (next->cred == entry->cred)) {
1551 			vm_map_entry_unlink(map, next);
1552 			entry->end = next->end;
1553 			vm_map_entry_resize_free(map, entry);
1554 
1555 			/*
1556 			 * See comment above.
1557 			 */
1558 			if (next->object.vm_object)
1559 				vm_object_deallocate(next->object.vm_object);
1560 			if (next->cred != NULL)
1561 				crfree(next->cred);
1562 			vm_map_entry_dispose(map, next);
1563 		}
1564 	}
1565 }
1566 /*
1567  *	vm_map_clip_start:	[ internal use only ]
1568  *
1569  *	Asserts that the given entry begins at or after
1570  *	the specified address; if necessary,
1571  *	it splits the entry into two.
1572  */
1573 #define vm_map_clip_start(map, entry, startaddr) \
1574 { \
1575 	if (startaddr > entry->start) \
1576 		_vm_map_clip_start(map, entry, startaddr); \
1577 }
1578 
1579 /*
1580  *	This routine is called only when it is known that
1581  *	the entry must be split.
1582  */
1583 static void
1584 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1585 {
1586 	vm_map_entry_t new_entry;
1587 
1588 	VM_MAP_ASSERT_LOCKED(map);
1589 
1590 	/*
1591 	 * Split off the front portion -- note that we must insert the new
1592 	 * entry BEFORE this one, so that this entry has the specified
1593 	 * starting address.
1594 	 */
1595 	vm_map_simplify_entry(map, entry);
1596 
1597 	/*
1598 	 * If there is no object backing this entry, we might as well create
1599 	 * one now.  If we defer it, an object can get created after the map
1600 	 * is clipped, and individual objects will be created for the split-up
1601 	 * map.  This is a bit of a hack, but is also about the best place to
1602 	 * put this improvement.
1603 	 */
1604 	if (entry->object.vm_object == NULL && !map->system_map) {
1605 		vm_object_t object;
1606 		object = vm_object_allocate(OBJT_DEFAULT,
1607 				atop(entry->end - entry->start));
1608 		entry->object.vm_object = object;
1609 		entry->offset = 0;
1610 		if (entry->cred != NULL) {
1611 			object->cred = entry->cred;
1612 			object->charge = entry->end - entry->start;
1613 			entry->cred = NULL;
1614 		}
1615 	} else if (entry->object.vm_object != NULL &&
1616 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1617 		   entry->cred != NULL) {
1618 		VM_OBJECT_WLOCK(entry->object.vm_object);
1619 		KASSERT(entry->object.vm_object->cred == NULL,
1620 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1621 		entry->object.vm_object->cred = entry->cred;
1622 		entry->object.vm_object->charge = entry->end - entry->start;
1623 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1624 		entry->cred = NULL;
1625 	}
1626 
1627 	new_entry = vm_map_entry_create(map);
1628 	*new_entry = *entry;
1629 
1630 	new_entry->end = start;
1631 	entry->offset += (start - entry->start);
1632 	entry->start = start;
1633 	if (new_entry->cred != NULL)
1634 		crhold(entry->cred);
1635 
1636 	vm_map_entry_link(map, entry->prev, new_entry);
1637 
1638 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1639 		vm_object_reference(new_entry->object.vm_object);
1640 		/*
1641 		 * The object->un_pager.vnp.writemappings for the
1642 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1643 		 * kept as is here.  The virtual pages are
1644 		 * re-distributed among the clipped entries, so the sum is
1645 		 * left the same.
1646 		 */
1647 	}
1648 }
1649 
1650 /*
1651  *	vm_map_clip_end:	[ internal use only ]
1652  *
1653  *	Asserts that the given entry ends at or before
1654  *	the specified address; if necessary,
1655  *	it splits the entry into two.
1656  */
1657 #define vm_map_clip_end(map, entry, endaddr) \
1658 { \
1659 	if ((endaddr) < (entry->end)) \
1660 		_vm_map_clip_end((map), (entry), (endaddr)); \
1661 }
1662 
1663 /*
1664  *	This routine is called only when it is known that
1665  *	the entry must be split.
1666  */
1667 static void
1668 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1669 {
1670 	vm_map_entry_t new_entry;
1671 
1672 	VM_MAP_ASSERT_LOCKED(map);
1673 
1674 	/*
1675 	 * If there is no object backing this entry, we might as well create
1676 	 * one now.  If we defer it, an object can get created after the map
1677 	 * is clipped, and individual objects will be created for the split-up
1678 	 * map.  This is a bit of a hack, but is also about the best place to
1679 	 * put this improvement.
1680 	 */
1681 	if (entry->object.vm_object == NULL && !map->system_map) {
1682 		vm_object_t object;
1683 		object = vm_object_allocate(OBJT_DEFAULT,
1684 				atop(entry->end - entry->start));
1685 		entry->object.vm_object = object;
1686 		entry->offset = 0;
1687 		if (entry->cred != NULL) {
1688 			object->cred = entry->cred;
1689 			object->charge = entry->end - entry->start;
1690 			entry->cred = NULL;
1691 		}
1692 	} else if (entry->object.vm_object != NULL &&
1693 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1694 		   entry->cred != NULL) {
1695 		VM_OBJECT_WLOCK(entry->object.vm_object);
1696 		KASSERT(entry->object.vm_object->cred == NULL,
1697 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1698 		entry->object.vm_object->cred = entry->cred;
1699 		entry->object.vm_object->charge = entry->end - entry->start;
1700 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1701 		entry->cred = NULL;
1702 	}
1703 
1704 	/*
1705 	 * Create a new entry and insert it AFTER the specified entry
1706 	 */
1707 	new_entry = vm_map_entry_create(map);
1708 	*new_entry = *entry;
1709 
1710 	new_entry->start = entry->end = end;
1711 	new_entry->offset += (end - entry->start);
1712 	if (new_entry->cred != NULL)
1713 		crhold(entry->cred);
1714 
1715 	vm_map_entry_link(map, entry, new_entry);
1716 
1717 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718 		vm_object_reference(new_entry->object.vm_object);
1719 	}
1720 }
1721 
1722 /*
1723  *	vm_map_submap:		[ kernel use only ]
1724  *
1725  *	Mark the given range as handled by a subordinate map.
1726  *
1727  *	This range must have been created with vm_map_find,
1728  *	and no other operations may have been performed on this
1729  *	range prior to calling vm_map_submap.
1730  *
1731  *	Only a limited number of operations can be performed
1732  *	within this rage after calling vm_map_submap:
1733  *		vm_fault
1734  *	[Don't try vm_map_copy!]
1735  *
1736  *	To remove a submapping, one must first remove the
1737  *	range from the superior map, and then destroy the
1738  *	submap (if desired).  [Better yet, don't try it.]
1739  */
1740 int
1741 vm_map_submap(
1742 	vm_map_t map,
1743 	vm_offset_t start,
1744 	vm_offset_t end,
1745 	vm_map_t submap)
1746 {
1747 	vm_map_entry_t entry;
1748 	int result = KERN_INVALID_ARGUMENT;
1749 
1750 	vm_map_lock(map);
1751 
1752 	VM_MAP_RANGE_CHECK(map, start, end);
1753 
1754 	if (vm_map_lookup_entry(map, start, &entry)) {
1755 		vm_map_clip_start(map, entry, start);
1756 	} else
1757 		entry = entry->next;
1758 
1759 	vm_map_clip_end(map, entry, end);
1760 
1761 	if ((entry->start == start) && (entry->end == end) &&
1762 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1763 	    (entry->object.vm_object == NULL)) {
1764 		entry->object.sub_map = submap;
1765 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1766 		result = KERN_SUCCESS;
1767 	}
1768 	vm_map_unlock(map);
1769 
1770 	return (result);
1771 }
1772 
1773 /*
1774  * The maximum number of pages to map
1775  */
1776 #define	MAX_INIT_PT	96
1777 
1778 /*
1779  *	vm_map_pmap_enter:
1780  *
1781  *	Preload read-only mappings for the specified object's resident pages
1782  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1783  *	the resident pages within the address range [addr, addr + ulmin(size,
1784  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1785  *	the specified address range are mapped.  This eliminates many soft
1786  *	faults on process startup and immediately after an mmap(2).  Because
1787  *	these are speculative mappings, cached pages are not reactivated and
1788  *	mapped.
1789  */
1790 void
1791 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1792     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1793 {
1794 	vm_offset_t start;
1795 	vm_page_t p, p_start;
1796 	vm_pindex_t psize, tmpidx;
1797 
1798 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1799 		return;
1800 	VM_OBJECT_RLOCK(object);
1801 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1802 		VM_OBJECT_RUNLOCK(object);
1803 		VM_OBJECT_WLOCK(object);
1804 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1805 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1806 			    size);
1807 			VM_OBJECT_WUNLOCK(object);
1808 			return;
1809 		}
1810 		VM_OBJECT_LOCK_DOWNGRADE(object);
1811 	}
1812 
1813 	psize = atop(size);
1814 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1815 		psize = MAX_INIT_PT;
1816 	if (psize + pindex > object->size) {
1817 		if (object->size < pindex) {
1818 			VM_OBJECT_RUNLOCK(object);
1819 			return;
1820 		}
1821 		psize = object->size - pindex;
1822 	}
1823 
1824 	start = 0;
1825 	p_start = NULL;
1826 
1827 	p = vm_page_find_least(object, pindex);
1828 	/*
1829 	 * Assert: the variable p is either (1) the page with the
1830 	 * least pindex greater than or equal to the parameter pindex
1831 	 * or (2) NULL.
1832 	 */
1833 	for (;
1834 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835 	     p = TAILQ_NEXT(p, listq)) {
1836 		/*
1837 		 * don't allow an madvise to blow away our really
1838 		 * free pages allocating pv entries.
1839 		 */
1840 		if ((flags & MAP_PREFAULT_MADVISE) &&
1841 		    cnt.v_free_count < cnt.v_free_reserved) {
1842 			psize = tmpidx;
1843 			break;
1844 		}
1845 		if (p->valid == VM_PAGE_BITS_ALL) {
1846 			if (p_start == NULL) {
1847 				start = addr + ptoa(tmpidx);
1848 				p_start = p;
1849 			}
1850 		} else if (p_start != NULL) {
1851 			pmap_enter_object(map->pmap, start, addr +
1852 			    ptoa(tmpidx), p_start, prot);
1853 			p_start = NULL;
1854 		}
1855 	}
1856 	if (p_start != NULL)
1857 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858 		    p_start, prot);
1859 	VM_OBJECT_RUNLOCK(object);
1860 }
1861 
1862 /*
1863  *	vm_map_protect:
1864  *
1865  *	Sets the protection of the specified address
1866  *	region in the target map.  If "set_max" is
1867  *	specified, the maximum protection is to be set;
1868  *	otherwise, only the current protection is affected.
