1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static int vm_map_alignspace(vm_map_t map, vm_object_t object, 136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, 137 vm_offset_t max_addr, vm_offset_t alignment); 138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 142 vm_map_entry_t gap_entry); 143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 151 int cow); 152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 153 vm_offset_t failed_addr); 154 155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 158 159 /* 160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 161 * stable. 162 */ 163 #define PROC_VMSPACE_LOCK(p) do { } while (0) 164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 165 166 /* 167 * VM_MAP_RANGE_CHECK: [ internal use only ] 168 * 169 * Asserts that the starting and ending region 170 * addresses fall within the valid range of the map. 171 */ 172 #define VM_MAP_RANGE_CHECK(map, start, end) \ 173 { \ 174 if (start < vm_map_min(map)) \ 175 start = vm_map_min(map); \ 176 if (end > vm_map_max(map)) \ 177 end = vm_map_max(map); \ 178 if (start > end) \ 179 start = end; \ 180 } 181 182 /* 183 * vm_map_startup: 184 * 185 * Initialize the vm_map module. Must be called before 186 * any other vm_map routines. 187 * 188 * Map and entry structures are allocated from the general 189 * purpose memory pool with some exceptions: 190 * 191 * - The kernel map and kmem submap are allocated statically. 192 * - Kernel map entries are allocated out of a static pool. 193 * 194 * These restrictions are necessary since malloc() uses the 195 * maps and requires map entries. 196 */ 197 198 void 199 vm_map_startup(void) 200 { 201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 203 #ifdef INVARIANTS 204 vm_map_zdtor, 205 #else 206 NULL, 207 #endif 208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 uma_prealloc(mapzone, MAX_KMAP); 210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 216 #ifdef INVARIANTS 217 vmspace_zdtor, 218 #else 219 NULL, 220 #endif 221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 222 } 223 224 static int 225 vmspace_zinit(void *mem, int size, int flags) 226 { 227 struct vmspace *vm; 228 229 vm = (struct vmspace *)mem; 230 231 vm->vm_map.pmap = NULL; 232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 233 PMAP_LOCK_INIT(vmspace_pmap(vm)); 234 return (0); 235 } 236 237 static int 238 vm_map_zinit(void *mem, int size, int flags) 239 { 240 vm_map_t map; 241 242 map = (vm_map_t)mem; 243 memset(map, 0, sizeof(*map)); 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 * 278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 279 */ 280 struct vmspace * 281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 282 { 283 struct vmspace *vm; 284 285 vm = uma_zalloc(vmspace_zone, M_WAITOK); 286 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 287 if (!pinit(vmspace_pmap(vm))) { 288 uma_zfree(vmspace_zone, vm); 289 return (NULL); 290 } 291 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 292 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 293 vm->vm_refcnt = 1; 294 vm->vm_shm = NULL; 295 vm->vm_swrss = 0; 296 vm->vm_tsize = 0; 297 vm->vm_dsize = 0; 298 vm->vm_ssize = 0; 299 vm->vm_taddr = 0; 300 vm->vm_daddr = 0; 301 vm->vm_maxsaddr = 0; 302 return (vm); 303 } 304 305 #ifdef RACCT 306 static void 307 vmspace_container_reset(struct proc *p) 308 { 309 310 PROC_LOCK(p); 311 racct_set(p, RACCT_DATA, 0); 312 racct_set(p, RACCT_STACK, 0); 313 racct_set(p, RACCT_RSS, 0); 314 racct_set(p, RACCT_MEMLOCK, 0); 315 racct_set(p, RACCT_VMEM, 0); 316 PROC_UNLOCK(p); 317 } 318 #endif 319 320 static inline void 321 vmspace_dofree(struct vmspace *vm) 322 { 323 324 CTR1(KTR_VM, "vmspace_free: %p", vm); 325 326 /* 327 * Make sure any SysV shm is freed, it might not have been in 328 * exit1(). 329 */ 330 shmexit(vm); 331 332 /* 333 * Lock the map, to wait out all other references to it. 334 * Delete all of the mappings and pages they hold, then call 335 * the pmap module to reclaim anything left. 336 */ 337 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 338 vm_map_max(&vm->vm_map)); 339 340 pmap_release(vmspace_pmap(vm)); 341 vm->vm_map.pmap = NULL; 342 uma_zfree(vmspace_zone, vm); 343 } 344 345 void 346 vmspace_free(struct vmspace *vm) 347 { 348 349 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 350 "vmspace_free() called"); 351 352 if (vm->vm_refcnt == 0) 353 panic("vmspace_free: attempt to free already freed vmspace"); 354 355 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 356 vmspace_dofree(vm); 357 } 358 359 void 360 vmspace_exitfree(struct proc *p) 361 { 362 struct vmspace *vm; 363 364 PROC_VMSPACE_LOCK(p); 365 vm = p->p_vmspace; 366 p->p_vmspace = NULL; 367 PROC_VMSPACE_UNLOCK(p); 368 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 369 vmspace_free(vm); 370 } 371 372 void 373 vmspace_exit(struct thread *td) 374 { 375 int refcnt; 376 struct vmspace *vm; 377 struct proc *p; 378 379 /* 380 * Release user portion of address space. 381 * This releases references to vnodes, 382 * which could cause I/O if the file has been unlinked. 383 * Need to do this early enough that we can still sleep. 384 * 385 * The last exiting process to reach this point releases as 386 * much of the environment as it can. vmspace_dofree() is the 387 * slower fallback in case another process had a temporary 388 * reference to the vmspace. 389 */ 390 391 p = td->td_proc; 392 vm = p->p_vmspace; 393 atomic_add_int(&vmspace0.vm_refcnt, 1); 394 do { 395 refcnt = vm->vm_refcnt; 396 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 397 /* Switch now since other proc might free vmspace */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = &vmspace0; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 404 if (refcnt == 1) { 405 if (p->p_vmspace != vm) { 406 /* vmspace not yet freed, switch back */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = vm; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 pmap_remove_pages(vmspace_pmap(vm)); 413 /* Switch now since this proc will free vmspace */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = &vmspace0; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 vmspace_dofree(vm); 419 } 420 #ifdef RACCT 421 if (racct_enable) 422 vmspace_container_reset(p); 423 #endif 424 } 425 426 /* Acquire reference to vmspace owned by another process. */ 427 428 struct vmspace * 429 vmspace_acquire_ref(struct proc *p) 430 { 431 struct vmspace *vm; 432 int refcnt; 433 434 PROC_VMSPACE_LOCK(p); 435 vm = p->p_vmspace; 436 if (vm == NULL) { 437 PROC_VMSPACE_UNLOCK(p); 438 return (NULL); 439 } 440 do { 441 refcnt = vm->vm_refcnt; 442 if (refcnt <= 0) { /* Avoid 0->1 transition */ 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 447 if (vm != p->p_vmspace) { 448 PROC_VMSPACE_UNLOCK(p); 449 vmspace_free(vm); 450 return (NULL); 451 } 452 PROC_VMSPACE_UNLOCK(p); 453 return (vm); 454 } 455 456 /* 457 * Switch between vmspaces in an AIO kernel process. 458 * 459 * The AIO kernel processes switch to and from a user process's 460 * vmspace while performing an I/O operation on behalf of a user 461 * process. The new vmspace is either the vmspace of a user process 462 * obtained from an active AIO request or the initial vmspace of the 463 * AIO kernel process (when it is idling). Because user processes 464 * will block to drain any active AIO requests before proceeding in 465 * exit() or execve(), the vmspace reference count for these vmspaces 466 * can never be 0. This allows for a much simpler implementation than 467 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 468 * processes hold an extra reference on their initial vmspace for the 469 * life of the process so that this guarantee is true for any vmspace 470 * passed as 'newvm'. 471 */ 472 void 473 vmspace_switch_aio(struct vmspace *newvm) 474 { 475 struct vmspace *oldvm; 476 477 /* XXX: Need some way to assert that this is an aio daemon. */ 478 479 KASSERT(newvm->vm_refcnt > 0, 480 ("vmspace_switch_aio: newvm unreferenced")); 481 482 oldvm = curproc->p_vmspace; 483 if (oldvm == newvm) 484 return; 485 486 /* 487 * Point to the new address space and refer to it. 488 */ 489 curproc->p_vmspace = newvm; 490 atomic_add_int(&newvm->vm_refcnt, 1); 491 492 /* Activate the new mapping. */ 493 pmap_activate(curthread); 494 495 /* Remove the daemon's reference to the old address space. */ 496 KASSERT(oldvm->vm_refcnt > 1, 497 ("vmspace_switch_aio: oldvm dropping last reference")); 498 vmspace_free(oldvm); 499 } 500 501 void 502 _vm_map_lock(vm_map_t map, const char *file, int line) 503 { 504 505 if (map->system_map) 506 mtx_lock_flags_(&map->system_mtx, 0, file, line); 507 else 508 sx_xlock_(&map->lock, file, line); 509 map->timestamp++; 510 } 511 512 static void 513 vm_map_process_deferred(void) 514 { 515 struct thread *td; 516 vm_map_entry_t entry, next; 517 vm_object_t object; 518 519 td = curthread; 520 entry = td->td_map_def_user; 521 td->td_map_def_user = NULL; 522 while (entry != NULL) { 523 next = entry->next; 524 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 525 /* 526 * Decrement the object's writemappings and 527 * possibly the vnode's v_writecount. 528 */ 529 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 530 ("Submap with writecount")); 531 object = entry->object.vm_object; 532 KASSERT(object != NULL, ("No object for writecount")); 533 vnode_pager_release_writecount(object, entry->start, 534 entry->end); 535 } 536 vm_map_entry_deallocate(entry, FALSE); 537 entry = next; 538 } 539 } 540 541 void 542 _vm_map_unlock(vm_map_t map, const char *file, int line) 543 { 544 545 if (map->system_map) 546 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 547 else { 548 sx_xunlock_(&map->lock, file, line); 549 vm_map_process_deferred(); 550 } 551 } 552 553 void 554 _vm_map_lock_read(vm_map_t map, const char *file, int line) 555 { 556 557 if (map->system_map) 558 mtx_lock_flags_(&map->system_mtx, 0, file, line); 559 else 560 sx_slock_(&map->lock, file, line); 561 } 562 563 void 564 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 565 { 566 567 if (map->system_map) 568 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 569 else { 570 sx_sunlock_(&map->lock, file, line); 571 vm_map_process_deferred(); 572 } 573 } 574 575 int 576 _vm_map_trylock(vm_map_t map, const char *file, int line) 577 { 578 int error; 579 580 error = map->system_map ? 581 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 582 !sx_try_xlock_(&map->lock, file, line); 583 if (error == 0) 584 map->timestamp++; 585 return (error == 0); 586 } 587 588 int 589 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 590 { 591 int error; 592 593 error = map->system_map ? 594 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 595 !sx_try_slock_(&map->lock, file, line); 596 return (error == 0); 597 } 598 599 /* 600 * _vm_map_lock_upgrade: [ internal use only ] 601 * 602 * Tries to upgrade a read (shared) lock on the specified map to a write 603 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 604 * non-zero value if the upgrade fails. If the upgrade fails, the map is 605 * returned without a read or write lock held. 606 * 607 * Requires that the map be read locked. 608 */ 609 int 610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 611 { 612 unsigned int last_timestamp; 613 614 if (map->system_map) { 615 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 616 } else { 617 if (!sx_try_upgrade_(&map->lock, file, line)) { 618 last_timestamp = map->timestamp; 619 sx_sunlock_(&map->lock, file, line); 620 vm_map_process_deferred(); 621 /* 622 * If the map's timestamp does not change while the 623 * map is unlocked, then the upgrade succeeds. 624 */ 625 sx_xlock_(&map->lock, file, line); 626 if (last_timestamp != map->timestamp) { 627 sx_xunlock_(&map->lock, file, line); 628 return (1); 629 } 630 } 631 } 632 map->timestamp++; 633 return (0); 634 } 635 636 void 637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 638 { 639 640 if (map->system_map) { 641 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 642 } else 643 sx_downgrade_(&map->lock, file, line); 644 } 645 646 /* 647 * vm_map_locked: 648 * 649 * Returns a non-zero value if the caller holds a write (exclusive) lock 650 * on the specified map and the value "0" otherwise. 651 */ 652 int 653 vm_map_locked(vm_map_t map) 654 { 655 656 if (map->system_map) 657 return (mtx_owned(&map->system_mtx)); 658 else 659 return (sx_xlocked(&map->lock)); 660 } 661 662 #ifdef INVARIANTS 663 static void 664 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 665 { 666 667 if (map->system_map) 668 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 669 else 670 sx_assert_(&map->lock, SA_XLOCKED, file, line); 671 } 672 673 #define VM_MAP_ASSERT_LOCKED(map) \ 674 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 675 #else 676 #define VM_MAP_ASSERT_LOCKED(map) 677 #endif 678 679 /* 680 * _vm_map_unlock_and_wait: 681 * 682 * Atomically releases the lock on the specified map and puts the calling 683 * thread to sleep. The calling thread will remain asleep until either 684 * vm_map_wakeup() is performed on the map or the specified timeout is 685 * exceeded. 