1869  */
1870 int
1871 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872 	       vm_prot_t new_prot, boolean_t set_max)
1873 {
1874 	vm_map_entry_t current, entry;
1875 	vm_object_t obj;
1876 	struct ucred *cred;
1877 	vm_prot_t old_prot;
1878 
1879 	vm_map_lock(map);
1880 
1881 	VM_MAP_RANGE_CHECK(map, start, end);
1882 
1883 	if (vm_map_lookup_entry(map, start, &entry)) {
1884 		vm_map_clip_start(map, entry, start);
1885 	} else {
1886 		entry = entry->next;
1887 	}
1888 
1889 	/*
1890 	 * Make a first pass to check for protection violations.
1891 	 */
1892 	current = entry;
1893 	while ((current != &map->header) && (current->start < end)) {
1894 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1895 			vm_map_unlock(map);
1896 			return (KERN_INVALID_ARGUMENT);
1897 		}
1898 		if ((new_prot & current->max_protection) != new_prot) {
1899 			vm_map_unlock(map);
1900 			return (KERN_PROTECTION_FAILURE);
1901 		}
1902 		current = current->next;
1903 	}
1904 
1905 
1906 	/*
1907 	 * Do an accounting pass for private read-only mappings that
1908 	 * now will do cow due to allowed write (e.g. debugger sets
1909 	 * breakpoint on text segment)
1910 	 */
1911 	for (current = entry; (current != &map->header) &&
1912 	     (current->start < end); current = current->next) {
1913 
1914 		vm_map_clip_end(map, current, end);
1915 
1916 		if (set_max ||
1917 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1918 		    ENTRY_CHARGED(current)) {
1919 			continue;
1920 		}
1921 
1922 		cred = curthread->td_ucred;
1923 		obj = current->object.vm_object;
1924 
1925 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1926 			if (!swap_reserve(current->end - current->start)) {
1927 				vm_map_unlock(map);
1928 				return (KERN_RESOURCE_SHORTAGE);
1929 			}
1930 			crhold(cred);
1931 			current->cred = cred;
1932 			continue;
1933 		}
1934 
1935 		VM_OBJECT_WLOCK(obj);
1936 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1937 			VM_OBJECT_WUNLOCK(obj);
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * Charge for the whole object allocation now, since
1943 		 * we cannot distinguish between non-charged and
1944 		 * charged clipped mapping of the same object later.
1945 		 */
1946 		KASSERT(obj->charge == 0,
1947 		    ("vm_map_protect: object %p overcharged\n", obj));
1948 		if (!swap_reserve(ptoa(obj->size))) {
1949 			VM_OBJECT_WUNLOCK(obj);
1950 			vm_map_unlock(map);
1951 			return (KERN_RESOURCE_SHORTAGE);
1952 		}
1953 
1954 		crhold(cred);
1955 		obj->cred = cred;
1956 		obj->charge = ptoa(obj->size);
1957 		VM_OBJECT_WUNLOCK(obj);
1958 	}
1959 
1960 	/*
1961 	 * Go back and fix up protections. [Note that clipping is not
1962 	 * necessary the second time.]
1963 	 */
1964 	current = entry;
1965 	while ((current != &map->header) && (current->start < end)) {
1966 		old_prot = current->protection;
1967 
1968 		if (set_max)
1969 			current->protection =
1970 			    (current->max_protection = new_prot) &
1971 			    old_prot;
1972 		else
1973 			current->protection = new_prot;
1974 
1975 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1976 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1977 		    (current->protection & VM_PROT_WRITE) != 0 &&
1978 		    (old_prot & VM_PROT_WRITE) == 0) {
1979 			vm_fault_copy_entry(map, map, current, current, NULL);
1980 		}
1981 
1982 		/*
1983 		 * When restricting access, update the physical map.  Worry
1984 		 * about copy-on-write here.
1985 		 */
1986 		if ((old_prot & ~current->protection) != 0) {
1987 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1988 							VM_PROT_ALL)
1989 			pmap_protect(map->pmap, current->start,
1990 			    current->end,
1991 			    current->protection & MASK(current));
1992 #undef	MASK
1993 		}
1994 		vm_map_simplify_entry(map, current);
1995 		current = current->next;
1996 	}
1997 	vm_map_unlock(map);
1998 	return (KERN_SUCCESS);
1999 }
2000 
2001 /*
2002  *	vm_map_madvise:
2003  *
2004  *	This routine traverses a processes map handling the madvise
2005  *	system call.  Advisories are classified as either those effecting
2006  *	the vm_map_entry structure, or those effecting the underlying
2007  *	objects.
2008  */
2009 int
2010 vm_map_madvise(
2011 	vm_map_t map,
2012 	vm_offset_t start,
2013 	vm_offset_t end,
2014 	int behav)
2015 {
2016 	vm_map_entry_t current, entry;
2017 	int modify_map = 0;
2018 
2019 	/*
2020 	 * Some madvise calls directly modify the vm_map_entry, in which case
2021 	 * we need to use an exclusive lock on the map and we need to perform
2022 	 * various clipping operations.  Otherwise we only need a read-lock
2023 	 * on the map.
2024 	 */
2025 	switch(behav) {
2026 	case MADV_NORMAL:
2027 	case MADV_SEQUENTIAL:
2028 	case MADV_RANDOM:
2029 	case MADV_NOSYNC:
2030 	case MADV_AUTOSYNC:
2031 	case MADV_NOCORE:
2032 	case MADV_CORE:
2033 		modify_map = 1;
2034 		vm_map_lock(map);
2035 		break;
2036 	case MADV_WILLNEED:
2037 	case MADV_DONTNEED:
2038 	case MADV_FREE:
2039 		vm_map_lock_read(map);
2040 		break;
2041 	default:
2042 		return (KERN_INVALID_ARGUMENT);
2043 	}
2044 
2045 	/*
2046 	 * Locate starting entry and clip if necessary.
2047 	 */
2048 	VM_MAP_RANGE_CHECK(map, start, end);
2049 
2050 	if (vm_map_lookup_entry(map, start, &entry)) {
2051 		if (modify_map)
2052 			vm_map_clip_start(map, entry, start);
2053 	} else {
2054 		entry = entry->next;
2055 	}
2056 
2057 	if (modify_map) {
2058 		/*
2059 		 * madvise behaviors that are implemented in the vm_map_entry.
2060 		 *
2061 		 * We clip the vm_map_entry so that behavioral changes are
2062 		 * limited to the specified address range.
2063 		 */
2064 		for (current = entry;
2065 		     (current != &map->header) && (current->start < end);
2066 		     current = current->next
2067 		) {
2068 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2069 				continue;
2070 
2071 			vm_map_clip_end(map, current, end);
2072 
2073 			switch (behav) {
2074 			case MADV_NORMAL:
2075 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2076 				break;
2077 			case MADV_SEQUENTIAL:
2078 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2079 				break;
2080 			case MADV_RANDOM:
2081 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2082 				break;
2083 			case MADV_NOSYNC:
2084 				current->eflags |= MAP_ENTRY_NOSYNC;
2085 				break;
2086 			case MADV_AUTOSYNC:
2087 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2088 				break;
2089 			case MADV_NOCORE:
2090 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2091 				break;
2092 			case MADV_CORE:
2093 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2094 				break;
2095 			default:
2096 				break;
2097 			}
2098 			vm_map_simplify_entry(map, current);
2099 		}
2100 		vm_map_unlock(map);
2101 	} else {
2102 		vm_pindex_t pstart, pend;
2103 
2104 		/*
2105 		 * madvise behaviors that are implemented in the underlying
2106 		 * vm_object.
2107 		 *
2108 		 * Since we don't clip the vm_map_entry, we have to clip
2109 		 * the vm_object pindex and count.
2110 		 */
2111 		for (current = entry;
2112 		     (current != &map->header) && (current->start < end);
2113 		     current = current->next
2114 		) {
2115 			vm_offset_t useEnd, useStart;
2116 
2117 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118 				continue;
2119 
2120 			pstart = OFF_TO_IDX(current->offset);
2121 			pend = pstart + atop(current->end - current->start);
2122 			useStart = current->start;
2123 			useEnd = current->end;
2124 
2125 			if (current->start < start) {
2126 				pstart += atop(start - current->start);
2127 				useStart = start;
2128 			}
2129 			if (current->end > end) {
2130 				pend -= atop(current->end - end);
2131 				useEnd = end;
2132 			}
2133 
2134 			if (pstart >= pend)
2135 				continue;
2136 
2137 			/*
2138 			 * Perform the pmap_advise() before clearing
2139 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2140 			 * concurrent pmap operation, such as pmap_remove(),
2141 			 * could clear a reference in the pmap and set
2142 			 * PGA_REFERENCED on the page before the pmap_advise()
2143 			 * had completed.  Consequently, the page would appear
2144 			 * referenced based upon an old reference that
2145 			 * occurred before this pmap_advise() ran.
2146 			 */
2147 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2148 				pmap_advise(map->pmap, useStart, useEnd,
2149 				    behav);
2150 
2151 			vm_object_madvise(current->object.vm_object, pstart,
2152 			    pend, behav);
2153 			if (behav == MADV_WILLNEED) {
2154 				vm_map_pmap_enter(map,
2155 				    useStart,
2156 				    current->protection,
2157 				    current->object.vm_object,
2158 				    pstart,
2159 				    ptoa(pend - pstart),
2160 				    MAP_PREFAULT_MADVISE
2161 				);
2162 			}
2163 		}
2164 		vm_map_unlock_read(map);
2165 	}
2166 	return (0);
2167 }
2168 
2169 
2170 /*
2171  *	vm_map_inherit:
2172  *
2173  *	Sets the inheritance of the specified address
2174  *	range in the target map.  Inheritance
2175  *	affects how the map will be shared with
2176  *	child maps at the time of vmspace_fork.
2177  */
2178 int
2179 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2180 	       vm_inherit_t new_inheritance)
2181 {
2182 	vm_map_entry_t entry;
2183 	vm_map_entry_t temp_entry;
2184 
2185 	switch (new_inheritance) {
2186 	case VM_INHERIT_NONE:
2187 	case VM_INHERIT_COPY:
2188 	case VM_INHERIT_SHARE:
2189 		break;
2190 	default:
2191 		return (KERN_INVALID_ARGUMENT);
2192 	}
2193 	vm_map_lock(map);
2194 	VM_MAP_RANGE_CHECK(map, start, end);
2195 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2196 		entry = temp_entry;
2197 		vm_map_clip_start(map, entry, start);
2198 	} else
2199 		entry = temp_entry->next;
2200 	while ((entry != &map->header) && (entry->start < end)) {
2201 		vm_map_clip_end(map, entry, end);
2202 		entry->inheritance = new_inheritance;
2203 		vm_map_simplify_entry(map, entry);
2204 		entry = entry->next;
2205 	}
2206 	vm_map_unlock(map);
2207 	return (KERN_SUCCESS);
2208 }
2209 
2210 /*
2211  *	vm_map_unwire:
2212  *
2213  *	Implements both kernel and user unwiring.
2214  */
2215 int
2216 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2217     int flags)
2218 {
2219 	vm_map_entry_t entry, first_entry, tmp_entry;
2220 	vm_offset_t saved_start;
2221 	unsigned int last_timestamp;
2222 	int rv;
2223 	boolean_t need_wakeup, result, user_unwire;
2224 
2225 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2226 	vm_map_lock(map);
2227 	VM_MAP_RANGE_CHECK(map, start, end);
2228 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2229 		if (flags & VM_MAP_WIRE_HOLESOK)
2230 			first_entry = first_entry->next;
2231 		else {
2232 			vm_map_unlock(map);
2233 			return (KERN_INVALID_ADDRESS);
2234 		}
2235 	}
2236 	last_timestamp = map->timestamp;
2237 	entry = first_entry;
2238 	while (entry != &map->header && entry->start < end) {
2239 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2240 			/*
2241 			 * We have not yet clipped the entry.
2242 			 */
2243 			saved_start = (start >= entry->start) ? start :
2244 			    entry->start;
2245 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2246 			if (vm_map_unlock_and_wait(map, 0)) {
2247 				/*
2248 				 * Allow interruption of user unwiring?
2249 				 */
2250 			}
2251 			vm_map_lock(map);
2252 			if (last_timestamp+1 != map->timestamp) {
2253 				/*
2254 				 * Look again for the entry because the map was
2255 				 * modified while it was unlocked.
2256 				 * Specifically, the entry may have been
2257 				 * clipped, merged, or deleted.
2258 				 */
2259 				if (!vm_map_lookup_entry(map, saved_start,
2260 				    &tmp_entry)) {
2261 					if (flags & VM_MAP_WIRE_HOLESOK)
2262 						tmp_entry = tmp_entry->next;
2263 					else {
2264 						if (saved_start == start) {
2265 							/*
2266 							 * First_entry has been deleted.
2267 							 */
2268 							vm_map_unlock(map);
2269 							return (KERN_INVALID_ADDRESS);
2270 						}
2271 						end = saved_start;
2272 						rv = KERN_INVALID_ADDRESS;
2273 						goto done;
2274 					}
2275 				}
2276 				if (entry == first_entry)
2277 					first_entry = tmp_entry;
2278 				else
2279 					first_entry = NULL;
2280 				entry = tmp_entry;
2281 			}
2282 			last_timestamp = map->timestamp;
2283 			continue;
2284 		}
2285 		vm_map_clip_start(map, entry, start);
2286 		vm_map_clip_end(map, entry, end);
2287 		/*
2288 		 * Mark the entry in case the map lock is released.  (See
2289 		 * above.)
2290 		 */
2291 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2292 		entry->wiring_thread = curthread;
2293 		/*
2294 		 * Check the map for holes in the specified region.
2295 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2296 		 */
2297 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2298 		    (entry->end < end && (entry->next == &map->header ||
2299 		    entry->next->start > entry->end))) {
2300 			end = entry->end;
2301 			rv = KERN_INVALID_ADDRESS;
2302 			goto done;
2303 		}
2304 		/*
2305 		 * If system unwiring, require that the entry is system wired.
2306 		 */
2307 		if (!user_unwire &&
2308 		    vm_map_entry_system_wired_count(entry) == 0) {
2309 			end = entry->end;
2310 			rv = KERN_INVALID_ARGUMENT;
2311 			goto done;
2312 		}
2313 		entry = entry->next;
2314 	}
2315 	rv = KERN_SUCCESS;
2316 done:
2317 	need_wakeup = FALSE;
2318 	if (first_entry == NULL) {
2319 		result = vm_map_lookup_entry(map, start, &first_entry);
2320 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2321 			first_entry = first_entry->next;
2322 		else
2323 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2324 	}
2325 	for (entry = first_entry; entry != &map->header && entry->start < end;
2326 	    entry = entry->next) {
2327 		/*
2328 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2329 		 * space in the unwired region could have been mapped
2330 		 * while the map lock was dropped for draining
2331 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2332 		 * could be simultaneously wiring this new mapping
2333 		 * entry.  Detect these cases and skip any entries
2334 		 * marked as in transition by us.
2335 		 */
2336 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2337 		    entry->wiring_thread != curthread) {
2338 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2339 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2340 			continue;
2341 		}
2342 
2343 		if (rv == KERN_SUCCESS && (!user_unwire ||
2344 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2345 			if (user_unwire)
2346 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2347 			entry->wired_count--;
2348 			if (entry->wired_count == 0) {
2349 				/*
2350 				 * Retain the map lock.
2351 				 */
2352 				vm_fault_unwire(map, entry->start, entry->end,
2353 				    entry->object.vm_object != NULL &&
2354 				    (entry->object.vm_object->flags &
2355 				    OBJ_FICTITIOUS) != 0);
2356 			}
2357 		}
2358 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2359 		    ("vm_map_unwire: in-transition flag missing"));
2360 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2361 		entry->wiring_thread = NULL;
2362 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2363 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2364 			need_wakeup = TRUE;
2365 		}
2366 		vm_map_simplify_entry(map, entry);
2367 	}
2368 	vm_map_unlock(map);
2369 	if (need_wakeup)
2370 		vm_map_wakeup(map);
2371 	return (rv);
2372 }
2373 
2374 /*
2375  *	vm_map_wire:
2376  *
2377  *	Implements both kernel and user wiring.
2378  */
2379 int
2380 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2381     int flags)
2382 {
2383 	vm_map_entry_t entry, first_entry, tmp_entry;
2384 	vm_offset_t saved_end, saved_start;
2385 	unsigned int last_timestamp;
2386 	int rv;
2387 	boolean_t fictitious, need_wakeup, result, user_wire;
2388 	vm_prot_t prot;
2389 
2390 	prot = 0;
2391 	if (flags & VM_MAP_WIRE_WRITE)
2392 		prot |= VM_PROT_WRITE;
2393 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2394 	vm_map_lock(map);
2395 	VM_MAP_RANGE_CHECK(map, start, end);
2396 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2397 		if (flags & VM_MAP_WIRE_HOLESOK)
2398 			first_entry = first_entry->next;
2399 		else {
2400 			vm_map_unlock(map);
2401 			return (KERN_INVALID_ADDRESS);
2402 		}
2403 	}
2404 	last_timestamp = map->timestamp;
2405 	entry = first_entry;
2406 	while (entry != &map->header && entry->start < end) {
2407 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2408 			/*
2409 			 * We have not yet clipped the entry.
2410 			 */
2411 			saved_start = (start >= entry->start) ? start :
2412 			    entry->start;
2413 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2414 			if (vm_map_unlock_and_wait(map, 0)) {
2415 				/*
2416 				 * Allow interruption of user wiring?
2417 				 */
2418 			}
2419 			vm_map_lock(map);
2420 			if (last_timestamp + 1 != map->timestamp) {
2421 				/*
2422 				 * Look again for the entry because the map was
2423 				 * modified while it was unlocked.
2424 				 * Specifically, the entry may have been
2425 				 * clipped, merged, or deleted.
2426 				 */
2427 				if (!vm_map_lookup_entry(map, saved_start,
2428 				    &tmp_entry)) {
2429 					if (flags & VM_MAP_WIRE_HOLESOK)
2430 						tmp_entry = tmp_entry->next;
2431 					else {
2432 						if (saved_start == start) {
2433 							/*
2434 							 * first_entry has been deleted.
2435 							 */
2436 							vm_map_unlock(map);
2437 							return (KERN_INVALID_ADDRESS);
2438 						}
2439 						end = saved_start;
2440 						rv = KERN_INVALID_ADDRESS;
2441 						goto done;
2442 					}
2443 				}
2444 				if (entry == first_entry)
2445 					first_entry = tmp_entry;
2446 				else
2447 					first_entry = NULL;
2448 				entry = tmp_entry;
2449 			}
2450 			last_timestamp = map->timestamp;
2451 			continue;
2452 		}
2453 		vm_map_clip_start(map, entry, start);
2454 		vm_map_clip_end(map, entry, end);
2455 		/*
2456 		 * Mark the entry in case the map lock is released.  (See
2457 		 * above.)
2458 		 */
2459 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2460 		entry->wiring_thread = curthread;
2461 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2462 		    || (entry->protection & prot) != prot) {
2463 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2464 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2465 				end = entry->end;
2466 				rv = KERN_INVALID_ADDRESS;
2467 				goto done;
2468 			}
2469 			goto next_entry;
2470 		}
2471 		if (entry->wired_count == 0) {
2472 			entry->wired_count++;
2473 			saved_start = entry->start;
2474 			saved_end = entry->end;
2475 			fictitious = entry->object.vm_object != NULL &&
2476 			    (entry->object.vm_object->flags &
2477 			    OBJ_FICTITIOUS) != 0;
2478 			/*
2479 			 * Release the map lock, relying on the in-transition
2480 			 * mark.  Mark the map busy for fork.
2481 			 */
2482 			vm_map_busy(map);
2483 			vm_map_unlock(map);
2484 			rv = vm_fault_wire(map, saved_start, saved_end,
2485 			    fictitious);
2486 			vm_map_lock(map);
2487 			vm_map_unbusy(map);
2488 			if (last_timestamp + 1 != map->timestamp) {
2489 				/*
2490 				 * Look again for the entry because the map was
2491 				 * modified while it was unlocked.  The entry
2492 				 * may have been clipped, but NOT merged or
2493 				 * deleted.
2494 				 */
2495 				result = vm_map_lookup_entry(map, saved_start,
2496 				    &tmp_entry);
2497 				KASSERT(result, ("vm_map_wire: lookup failed"));
2498 				if (entry == first_entry)
2499 					first_entry = tmp_entry;
2500 				else
2501 					first_entry = NULL;
2502 				entry = tmp_entry;
2503 				while (entry->end < saved_end) {
2504 					if (rv != KERN_SUCCESS) {
2505 						KASSERT(entry->wired_count == 1,
2506 						    ("vm_map_wire: bad count"));
2507 						entry->wired_count = -1;
2508 					}
2509 					entry = entry->next;
2510 				}
2511 			}
2512 			last_timestamp = map->timestamp;
2513 			if (rv != KERN_SUCCESS) {
2514 				KASSERT(entry->wired_count == 1,
2515 				    ("vm_map_wire: bad count"));
2516 				/*
2517 				 * Assign an out-of-range value to represent
2518 				 * the failure to wire this entry.
2519 				 */
2520 				entry->wired_count = -1;
2521 				end = entry->end;
2522 				goto done;
2523 			}
2524 		} else if (!user_wire ||
2525 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2526 			entry->wired_count++;
2527 		}
2528 		/*
2529 		 * Check the map for holes in the specified region.