686 * 687 * WARNING! This function does not perform deferred deallocations of 688 * objects and map entries. Therefore, the calling thread is expected to 689 * reacquire the map lock after reawakening and later perform an ordinary 690 * unlock operation, such as vm_map_unlock(), before completing its 691 * operation on the map. 692 */ 693 int 694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 695 { 696 697 mtx_lock(&map_sleep_mtx); 698 if (map->system_map) 699 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 700 else 701 sx_xunlock_(&map->lock, file, line); 702 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 703 timo)); 704 } 705 706 /* 707 * vm_map_wakeup: 708 * 709 * Awaken any threads that have slept on the map using 710 * vm_map_unlock_and_wait(). 711 */ 712 void 713 vm_map_wakeup(vm_map_t map) 714 { 715 716 /* 717 * Acquire and release map_sleep_mtx to prevent a wakeup() 718 * from being performed (and lost) between the map unlock 719 * and the msleep() in _vm_map_unlock_and_wait(). 720 */ 721 mtx_lock(&map_sleep_mtx); 722 mtx_unlock(&map_sleep_mtx); 723 wakeup(&map->root); 724 } 725 726 void 727 vm_map_busy(vm_map_t map) 728 { 729 730 VM_MAP_ASSERT_LOCKED(map); 731 map->busy++; 732 } 733 734 void 735 vm_map_unbusy(vm_map_t map) 736 { 737 738 VM_MAP_ASSERT_LOCKED(map); 739 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 740 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 741 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 742 wakeup(&map->busy); 743 } 744 } 745 746 void 747 vm_map_wait_busy(vm_map_t map) 748 { 749 750 VM_MAP_ASSERT_LOCKED(map); 751 while (map->busy) { 752 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 753 if (map->system_map) 754 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 755 else 756 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 757 } 758 map->timestamp++; 759 } 760 761 long 762 vmspace_resident_count(struct vmspace *vmspace) 763 { 764 return pmap_resident_count(vmspace_pmap(vmspace)); 765 } 766 767 /* 768 * vm_map_create: 769 * 770 * Creates and returns a new empty VM map with 771 * the given physical map structure, and having 772 * the given lower and upper address bounds. 773 */ 774 vm_map_t 775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 776 { 777 vm_map_t result; 778 779 result = uma_zalloc(mapzone, M_WAITOK); 780 CTR1(KTR_VM, "vm_map_create: %p", result); 781 _vm_map_init(result, pmap, min, max); 782 return (result); 783 } 784 785 /* 786 * Initialize an existing vm_map structure 787 * such as that in the vmspace structure. 788 */ 789 static void 790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 791 { 792 793 map->header.next = map->header.prev = &map->header; 794 map->header.eflags = MAP_ENTRY_HEADER; 795 map->needs_wakeup = FALSE; 796 map->system_map = 0; 797 map->pmap = pmap; 798 map->header.end = min; 799 map->header.start = max; 800 map->flags = 0; 801 map->root = NULL; 802 map->timestamp = 0; 803 map->busy = 0; 804 } 805 806 void 807 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 808 { 809 810 _vm_map_init(map, pmap, min, max); 811 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 812 sx_init(&map->lock, "user map"); 813 } 814 815 /* 816 * vm_map_entry_dispose: [ internal use only ] 817 * 818 * Inverse of vm_map_entry_create. 819 */ 820 static void 821 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 822 { 823 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 824 } 825 826 /* 827 * vm_map_entry_create: [ internal use only ] 828 * 829 * Allocates a VM map entry for insertion. 830 * No entry fields are filled in. 831 */ 832 static vm_map_entry_t 833 vm_map_entry_create(vm_map_t map) 834 { 835 vm_map_entry_t new_entry; 836 837 if (map->system_map) 838 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 839 else 840 new_entry = uma_zalloc(mapentzone, M_WAITOK); 841 if (new_entry == NULL) 842 panic("vm_map_entry_create: kernel resources exhausted"); 843 return (new_entry); 844 } 845 846 /* 847 * vm_map_entry_set_behavior: 848 * 849 * Set the expected access behavior, either normal, random, or 850 * sequential. 851 */ 852 static inline void 853 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 854 { 855 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 856 (behavior & MAP_ENTRY_BEHAV_MASK); 857 } 858 859 /* 860 * vm_map_entry_set_max_free: 861 * 862 * Set the max_free field in a vm_map_entry. 863 */ 864 static inline void 865 vm_map_entry_set_max_free(vm_map_entry_t entry) 866 { 867 868 entry->max_free = entry->adj_free; 869 if (entry->left != NULL && entry->left->max_free > entry->max_free) 870 entry->max_free = entry->left->max_free; 871 if (entry->right != NULL && entry->right->max_free > entry->max_free) 872 entry->max_free = entry->right->max_free; 873 } 874 875 /* 876 * vm_map_entry_splay: 877 * 878 * The Sleator and Tarjan top-down splay algorithm with the 879 * following variation. Max_free must be computed bottom-up, so 880 * on the downward pass, maintain the left and right spines in 881 * reverse order. Then, make a second pass up each side to fix 882 * the pointers and compute max_free. The time bound is O(log n) 883 * amortized. 884 * 885 * The new root is the vm_map_entry containing "addr", or else an 886 * adjacent entry (lower or higher) if addr is not in the tree. 887 * 888 * The map must be locked, and leaves it so. 889 * 890 * Returns: the new root. 891 */ 892 static vm_map_entry_t 893 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 894 { 895 vm_map_entry_t llist, rlist; 896 vm_map_entry_t ltree, rtree; 897 vm_map_entry_t y; 898 899 /* Special case of empty tree. */ 900 if (root == NULL) 901 return (root); 902 903 /* 904 * Pass One: Splay down the tree until we find addr or a NULL 905 * pointer where addr would go. llist and rlist are the two 906 * sides in reverse order (bottom-up), with llist linked by 907 * the right pointer and rlist linked by the left pointer in 908 * the vm_map_entry. Wait until Pass Two to set max_free on 909 * the two spines. 910 */ 911 llist = NULL; 912 rlist = NULL; 913 for (;;) { 914 /* root is never NULL in here. */ 915 if (addr < root->start) { 916 y = root->left; 917 if (y == NULL) 918 break; 919 if (addr < y->start && y->left != NULL) { 920 /* Rotate right and put y on rlist. */ 921 root->left = y->right; 922 y->right = root; 923 vm_map_entry_set_max_free(root); 924 root = y->left; 925 y->left = rlist; 926 rlist = y; 927 } else { 928 /* Put root on rlist. */ 929 root->left = rlist; 930 rlist = root; 931 root = y; 932 } 933 } else if (addr >= root->end) { 934 y = root->right; 935 if (y == NULL) 936 break; 937 if (addr >= y->end && y->right != NULL) { 938 /* Rotate left and put y on llist. */ 939 root->right = y->left; 940 y->left = root; 941 vm_map_entry_set_max_free(root); 942 root = y->right; 943 y->right = llist; 944 llist = y; 945 } else { 946 /* Put root on llist. */ 947 root->right = llist; 948 llist = root; 949 root = y; 950 } 951 } else 952 break; 953 } 954 955 /* 956 * Pass Two: Walk back up the two spines, flip the pointers 957 * and set max_free. The subtrees of the root go at the 958 * bottom of llist and rlist. 959 */ 960 ltree = root->left; 961 while (llist != NULL) { 962 y = llist->right; 963 llist->right = ltree; 964 vm_map_entry_set_max_free(llist); 965 ltree = llist; 966 llist = y; 967 } 968 rtree = root->right; 969 while (rlist != NULL) { 970 y = rlist->left; 971 rlist->left = rtree; 972 vm_map_entry_set_max_free(rlist); 973 rtree = rlist; 974 rlist = y; 975 } 976 977 /* 978 * Final assembly: add ltree and rtree as subtrees of root. 979 */ 980 root->left = ltree; 981 root->right = rtree; 982 vm_map_entry_set_max_free(root); 983 984 return (root); 985 } 986 987 /* 988 * vm_map_entry_{un,}link: 989 * 990 * Insert/remove entries from maps. 991 */ 992 static void 993 vm_map_entry_link(vm_map_t map, 994 vm_map_entry_t after_where, 995 vm_map_entry_t entry) 996 { 997 998 CTR4(KTR_VM, 999 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 1000 map->nentries, entry, after_where); 1001 VM_MAP_ASSERT_LOCKED(map); 1002 KASSERT(after_where->end <= entry->start, 1003 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1004 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1005 KASSERT(entry->end <= after_where->next->start, 1006 ("vm_map_entry_link: new end %jx next start %jx overlap", 1007 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1008 1009 map->nentries++; 1010 entry->prev = after_where; 1011 entry->next = after_where->next; 1012 entry->next->prev = entry; 1013 after_where->next = entry; 1014 1015 if (after_where != &map->header) { 1016 if (after_where != map->root) 1017 vm_map_entry_splay(after_where->start, map->root); 1018 entry->right = after_where->right; 1019 entry->left = after_where; 1020 after_where->right = NULL; 1021 after_where->adj_free = entry->start - after_where->end; 1022 vm_map_entry_set_max_free(after_where); 1023 } else { 1024 entry->right = map->root; 1025 entry->left = NULL; 1026 } 1027 entry->adj_free = entry->next->start - entry->end; 1028 vm_map_entry_set_max_free(entry); 1029 map->root = entry; 1030 } 1031 1032 static void 1033 vm_map_entry_unlink(vm_map_t map, 1034 vm_map_entry_t entry) 1035 { 1036 vm_map_entry_t next, prev, root; 1037 1038 VM_MAP_ASSERT_LOCKED(map); 1039 if (entry != map->root) 1040 vm_map_entry_splay(entry->start, map->root); 1041 if (entry->left == NULL) 1042 root = entry->right; 1043 else { 1044 root = vm_map_entry_splay(entry->start, entry->left); 1045 root->right = entry->right; 1046 root->adj_free = entry->next->start - root->end; 1047 vm_map_entry_set_max_free(root); 1048 } 1049 map->root = root; 1050 1051 prev = entry->prev; 1052 next = entry->next; 1053 next->prev = prev; 1054 prev->next = next; 1055 map->nentries--; 1056 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1057 map->nentries, entry); 1058 } 1059 1060 /* 1061 * vm_map_entry_resize_free: 1062 * 1063 * Recompute the amount of free space following a vm_map_entry 1064 * and propagate that value up the tree. Call this function after 1065 * resizing a map entry in-place, that is, without a call to 1066 * vm_map_entry_link() or _unlink(). 1067 * 1068 * The map must be locked, and leaves it so. 1069 */ 1070 static void 1071 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1072 { 1073 1074 /* 1075 * Using splay trees without parent pointers, propagating 1076 * max_free up the tree is done by moving the entry to the 1077 * root and making the change there. 1078 */ 1079 if (entry != map->root) 1080 map->root = vm_map_entry_splay(entry->start, map->root); 1081 1082 entry->adj_free = entry->next->start - entry->end; 1083 vm_map_entry_set_max_free(entry); 1084 } 1085 1086 /* 1087 * vm_map_lookup_entry: [ internal use only ] 1088 * 1089 * Finds the map entry containing (or 1090 * immediately preceding) the specified address 1091 * in the given map; the entry is returned 1092 * in the "entry" parameter. The boolean 1093 * result indicates whether the address is 1094 * actually contained in the map. 1095 */ 1096 boolean_t 1097 vm_map_lookup_entry( 1098 vm_map_t map, 1099 vm_offset_t address, 1100 vm_map_entry_t *entry) /* OUT */ 1101 { 1102 vm_map_entry_t cur; 1103 boolean_t locked; 1104 1105 /* 1106 * If the map is empty, then the map entry immediately preceding 1107 * "address" is the map's header. 1108 */ 1109 cur = map->root; 1110 if (cur == NULL) 1111 *entry = &map->header; 1112 else if (address >= cur->start && cur->end > address) { 1113 *entry = cur; 1114 return (TRUE); 1115 } else if ((locked = vm_map_locked(map)) || 1116 sx_try_upgrade(&map->lock)) { 1117 /* 1118 * Splay requires a write lock on the map. However, it only 1119 * restructures the binary search tree; it does not otherwise 1120 * change the map. Thus, the map's timestamp need not change 1121 * on a temporary upgrade. 1122 */ 1123 map->root = cur = vm_map_entry_splay(address, cur); 1124 if (!locked) 1125 sx_downgrade(&map->lock); 1126 1127 /* 1128 * If "address" is contained within a map entry, the new root 1129 * is that map entry. Otherwise, the new root is a map entry 1130 * immediately before or after "address". 1131 */ 1132 if (address >= cur->start) { 1133 *entry = cur; 1134 if (cur->end > address) 1135 return (TRUE); 1136 } else 1137 *entry = cur->prev; 1138 } else 1139 /* 1140 * Since the map is only locked for read access, perform a 1141 * standard binary search tree lookup for "address". 1142 */ 1143 for (;;) { 1144 if (address < cur->start) { 1145 if (cur->left == NULL) { 1146 *entry = cur->prev; 1147 break; 1148 } 1149 cur = cur->left; 1150 } else if (cur->end > address) { 1151 *entry = cur; 1152 return (TRUE); 1153 } else { 1154 if (cur->right == NULL) { 1155 *entry = cur; 1156 break; 1157 } 1158 cur = cur->right; 1159 } 1160 } 1161 return (FALSE); 1162 } 1163 1164 /* 1165 * vm_map_insert: 1166 * 1167 * Inserts the given whole VM object into the target 1168 * map at the specified address range. The object's 1169 * size should match that of the address range. 