2530 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2531 		 */
2532 	next_entry:
2533 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2534 		    (entry->end < end && (entry->next == &map->header ||
2535 		    entry->next->start > entry->end))) {
2536 			end = entry->end;
2537 			rv = KERN_INVALID_ADDRESS;
2538 			goto done;
2539 		}
2540 		entry = entry->next;
2541 	}
2542 	rv = KERN_SUCCESS;
2543 done:
2544 	need_wakeup = FALSE;
2545 	if (first_entry == NULL) {
2546 		result = vm_map_lookup_entry(map, start, &first_entry);
2547 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2548 			first_entry = first_entry->next;
2549 		else
2550 			KASSERT(result, ("vm_map_wire: lookup failed"));
2551 	}
2552 	for (entry = first_entry; entry != &map->header && entry->start < end;
2553 	    entry = entry->next) {
2554 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2555 			goto next_entry_done;
2556 
2557 		/*
2558 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2559 		 * space in the unwired region could have been mapped
2560 		 * while the map lock was dropped for faulting in the
2561 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2562 		 * Moreover, another thread could be simultaneously
2563 		 * wiring this new mapping entry.  Detect these cases
2564 		 * and skip any entries marked as in transition by us.
2565 		 */
2566 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2567 		    entry->wiring_thread != curthread) {
2568 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2569 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2570 			continue;
2571 		}
2572 
2573 		if (rv == KERN_SUCCESS) {
2574 			if (user_wire)
2575 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2576 		} else if (entry->wired_count == -1) {
2577 			/*
2578 			 * Wiring failed on this entry.  Thus, unwiring is
2579 			 * unnecessary.
2580 			 */
2581 			entry->wired_count = 0;
2582 		} else {
2583 			if (!user_wire ||
2584 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2585 				entry->wired_count--;
2586 			if (entry->wired_count == 0) {
2587 				/*
2588 				 * Retain the map lock.
2589 				 */
2590 				vm_fault_unwire(map, entry->start, entry->end,
2591 				    entry->object.vm_object != NULL &&
2592 				    (entry->object.vm_object->flags &
2593 				    OBJ_FICTITIOUS) != 0);
2594 			}
2595 		}
2596 	next_entry_done:
2597 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2598 		    ("vm_map_wire: in-transition flag missing %p", entry));
2599 		KASSERT(entry->wiring_thread == curthread,
2600 		    ("vm_map_wire: alien wire %p", entry));
2601 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2602 		    MAP_ENTRY_WIRE_SKIPPED);
2603 		entry->wiring_thread = NULL;
2604 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2605 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2606 			need_wakeup = TRUE;
2607 		}
2608 		vm_map_simplify_entry(map, entry);
2609 	}
2610 	vm_map_unlock(map);
2611 	if (need_wakeup)
2612 		vm_map_wakeup(map);
2613 	return (rv);
2614 }
2615 
2616 /*
2617  * vm_map_sync
2618  *
2619  * Push any dirty cached pages in the address range to their pager.
2620  * If syncio is TRUE, dirty pages are written synchronously.
2621  * If invalidate is TRUE, any cached pages are freed as well.
2622  *
2623  * If the size of the region from start to end is zero, we are
2624  * supposed to flush all modified pages within the region containing
2625  * start.  Unfortunately, a region can be split or coalesced with
2626  * neighboring regions, making it difficult to determine what the
2627  * original region was.  Therefore, we approximate this requirement by
2628  * flushing the current region containing start.
2629  *
2630  * Returns an error if any part of the specified range is not mapped.
2631  */
2632 int
2633 vm_map_sync(
2634 	vm_map_t map,
2635 	vm_offset_t start,
2636 	vm_offset_t end,
2637 	boolean_t syncio,
2638 	boolean_t invalidate)
2639 {
2640 	vm_map_entry_t current;
2641 	vm_map_entry_t entry;
2642 	vm_size_t size;
2643 	vm_object_t object;
2644 	vm_ooffset_t offset;
2645 	unsigned int last_timestamp;
2646 	boolean_t failed;
2647 
2648 	vm_map_lock_read(map);
2649 	VM_MAP_RANGE_CHECK(map, start, end);
2650 	if (!vm_map_lookup_entry(map, start, &entry)) {
2651 		vm_map_unlock_read(map);
2652 		return (KERN_INVALID_ADDRESS);
2653 	} else if (start == end) {
2654 		start = entry->start;
2655 		end = entry->end;
2656 	}
2657 	/*
2658 	 * Make a first pass to check for user-wired memory and holes.
2659 	 */
2660 	for (current = entry; current != &map->header && current->start < end;
2661 	    current = current->next) {
2662 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2663 			vm_map_unlock_read(map);
2664 			return (KERN_INVALID_ARGUMENT);
2665 		}
2666 		if (end > current->end &&
2667 		    (current->next == &map->header ||
2668 			current->end != current->next->start)) {
2669 			vm_map_unlock_read(map);
2670 			return (KERN_INVALID_ADDRESS);
2671 		}
2672 	}
2673 
2674 	if (invalidate)
2675 		pmap_remove(map->pmap, start, end);
2676 	failed = FALSE;
2677 
2678 	/*
2679 	 * Make a second pass, cleaning/uncaching pages from the indicated
2680 	 * objects as we go.
2681 	 */
2682 	for (current = entry; current != &map->header && current->start < end;) {
2683 		offset = current->offset + (start - current->start);
2684 		size = (end <= current->end ? end : current->end) - start;
2685 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2686 			vm_map_t smap;
2687 			vm_map_entry_t tentry;
2688 			vm_size_t tsize;
2689 
2690 			smap = current->object.sub_map;
2691 			vm_map_lock_read(smap);
2692 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2693 			tsize = tentry->end - offset;
2694 			if (tsize < size)
2695 				size = tsize;
2696 			object = tentry->object.vm_object;
2697 			offset = tentry->offset + (offset - tentry->start);
2698 			vm_map_unlock_read(smap);
2699 		} else {
2700 			object = current->object.vm_object;
2701 		}
2702 		vm_object_reference(object);
2703 		last_timestamp = map->timestamp;
2704 		vm_map_unlock_read(map);
2705 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2706 			failed = TRUE;
2707 		start += size;
2708 		vm_object_deallocate(object);
2709 		vm_map_lock_read(map);
2710 		if (last_timestamp == map->timestamp ||
2711 		    !vm_map_lookup_entry(map, start, &current))
2712 			current = current->next;
2713 	}
2714 
2715 	vm_map_unlock_read(map);
2716 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2717 }
2718 
2719 /*
2720  *	vm_map_entry_unwire:	[ internal use only ]
2721  *
2722  *	Make the region specified by this entry pageable.
2723  *
2724  *	The map in question should be locked.
2725  *	[This is the reason for this routine's existence.]
2726  */
2727 static void
2728 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2729 {
2730 	vm_fault_unwire(map, entry->start, entry->end,
2731 	    entry->object.vm_object != NULL &&
2732 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2733 	entry->wired_count = 0;
2734 }
2735 
2736 static void
2737 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2738 {
2739 
2740 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2741 		vm_object_deallocate(entry->object.vm_object);
2742 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2743 }
2744 
2745 /*
2746  *	vm_map_entry_delete:	[ internal use only ]
2747  *
2748  *	Deallocate the given entry from the target map.
2749  */
2750 static void
2751 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2752 {
2753 	vm_object_t object;
2754 	vm_pindex_t offidxstart, offidxend, count, size1;
2755 	vm_ooffset_t size;
2756 
2757 	vm_map_entry_unlink(map, entry);
2758 	object = entry->object.vm_object;
2759 	size = entry->end - entry->start;
2760 	map->size -= size;
2761 
2762 	if (entry->cred != NULL) {
2763 		swap_release_by_cred(size, entry->cred);
2764 		crfree(entry->cred);
2765 	}
2766 
2767 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2768 	    (object != NULL)) {
2769 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2770 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2771 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2772 		count = OFF_TO_IDX(size);
2773 		offidxstart = OFF_TO_IDX(entry->offset);
2774 		offidxend = offidxstart + count;
2775 		VM_OBJECT_WLOCK(object);
2776 		if (object->ref_count != 1 &&
2777 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2778 		    object == kernel_object || object == kmem_object)) {
2779 			vm_object_collapse(object);
2780 
2781 			/*
2782 			 * The option OBJPR_NOTMAPPED can be passed here
2783 			 * because vm_map_delete() already performed
2784 			 * pmap_remove() on the only mapping to this range
2785 			 * of pages.
2786 			 */
2787 			vm_object_page_remove(object, offidxstart, offidxend,
2788 			    OBJPR_NOTMAPPED);
2789 			if (object->type == OBJT_SWAP)
2790 				swap_pager_freespace(object, offidxstart, count);
2791 			if (offidxend >= object->size &&
2792 			    offidxstart < object->size) {
2793 				size1 = object->size;
2794 				object->size = offidxstart;
2795 				if (object->cred != NULL) {
2796 					size1 -= object->size;
2797 					KASSERT(object->charge >= ptoa(size1),
2798 					    ("vm_map_entry_delete: object->charge < 0"));
2799 					swap_release_by_cred(ptoa(size1), object->cred);
2800 					object->charge -= ptoa(size1);
2801 				}
2802 			}
2803 		}
2804 		VM_OBJECT_WUNLOCK(object);
2805 	} else
2806 		entry->object.vm_object = NULL;
2807 	if (map->system_map)
2808 		vm_map_entry_deallocate(entry, TRUE);
2809 	else {
2810 		entry->next = curthread->td_map_def_user;
2811 		curthread->td_map_def_user = entry;
2812 	}
2813 }
2814 
2815 /*
2816  *	vm_map_delete:	[ internal use only ]
2817  *
2818  *	Deallocates the given address range from the target
2819  *	map.
2820  */
2821 int
2822 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2823 {
2824 	vm_map_entry_t entry;
2825 	vm_map_entry_t first_entry;
2826 
2827 	VM_MAP_ASSERT_LOCKED(map);
2828 
2829 	/*
2830 	 * Find the start of the region, and clip it
2831 	 */
2832 	if (!vm_map_lookup_entry(map, start, &first_entry))
2833 		entry = first_entry->next;
2834 	else {
2835 		entry = first_entry;
2836 		vm_map_clip_start(map, entry, start);
2837 	}
2838 
2839 	/*
2840 	 * Step through all entries in this region
2841 	 */
2842 	while ((entry != &map->header) && (entry->start < end)) {
2843 		vm_map_entry_t next;
2844 
2845 		/*
2846 		 * Wait for wiring or unwiring of an entry to complete.
2847 		 * Also wait for any system wirings to disappear on
2848 		 * user maps.
2849 		 */
2850 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2851 		    (vm_map_pmap(map) != kernel_pmap &&
2852 		    vm_map_entry_system_wired_count(entry) != 0)) {
2853 			unsigned int last_timestamp;
2854 			vm_offset_t saved_start;
2855 			vm_map_entry_t tmp_entry;
2856 
2857 			saved_start = entry->start;
2858 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2859 			last_timestamp = map->timestamp;
2860 			(void) vm_map_unlock_and_wait(map, 0);
2861 			vm_map_lock(map);
2862 			if (last_timestamp + 1 != map->timestamp) {
2863 				/*
2864 				 * Look again for the entry because the map was
2865 				 * modified while it was unlocked.
2866 				 * Specifically, the entry may have been
2867 				 * clipped, merged, or deleted.
2868 				 */
2869 				if (!vm_map_lookup_entry(map, saved_start,
2870 							 &tmp_entry))
2871 					entry = tmp_entry->next;
2872 				else {
2873 					entry = tmp_entry;
2874 					vm_map_clip_start(map, entry,
2875 							  saved_start);
2876 				}
2877 			}
2878 			continue;
2879 		}
2880 		vm_map_clip_end(map, entry, end);
2881 
2882 		next = entry->next;
2883 
2884 		/*
2885 		 * Unwire before removing addresses from the pmap; otherwise,
2886 		 * unwiring will put the entries back in the pmap.
2887 		 */
2888 		if (entry->wired_count != 0) {
2889 			vm_map_entry_unwire(map, entry);
2890 		}
2891 
2892 		pmap_remove(map->pmap, entry->start, entry->end);
2893 
2894 		/*
2895 		 * Delete the entry only after removing all pmap
2896 		 * entries pointing to its pages.  (Otherwise, its
2897 		 * page frames may be reallocated, and any modify bits
2898 		 * will be set in the wrong object!)
2899 		 */
2900 		vm_map_entry_delete(map, entry);
2901 		entry = next;
2902 	}
2903 	return (KERN_SUCCESS);
2904 }
2905 
2906 /*
2907  *	vm_map_remove:
2908  *
2909  *	Remove the given address range from the target map.
2910  *	This is the exported form of vm_map_delete.
2911  */
2912 int
2913 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2914 {
2915 	int result;
2916 
2917 	vm_map_lock(map);
2918 	VM_MAP_RANGE_CHECK(map, start, end);
2919 	result = vm_map_delete(map, start, end);
2920 	vm_map_unlock(map);
2921 	return (result);
2922 }
2923 
2924 /*
2925  *	vm_map_check_protection:
2926  *
2927  *	Assert that the target map allows the specified privilege on the
2928  *	entire address region given.  The entire region must be allocated.
2929  *
2930  *	WARNING!  This code does not and should not check whether the
2931  *	contents of the region is accessible.  For example a smaller file
2932  *	might be mapped into a larger address space.
2933  *
2934  *	NOTE!  This code is also called by munmap().
2935  *
2936  *	The map must be locked.  A read lock is sufficient.
2937  */
2938 boolean_t
2939 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2940 			vm_prot_t protection)
2941 {
2942 	vm_map_entry_t entry;
2943 	vm_map_entry_t tmp_entry;
2944 
2945 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2946 		return (FALSE);
2947 	entry = tmp_entry;
2948 
2949 	while (start < end) {
2950 		if (entry == &map->header)
2951 			return (FALSE);
2952 		/*
2953 		 * No holes allowed!
2954 		 */
2955 		if (start < entry->start)
2956 			return (FALSE);
2957 		/*
2958 		 * Check protection associated with entry.
2959 		 */
2960 		if ((entry->protection & protection) != protection)
2961 			return (FALSE);
2962 		/* go to next entry */
2963 		start = entry->end;
2964 		entry = entry->next;
2965 	}
2966 	return (TRUE);
2967 }
2968 
2969 /*
2970  *	vm_map_copy_entry:
2971  *
2972  *	Copies the contents of the source entry to the destination
2973  *	entry.  The entries *must* be aligned properly.
2974  */
2975 static void
2976 vm_map_copy_entry(
2977 	vm_map_t src_map,
2978 	vm_map_t dst_map,
2979 	vm_map_entry_t src_entry,
2980 	vm_map_entry_t dst_entry,
2981 	vm_ooffset_t *fork_charge)
2982 {
2983 	vm_object_t src_object;
2984 	vm_map_entry_t fake_entry;
2985 	vm_offset_t size;
2986 	struct ucred *cred;
2987 	int charged;
2988 
2989 	VM_MAP_ASSERT_LOCKED(dst_map);
2990 
2991 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2992 		return;
2993 
2994 	if (src_entry->wired_count == 0) {
2995 
2996 		/*
2997 		 * If the source entry is marked needs_copy, it is already
2998 		 * write-protected.
2999 		 */
3000 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3001 			pmap_protect(src_map->pmap,
3002 			    src_entry->start,
3003 			    src_entry->end,
3004 			    src_entry->protection & ~VM_PROT_WRITE);
3005 		}
3006 
3007 		/*
3008 		 * Make a copy of the object.
3009 		 */
3010 		size = src_entry->end - src_entry->start;
3011 		if ((src_object = src_entry->object.vm_object) != NULL) {
3012 			VM_OBJECT_WLOCK(src_object);
3013 			charged = ENTRY_CHARGED(src_entry);
3014 			if ((src_object->handle == NULL) &&
3015 				(src_object->type == OBJT_DEFAULT ||
3016 				 src_object->type == OBJT_SWAP)) {
3017 				vm_object_collapse(src_object);
3018 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3019 					vm_object_split(src_entry);
3020 					src_object = src_entry->object.vm_object;
3021 				}
3022 			}
3023 			vm_object_reference_locked(src_object);
3024 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3025 			if (src_entry->cred != NULL &&
3026 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3027 				KASSERT(src_object->cred == NULL,
3028 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3029 				     src_object));
3030 				src_object->cred = src_entry->cred;
3031 				src_object->charge = size;
3032 			}
3033 			VM_OBJECT_WUNLOCK(src_object);
3034 			dst_entry->object.vm_object = src_object;
3035 			if (charged) {
3036 				cred = curthread->td_ucred;
3037 				crhold(cred);
3038 				dst_entry->cred = cred;
3039 				*fork_charge += size;
3040 				if (!(src_entry->eflags &
3041 				      MAP_ENTRY_NEEDS_COPY)) {
3042 					crhold(cred);
3043 					src_entry->cred = cred;
3044 					*fork_charge += size;
3045 				}
3046 			}
3047 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3048 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3049 			dst_entry->offset = src_entry->offset;
3050 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3051 				/*
3052 				 * MAP_ENTRY_VN_WRITECNT cannot
3053 				 * indicate write reference from
3054 				 * src_entry, since the entry is
3055 				 * marked as needs copy.  Allocate a
3056 				 * fake entry that is used to
3057 				 * decrement object->un_pager.vnp.writecount
3058 				 * at the appropriate time.  Attach
3059 				 * fake_entry to the deferred list.
3060 				 */
3061 				fake_entry = vm_map_entry_create(dst_map);
3062 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3063 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3064 				vm_object_reference(src_object);
3065 				fake_entry->object.vm_object = src_object;
3066 				fake_entry->start = src_entry->start;
3067 				fake_entry->end = src_entry->end;
3068 				fake_entry->next = curthread->td_map_def_user;
3069 				curthread->td_map_def_user = fake_entry;
3070 			}
3071 		} else {
3072 			dst_entry->object.vm_object = NULL;
3073 			dst_entry->offset = 0;
3074 			if (src_entry->cred != NULL) {
3075 				dst_entry->cred = curthread->td_ucred;
3076 				crhold(dst_entry->cred);
3077 				*fork_charge += size;
3078 			}
3079 		}
3080 
3081 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3082 		    dst_entry->end - dst_entry->start, src_entry->start);
3083 	} else {
3084 		/*
3085 		 * Of course, wired down pages can't be set copy-on-write.
3086 		 * Cause wired pages to be copied into the new map by
3087 		 * simulating faults (the new pages are pageable)
3088 		 */
3089 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3090 		    fork_charge);
3091 	}
3092 }
3093 
3094 /*
3095  * vmspace_map_entry_forked:
3096  * Update the newly-forked vmspace each time a map entry is inherited
3097  * or copied.  The values for vm_dsize and vm_tsize are approximate
3098  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3099  */
3100 static void
3101 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3102     vm_map_entry_t entry)
3103 {
3104 	vm_size_t entrysize;
3105 	vm_offset_t newend;
3106 
3107 	entrysize = entry->end - entry->start;
3108 	vm2->vm_map.size += entrysize;
3109 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3110 		vm2->vm_ssize += btoc(entrysize);
3111 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3112 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3113 		newend = MIN(entry->end,
3114 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3115 		vm2->vm_dsize += btoc(newend - entry->start);
3116 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3117 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3118 		newend = MIN(entry->end,
3119 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3120 		vm2->vm_tsize += btoc(newend - entry->start);
3121 	}
3122 }
3123 
3124 /*
3125  * vmspace_fork:
3126  * Create a new process vmspace structure and vm_map
3127  * based on those of an existing process.  The new map
3128  * is based on the old map, according to the inheritance
3129  * values on the regions in that map.
3130  *
3131  * XXX It might be worth coalescing the entries added to the new vmspace.
3132  *
3133  * The source map must not be locked.
3134  */
3135 struct vmspace *
3136 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3137 {
3138 	struct vmspace *vm2;
3139 	vm_map_t new_map, old_map;
3140 	vm_map_entry_t new_entry, old_entry;
3141 	vm_object_t object;
3142 	int locked;
3143 
3144 	old_map = &vm1->vm_map;
3145 	/* Copy immutable fields of vm1 to vm2. */
3146 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3147 	if (vm2 == NULL)
3148 		return (NULL);
3149 	vm2->vm_taddr = vm1->vm_taddr;
3150 	vm2->vm_daddr = vm1->vm_daddr;
3151 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3152 	vm_map_lock(old_map);
3153 	if (old_map->busy)
3154 		vm_map_wait_busy(old_map);
3155 	new_map = &vm2->vm_map;
3156 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3157 	KASSERT(locked, ("vmspace_fork: lock failed"));
3158 
3159 	old_entry = old_map->header.next;
3160 
3161 	while (old_entry != &old_map->header) {
3162 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3163 			panic("vm_map_fork: encountered a submap");
3164 
3165 		switch (old_entry->inheritance) {
3166 		case VM_INHERIT_NONE:
3167 			break;
3168 
3169 		case VM_INHERIT_SHARE:
3170 			/*
3171 			 * Clone the entry, creating the shared object if necessary.
3172 			 */
3173 			object = old_entry->object.vm_object;
3174 			if (object == NULL) {
3175 				object = vm_object_allocate(OBJT_DEFAULT,
3176 					atop(old_entry->end - old_entry->start));
3177 				old_entry->object.vm_object = object;
3178 				old_entry->offset = 0;
3179 				if (old_entry->cred != NULL) {
3180 					object->cred = old_entry->cred;
3181 					object->charge = old_entry->end -
3182 					    old_entry->start;
3183 					old_entry->cred = NULL;
3184 				}
3185 			}
3186 
3187 			/*
3188 			 * Add the reference before calling vm_object_shadow
3189 			 * to insure that a shadow object is created.