1170 * 1171 * Requires that the map be locked, and leaves it so. 1172 * 1173 * If object is non-NULL, ref count must be bumped by caller 1174 * prior to making call to account for the new entry. 1175 */ 1176 int 1177 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1178 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1179 { 1180 vm_map_entry_t new_entry, prev_entry, temp_entry; 1181 struct ucred *cred; 1182 vm_eflags_t protoeflags; 1183 vm_inherit_t inheritance; 1184 1185 VM_MAP_ASSERT_LOCKED(map); 1186 KASSERT(object != kernel_object || 1187 (cow & MAP_COPY_ON_WRITE) == 0, 1188 ("vm_map_insert: kernel object and COW")); 1189 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1190 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1191 KASSERT((prot & ~max) == 0, 1192 ("prot %#x is not subset of max_prot %#x", prot, max)); 1193 1194 /* 1195 * Check that the start and end points are not bogus. 1196 */ 1197 if (start < vm_map_min(map) || end > vm_map_max(map) || 1198 start >= end) 1199 return (KERN_INVALID_ADDRESS); 1200 1201 /* 1202 * Find the entry prior to the proposed starting address; if it's part 1203 * of an existing entry, this range is bogus. 1204 */ 1205 if (vm_map_lookup_entry(map, start, &temp_entry)) 1206 return (KERN_NO_SPACE); 1207 1208 prev_entry = temp_entry; 1209 1210 /* 1211 * Assert that the next entry doesn't overlap the end point. 1212 */ 1213 if (prev_entry->next->start < end) 1214 return (KERN_NO_SPACE); 1215 1216 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1217 max != VM_PROT_NONE)) 1218 return (KERN_INVALID_ARGUMENT); 1219 1220 protoeflags = 0; 1221 if (cow & MAP_COPY_ON_WRITE) 1222 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1223 if (cow & MAP_NOFAULT) 1224 protoeflags |= MAP_ENTRY_NOFAULT; 1225 if (cow & MAP_DISABLE_SYNCER) 1226 protoeflags |= MAP_ENTRY_NOSYNC; 1227 if (cow & MAP_DISABLE_COREDUMP) 1228 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1229 if (cow & MAP_STACK_GROWS_DOWN) 1230 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1231 if (cow & MAP_STACK_GROWS_UP) 1232 protoeflags |= MAP_ENTRY_GROWS_UP; 1233 if (cow & MAP_VN_WRITECOUNT) 1234 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1235 if ((cow & MAP_CREATE_GUARD) != 0) 1236 protoeflags |= MAP_ENTRY_GUARD; 1237 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1238 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1239 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1240 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1241 if (cow & MAP_INHERIT_SHARE) 1242 inheritance = VM_INHERIT_SHARE; 1243 else 1244 inheritance = VM_INHERIT_DEFAULT; 1245 1246 cred = NULL; 1247 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1248 goto charged; 1249 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1250 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1251 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1252 return (KERN_RESOURCE_SHORTAGE); 1253 KASSERT(object == NULL || 1254 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1255 object->cred == NULL, 1256 ("overcommit: vm_map_insert o %p", object)); 1257 cred = curthread->td_ucred; 1258 } 1259 1260 charged: 1261 /* Expand the kernel pmap, if necessary. */ 1262 if (map == kernel_map && end > kernel_vm_end) 1263 pmap_growkernel(end); 1264 if (object != NULL) { 1265 /* 1266 * OBJ_ONEMAPPING must be cleared unless this mapping 1267 * is trivially proven to be the only mapping for any 1268 * of the object's pages. (Object granularity 1269 * reference counting is insufficient to recognize 1270 * aliases with precision.) 1271 */ 1272 VM_OBJECT_WLOCK(object); 1273 if (object->ref_count > 1 || object->shadow_count != 0) 1274 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1275 VM_OBJECT_WUNLOCK(object); 1276 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1277 protoeflags && 1278 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1279 prev_entry->end == start && (prev_entry->cred == cred || 1280 (prev_entry->object.vm_object != NULL && 1281 prev_entry->object.vm_object->cred == cred)) && 1282 vm_object_coalesce(prev_entry->object.vm_object, 1283 prev_entry->offset, 1284 (vm_size_t)(prev_entry->end - prev_entry->start), 1285 (vm_size_t)(end - prev_entry->end), cred != NULL && 1286 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1287 /* 1288 * We were able to extend the object. Determine if we 1289 * can extend the previous map entry to include the 1290 * new range as well. 1291 */ 1292 if (prev_entry->inheritance == inheritance && 1293 prev_entry->protection == prot && 1294 prev_entry->max_protection == max && 1295 prev_entry->wired_count == 0) { 1296 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1297 0, ("prev_entry %p has incoherent wiring", 1298 prev_entry)); 1299 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1300 map->size += end - prev_entry->end; 1301 prev_entry->end = end; 1302 vm_map_entry_resize_free(map, prev_entry); 1303 vm_map_simplify_entry(map, prev_entry); 1304 return (KERN_SUCCESS); 1305 } 1306 1307 /* 1308 * If we can extend the object but cannot extend the 1309 * map entry, we have to create a new map entry. We 1310 * must bump the ref count on the extended object to 1311 * account for it. object may be NULL. 1312 */ 1313 object = prev_entry->object.vm_object; 1314 offset = prev_entry->offset + 1315 (prev_entry->end - prev_entry->start); 1316 vm_object_reference(object); 1317 if (cred != NULL && object != NULL && object->cred != NULL && 1318 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1319 /* Object already accounts for this uid. */ 1320 cred = NULL; 1321 } 1322 } 1323 if (cred != NULL) 1324 crhold(cred); 1325 1326 /* 1327 * Create a new entry 1328 */ 1329 new_entry = vm_map_entry_create(map); 1330 new_entry->start = start; 1331 new_entry->end = end; 1332 new_entry->cred = NULL; 1333 1334 new_entry->eflags = protoeflags; 1335 new_entry->object.vm_object = object; 1336 new_entry->offset = offset; 1337 1338 new_entry->inheritance = inheritance; 1339 new_entry->protection = prot; 1340 new_entry->max_protection = max; 1341 new_entry->wired_count = 0; 1342 new_entry->wiring_thread = NULL; 1343 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1344 new_entry->next_read = start; 1345 1346 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1347 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1348 new_entry->cred = cred; 1349 1350 /* 1351 * Insert the new entry into the list 1352 */ 1353 vm_map_entry_link(map, prev_entry, new_entry); 1354 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1355 map->size += new_entry->end - new_entry->start; 1356 1357 /* 1358 * Try to coalesce the new entry with both the previous and next 1359 * entries in the list. Previously, we only attempted to coalesce 1360 * with the previous entry when object is NULL. Here, we handle the 1361 * other cases, which are less common. 1362 */ 1363 vm_map_simplify_entry(map, new_entry); 1364 1365 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1366 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1367 end - start, cow & MAP_PREFAULT_PARTIAL); 1368 } 1369 1370 return (KERN_SUCCESS); 1371 } 1372 1373 /* 1374 * vm_map_findspace: 1375 * 1376 * Find the first fit (lowest VM address) for "length" free bytes 1377 * beginning at address >= start in the given map. 1378 * 1379 * In a vm_map_entry, "adj_free" is the amount of free space 1380 * adjacent (higher address) to this entry, and "max_free" is the 1381 * maximum amount of contiguous free space in its subtree. This 1382 * allows finding a free region in one path down the tree, so 1383 * O(log n) amortized with splay trees. 1384 * 1385 * The map must be locked, and leaves it so. 1386 * 1387 * Returns: 0 on success, and starting address in *addr, 1388 * 1 if insufficient space. 1389 */ 1390 int 1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1392 vm_offset_t *addr) /* OUT */ 1393 { 1394 vm_map_entry_t entry; 1395 vm_offset_t st; 1396 1397 /* 1398 * Request must fit within min/max VM address and must avoid 1399 * address wrap. 1400 */ 1401 start = MAX(start, vm_map_min(map)); 1402 if (start + length > vm_map_max(map) || start + length < start) 1403 return (1); 1404 1405 /* Empty tree means wide open address space. */ 1406 if (map->root == NULL) { 1407 *addr = start; 1408 return (0); 1409 } 1410 1411 /* 1412 * After splay, if start comes before root node, then there 1413 * must be a gap from start to the root. 1414 */ 1415 map->root = vm_map_entry_splay(start, map->root); 1416 if (start + length <= map->root->start) { 1417 *addr = start; 1418 return (0); 1419 } 1420 1421 /* 1422 * Root is the last node that might begin its gap before 1423 * start, and this is the last comparison where address 1424 * wrap might be a problem. 1425 */ 1426 st = (start > map->root->end) ? start : map->root->end; 1427 if (length <= map->root->end + map->root->adj_free - st) { 1428 *addr = st; 1429 return (0); 1430 } 1431 1432 /* With max_free, can immediately tell if no solution. */ 1433 entry = map->root->right; 1434 if (entry == NULL || length > entry->max_free) 1435 return (1); 1436 1437 /* 1438 * Search the right subtree in the order: left subtree, root, 1439 * right subtree (first fit). The previous splay implies that 1440 * all regions in the right subtree have addresses > start. 1441 */ 1442 while (entry != NULL) { 1443 if (entry->left != NULL && entry->left->max_free >= length) 1444 entry = entry->left; 1445 else if (entry->adj_free >= length) { 1446 *addr = entry->end; 1447 return (0); 1448 } else 1449 entry = entry->right; 1450 } 1451 1452 /* Can't get here, so panic if we do. */ 1453 panic("vm_map_findspace: max_free corrupt"); 1454 } 1455 1456 int 1457 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1458 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1459 vm_prot_t max, int cow) 1460 { 1461 vm_offset_t end; 1462 int result; 1463 1464 end = start + length; 1465 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1466 object == NULL, 1467 ("vm_map_fixed: non-NULL backing object for stack")); 1468 vm_map_lock(map); 1469 VM_MAP_RANGE_CHECK(map, start, end); 1470 if ((cow & MAP_CHECK_EXCL) == 0) 1471 vm_map_delete(map, start, end); 1472 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1473 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1474 prot, max, cow); 1475 } else { 1476 result = vm_map_insert(map, object, offset, start, end, 1477 prot, max, cow); 1478 } 1479 vm_map_unlock(map); 1480 return (result); 1481 } 1482 1483 /* 1484 * Searches for the specified amount of free space in the given map with the 1485 * specified alignment. Performs an address-ordered, first-fit search from 1486 * the given address "*addr", with an optional upper bound "max_addr". If the 1487 * parameter "alignment" is zero, then the alignment is computed from the 1488 * given (object, offset) pair so as to enable the greatest possible use of 1489 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1490 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1491 * 1492 * The map must be locked. Initially, there must be at least "length" bytes 1493 * of free space at the given address. 1494 */ 1495 static int 1496 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1497 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1498 vm_offset_t alignment) 1499 { 1500 vm_offset_t aligned_addr, free_addr; 1501 1502 VM_MAP_ASSERT_LOCKED(map); 1503 free_addr = *addr; 1504 KASSERT(!vm_map_findspace(map, free_addr, length, addr) && 1505 free_addr == *addr, ("caller provided insufficient free space")); 1506 for (;;) { 1507 /* 1508 * At the start of every iteration, the free space at address 1509 * "*addr" is at least "length" bytes. 1510 */ 1511 if (alignment == 0) 1512 pmap_align_superpage(object, offset, addr, length); 1513 else if ((*addr & (alignment - 1)) != 0) { 1514 *addr &= ~(alignment - 1); 1515 *addr += alignment; 1516 } 1517 aligned_addr = *addr; 1518 if (aligned_addr == free_addr) { 1519 /* 1520 * Alignment did not change "*addr", so "*addr" must 1521 * still provide sufficient free space. 1522 */ 1523 return (KERN_SUCCESS); 1524 } 1525 1526 /* 1527 * Test for address wrap on "*addr". A wrapped "*addr" could 1528 * be a valid address, in which case vm_map_findspace() cannot 1529 * be relied upon to fail. 1530 */ 1531 if (aligned_addr < free_addr || 1532 vm_map_findspace(map, aligned_addr, length, addr) || 1533 (max_addr != 0 && *addr + length > max_addr)) 1534 return (KERN_NO_SPACE); 1535 free_addr = *addr; 1536 if (free_addr == aligned_addr) { 1537 /* 1538 * If a successful call to vm_map_findspace() did not 1539 * change "*addr", then "*addr" must still be aligned 1540 * and provide sufficient free space. 1541 */ 1542 return (KERN_SUCCESS); 1543 } 1544 } 1545 } 1546 1547 /* 1548 * vm_map_find finds an unallocated region in the target address 1549 * map with the given length. The search is defined to be 1550 * first-fit from the specified address; the region found is 1551 * returned in the same parameter. 1552 * 1553 * If object is non-NULL, ref count must be bumped by caller 1554 * prior to making call to account for the new entry. 1555 */ 1556 int 1557 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1558 vm_offset_t *addr, /* IN/OUT */ 1559 vm_size_t length, vm_offset_t max_addr, int find_space, 1560 vm_prot_t prot, vm_prot_t max, int cow) 1561 { 1562 vm_offset_t alignment, min_addr; 1563 int rv; 1564 1565 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1566 object == NULL, 1567 ("vm_map_find: non-NULL backing object for stack")); 1568 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1569 (object->flags & OBJ_COLORED) == 0)) 1570 find_space = VMFS_ANY_SPACE; 1571 if (find_space >> 8 != 0) { 1572 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1573 alignment = (vm_offset_t)1 << (find_space >> 8); 1574 } else 1575 alignment = 0; 1576 vm_map_lock(map); 1577 if (find_space != VMFS_NO_SPACE) { 1578 KASSERT(find_space == VMFS_ANY_SPACE || 1579 find_space == VMFS_OPTIMAL_SPACE || 1580 find_space == VMFS_SUPER_SPACE || 1581 alignment != 0, ("unexpected VMFS flag")); 1582 min_addr = *addr; 1583 again: 1584 if (vm_map_findspace(map, min_addr, length, addr) || 1585 (max_addr != 0 && *addr + length > max_addr)) { 1586 rv = KERN_NO_SPACE; 1587 goto done; 1588 } 1589 if (find_space != VMFS_ANY_SPACE && 1590 (rv = vm_map_alignspace(map, object, offset, addr, length, 1591 max_addr, alignment)) != KERN_SUCCESS) { 1592 if (find_space == VMFS_OPTIMAL_SPACE) { 1593 find_space = VMFS_ANY_SPACE; 1594 goto again; 1595 } 1596 goto done; 1597 } 1598 } 1599 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1600 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1601 max, cow); 1602 } else { 1603 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1604 prot, max, cow); 1605 } 1606 done: 1607 vm_map_unlock(map); 1608 return (rv); 1609 } 1610 1611 /* 1612 * vm_map_find_min() is a variant of vm_map_find() that takes an 1613 * additional parameter (min_addr) and treats the given address 1614 * (*addr) differently. Specifically, it treats *addr as a hint 1615 * and not as the minimum address where the mapping is created. 1616 * 1617 * This function works in two phases. First, it tries to 1618 * allocate above the hint. If that fails and the hint is 1619 * greater than min_addr, it performs a second pass, replacing 1620 * the hint with min_addr as the minimum address for the 1621 * allocation. 1622 */ 1623 int 1624 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1625 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1626 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1627 int cow) 1628 { 1629 vm_offset_t hint; 1630 int rv; 1631 1632 hint = *addr; 1633 for (;;) { 1634 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1635 find_space, prot, max, cow); 1636 if (rv == KERN_SUCCESS || min_addr >= hint) 1637 return (rv); 1638 *addr = hint = min_addr; 1639 } 1640 } 1641 1642 /* 1643 * A map entry with any of the following flags set must not be merged with 1644 * another entry. 1645 */ 1646 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1647 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP) 1648 1649 static bool 1650 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1651 { 1652 1653 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1654 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1655 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1656 prev, entry)); 1657 return (prev->end == entry->start && 1658 prev->object.vm_object == entry->object.vm_object && 1659 (prev->object.vm_object == NULL || 1660 prev->offset + (prev->end - prev->start) == entry->offset) && 1661 prev->eflags == entry->eflags && 1662 prev->protection == entry->protection && 1663 prev->max_protection == entry->max_protection && 1664 prev->inheritance == entry->inheritance && 1665 prev->wired_count == entry->wired_count && 1666 prev->cred == entry->cred); 1667 } 1668 1669 static void 1670 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1671 { 1672 1673 /* 1674 * If the backing object is a vnode object, vm_object_deallocate() 1675 * calls vrele(). However, vrele() does not lock the vnode because 1676 * the vnode has additional references. Thus, the map lock can be 1677 * kept without causing a lock-order reversal with the vnode lock. 1678 * 1679 * Since we count the number of virtual page mappings in 1680 * object->un_pager.vnp.writemappings, the writemappings value 1681 * should not be adjusted when the entry is disposed of. 1682 */ 1683 if (entry->object.vm_object != NULL) 1684 vm_object_deallocate(entry->object.vm_object); 1685 if (entry->cred != NULL) 1686 crfree(entry->cred); 1687 vm_map_entry_dispose(map, entry); 1688 } 1689 1690 /* 1691 * vm_map_simplify_entry: 1692 * 1693 * Simplify the given map entry by merging with either neighbor. This 1694 * routine also has the ability to merge with both neighbors. 1695 * 1696 * The map must be locked. 1697 * 1698 * This routine guarantees that the passed entry remains valid (though 1699 * possibly extended). When merging, this routine may delete one or 1700 * both neighbors. 1701 */ 1702 void 1703 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1704 { 1705 vm_map_entry_t next, prev; 1706 1707 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 1708 return; 1709 prev = entry->prev; 1710 if (vm_map_mergeable_neighbors(prev, entry)) { 1711 vm_map_entry_unlink(map, prev); 1712 entry->start = prev->start; 1713 entry->offset = prev->offset; 1714 if (entry->prev != &map->header) 1715 vm_map_entry_resize_free(map, entry->prev); 1716 vm_map_merged_neighbor_dispose(map, prev); 1717 } 1718 next = entry->next; 1719 if (vm_map_mergeable_neighbors(entry, next)) { 1720 vm_map_entry_unlink(map, next); 1721 entry->end = next->end; 1722 vm_map_entry_resize_free(map, entry); 1723 vm_map_merged_neighbor_dispose(map, next); 1724 } 1725 } 1726 1727 /* 1728 * vm_map_clip_start: [ internal use only ] 1729 * 1730 * Asserts that the given entry begins at or after 1731 * the specified address; if necessary, 1732 * it splits the entry into two. 1733 */ 1734 #define vm_map_clip_start(map, entry, startaddr) \ 1735 { \ 1736 if (startaddr > entry->start) \ 1737 _vm_map_clip_start(map, entry, startaddr); \ 1738 } 1739 1740 /* 1741 * This routine is called only when it is known that 1742 * the entry must be split. 1743 */ 1744 static void 1745 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1746 { 1747 vm_map_entry_t new_entry; 1748 1749 VM_MAP_ASSERT_LOCKED(map); 1750 KASSERT(entry->end > start && entry->start < start, 1751 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1752 1753 /* 1754 * Split off the front portion -- note that we must insert the new 1755 * entry BEFORE this one, so that this entry has the specified 1756 * starting address. 1757 */ 1758 vm_map_simplify_entry(map, entry); 1759 1760 /* 1761 * If there is no object backing this entry, we might as well create 1762 * one now. If we defer it, an object can get created after the map 1763 * is clipped, and individual objects will be created for the split-up 1764 * map. This is a bit of a hack, but is also about the best place to 1765 * put this improvement. 1766 */ 1767 if (entry->object.vm_object == NULL && !map->system_map && 1768 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1769 vm_object_t object; 1770 object = vm_object_allocate(OBJT_DEFAULT, 1771 atop(entry->end - entry->start)); 1772 entry->object.vm_object = object; 1773 entry->offset = 0; 1774 if (entry->cred != NULL) { 1775 object->cred = entry->cred; 1776 object->charge = entry->end - entry->start; 1777 entry->cred = NULL; 1778 } 1779 } else if (entry->object.vm_object != NULL && 1780 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1781 entry->cred != NULL) { 1782 VM_OBJECT_WLOCK(entry->object.vm_object); 1783 KASSERT(entry->object.vm_object->cred == NULL, 1784 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1785 entry->object.vm_object->cred = entry->cred; 1786 entry->object.vm_object->charge = entry->end - entry->start; 1787 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1788 entry->cred = NULL; 1789 } 1790 1791 new_entry = vm_map_entry_create(map); 1792 *new_entry = *entry; 1793 1794 new_entry->end = start; 1795 entry->offset += (start - entry->start); 1796 entry->start = start; 1797 if (new_entry->cred != NULL) 1798 crhold(entry->cred); 1799 1800 vm_map_entry_link(map, entry->prev, new_entry); 1801 1802 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1803 vm_object_reference(new_entry->object.vm_object); 1804 /* 1805 * The object->un_pager.vnp.writemappings for the 1806 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1807 * kept as is here. The virtual pages are 1808 * re-distributed among the clipped entries, so the sum is 1809 * left the same. 1810 */ 1811 } 1812 } 1813 1814 /* 1815 * vm_map_clip_end: [ internal use only ] 1816 * 1817 * Asserts that the given entry ends at or before 1818 * the specified address; if necessary, 1819 * it splits the entry into two. 1820 */ 1821 #define vm_map_clip_end(map, entry, endaddr) \ 1822 { \ 1823 if ((endaddr) < (entry->end)) \ 1824 _vm_map_clip_end((map), (entry), (endaddr)); \ 1825 } 1826 1827 /* 1828 * This routine is called only when it is known that 1829 * the entry must be split. 1830 */ 1831 static void 1832 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1833 { 1834 vm_map_entry_t new_entry; 1835 1836 VM_MAP_ASSERT_LOCKED(map); 1837 KASSERT(entry->start < end && entry->end > end, 1838 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1839 1840 /* 1841 * If there is no object backing this entry, we might as well create 1842 * one now. If we defer it, an object can get created after the map 1843 * is clipped, and individual objects will be created for the split-up 1844 * map. This is a bit of a hack, but is also about the best place to 1845 * put this improvement. 1846 */ 1847 if (entry->object.vm_object == NULL && !map->system_map && 1848 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1849 vm_object_t object; 1850 object = vm_object_allocate(OBJT_DEFAULT, 1851 atop(entry->end - entry->start)); 1852 entry->object.vm_object = object; 1853 entry->offset = 0; 1854 if (entry->cred != NULL) { 1855 object->cred = entry->cred; 1856 object->charge = entry->end - entry->start; 1857 entry->cred = NULL; 1858 } 1859 } else if (entry->object.vm_object != NULL && 1860 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1861 entry->cred != NULL) { 1862 VM_OBJECT_WLOCK(entry->object.vm_object); 1863 KASSERT(entry->object.vm_object->cred == NULL, 1864 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1865 entry->object.vm_object->cred = entry->cred; 1866 entry->object.vm_object->charge = entry->end - entry->start; 1867 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1868 entry->cred = NULL; 1869 } 1870 1871 /* 1872 * Create a new entry and insert it AFTER the specified entry 1873 */ 1874 new_entry = vm_map_entry_create(map); 1875 *new_entry = *entry; 1876 1877 new_entry->start = entry->end = end; 1878 new_entry->offset += (end - entry->start); 1879 if (new_entry->cred != NULL) 1880 crhold(entry->cred); 1881 1882 vm_map_entry_link(map, entry, new_entry); 1883 1884 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1885 vm_object_reference(new_entry->object.vm_object); 1886 } 1887 } 1888 1889 /* 1890 * vm_map_submap: [ kernel use only ] 1891 * 1892 * Mark the given range as handled by a subordinate map. 1893 * 1894 * This range must have been created with vm_map_find, 1895 * and no other operations may have been performed on this 1896 * range prior to calling vm_map_submap. 1897 * 1898 * Only a limited number of operations can be performed 1899 * within this rage after calling vm_map_submap: 1900 * vm_fault 1901 * [Don't try vm_map_copy!] 1902 * 1903 * To remove a submapping, one must first remove the 1904 * range from the superior map, and then destroy the 1905 * submap (if desired). [Better yet, don't try it.] 1906 */ 1907 int 1908 vm_map_submap( 1909 vm_map_t map, 1910 vm_offset_t start, 1911 vm_offset_t end, 1912 vm_map_t submap) 1913 { 1914 vm_map_entry_t entry; 1915 int result = KERN_INVALID_ARGUMENT; 1916 1917 vm_map_lock(map); 1918 1919 VM_MAP_RANGE_CHECK(map, start, end); 1920 1921 if (vm_map_lookup_entry(map, start, &entry)) { 1922 vm_map_clip_start(map, entry, start); 1923 } else 1924 entry = entry->next; 1925 1926 vm_map_clip_end(map, entry, end); 1927 1928 if ((entry->start == start) && (entry->end == end) && 1929 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1930 (entry->object.vm_object == NULL)) { 1931 entry->object.sub_map = submap; 1932 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1933 result = KERN_SUCCESS; 1934 } 1935 vm_map_unlock(map); 1936 1937 return (result); 1938 } 1939 1940 /* 1941 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1942 */ 1943 #define MAX_INIT_PT 96 1944 1945 /* 1946 * vm_map_pmap_enter: 1947 * 1948 * Preload the specified map's pmap with mappings to the specified 1949 * object's memory-resident pages. No further physical pages are 1950 * allocated, and no further virtual pages are retrieved from secondary 1951 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1952 * limited number of page mappings are created at the low-end of the 1953 * specified address range. (For this purpose, a superpage mapping 1954 * counts as one page mapping.) Otherwise, all resident pages within 1955 * the specified address range are mapped. 