3190 			 */
3191 			vm_object_reference(object);
3192 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3193 				vm_object_shadow(&old_entry->object.vm_object,
3194 				    &old_entry->offset,
3195 				    old_entry->end - old_entry->start);
3196 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3197 				/* Transfer the second reference too. */
3198 				vm_object_reference(
3199 				    old_entry->object.vm_object);
3200 
3201 				/*
3202 				 * As in vm_map_simplify_entry(), the
3203 				 * vnode lock will not be acquired in
3204 				 * this call to vm_object_deallocate().
3205 				 */
3206 				vm_object_deallocate(object);
3207 				object = old_entry->object.vm_object;
3208 			}
3209 			VM_OBJECT_WLOCK(object);
3210 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3211 			if (old_entry->cred != NULL) {
3212 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3213 				object->cred = old_entry->cred;
3214 				object->charge = old_entry->end - old_entry->start;
3215 				old_entry->cred = NULL;
3216 			}
3217 
3218 			/*
3219 			 * Assert the correct state of the vnode
3220 			 * v_writecount while the object is locked, to
3221 			 * not relock it later for the assertion
3222 			 * correctness.
3223 			 */
3224 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3225 			    object->type == OBJT_VNODE) {
3226 				KASSERT(((struct vnode *)object->handle)->
3227 				    v_writecount > 0,
3228 				    ("vmspace_fork: v_writecount %p", object));
3229 				KASSERT(object->un_pager.vnp.writemappings > 0,
3230 				    ("vmspace_fork: vnp.writecount %p",
3231 				    object));
3232 			}
3233 			VM_OBJECT_WUNLOCK(object);
3234 
3235 			/*
3236 			 * Clone the entry, referencing the shared object.
3237 			 */
3238 			new_entry = vm_map_entry_create(new_map);
3239 			*new_entry = *old_entry;
3240 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3241 			    MAP_ENTRY_IN_TRANSITION);
3242 			new_entry->wiring_thread = NULL;
3243 			new_entry->wired_count = 0;
3244 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3245 				vnode_pager_update_writecount(object,
3246 				    new_entry->start, new_entry->end);
3247 			}
3248 
3249 			/*
3250 			 * Insert the entry into the new map -- we know we're
3251 			 * inserting at the end of the new map.
3252 			 */
3253 			vm_map_entry_link(new_map, new_map->header.prev,
3254 			    new_entry);
3255 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3256 
3257 			/*
3258 			 * Update the physical map
3259 			 */
3260 			pmap_copy(new_map->pmap, old_map->pmap,
3261 			    new_entry->start,
3262 			    (old_entry->end - old_entry->start),
3263 			    old_entry->start);
3264 			break;
3265 
3266 		case VM_INHERIT_COPY:
3267 			/*
3268 			 * Clone the entry and link into the map.
3269 			 */
3270 			new_entry = vm_map_entry_create(new_map);
3271 			*new_entry = *old_entry;
3272 			/*
3273 			 * Copied entry is COW over the old object.
3274 			 */
3275 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3276 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3277 			new_entry->wiring_thread = NULL;
3278 			new_entry->wired_count = 0;
3279 			new_entry->object.vm_object = NULL;
3280 			new_entry->cred = NULL;
3281 			vm_map_entry_link(new_map, new_map->header.prev,
3282 			    new_entry);
3283 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3284 			vm_map_copy_entry(old_map, new_map, old_entry,
3285 			    new_entry, fork_charge);
3286 			break;
3287 		}
3288 		old_entry = old_entry->next;
3289 	}
3290 	/*
3291 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3292 	 * map entries, which cannot be done until both old_map and
3293 	 * new_map locks are released.
3294 	 */
3295 	sx_xunlock(&old_map->lock);
3296 	sx_xunlock(&new_map->lock);
3297 	vm_map_process_deferred();
3298 
3299 	return (vm2);
3300 }
3301 
3302 int
3303 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3304     vm_prot_t prot, vm_prot_t max, int cow)
3305 {
3306 	vm_map_entry_t new_entry, prev_entry;
3307 	vm_offset_t bot, top;
3308 	vm_size_t growsize, init_ssize;
3309 	int orient, rv;
3310 	rlim_t lmemlim, vmemlim;
3311 
3312 	/*
3313 	 * The stack orientation is piggybacked with the cow argument.
3314 	 * Extract it into orient and mask the cow argument so that we
3315 	 * don't pass it around further.
3316 	 * NOTE: We explicitly allow bi-directional stacks.
3317 	 */
3318 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3319 	cow &= ~orient;
3320 	KASSERT(orient != 0, ("No stack grow direction"));
3321 
3322 	if (addrbos < vm_map_min(map) ||
3323 	    addrbos > vm_map_max(map) ||
3324 	    addrbos + max_ssize < addrbos)
3325 		return (KERN_NO_SPACE);
3326 
3327 	growsize = sgrowsiz;
3328 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3329 
3330 	PROC_LOCK(curproc);
3331 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3332 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3333 	PROC_UNLOCK(curproc);
3334 
3335 	vm_map_lock(map);
3336 
3337 	/* If addr is already mapped, no go */
3338 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3339 		vm_map_unlock(map);
3340 		return (KERN_NO_SPACE);
3341 	}
3342 
3343 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3344 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3345 			vm_map_unlock(map);
3346 			return (KERN_NO_SPACE);
3347 		}
3348 	}
3349 
3350 	/* If we would blow our VMEM resource limit, no go */
3351 	if (map->size + init_ssize > vmemlim) {
3352 		vm_map_unlock(map);
3353 		return (KERN_NO_SPACE);
3354 	}
3355 
3356 	/*
3357 	 * If we can't accomodate max_ssize in the current mapping, no go.
3358 	 * However, we need to be aware that subsequent user mappings might
3359 	 * map into the space we have reserved for stack, and currently this
3360 	 * space is not protected.
3361 	 *
3362 	 * Hopefully we will at least detect this condition when we try to
3363 	 * grow the stack.
3364 	 */
3365 	if ((prev_entry->next != &map->header) &&
3366 	    (prev_entry->next->start < addrbos + max_ssize)) {
3367 		vm_map_unlock(map);
3368 		return (KERN_NO_SPACE);
3369 	}
3370 
3371 	/*
3372 	 * We initially map a stack of only init_ssize.  We will grow as
3373 	 * needed later.  Depending on the orientation of the stack (i.e.
3374 	 * the grow direction) we either map at the top of the range, the
3375 	 * bottom of the range or in the middle.
3376 	 *
3377 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3378 	 * and cow to be 0.  Possibly we should eliminate these as input
3379 	 * parameters, and just pass these values here in the insert call.
3380 	 */
3381 	if (orient == MAP_STACK_GROWS_DOWN)
3382 		bot = addrbos + max_ssize - init_ssize;
3383 	else if (orient == MAP_STACK_GROWS_UP)
3384 		bot = addrbos;
3385 	else
3386 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3387 	top = bot + init_ssize;
3388 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3389 
3390 	/* Now set the avail_ssize amount. */
3391 	if (rv == KERN_SUCCESS) {
3392 		if (prev_entry != &map->header)
3393 			vm_map_clip_end(map, prev_entry, bot);
3394 		new_entry = prev_entry->next;
3395 		if (new_entry->end != top || new_entry->start != bot)
3396 			panic("Bad entry start/end for new stack entry");
3397 
3398 		new_entry->avail_ssize = max_ssize - init_ssize;
3399 		if (orient & MAP_STACK_GROWS_DOWN)
3400 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3401 		if (orient & MAP_STACK_GROWS_UP)
3402 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3403 	}
3404 
3405 	vm_map_unlock(map);
3406 	return (rv);
3407 }
3408 
3409 static int stack_guard_page = 0;
3410 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3411 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3412     &stack_guard_page, 0,
3413     "Insert stack guard page ahead of the growable segments.");
3414 
3415 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3416  * desired address is already mapped, or if we successfully grow
3417  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3418  * stack range (this is strange, but preserves compatibility with
3419  * the grow function in vm_machdep.c).
3420  */
3421 int
3422 vm_map_growstack(struct proc *p, vm_offset_t addr)
3423 {
3424 	vm_map_entry_t next_entry, prev_entry;
3425 	vm_map_entry_t new_entry, stack_entry;
3426 	struct vmspace *vm = p->p_vmspace;
3427 	vm_map_t map = &vm->vm_map;
3428 	vm_offset_t end;
3429 	vm_size_t growsize;
3430 	size_t grow_amount, max_grow;
3431 	rlim_t lmemlim, stacklim, vmemlim;
3432 	int is_procstack, rv;
3433 	struct ucred *cred;
3434 #ifdef notyet
3435 	uint64_t limit;
3436 #endif
3437 #ifdef RACCT
3438 	int error;
3439 #endif
3440 
3441 Retry:
3442 	PROC_LOCK(p);
3443 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3444 	stacklim = lim_cur(p, RLIMIT_STACK);
3445 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3446 	PROC_UNLOCK(p);
3447 
3448 	vm_map_lock_read(map);
3449 
3450 	/* If addr is already in the entry range, no need to grow.*/
3451 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3452 		vm_map_unlock_read(map);
3453 		return (KERN_SUCCESS);
3454 	}
3455 
3456 	next_entry = prev_entry->next;
3457 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3458 		/*
3459 		 * This entry does not grow upwards. Since the address lies
3460 		 * beyond this entry, the next entry (if one exists) has to
3461 		 * be a downward growable entry. The entry list header is
3462 		 * never a growable entry, so it suffices to check the flags.
3463 		 */
3464 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3465 			vm_map_unlock_read(map);
3466 			return (KERN_SUCCESS);
3467 		}
3468 		stack_entry = next_entry;
3469 	} else {
3470 		/*
3471 		 * This entry grows upward. If the next entry does not at
3472 		 * least grow downwards, this is the entry we need to grow.
3473 		 * otherwise we have two possible choices and we have to
3474 		 * select one.
3475 		 */
3476 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3477 			/*
3478 			 * We have two choices; grow the entry closest to
3479 			 * the address to minimize the amount of growth.
3480 			 */
3481 			if (addr - prev_entry->end <= next_entry->start - addr)
3482 				stack_entry = prev_entry;
3483 			else
3484 				stack_entry = next_entry;
3485 		} else
3486 			stack_entry = prev_entry;
3487 	}
3488 
3489 	if (stack_entry == next_entry) {
3490 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3491 		KASSERT(addr < stack_entry->start, ("foo"));
3492 		end = (prev_entry != &map->header) ? prev_entry->end :
3493 		    stack_entry->start - stack_entry->avail_ssize;
3494 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3495 		max_grow = stack_entry->start - end;
3496 	} else {
3497 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3498 		KASSERT(addr >= stack_entry->end, ("foo"));
3499 		end = (next_entry != &map->header) ? next_entry->start :
3500 		    stack_entry->end + stack_entry->avail_ssize;
3501 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3502 		max_grow = end - stack_entry->end;
3503 	}
3504 
3505 	if (grow_amount > stack_entry->avail_ssize) {
3506 		vm_map_unlock_read(map);
3507 		return (KERN_NO_SPACE);
3508 	}
3509 
3510 	/*
3511 	 * If there is no longer enough space between the entries nogo, and
3512 	 * adjust the available space.  Note: this  should only happen if the
3513 	 * user has mapped into the stack area after the stack was created,
3514 	 * and is probably an error.
3515 	 *
3516 	 * This also effectively destroys any guard page the user might have
3517 	 * intended by limiting the stack size.
3518 	 */
3519 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3520 		if (vm_map_lock_upgrade(map))
3521 			goto Retry;
3522 
3523 		stack_entry->avail_ssize = max_grow;
3524 
3525 		vm_map_unlock(map);
3526 		return (KERN_NO_SPACE);
3527 	}
3528 
3529 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3530 
3531 	/*
3532 	 * If this is the main process stack, see if we're over the stack
3533 	 * limit.
3534 	 */
3535 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3536 		vm_map_unlock_read(map);
3537 		return (KERN_NO_SPACE);
3538 	}
3539 #ifdef RACCT
3540 	PROC_LOCK(p);
3541 	if (is_procstack &&
3542 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3543 		PROC_UNLOCK(p);
3544 		vm_map_unlock_read(map);
3545 		return (KERN_NO_SPACE);
3546 	}
3547 	PROC_UNLOCK(p);
3548 #endif
3549 
3550 	/* Round up the grow amount modulo sgrowsiz */
3551 	growsize = sgrowsiz;
3552 	grow_amount = roundup(grow_amount, growsize);
3553 	if (grow_amount > stack_entry->avail_ssize)
3554 		grow_amount = stack_entry->avail_ssize;
3555 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3556 		grow_amount = trunc_page((vm_size_t)stacklim) -
3557 		    ctob(vm->vm_ssize);
3558 	}
3559 #ifdef notyet
3560 	PROC_LOCK(p);
3561 	limit = racct_get_available(p, RACCT_STACK);
3562 	PROC_UNLOCK(p);
3563 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3564 		grow_amount = limit - ctob(vm->vm_ssize);
3565 #endif
3566 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3567 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3568 			vm_map_unlock_read(map);
3569 			rv = KERN_NO_SPACE;
3570 			goto out;
3571 		}
3572 #ifdef RACCT
3573 		PROC_LOCK(p);
3574 		if (racct_set(p, RACCT_MEMLOCK,
3575 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3576 			PROC_UNLOCK(p);
3577 			vm_map_unlock_read(map);
3578 			rv = KERN_NO_SPACE;
3579 			goto out;
3580 		}
3581 		PROC_UNLOCK(p);
3582 #endif
3583 	}
3584 	/* If we would blow our VMEM resource limit, no go */
3585 	if (map->size + grow_amount > vmemlim) {
3586 		vm_map_unlock_read(map);
3587 		rv = KERN_NO_SPACE;
3588 		goto out;
3589 	}
3590 #ifdef RACCT
3591 	PROC_LOCK(p);
3592 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3593 		PROC_UNLOCK(p);
3594 		vm_map_unlock_read(map);
3595 		rv = KERN_NO_SPACE;
3596 		goto out;
3597 	}
3598 	PROC_UNLOCK(p);
3599 #endif
3600 
3601 	if (vm_map_lock_upgrade(map))
3602 		goto Retry;
3603 
3604 	if (stack_entry == next_entry) {
3605 		/*
3606 		 * Growing downward.
3607 		 */
3608 		/* Get the preliminary new entry start value */
3609 		addr = stack_entry->start - grow_amount;
3610 
3611 		/*
3612 		 * If this puts us into the previous entry, cut back our
3613 		 * growth to the available space. Also, see the note above.
3614 		 */
3615 		if (addr < end) {
3616 			stack_entry->avail_ssize = max_grow;
3617 			addr = end;
3618 			if (stack_guard_page)
3619 				addr += PAGE_SIZE;
3620 		}
3621 
3622 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3623 		    next_entry->protection, next_entry->max_protection, 0);
3624 
3625 		/* Adjust the available stack space by the amount we grew. */
3626 		if (rv == KERN_SUCCESS) {
3627 			if (prev_entry != &map->header)
3628 				vm_map_clip_end(map, prev_entry, addr);
3629 			new_entry = prev_entry->next;
3630 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3631 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3632 			KASSERT(new_entry->start == addr, ("foo"));
3633 			grow_amount = new_entry->end - new_entry->start;
3634 			new_entry->avail_ssize = stack_entry->avail_ssize -
3635 			    grow_amount;
3636 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3637 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3638 		}
3639 	} else {
3640 		/*
3641 		 * Growing upward.
3642 		 */
3643 		addr = stack_entry->end + grow_amount;
3644 
3645 		/*
3646 		 * If this puts us into the next entry, cut back our growth
3647 		 * to the available space. Also, see the note above.
3648 		 */
3649 		if (addr > end) {
3650 			stack_entry->avail_ssize = end - stack_entry->end;
3651 			addr = end;
3652 			if (stack_guard_page)
3653 				addr -= PAGE_SIZE;
3654 		}
3655 
3656 		grow_amount = addr - stack_entry->end;
3657 		cred = stack_entry->cred;
3658 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3659 			cred = stack_entry->object.vm_object->cred;
3660 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3661 			rv = KERN_NO_SPACE;
3662 		/* Grow the underlying object if applicable. */
3663 		else if (stack_entry->object.vm_object == NULL ||
3664 			 vm_object_coalesce(stack_entry->object.vm_object,
3665 			 stack_entry->offset,
3666 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3667 			 (vm_size_t)grow_amount, cred != NULL)) {
3668 			map->size += (addr - stack_entry->end);
3669 			/* Update the current entry. */
3670 			stack_entry->end = addr;
3671 			stack_entry->avail_ssize -= grow_amount;
3672 			vm_map_entry_resize_free(map, stack_entry);
3673 			rv = KERN_SUCCESS;
3674 
3675 			if (next_entry != &map->header)
3676 				vm_map_clip_start(map, next_entry, addr);
3677 		} else
3678 			rv = KERN_FAILURE;
3679 	}
3680 
3681 	if (rv == KERN_SUCCESS && is_procstack)
3682 		vm->vm_ssize += btoc(grow_amount);
3683 
3684 	vm_map_unlock(map);
3685 
3686 	/*
3687 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3688 	 */
3689 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3690 		vm_map_wire(map,
3691 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3692 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3693 		    (p->p_flag & P_SYSTEM)
3694 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3695 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3696 	}
3697 
3698 out:
3699 #ifdef RACCT
3700 	if (rv != KERN_SUCCESS) {
3701 		PROC_LOCK(p);
3702 		error = racct_set(p, RACCT_VMEM, map->size);
3703 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3704 		if (!old_mlock) {
3705 			error = racct_set(p, RACCT_MEMLOCK,
3706 			    ptoa(pmap_wired_count(map->pmap)));
3707 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3708 		}
3709 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3710 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3711 		PROC_UNLOCK(p);
3712 	}
3713 #endif
3714 
3715 	return (rv);
3716 }
3717 
3718 /*
3719  * Unshare the specified VM space for exec.  If other processes are
3720  * mapped to it, then create a new one.  The new vmspace is null.
3721  */
3722 int
3723 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3724 {
3725 	struct vmspace *oldvmspace = p->p_vmspace;
3726 	struct vmspace *newvmspace;
3727 
3728 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3729 	if (newvmspace == NULL)
3730 		return (ENOMEM);
3731 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3732 	/*
3733 	 * This code is written like this for prototype purposes.  The
3734 	 * goal is to avoid running down the vmspace here, but let the
3735 	 * other process's that are still using the vmspace to finally
3736 	 * run it down.  Even though there is little or no chance of blocking
3737 	 * here, it is a good idea to keep this form for future mods.
3738 	 */
3739 	PROC_VMSPACE_LOCK(p);
3740 	p->p_vmspace = newvmspace;
3741 	PROC_VMSPACE_UNLOCK(p);
3742 	if (p == curthread->td_proc)
3743 		pmap_activate(curthread);
3744 	vmspace_free(oldvmspace);
3745 	return (0);
3746 }
3747 
3748 /*
3749  * Unshare the specified VM space for forcing COW.  This
3750  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3751  */
3752 int
3753 vmspace_unshare(struct proc *p)
3754 {
3755 	struct vmspace *oldvmspace = p->p_vmspace;
3756 	struct vmspace *newvmspace;
3757 	vm_ooffset_t fork_charge;
3758 
3759 	if (oldvmspace->vm_refcnt == 1)
3760 		return (0);
3761 	fork_charge = 0;
3762 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3763 	if (newvmspace == NULL)
3764 		return (ENOMEM);
3765 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3766 		vmspace_free(newvmspace);
3767 		return (ENOMEM);
3768 	}
3769 	PROC_VMSPACE_LOCK(p);
3770 	p->p_vmspace = newvmspace;
3771 	PROC_VMSPACE_UNLOCK(p);
3772 	if (p == curthread->td_proc)
3773 		pmap_activate(curthread);
3774 	vmspace_free(oldvmspace);
3775 	return (0);
3776 }
3777 
3778 /*
3779  *	vm_map_lookup:
3780  *
3781  *	Finds the VM object, offset, and
3782  *	protection for a given virtual address in the
3783  *	specified map, assuming a page fault of the
3784  *	type specified.
3785  *
3786  *	Leaves the map in question locked for read; return
3787  *	values are guaranteed until a vm_map_lookup_done
3788  *	call is performed.  Note that the map argument
3789  *	is in/out; the returned map must be used in
3790  *	the call to vm_map_lookup_done.
3791  *
3792  *	A handle (out_entry) is returned for use in
3793  *	vm_map_lookup_done, to make that fast.
3794  *
3795  *	If a lookup is requested with "write protection"
3796  *	specified, the map may be changed to perform virtual
3797  *	copying operations, although the data referenced will
3798  *	remain the same.
3799  */
3800 int
3801 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3802 	      vm_offset_t vaddr,
3803 	      vm_prot_t fault_typea,
3804 	      vm_map_entry_t *out_entry,	/* OUT */
3805 	      vm_object_t *object,		/* OUT */
3806 	      vm_pindex_t *pindex,		/* OUT */
3807 	      vm_prot_t *out_prot,		/* OUT */
3808 	      boolean_t *wired)			/* OUT */
3809 {
3810 	vm_map_entry_t entry;
3811 	vm_map_t map = *var_map;
3812 	vm_prot_t prot;
3813 	vm_prot_t fault_type = fault_typea;
3814 	vm_object_t eobject;
3815 	vm_size_t size;
3816 	struct ucred *cred;
3817 
3818 RetryLookup:;
3819 
3820 	vm_map_lock_read(map);
3821 
3822 	/*
3823 	 * Lookup the faulting address.
3824 	 */
3825 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3826 		vm_map_unlock_read(map);
3827 		return (KERN_INVALID_ADDRESS);
3828 	}
3829 
3830 	entry = *out_entry;
3831 
3832 	/*
3833 	 * Handle submaps.