1956 */ 1957 static void 1958 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1959 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1960 { 1961 vm_offset_t start; 1962 vm_page_t p, p_start; 1963 vm_pindex_t mask, psize, threshold, tmpidx; 1964 1965 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1966 return; 1967 VM_OBJECT_RLOCK(object); 1968 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1969 VM_OBJECT_RUNLOCK(object); 1970 VM_OBJECT_WLOCK(object); 1971 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1972 pmap_object_init_pt(map->pmap, addr, object, pindex, 1973 size); 1974 VM_OBJECT_WUNLOCK(object); 1975 return; 1976 } 1977 VM_OBJECT_LOCK_DOWNGRADE(object); 1978 } 1979 1980 psize = atop(size); 1981 if (psize + pindex > object->size) { 1982 if (object->size < pindex) { 1983 VM_OBJECT_RUNLOCK(object); 1984 return; 1985 } 1986 psize = object->size - pindex; 1987 } 1988 1989 start = 0; 1990 p_start = NULL; 1991 threshold = MAX_INIT_PT; 1992 1993 p = vm_page_find_least(object, pindex); 1994 /* 1995 * Assert: the variable p is either (1) the page with the 1996 * least pindex greater than or equal to the parameter pindex 1997 * or (2) NULL. 1998 */ 1999 for (; 2000 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2001 p = TAILQ_NEXT(p, listq)) { 2002 /* 2003 * don't allow an madvise to blow away our really 2004 * free pages allocating pv entries. 2005 */ 2006 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2007 vm_page_count_severe()) || 2008 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2009 tmpidx >= threshold)) { 2010 psize = tmpidx; 2011 break; 2012 } 2013 if (p->valid == VM_PAGE_BITS_ALL) { 2014 if (p_start == NULL) { 2015 start = addr + ptoa(tmpidx); 2016 p_start = p; 2017 } 2018 /* Jump ahead if a superpage mapping is possible. */ 2019 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2020 (pagesizes[p->psind] - 1)) == 0) { 2021 mask = atop(pagesizes[p->psind]) - 1; 2022 if (tmpidx + mask < psize && 2023 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2024 p += mask; 2025 threshold += mask; 2026 } 2027 } 2028 } else if (p_start != NULL) { 2029 pmap_enter_object(map->pmap, start, addr + 2030 ptoa(tmpidx), p_start, prot); 2031 p_start = NULL; 2032 } 2033 } 2034 if (p_start != NULL) 2035 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2036 p_start, prot); 2037 VM_OBJECT_RUNLOCK(object); 2038 } 2039 2040 /* 2041 * vm_map_protect: 2042 * 2043 * Sets the protection of the specified address 2044 * region in the target map. If "set_max" is 2045 * specified, the maximum protection is to be set; 2046 * otherwise, only the current protection is affected. 2047 */ 2048 int 2049 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2050 vm_prot_t new_prot, boolean_t set_max) 2051 { 2052 vm_map_entry_t current, entry; 2053 vm_object_t obj; 2054 struct ucred *cred; 2055 vm_prot_t old_prot; 2056 2057 if (start == end) 2058 return (KERN_SUCCESS); 2059 2060 vm_map_lock(map); 2061 2062 /* 2063 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2064 * need to fault pages into the map and will drop the map lock while 2065 * doing so, and the VM object may end up in an inconsistent state if we 2066 * update the protection on the map entry in between faults. 2067 */ 2068 vm_map_wait_busy(map); 2069 2070 VM_MAP_RANGE_CHECK(map, start, end); 2071 2072 if (vm_map_lookup_entry(map, start, &entry)) { 2073 vm_map_clip_start(map, entry, start); 2074 } else { 2075 entry = entry->next; 2076 } 2077 2078 /* 2079 * Make a first pass to check for protection violations. 2080 */ 2081 for (current = entry; current->start < end; current = current->next) { 2082 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2083 continue; 2084 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2085 vm_map_unlock(map); 2086 return (KERN_INVALID_ARGUMENT); 2087 } 2088 if ((new_prot & current->max_protection) != new_prot) { 2089 vm_map_unlock(map); 2090 return (KERN_PROTECTION_FAILURE); 2091 } 2092 } 2093 2094 /* 2095 * Do an accounting pass for private read-only mappings that 2096 * now will do cow due to allowed write (e.g. debugger sets 2097 * breakpoint on text segment) 2098 */ 2099 for (current = entry; current->start < end; current = current->next) { 2100 2101 vm_map_clip_end(map, current, end); 2102 2103 if (set_max || 2104 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2105 ENTRY_CHARGED(current) || 2106 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2107 continue; 2108 } 2109 2110 cred = curthread->td_ucred; 2111 obj = current->object.vm_object; 2112 2113 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2114 if (!swap_reserve(current->end - current->start)) { 2115 vm_map_unlock(map); 2116 return (KERN_RESOURCE_SHORTAGE); 2117 } 2118 crhold(cred); 2119 current->cred = cred; 2120 continue; 2121 } 2122 2123 VM_OBJECT_WLOCK(obj); 2124 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2125 VM_OBJECT_WUNLOCK(obj); 2126 continue; 2127 } 2128 2129 /* 2130 * Charge for the whole object allocation now, since 2131 * we cannot distinguish between non-charged and 2132 * charged clipped mapping of the same object later. 2133 */ 2134 KASSERT(obj->charge == 0, 2135 ("vm_map_protect: object %p overcharged (entry %p)", 2136 obj, current)); 2137 if (!swap_reserve(ptoa(obj->size))) { 2138 VM_OBJECT_WUNLOCK(obj); 2139 vm_map_unlock(map); 2140 return (KERN_RESOURCE_SHORTAGE); 2141 } 2142 2143 crhold(cred); 2144 obj->cred = cred; 2145 obj->charge = ptoa(obj->size); 2146 VM_OBJECT_WUNLOCK(obj); 2147 } 2148 2149 /* 2150 * Go back and fix up protections. [Note that clipping is not 2151 * necessary the second time.] 2152 */ 2153 for (current = entry; current->start < end; current = current->next) { 2154 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2155 continue; 2156 2157 old_prot = current->protection; 2158 2159 if (set_max) 2160 current->protection = 2161 (current->max_protection = new_prot) & 2162 old_prot; 2163 else 2164 current->protection = new_prot; 2165 2166 /* 2167 * For user wired map entries, the normal lazy evaluation of 2168 * write access upgrades through soft page faults is 2169 * undesirable. Instead, immediately copy any pages that are 2170 * copy-on-write and enable write access in the physical map. 2171 */ 2172 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2173 (current->protection & VM_PROT_WRITE) != 0 && 2174 (old_prot & VM_PROT_WRITE) == 0) 2175 vm_fault_copy_entry(map, map, current, current, NULL); 2176 2177 /* 2178 * When restricting access, update the physical map. Worry 2179 * about copy-on-write here. 2180 */ 2181 if ((old_prot & ~current->protection) != 0) { 2182 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2183 VM_PROT_ALL) 2184 pmap_protect(map->pmap, current->start, 2185 current->end, 2186 current->protection & MASK(current)); 2187 #undef MASK 2188 } 2189 vm_map_simplify_entry(map, current); 2190 } 2191 vm_map_unlock(map); 2192 return (KERN_SUCCESS); 2193 } 2194 2195 /* 2196 * vm_map_madvise: 2197 * 2198 * This routine traverses a processes map handling the madvise 2199 * system call. Advisories are classified as either those effecting 2200 * the vm_map_entry structure, or those effecting the underlying 2201 * objects. 2202 */ 2203 int 2204 vm_map_madvise( 2205 vm_map_t map, 2206 vm_offset_t start, 2207 vm_offset_t end, 2208 int behav) 2209 { 2210 vm_map_entry_t current, entry; 2211 bool modify_map; 2212 2213 /* 2214 * Some madvise calls directly modify the vm_map_entry, in which case 2215 * we need to use an exclusive lock on the map and we need to perform 2216 * various clipping operations. Otherwise we only need a read-lock 2217 * on the map. 2218 */ 2219 switch(behav) { 2220 case MADV_NORMAL: 2221 case MADV_SEQUENTIAL: 2222 case MADV_RANDOM: 2223 case MADV_NOSYNC: 2224 case MADV_AUTOSYNC: 2225 case MADV_NOCORE: 2226 case MADV_CORE: 2227 if (start == end) 2228 return (0); 2229 modify_map = true; 2230 vm_map_lock(map); 2231 break; 2232 case MADV_WILLNEED: 2233 case MADV_DONTNEED: 2234 case MADV_FREE: 2235 if (start == end) 2236 return (0); 2237 modify_map = false; 2238 vm_map_lock_read(map); 2239 break; 2240 default: 2241 return (EINVAL); 2242 } 2243 2244 /* 2245 * Locate starting entry and clip if necessary. 2246 */ 2247 VM_MAP_RANGE_CHECK(map, start, end); 2248 2249 if (vm_map_lookup_entry(map, start, &entry)) { 2250 if (modify_map) 2251 vm_map_clip_start(map, entry, start); 2252 } else { 2253 entry = entry->next; 2254 } 2255 2256 if (modify_map) { 2257 /* 2258 * madvise behaviors that are implemented in the vm_map_entry. 2259 * 2260 * We clip the vm_map_entry so that behavioral changes are 2261 * limited to the specified address range. 2262 */ 2263 for (current = entry; current->start < end; 2264 current = current->next) { 2265 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2266 continue; 2267 2268 vm_map_clip_end(map, current, end); 2269 2270 switch (behav) { 2271 case MADV_NORMAL: 2272 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2273 break; 2274 case MADV_SEQUENTIAL: 2275 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2276 break; 2277 case MADV_RANDOM: 2278 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2279 break; 2280 case MADV_NOSYNC: 2281 current->eflags |= MAP_ENTRY_NOSYNC; 2282 break; 2283 case MADV_AUTOSYNC: 2284 current->eflags &= ~MAP_ENTRY_NOSYNC; 2285 break; 2286 case MADV_NOCORE: 2287 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2288 break; 2289 case MADV_CORE: 2290 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2291 break; 2292 default: 2293 break; 2294 } 2295 vm_map_simplify_entry(map, current); 2296 } 2297 vm_map_unlock(map); 2298 } else { 2299 vm_pindex_t pstart, pend; 2300 2301 /* 2302 * madvise behaviors that are implemented in the underlying 2303 * vm_object. 2304 * 2305 * Since we don't clip the vm_map_entry, we have to clip 2306 * the vm_object pindex and count. 2307 */ 2308 for (current = entry; current->start < end; 2309 current = current->next) { 2310 vm_offset_t useEnd, useStart; 2311 2312 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2313 continue; 2314 2315 pstart = OFF_TO_IDX(current->offset); 2316 pend = pstart + atop(current->end - current->start); 2317 useStart = current->start; 2318 useEnd = current->end; 2319 2320 if (current->start < start) { 2321 pstart += atop(start - current->start); 2322 useStart = start; 2323 } 2324 if (current->end > end) { 2325 pend -= atop(current->end - end); 2326 useEnd = end; 2327 } 2328 2329 if (pstart >= pend) 2330 continue; 2331 2332 /* 2333 * Perform the pmap_advise() before clearing 2334 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2335 * concurrent pmap operation, such as pmap_remove(), 2336 * could clear a reference in the pmap and set 2337 * PGA_REFERENCED on the page before the pmap_advise() 2338 * had completed. Consequently, the page would appear 2339 * referenced based upon an old reference that 2340 * occurred before this pmap_advise() ran. 2341 */ 2342 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2343 pmap_advise(map->pmap, useStart, useEnd, 2344 behav); 2345 2346 vm_object_madvise(current->object.vm_object, pstart, 2347 pend, behav); 2348 2349 /* 2350 * Pre-populate paging structures in the 2351 * WILLNEED case. For wired entries, the 2352 * paging structures are already populated. 2353 */ 2354 if (behav == MADV_WILLNEED && 2355 current->wired_count == 0) { 2356 vm_map_pmap_enter(map, 2357 useStart, 2358 current->protection, 2359 current->object.vm_object, 2360 pstart, 2361 ptoa(pend - pstart), 2362 MAP_PREFAULT_MADVISE 2363 ); 2364 } 2365 } 2366 vm_map_unlock_read(map); 2367 } 2368 return (0); 2369 } 2370 2371 2372 /* 2373 * vm_map_inherit: 2374 * 2375 * Sets the inheritance of the specified address 2376 * range in the target map. Inheritance 2377 * affects how the map will be shared with 2378 * child maps at the time of vmspace_fork. 2379 */ 2380 int 2381 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2382 vm_inherit_t new_inheritance) 2383 { 2384 vm_map_entry_t entry; 2385 vm_map_entry_t temp_entry; 2386 2387 switch (new_inheritance) { 2388 case VM_INHERIT_NONE: 2389 case VM_INHERIT_COPY: 2390 case VM_INHERIT_SHARE: 2391 case VM_INHERIT_ZERO: 2392 break; 2393 default: 2394 return (KERN_INVALID_ARGUMENT); 2395 } 2396 if (start == end) 2397 return (KERN_SUCCESS); 2398 vm_map_lock(map); 2399 VM_MAP_RANGE_CHECK(map, start, end); 2400 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2401 entry = temp_entry; 2402 vm_map_clip_start(map, entry, start); 2403 } else 2404 entry = temp_entry->next; 2405 while (entry->start < end) { 2406 vm_map_clip_end(map, entry, end); 2407 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2408 new_inheritance != VM_INHERIT_ZERO) 2409 entry->inheritance = new_inheritance; 2410 vm_map_simplify_entry(map, entry); 2411 entry = entry->next; 2412 } 2413 vm_map_unlock(map); 2414 return (KERN_SUCCESS); 2415 } 2416 2417 /* 2418 * vm_map_unwire: 2419 * 2420 * Implements both kernel and user unwiring. 2421 */ 2422 int 2423 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2424 int flags) 2425 { 2426 vm_map_entry_t entry, first_entry, tmp_entry; 2427 vm_offset_t saved_start; 2428 unsigned int last_timestamp; 2429 int rv; 2430 boolean_t need_wakeup, result, user_unwire; 2431 2432 if (start == end) 2433 return (KERN_SUCCESS); 2434 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2435 vm_map_lock(map); 2436 VM_MAP_RANGE_CHECK(map, start, end); 2437 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2438 if (flags & VM_MAP_WIRE_HOLESOK) 2439 first_entry = first_entry->next; 2440 else { 2441 vm_map_unlock(map); 2442 return (KERN_INVALID_ADDRESS); 2443 } 2444 } 2445 last_timestamp = map->timestamp; 2446 entry = first_entry; 2447 while (entry->start < end) { 2448 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2449 /* 2450 * We have not yet clipped the entry. 2451 */ 2452 saved_start = (start >= entry->start) ? start : 2453 entry->start; 2454 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2455 if (vm_map_unlock_and_wait(map, 0)) { 2456 /* 2457 * Allow interruption of user unwiring? 2458 */ 2459 } 2460 vm_map_lock(map); 2461 if (last_timestamp+1 != map->timestamp) { 2462 /* 2463 * Look again for the entry because the map was 2464 * modified while it was unlocked. 2465 * Specifically, the entry may have been 2466 * clipped, merged, or deleted. 2467 */ 2468 if (!vm_map_lookup_entry(map, saved_start, 2469 &tmp_entry)) { 2470 if (flags & VM_MAP_WIRE_HOLESOK) 2471 tmp_entry = tmp_entry->next; 2472 else { 2473 if (saved_start == start) { 2474 /* 2475 * First_entry has been deleted. 2476 */ 2477 vm_map_unlock(map); 2478 return (KERN_INVALID_ADDRESS); 2479 } 2480 end = saved_start; 2481 rv = KERN_INVALID_ADDRESS; 2482 goto done; 2483 } 2484 } 2485 if (entry == first_entry) 2486 first_entry = tmp_entry; 2487 else 2488 first_entry = NULL; 2489 entry = tmp_entry; 2490 } 2491 last_timestamp = map->timestamp; 2492 continue; 2493 } 2494 vm_map_clip_start(map, entry, start); 2495 vm_map_clip_end(map, entry, end); 2496 /* 2497 * Mark the entry in case the map lock is released. (See 2498 * above.) 2499 */ 2500 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2501 entry->wiring_thread == NULL, 2502 ("owned map entry %p", entry)); 2503 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2504 entry->wiring_thread = curthread; 2505 /* 2506 * Check the map for holes in the specified region. 2507 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2508 */ 2509 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2510 (entry->end < end && entry->next->start > entry->end)) { 2511 end = entry->end; 2512 rv = KERN_INVALID_ADDRESS; 2513 goto done; 2514 } 2515 /* 2516 * If system unwiring, require that the entry is system wired. 2517 */ 2518 if (!user_unwire && 2519 vm_map_entry_system_wired_count(entry) == 0) { 2520 end = entry->end; 2521 rv = KERN_INVALID_ARGUMENT; 2522 goto done; 2523 } 2524 entry = entry->next; 2525 } 2526 rv = KERN_SUCCESS; 2527 done: 2528 need_wakeup = FALSE; 2529 if (first_entry == NULL) { 2530 result = vm_map_lookup_entry(map, start, &first_entry); 2531 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2532 first_entry = first_entry->next; 2533 else 2534 KASSERT(result, ("vm_map_unwire: lookup failed")); 2535 } 2536 for (entry = first_entry; entry->start < end; entry = entry->next) { 2537 /* 2538 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2539 * space in the unwired region could have been mapped 2540 * while the map lock was dropped for draining 2541 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2542 * could be simultaneously wiring this new mapping 2543 * entry. Detect these cases and skip any entries 2544 * marked as in transition by us. 2545 */ 2546 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2547 entry->wiring_thread != curthread) { 2548 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2549 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2550 continue; 2551 } 2552 2553 if (rv == KERN_SUCCESS && (!user_unwire || 2554 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2555 if (user_unwire) 2556 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2557 if (entry->wired_count == 1) 2558 vm_map_entry_unwire(map, entry); 2559 else 2560 entry->wired_count--; 2561 } 2562 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2563 ("vm_map_unwire: in-transition flag missing %p", entry)); 2564 KASSERT(entry->wiring_thread == curthread, 2565 ("vm_map_unwire: alien wire %p", entry)); 2566 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2567 entry->wiring_thread = NULL; 2568 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2569 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2570 need_wakeup = TRUE; 2571 } 2572 vm_map_simplify_entry(map, entry); 2573 } 2574 vm_map_unlock(map); 2575 if (need_wakeup) 2576 vm_map_wakeup(map); 2577 return (rv); 2578 } 2579 2580 /* 2581 * vm_map_wire_entry_failure: 2582 * 2583 * Handle a wiring failure on the given entry. 2584 * 2585 * The map should be locked. 2586 */ 2587 static void 2588 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2589 vm_offset_t failed_addr) 2590 { 2591 2592 VM_MAP_ASSERT_LOCKED(map); 2593 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2594 entry->wired_count == 1, 2595 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2596 KASSERT(failed_addr < entry->end, 2597 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2598 2599 /* 2600 * If any pages at the start of this entry were successfully wired, 2601 * then unwire them. 2602 */ 2603 if (failed_addr > entry->start) { 2604 pmap_unwire(map->pmap, entry->start, failed_addr); 2605 vm_object_unwire(entry->object.vm_object, entry->offset, 2606 failed_addr - entry->start, PQ_ACTIVE); 2607 } 2608 2609 /* 2610 * Assign an out-of-range value to represent the failure to wire this 2611 * entry. 2612 */ 2613 entry->wired_count = -1; 2614 } 2615 2616 /* 2617 * vm_map_wire: 2618 * 2619 * Implements both kernel and user wiring. 2620 */ 2621 int 2622 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2623 int flags) 2624 { 2625 vm_map_entry_t entry, first_entry, tmp_entry; 2626 vm_offset_t faddr, saved_end, saved_start; 2627 unsigned int last_timestamp; 2628 int rv; 2629 boolean_t need_wakeup, result, user_wire; 2630 vm_prot_t prot; 2631 2632 if (start == end) 2633 return (KERN_SUCCESS); 2634 prot = 0; 2635 if (flags & VM_MAP_WIRE_WRITE) 2636 prot |= VM_PROT_WRITE; 2637 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2638 vm_map_lock(map); 2639 VM_MAP_RANGE_CHECK(map, start, end); 2640 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2641 if (flags & VM_MAP_WIRE_HOLESOK) 2642 first_entry = first_entry->next; 2643 else { 2644 vm_map_unlock(map); 2645 return (KERN_INVALID_ADDRESS); 2646 } 2647 } 2648 last_timestamp = map->timestamp; 2649 entry = first_entry; 2650 while (entry->start < end) { 2651 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2652 /* 2653 * We have not yet clipped the entry. 2654 */ 2655 saved_start = (start >= entry->start) ? start : 2656 entry->start; 2657 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2658 if (vm_map_unlock_and_wait(map, 0)) { 2659 /* 2660 * Allow interruption of user wiring? 2661 */ 2662 } 2663 vm_map_lock(map); 2664 if (last_timestamp + 1 != map->timestamp) { 2665 /* 2666 * Look again for the entry because the map was 2667 * modified while it was unlocked. 2668 * Specifically, the entry may have been 2669 * clipped, merged, or deleted. 2670 */ 2671 if (!vm_map_lookup_entry(map, saved_start, 2672 &tmp_entry)) { 2673 if (flags & VM_MAP_WIRE_HOLESOK) 2674 tmp_entry = tmp_entry->next; 2675 else { 2676 if (saved_start == start) { 2677 /* 2678 * first_entry has been deleted. 2679 */ 2680 vm_map_unlock(map); 2681 return (KERN_INVALID_ADDRESS); 2682 } 2683 end = saved_start; 2684 rv = KERN_INVALID_ADDRESS; 2685 goto done; 2686 } 2687 } 2688 if (entry == first_entry) 2689 first_entry = tmp_entry; 2690 else 2691 first_entry = NULL; 2692 entry = tmp_entry; 2693 } 2694 last_timestamp = map->timestamp; 2695 continue; 2696 } 2697 vm_map_clip_start(map, entry, start); 2698 vm_map_clip_end(map, entry, end); 2699 /* 2700 * Mark the entry in case the map lock is released. (See 2701 * above.) 2702 */ 2703 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2704 entry->wiring_thread == NULL, 2705 ("owned map entry %p", entry)); 2706 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2707 entry->wiring_thread = curthread; 2708 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2709 || (entry->protection & prot) != prot) { 2710 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2711 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2712 end = entry->end; 2713 rv = KERN_INVALID_ADDRESS; 2714 goto done; 2715 } 2716 goto next_entry; 2717 } 2718 if (entry->wired_count == 0) { 2719 entry->wired_count++; 2720 saved_start = entry->start; 2721 saved_end = entry->end; 2722 2723 /* 2724 * Release the map lock, relying on the in-transition 2725 * mark. Mark the map busy for fork. 2726 */ 2727 vm_map_busy(map); 2728 vm_map_unlock(map); 2729 2730 faddr = saved_start; 2731 do { 2732 /* 2733 * Simulate a fault to get the page and enter 2734 * it into the physical map. 2735 */ 2736 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2737 VM_FAULT_WIRE)) != KERN_SUCCESS) 2738 break; 2739 } while ((faddr += PAGE_SIZE) < saved_end); 2740 vm_map_lock(map); 2741 vm_map_unbusy(map); 2742 if (last_timestamp + 1 != map->timestamp) { 2743 /* 2744 * Look again for the entry because the map was 2745 * modified while it was unlocked. The entry 2746 * may have been clipped, but NOT merged or 2747 * deleted. 2748 */ 2749 result = vm_map_lookup_entry(map, saved_start, 2750 &tmp_entry); 2751 KASSERT(result, ("vm_map_wire: lookup failed")); 2752 if (entry == first_entry) 2753 first_entry = tmp_entry; 2754 else 2755 first_entry = NULL; 2756 entry = tmp_entry; 2757 while (entry->end < saved_end) { 2758 /* 2759 * In case of failure, handle entries 2760 * that were not fully wired here; 2761 * fully wired entries are handled 2762 * later. 2763 */ 2764 if (rv != KERN_SUCCESS && 2765 faddr < entry->end) 2766 vm_map_wire_entry_failure(map, 2767 entry, faddr); 2768 entry = entry->next; 2769 } 2770 } 2771 last_timestamp = map->timestamp; 2772 if (rv != KERN_SUCCESS) { 2773 vm_map_wire_entry_failure(map, entry, faddr); 2774 end = entry->end; 2775 goto done; 2776 } 2777 } else if (!user_wire || 2778 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2779 entry->wired_count++; 2780 } 2781 /* 2782 * Check the map for holes in the specified region. 2783 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2784 */ 2785 next_entry: 2786 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 2787 entry->end < end && entry->next->start > entry->end) { 2788 end = entry->end; 2789 rv = KERN_INVALID_ADDRESS; 2790 goto done; 2791 } 2792 entry = entry->next; 2793 } 2794 rv = KERN_SUCCESS; 2795 done: 2796 need_wakeup = FALSE; 2797 if (first_entry == NULL) { 2798 result = vm_map_lookup_entry(map, start, &first_entry); 2799 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2800 first_entry = first_entry->next; 2801 else 2802 KASSERT(result, ("vm_map_wire: lookup failed")); 2803 } 2804 for (entry = first_entry; entry->start < end; entry = entry->next) { 2805 /* 2806 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2807 * space in the unwired region could have been mapped 2808 * while the map lock was dropped for faulting in the 2809 * pages or draining MAP_ENTRY_IN_TRANSITION. 2810 * Moreover, another thread could be simultaneously 2811 * wiring this new mapping entry. Detect these cases 2812 * and skip any entries marked as in transition not by us. 2813 */ 2814 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2815 entry->wiring_thread != curthread) { 2816 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2817 ("vm_map_wire: !HOLESOK and new/changed entry")); 2818 continue; 2819 } 2820 2821 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2822 goto next_entry_done; 2823 2824 if (rv == KERN_SUCCESS) { 2825 if (user_wire) 2826 entry->eflags |= MAP_ENTRY_USER_WIRED; 2827 } else if (entry->wired_count == -1) { 2828 /* 2829 * Wiring failed on this entry. Thus, unwiring is 2830 * unnecessary. 2831 */ 2832 entry->wired_count = 0; 2833 } else if (!user_wire || 2834 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2835 /* 2836 * Undo the wiring. Wiring succeeded on this entry 2837 * but failed on a later entry. 2838 */ 2839 if (entry->wired_count == 1) 2840 vm_map_entry_unwire(map, entry); 2841 else 2842 entry->wired_count--; 2843 } 2844 next_entry_done: 2845 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2846 ("vm_map_wire: in-transition flag missing %p", entry)); 2847 KASSERT(entry->wiring_thread == curthread, 2848 ("vm_map_wire: alien wire %p", entry)); 2849 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2850 MAP_ENTRY_WIRE_SKIPPED); 2851 entry->wiring_thread = NULL; 2852 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2853 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2854 need_wakeup = TRUE; 2855 } 2856 vm_map_simplify_entry(map, entry); 2857 } 2858 vm_map_unlock(map); 2859 if (need_wakeup) 2860 vm_map_wakeup(map); 2861 return (rv); 2862 } 2863 2864 /* 2865 * vm_map_sync 2866 * 2867 * Push any dirty cached pages in the address range to their pager. 