3834 	 */
3835 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3836 		vm_map_t old_map = map;
3837 
3838 		*var_map = map = entry->object.sub_map;
3839 		vm_map_unlock_read(old_map);
3840 		goto RetryLookup;
3841 	}
3842 
3843 	/*
3844 	 * Check whether this task is allowed to have this page.
3845 	 */
3846 	prot = entry->protection;
3847 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3848 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3849 		vm_map_unlock_read(map);
3850 		return (KERN_PROTECTION_FAILURE);
3851 	}
3852 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3853 	    (entry->eflags & MAP_ENTRY_COW) &&
3854 	    (fault_type & VM_PROT_WRITE)) {
3855 		vm_map_unlock_read(map);
3856 		return (KERN_PROTECTION_FAILURE);
3857 	}
3858 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3859 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3860 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3861 		vm_map_unlock_read(map);
3862 		return (KERN_PROTECTION_FAILURE);
3863 	}
3864 
3865 	/*
3866 	 * If this page is not pageable, we have to get it for all possible
3867 	 * accesses.
3868 	 */
3869 	*wired = (entry->wired_count != 0);
3870 	if (*wired)
3871 		fault_type = entry->protection;
3872 	size = entry->end - entry->start;
3873 	/*
3874 	 * If the entry was copy-on-write, we either ...
3875 	 */
3876 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3877 		/*
3878 		 * If we want to write the page, we may as well handle that
3879 		 * now since we've got the map locked.
3880 		 *
3881 		 * If we don't need to write the page, we just demote the
3882 		 * permissions allowed.
3883 		 */
3884 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3885 		    (fault_typea & VM_PROT_COPY) != 0) {
3886 			/*
3887 			 * Make a new object, and place it in the object
3888 			 * chain.  Note that no new references have appeared
3889 			 * -- one just moved from the map to the new
3890 			 * object.
3891 			 */
3892 			if (vm_map_lock_upgrade(map))
3893 				goto RetryLookup;
3894 
3895 			if (entry->cred == NULL) {
3896 				/*
3897 				 * The debugger owner is charged for
3898 				 * the memory.
3899 				 */
3900 				cred = curthread->td_ucred;
3901 				crhold(cred);
3902 				if (!swap_reserve_by_cred(size, cred)) {
3903 					crfree(cred);
3904 					vm_map_unlock(map);
3905 					return (KERN_RESOURCE_SHORTAGE);
3906 				}
3907 				entry->cred = cred;
3908 			}
3909 			vm_object_shadow(&entry->object.vm_object,
3910 			    &entry->offset, size);
3911 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3912 			eobject = entry->object.vm_object;
3913 			if (eobject->cred != NULL) {
3914 				/*
3915 				 * The object was not shadowed.
3916 				 */
3917 				swap_release_by_cred(size, entry->cred);
3918 				crfree(entry->cred);
3919 				entry->cred = NULL;
3920 			} else if (entry->cred != NULL) {
3921 				VM_OBJECT_WLOCK(eobject);
3922 				eobject->cred = entry->cred;
3923 				eobject->charge = size;
3924 				VM_OBJECT_WUNLOCK(eobject);
3925 				entry->cred = NULL;
3926 			}
3927 
3928 			vm_map_lock_downgrade(map);
3929 		} else {
3930 			/*
3931 			 * We're attempting to read a copy-on-write page --
3932 			 * don't allow writes.
3933 			 */
3934 			prot &= ~VM_PROT_WRITE;
3935 		}
3936 	}
3937 
3938 	/*
3939 	 * Create an object if necessary.
3940 	 */
3941 	if (entry->object.vm_object == NULL &&
3942 	    !map->system_map) {
3943 		if (vm_map_lock_upgrade(map))
3944 			goto RetryLookup;
3945 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3946 		    atop(size));
3947 		entry->offset = 0;
3948 		if (entry->cred != NULL) {
3949 			VM_OBJECT_WLOCK(entry->object.vm_object);
3950 			entry->object.vm_object->cred = entry->cred;
3951 			entry->object.vm_object->charge = size;
3952 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3953 			entry->cred = NULL;
3954 		}
3955 		vm_map_lock_downgrade(map);
3956 	}
3957 
3958 	/*
3959 	 * Return the object/offset from this entry.  If the entry was
3960 	 * copy-on-write or empty, it has been fixed up.
3961 	 */
3962 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3963 	*object = entry->object.vm_object;
3964 
3965 	*out_prot = prot;
3966 	return (KERN_SUCCESS);
3967 }
3968 
3969 /*
3970  *	vm_map_lookup_locked:
3971  *
3972  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3973  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3974  */
3975 int
3976 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3977 		     vm_offset_t vaddr,
3978 		     vm_prot_t fault_typea,
3979 		     vm_map_entry_t *out_entry,	/* OUT */
3980 		     vm_object_t *object,	/* OUT */
3981 		     vm_pindex_t *pindex,	/* OUT */
3982 		     vm_prot_t *out_prot,	/* OUT */
3983 		     boolean_t *wired)		/* OUT */
3984 {
3985 	vm_map_entry_t entry;
3986 	vm_map_t map = *var_map;
3987 	vm_prot_t prot;
3988 	vm_prot_t fault_type = fault_typea;
3989 
3990 	/*
3991 	 * Lookup the faulting address.
3992 	 */
3993 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3994 		return (KERN_INVALID_ADDRESS);
3995 
3996 	entry = *out_entry;
3997 
3998 	/*
3999 	 * Fail if the entry refers to a submap.
4000 	 */
4001 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4002 		return (KERN_FAILURE);
4003 
4004 	/*
4005 	 * Check whether this task is allowed to have this page.
4006 	 */
4007 	prot = entry->protection;
4008 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4009 	if ((fault_type & prot) != fault_type)
4010 		return (KERN_PROTECTION_FAILURE);
4011 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4012 	    (entry->eflags & MAP_ENTRY_COW) &&
4013 	    (fault_type & VM_PROT_WRITE))
4014 		return (KERN_PROTECTION_FAILURE);
4015 
4016 	/*
4017 	 * If this page is not pageable, we have to get it for all possible
4018 	 * accesses.
4019 	 */
4020 	*wired = (entry->wired_count != 0);
4021 	if (*wired)
4022 		fault_type = entry->protection;
4023 
4024 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4025 		/*
4026 		 * Fail if the entry was copy-on-write for a write fault.
4027 		 */
4028 		if (fault_type & VM_PROT_WRITE)
4029 			return (KERN_FAILURE);
4030 		/*
4031 		 * We're attempting to read a copy-on-write page --
4032 		 * don't allow writes.
4033 		 */
4034 		prot &= ~VM_PROT_WRITE;
4035 	}
4036 
4037 	/*
4038 	 * Fail if an object should be created.
4039 	 */
4040 	if (entry->object.vm_object == NULL && !map->system_map)
4041 		return (KERN_FAILURE);
4042 
4043 	/*
4044 	 * Return the object/offset from this entry.  If the entry was
4045 	 * copy-on-write or empty, it has been fixed up.
4046 	 */
4047 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4048 	*object = entry->object.vm_object;
4049 
4050 	*out_prot = prot;
4051 	return (KERN_SUCCESS);
4052 }
4053 
4054 /*
4055  *	vm_map_lookup_done:
4056  *
4057  *	Releases locks acquired by a vm_map_lookup
4058  *	(according to the handle returned by that lookup).
4059  */
4060 void
4061 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4062 {
4063 	/*
4064 	 * Unlock the main-level map
4065 	 */
4066 	vm_map_unlock_read(map);
4067 }
4068 
4069 #include "opt_ddb.h"
4070 #ifdef DDB
4071 #include <sys/kernel.h>
4072 
4073 #include <ddb/ddb.h>
4074 
4075 static void
4076 vm_map_print(vm_map_t map)
4077 {
4078 	vm_map_entry_t entry;
4079 
4080 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4081 	    (void *)map,
4082 	    (void *)map->pmap, map->nentries, map->timestamp);
4083 
4084 	db_indent += 2;
4085 	for (entry = map->header.next; entry != &map->header;
4086 	    entry = entry->next) {
4087 		db_iprintf("map entry %p: start=%p, end=%p\n",
4088 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4089 		{
4090 			static char *inheritance_name[4] =
4091 			{"share", "copy", "none", "donate_copy"};
4092 
4093 			db_iprintf(" prot=%x/%x/%s",
4094 			    entry->protection,
4095 			    entry->max_protection,
4096 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4097 			if (entry->wired_count != 0)
4098 				db_printf(", wired");
4099 		}
4100 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4101 			db_printf(", share=%p, offset=0x%jx\n",
4102 			    (void *)entry->object.sub_map,
4103 			    (uintmax_t)entry->offset);
4104 			if ((entry->prev == &map->header) ||
4105 			    (entry->prev->object.sub_map !=
4106 				entry->object.sub_map)) {
4107 				db_indent += 2;
4108 				vm_map_print((vm_map_t)entry->object.sub_map);
4109 				db_indent -= 2;
4110 			}
4111 		} else {
4112 			if (entry->cred != NULL)
4113 				db_printf(", ruid %d", entry->cred->cr_ruid);
4114 			db_printf(", object=%p, offset=0x%jx",
4115 			    (void *)entry->object.vm_object,
4116 			    (uintmax_t)entry->offset);
4117 			if (entry->object.vm_object && entry->object.vm_object->cred)
4118 				db_printf(", obj ruid %d charge %jx",
4119 				    entry->object.vm_object->cred->cr_ruid,
4120 				    (uintmax_t)entry->object.vm_object->charge);
4121 			if (entry->eflags & MAP_ENTRY_COW)
4122 				db_printf(", copy (%s)",
4123 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4124 			db_printf("\n");
4125 
4126 			if ((entry->prev == &map->header) ||
4127 			    (entry->prev->object.vm_object !=
4128 				entry->object.vm_object)) {
4129 				db_indent += 2;
4130 				vm_object_print((db_expr_t)(intptr_t)
4131 						entry->object.vm_object,
4132 						1, 0, (char *)0);
4133 				db_indent -= 2;
4134 			}
4135 		}
4136 	}
4137 	db_indent -= 2;
4138 }
4139 
4140 DB_SHOW_COMMAND(map, map)
4141 {
4142 
4143 	if (!have_addr) {
4144 		db_printf("usage: show map <addr>\n");
4145 		return;
4146 	}
4147 	vm_map_print((vm_map_t)addr);
4148 }
4149 
4150 DB_SHOW_COMMAND(procvm, procvm)
4151 {
4152 	struct proc *p;
4153 
4154 	if (have_addr) {
4155 		p = (struct proc *) addr;
4156 	} else {
4157 		p = curproc;
4158 	}
4159 
4160 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4161 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4162 	    (void *)vmspace_pmap(p->p_vmspace));
4163 
4164 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4165 }
4166 
4167 #endif /* DDB */
4168