2868 * If syncio is TRUE, dirty pages are written synchronously. 2869 * If invalidate is TRUE, any cached pages are freed as well. 2870 * 2871 * If the size of the region from start to end is zero, we are 2872 * supposed to flush all modified pages within the region containing 2873 * start. Unfortunately, a region can be split or coalesced with 2874 * neighboring regions, making it difficult to determine what the 2875 * original region was. Therefore, we approximate this requirement by 2876 * flushing the current region containing start. 2877 * 2878 * Returns an error if any part of the specified range is not mapped. 2879 */ 2880 int 2881 vm_map_sync( 2882 vm_map_t map, 2883 vm_offset_t start, 2884 vm_offset_t end, 2885 boolean_t syncio, 2886 boolean_t invalidate) 2887 { 2888 vm_map_entry_t current; 2889 vm_map_entry_t entry; 2890 vm_size_t size; 2891 vm_object_t object; 2892 vm_ooffset_t offset; 2893 unsigned int last_timestamp; 2894 boolean_t failed; 2895 2896 vm_map_lock_read(map); 2897 VM_MAP_RANGE_CHECK(map, start, end); 2898 if (!vm_map_lookup_entry(map, start, &entry)) { 2899 vm_map_unlock_read(map); 2900 return (KERN_INVALID_ADDRESS); 2901 } else if (start == end) { 2902 start = entry->start; 2903 end = entry->end; 2904 } 2905 /* 2906 * Make a first pass to check for user-wired memory and holes. 2907 */ 2908 for (current = entry; current->start < end; current = current->next) { 2909 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2910 vm_map_unlock_read(map); 2911 return (KERN_INVALID_ARGUMENT); 2912 } 2913 if (end > current->end && 2914 current->end != current->next->start) { 2915 vm_map_unlock_read(map); 2916 return (KERN_INVALID_ADDRESS); 2917 } 2918 } 2919 2920 if (invalidate) 2921 pmap_remove(map->pmap, start, end); 2922 failed = FALSE; 2923 2924 /* 2925 * Make a second pass, cleaning/uncaching pages from the indicated 2926 * objects as we go. 2927 */ 2928 for (current = entry; current->start < end;) { 2929 offset = current->offset + (start - current->start); 2930 size = (end <= current->end ? end : current->end) - start; 2931 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2932 vm_map_t smap; 2933 vm_map_entry_t tentry; 2934 vm_size_t tsize; 2935 2936 smap = current->object.sub_map; 2937 vm_map_lock_read(smap); 2938 (void) vm_map_lookup_entry(smap, offset, &tentry); 2939 tsize = tentry->end - offset; 2940 if (tsize < size) 2941 size = tsize; 2942 object = tentry->object.vm_object; 2943 offset = tentry->offset + (offset - tentry->start); 2944 vm_map_unlock_read(smap); 2945 } else { 2946 object = current->object.vm_object; 2947 } 2948 vm_object_reference(object); 2949 last_timestamp = map->timestamp; 2950 vm_map_unlock_read(map); 2951 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2952 failed = TRUE; 2953 start += size; 2954 vm_object_deallocate(object); 2955 vm_map_lock_read(map); 2956 if (last_timestamp == map->timestamp || 2957 !vm_map_lookup_entry(map, start, ¤t)) 2958 current = current->next; 2959 } 2960 2961 vm_map_unlock_read(map); 2962 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2963 } 2964 2965 /* 2966 * vm_map_entry_unwire: [ internal use only ] 2967 * 2968 * Make the region specified by this entry pageable. 2969 * 2970 * The map in question should be locked. 2971 * [This is the reason for this routine's existence.] 2972 */ 2973 static void 2974 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2975 { 2976 2977 VM_MAP_ASSERT_LOCKED(map); 2978 KASSERT(entry->wired_count > 0, 2979 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2980 pmap_unwire(map->pmap, entry->start, entry->end); 2981 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2982 entry->start, PQ_ACTIVE); 2983 entry->wired_count = 0; 2984 } 2985 2986 static void 2987 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2988 { 2989 2990 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2991 vm_object_deallocate(entry->object.vm_object); 2992 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2993 } 2994 2995 /* 2996 * vm_map_entry_delete: [ internal use only ] 2997 * 2998 * Deallocate the given entry from the target map. 2999 */ 3000 static void 3001 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3002 { 3003 vm_object_t object; 3004 vm_pindex_t offidxstart, offidxend, count, size1; 3005 vm_size_t size; 3006 3007 vm_map_entry_unlink(map, entry); 3008 object = entry->object.vm_object; 3009 3010 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3011 MPASS(entry->cred == NULL); 3012 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3013 MPASS(object == NULL); 3014 vm_map_entry_deallocate(entry, map->system_map); 3015 return; 3016 } 3017 3018 size = entry->end - entry->start; 3019 map->size -= size; 3020 3021 if (entry->cred != NULL) { 3022 swap_release_by_cred(size, entry->cred); 3023 crfree(entry->cred); 3024 } 3025 3026 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3027 (object != NULL)) { 3028 KASSERT(entry->cred == NULL || object->cred == NULL || 3029 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3030 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3031 count = atop(size); 3032 offidxstart = OFF_TO_IDX(entry->offset); 3033 offidxend = offidxstart + count; 3034 VM_OBJECT_WLOCK(object); 3035 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3036 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3037 object == kernel_object)) { 3038 vm_object_collapse(object); 3039 3040 /* 3041 * The option OBJPR_NOTMAPPED can be passed here 3042 * because vm_map_delete() already performed 3043 * pmap_remove() on the only mapping to this range 3044 * of pages. 3045 */ 3046 vm_object_page_remove(object, offidxstart, offidxend, 3047 OBJPR_NOTMAPPED); 3048 if (object->type == OBJT_SWAP) 3049 swap_pager_freespace(object, offidxstart, 3050 count); 3051 if (offidxend >= object->size && 3052 offidxstart < object->size) { 3053 size1 = object->size; 3054 object->size = offidxstart; 3055 if (object->cred != NULL) { 3056 size1 -= object->size; 3057 KASSERT(object->charge >= ptoa(size1), 3058 ("object %p charge < 0", object)); 3059 swap_release_by_cred(ptoa(size1), 3060 object->cred); 3061 object->charge -= ptoa(size1); 3062 } 3063 } 3064 } 3065 VM_OBJECT_WUNLOCK(object); 3066 } else 3067 entry->object.vm_object = NULL; 3068 if (map->system_map) 3069 vm_map_entry_deallocate(entry, TRUE); 3070 else { 3071 entry->next = curthread->td_map_def_user; 3072 curthread->td_map_def_user = entry; 3073 } 3074 } 3075 3076 /* 3077 * vm_map_delete: [ internal use only ] 3078 * 3079 * Deallocates the given address range from the target 3080 * map. 3081 */ 3082 int 3083 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3084 { 3085 vm_map_entry_t entry; 3086 vm_map_entry_t first_entry; 3087 3088 VM_MAP_ASSERT_LOCKED(map); 3089 if (start == end) 3090 return (KERN_SUCCESS); 3091 3092 /* 3093 * Find the start of the region, and clip it 3094 */ 3095 if (!vm_map_lookup_entry(map, start, &first_entry)) 3096 entry = first_entry->next; 3097 else { 3098 entry = first_entry; 3099 vm_map_clip_start(map, entry, start); 3100 } 3101 3102 /* 3103 * Step through all entries in this region 3104 */ 3105 while (entry->start < end) { 3106 vm_map_entry_t next; 3107 3108 /* 3109 * Wait for wiring or unwiring of an entry to complete. 3110 * Also wait for any system wirings to disappear on 3111 * user maps. 3112 */ 3113 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3114 (vm_map_pmap(map) != kernel_pmap && 3115 vm_map_entry_system_wired_count(entry) != 0)) { 3116 unsigned int last_timestamp; 3117 vm_offset_t saved_start; 3118 vm_map_entry_t tmp_entry; 3119 3120 saved_start = entry->start; 3121 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3122 last_timestamp = map->timestamp; 3123 (void) vm_map_unlock_and_wait(map, 0); 3124 vm_map_lock(map); 3125 if (last_timestamp + 1 != map->timestamp) { 3126 /* 3127 * Look again for the entry because the map was 3128 * modified while it was unlocked. 3129 * Specifically, the entry may have been 3130 * clipped, merged, or deleted. 3131 */ 3132 if (!vm_map_lookup_entry(map, saved_start, 3133 &tmp_entry)) 3134 entry = tmp_entry->next; 3135 else { 3136 entry = tmp_entry; 3137 vm_map_clip_start(map, entry, 3138 saved_start); 3139 } 3140 } 3141 continue; 3142 } 3143 vm_map_clip_end(map, entry, end); 3144 3145 next = entry->next; 3146 3147 /* 3148 * Unwire before removing addresses from the pmap; otherwise, 3149 * unwiring will put the entries back in the pmap. 3150 */ 3151 if (entry->wired_count != 0) 3152 vm_map_entry_unwire(map, entry); 3153 3154 /* 3155 * Remove mappings for the pages, but only if the 3156 * mappings could exist. For instance, it does not 3157 * make sense to call pmap_remove() for guard entries. 3158 */ 3159 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3160 entry->object.vm_object != NULL) 3161 pmap_remove(map->pmap, entry->start, entry->end); 3162 3163 /* 3164 * Delete the entry only after removing all pmap 3165 * entries pointing to its pages. (Otherwise, its 3166 * page frames may be reallocated, and any modify bits 3167 * will be set in the wrong object!) 3168 */ 3169 vm_map_entry_delete(map, entry); 3170 entry = next; 3171 } 3172 return (KERN_SUCCESS); 3173 } 3174 3175 /* 3176 * vm_map_remove: 3177 * 3178 * Remove the given address range from the target map. 3179 * This is the exported form of vm_map_delete. 3180 */ 3181 int 3182 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3183 { 3184 int result; 3185 3186 vm_map_lock(map); 3187 VM_MAP_RANGE_CHECK(map, start, end); 3188 result = vm_map_delete(map, start, end); 3189 vm_map_unlock(map); 3190 return (result); 3191 } 3192 3193 /* 3194 * vm_map_check_protection: 3195 * 3196 * Assert that the target map allows the specified privilege on the 3197 * entire address region given. The entire region must be allocated. 3198 * 3199 * WARNING! This code does not and should not check whether the 3200 * contents of the region is accessible. For example a smaller file 3201 * might be mapped into a larger address space. 3202 * 3203 * NOTE! This code is also called by munmap(). 3204 * 3205 * The map must be locked. A read lock is sufficient. 3206 */ 3207 boolean_t 3208 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3209 vm_prot_t protection) 3210 { 3211 vm_map_entry_t entry; 3212 vm_map_entry_t tmp_entry; 3213 3214 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3215 return (FALSE); 3216 entry = tmp_entry; 3217 3218 while (start < end) { 3219 /* 3220 * No holes allowed! 3221 */ 3222 if (start < entry->start) 3223 return (FALSE); 3224 /* 3225 * Check protection associated with entry. 3226 */ 3227 if ((entry->protection & protection) != protection) 3228 return (FALSE); 3229 /* go to next entry */ 3230 start = entry->end; 3231 entry = entry->next; 3232 } 3233 return (TRUE); 3234 } 3235 3236 /* 3237 * vm_map_copy_entry: 3238 * 3239 * Copies the contents of the source entry to the destination 3240 * entry. The entries *must* be aligned properly. 3241 */ 3242 static void 3243 vm_map_copy_entry( 3244 vm_map_t src_map, 3245 vm_map_t dst_map, 3246 vm_map_entry_t src_entry, 3247 vm_map_entry_t dst_entry, 3248 vm_ooffset_t *fork_charge) 3249 { 3250 vm_object_t src_object; 3251 vm_map_entry_t fake_entry; 3252 vm_offset_t size; 3253 struct ucred *cred; 3254 int charged; 3255 3256 VM_MAP_ASSERT_LOCKED(dst_map); 3257 3258 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3259 return; 3260 3261 if (src_entry->wired_count == 0 || 3262 (src_entry->protection & VM_PROT_WRITE) == 0) { 3263 /* 3264 * If the source entry is marked needs_copy, it is already 3265 * write-protected. 3266 */ 3267 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3268 (src_entry->protection & VM_PROT_WRITE) != 0) { 3269 pmap_protect(src_map->pmap, 3270 src_entry->start, 3271 src_entry->end, 3272 src_entry->protection & ~VM_PROT_WRITE); 3273 } 3274 3275 /* 3276 * Make a copy of the object. 3277 */ 3278 size = src_entry->end - src_entry->start; 3279 if ((src_object = src_entry->object.vm_object) != NULL) { 3280 VM_OBJECT_WLOCK(src_object); 3281 charged = ENTRY_CHARGED(src_entry); 3282 if (src_object->handle == NULL && 3283 (src_object->type == OBJT_DEFAULT || 3284 src_object->type == OBJT_SWAP)) { 3285 vm_object_collapse(src_object); 3286 if ((src_object->flags & (OBJ_NOSPLIT | 3287 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3288 vm_object_split(src_entry); 3289 src_object = 3290 src_entry->object.vm_object; 3291 } 3292 } 3293 vm_object_reference_locked(src_object); 3294 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3295 if (src_entry->cred != NULL && 3296 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3297 KASSERT(src_object->cred == NULL, 3298 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3299 src_object)); 3300 src_object->cred = src_entry->cred; 3301 src_object->charge = size; 3302 } 3303 VM_OBJECT_WUNLOCK(src_object); 3304 dst_entry->object.vm_object = src_object; 3305 if (charged) { 3306 cred = curthread->td_ucred; 3307 crhold(cred); 3308 dst_entry->cred = cred; 3309 *fork_charge += size; 3310 if (!(src_entry->eflags & 3311 MAP_ENTRY_NEEDS_COPY)) { 3312 crhold(cred); 3313 src_entry->cred = cred; 3314 *fork_charge += size; 3315 } 3316 } 3317 src_entry->eflags |= MAP_ENTRY_COW | 3318 MAP_ENTRY_NEEDS_COPY; 3319 dst_entry->eflags |= MAP_ENTRY_COW | 3320 MAP_ENTRY_NEEDS_COPY; 3321 dst_entry->offset = src_entry->offset; 3322 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3323 /* 3324 * MAP_ENTRY_VN_WRITECNT cannot 3325 * indicate write reference from 3326 * src_entry, since the entry is 3327 * marked as needs copy. Allocate a 3328 * fake entry that is used to 3329 * decrement object->un_pager.vnp.writecount 3330 * at the appropriate time. Attach 3331 * fake_entry to the deferred list. 3332 */ 3333 fake_entry = vm_map_entry_create(dst_map); 3334 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3335 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3336 vm_object_reference(src_object); 3337 fake_entry->object.vm_object = src_object; 3338 fake_entry->start = src_entry->start; 3339 fake_entry->end = src_entry->end; 3340 fake_entry->next = curthread->td_map_def_user; 3341 curthread->td_map_def_user = fake_entry; 3342 } 3343 3344 pmap_copy(dst_map->pmap, src_map->pmap, 3345 dst_entry->start, dst_entry->end - dst_entry->start, 3346 src_entry->start); 3347 } else { 3348 dst_entry->object.vm_object = NULL; 3349 dst_entry->offset = 0; 3350 if (src_entry->cred != NULL) { 3351 dst_entry->cred = curthread->td_ucred; 3352 crhold(dst_entry->cred); 3353 *fork_charge += size; 3354 } 3355 } 3356 } else { 3357 /* 3358 * We don't want to make writeable wired pages copy-on-write. 3359 * Immediately copy these pages into the new map by simulating 3360 * page faults. The new pages are pageable. 3361 */ 3362 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3363 fork_charge); 3364 } 3365 } 3366 3367 /* 3368 * vmspace_map_entry_forked: 3369 * Update the newly-forked vmspace each time a map entry is inherited 3370 * or copied. The values for vm_dsize and vm_tsize are approximate 3371 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3372 */ 3373 static void 3374 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3375 vm_map_entry_t entry) 3376 { 3377 vm_size_t entrysize; 3378 vm_offset_t newend; 3379 3380 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3381 return; 3382 entrysize = entry->end - entry->start; 3383 vm2->vm_map.size += entrysize; 3384 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3385 vm2->vm_ssize += btoc(entrysize); 3386 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3387 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3388 newend = MIN(entry->end, 3389 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3390 vm2->vm_dsize += btoc(newend - entry->start); 3391 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3392 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3393 newend = MIN(entry->end, 3394 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3395 vm2->vm_tsize += btoc(newend - entry->start); 3396 } 3397 } 3398 3399 /* 3400 * vmspace_fork: 3401 * Create a new process vmspace structure and vm_map 3402 * based on those of an existing process. The new map 3403 * is based on the old map, according to the inheritance 3404 * values on the regions in that map. 3405 * 3406 * XXX It might be worth coalescing the entries added to the new vmspace. 3407 * 3408 * The source map must not be locked. 3409 */ 3410 struct vmspace * 3411 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3412 { 3413 struct vmspace *vm2; 3414 vm_map_t new_map, old_map; 3415 vm_map_entry_t new_entry, old_entry; 3416 vm_object_t object; 3417 int locked; 3418 vm_inherit_t inh; 3419 3420 old_map = &vm1->vm_map; 3421 /* Copy immutable fields of vm1 to vm2. */ 3422 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3423 pmap_pinit); 3424 if (vm2 == NULL) 3425 return (NULL); 3426 vm2->vm_taddr = vm1->vm_taddr; 3427 vm2->vm_daddr = vm1->vm_daddr; 3428 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3429 vm_map_lock(old_map); 3430 if (old_map->busy) 3431 vm_map_wait_busy(old_map); 3432 new_map = &vm2->vm_map; 3433 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3434 KASSERT(locked, ("vmspace_fork: lock failed")); 3435 3436 old_entry = old_map->header.next; 3437 3438 while (old_entry != &old_map->header) { 3439 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3440 panic("vm_map_fork: encountered a submap"); 3441 3442 inh = old_entry->inheritance; 3443 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3444 inh != VM_INHERIT_NONE) 3445 inh = VM_INHERIT_COPY; 3446 3447 switch (inh) { 3448 case VM_INHERIT_NONE: 3449 break; 3450 3451 case VM_INHERIT_SHARE: 3452 /* 3453 * Clone the entry, creating the shared object if necessary. 3454 */ 3455 object = old_entry->object.vm_object; 3456 if (object == NULL) { 3457 object = vm_object_allocate(OBJT_DEFAULT, 3458 atop(old_entry->end - old_entry->start)); 3459 old_entry->object.vm_object = object; 3460 old_entry->offset = 0; 3461 if (old_entry->cred != NULL) { 3462 object->cred = old_entry->cred; 3463 object->charge = old_entry->end - 3464 old_entry->start; 3465 old_entry->cred = NULL; 3466 } 3467 } 3468 3469 /* 3470 * Add the reference before calling vm_object_shadow 3471 * to insure that a shadow object is created. 3472 */ 3473 vm_object_reference(object); 3474 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3475 vm_object_shadow(&old_entry->object.vm_object, 3476 &old_entry->offset, 3477 old_entry->end - old_entry->start); 3478 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3479 /* Transfer the second reference too. */ 3480 vm_object_reference( 3481 old_entry->object.vm_object); 3482 3483 /* 3484 * As in vm_map_simplify_entry(), the 3485 * vnode lock will not be acquired in 3486 * this call to vm_object_deallocate(). 3487 */ 3488 vm_object_deallocate(object); 3489 object = old_entry->object.vm_object; 3490 } 3491 VM_OBJECT_WLOCK(object); 3492 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3493 if (old_entry->cred != NULL) { 3494 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3495 object->cred = old_entry->cred; 3496 object->charge = old_entry->end - old_entry->start; 3497 old_entry->cred = NULL; 3498 } 3499 3500 /* 3501 * Assert the correct state of the vnode 3502 * v_writecount while the object is locked, to 3503 * not relock it later for the assertion 3504 * correctness. 3505 */ 3506 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3507 object->type == OBJT_VNODE) { 3508 KASSERT(((struct vnode *)object->handle)-> 3509 v_writecount > 0, 3510 ("vmspace_fork: v_writecount %p", object)); 3511 KASSERT(object->un_pager.vnp.writemappings > 0, 3512 ("vmspace_fork: vnp.writecount %p", 3513 object)); 3514 } 3515 VM_OBJECT_WUNLOCK(object); 3516 3517 /* 3518 * Clone the entry, referencing the shared object. 3519 */ 3520 new_entry = vm_map_entry_create(new_map); 3521 *new_entry = *old_entry; 3522 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3523 MAP_ENTRY_IN_TRANSITION); 3524 new_entry->wiring_thread = NULL; 3525 new_entry->wired_count = 0; 3526 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3527 vnode_pager_update_writecount(object, 3528 new_entry->start, new_entry->end); 3529 } 3530 3531 /* 3532 * Insert the entry into the new map -- we know we're 3533 * inserting at the end of the new map. 3534 */ 3535 vm_map_entry_link(new_map, new_map->header.prev, 3536 new_entry); 3537 vmspace_map_entry_forked(vm1, vm2, new_entry); 3538 3539 /* 3540 * Update the physical map 3541 */ 3542 pmap_copy(new_map->pmap, old_map->pmap, 3543 new_entry->start, 3544 (old_entry->end - old_entry->start), 3545 old_entry->start); 3546 break; 3547 3548 case VM_INHERIT_COPY: 3549 /* 3550 * Clone the entry and link into the map. 3551 */ 3552 new_entry = vm_map_entry_create(new_map); 3553 *new_entry = *old_entry; 3554 /* 3555 * Copied entry is COW over the old object. 3556 */ 3557 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3558 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3559 new_entry->wiring_thread = NULL; 3560 new_entry->wired_count = 0; 3561 new_entry->object.vm_object = NULL; 3562 new_entry->cred = NULL; 3563 vm_map_entry_link(new_map, new_map->header.prev, 3564 new_entry); 3565 vmspace_map_entry_forked(vm1, vm2, new_entry); 3566 vm_map_copy_entry(old_map, new_map, old_entry, 3567 new_entry, fork_charge); 3568 break; 3569 3570 case VM_INHERIT_ZERO: 3571 /* 3572 * Create a new anonymous mapping entry modelled from 3573 * the old one. 3574 */ 3575 new_entry = vm_map_entry_create(new_map); 3576 memset(new_entry, 0, sizeof(*new_entry)); 3577 3578 new_entry->start = old_entry->start; 3579 new_entry->end = old_entry->end; 3580 new_entry->eflags = old_entry->eflags & 3581 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3582 MAP_ENTRY_VN_WRITECNT); 3583 new_entry->protection = old_entry->protection; 3584 new_entry->max_protection = old_entry->max_protection; 3585 new_entry->inheritance = VM_INHERIT_ZERO; 3586 3587 vm_map_entry_link(new_map, new_map->header.prev, 3588 new_entry); 3589 vmspace_map_entry_forked(vm1, vm2, new_entry); 3590 3591 new_entry->cred = curthread->td_ucred; 3592 crhold(new_entry->cred); 3593 *fork_charge += (new_entry->end - new_entry->start); 3594 3595 break; 3596 } 3597 old_entry = old_entry->next; 3598 } 3599 /* 3600 * Use inlined vm_map_unlock() to postpone handling the deferred 3601 * map entries, which cannot be done until both old_map and 3602 * new_map locks are released. 3603 */ 3604 sx_xunlock(&old_map->lock); 3605 sx_xunlock(&new_map->lock); 3606 vm_map_process_deferred(); 3607 3608 return (vm2); 3609 } 3610 3611 /* 3612 * Create a process's stack for exec_new_vmspace(). This function is never 3613 * asked to wire the newly created stack. 3614 */ 3615 int 3616 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3617 vm_prot_t prot, vm_prot_t max, int cow) 3618 { 3619 vm_size_t growsize, init_ssize; 3620 rlim_t vmemlim; 3621 int rv; 3622 3623 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3624 growsize = sgrowsiz; 3625 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3626 vm_map_lock(map); 3627 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3628 /* If we would blow our VMEM resource limit, no go */ 3629 if (map->size + init_ssize > vmemlim) { 3630 rv = KERN_NO_SPACE; 3631 goto out; 3632 } 3633 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3634 max, cow); 3635 out: 3636 vm_map_unlock(map); 3637 return (rv); 3638 } 3639 3640 static int stack_guard_page = 1; 3641 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3642 &stack_guard_page, 0, 3643 "Specifies the number of guard pages for a stack that grows"); 3644 3645 static int 3646 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3647 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3648 { 3649 vm_map_entry_t new_entry, prev_entry; 3650 vm_offset_t bot, gap_bot, gap_top, top; 3651 vm_size_t init_ssize, sgp; 3652 int orient, rv; 3653 3654 /* 3655 * The stack orientation is piggybacked with the cow argument. 3656 * Extract it into orient and mask the cow argument so that we 3657 * don't pass it around further. 3658 */ 3659 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3660 KASSERT(orient != 0, ("No stack grow direction")); 3661 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3662 ("bi-dir stack")); 3663 3664 if (addrbos < vm_map_min(map) || 3665 addrbos + max_ssize > vm_map_max(map) || 3666 addrbos + max_ssize <= addrbos) 3667 return (KERN_INVALID_ADDRESS); 3668 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3669 if (sgp >= max_ssize) 3670 return (KERN_INVALID_ARGUMENT); 3671 3672 init_ssize = growsize; 3673 if (max_ssize < init_ssize + sgp) 3674 init_ssize = max_ssize - sgp; 3675 3676 /* If addr is already mapped, no go */ 3677 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3678 return (KERN_NO_SPACE); 3679 3680 /* 3681 * If we can't accommodate max_ssize in the current mapping, no go. 3682 */ 3683 if (prev_entry->next->start < addrbos + max_ssize) 3684 return (KERN_NO_SPACE); 3685 3686 /* 3687 * We initially map a stack of only init_ssize. We will grow as 3688 * needed later. Depending on the orientation of the stack (i.e. 3689 * the grow direction) we either map at the top of the range, the 3690 * bottom of the range or in the middle. 3691 * 3692 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3693 * and cow to be 0. Possibly we should eliminate these as input 3694 * parameters, and just pass these values here in the insert call. 3695 */ 3696 if (orient == MAP_STACK_GROWS_DOWN) { 3697 bot = addrbos + max_ssize - init_ssize; 3698 top = bot + init_ssize; 3699 gap_bot = addrbos; 3700 gap_top = bot; 3701 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 3702 bot = addrbos; 3703 top = bot + init_ssize; 3704 gap_bot = top; 3705 gap_top = addrbos + max_ssize; 3706 } 3707 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3708 if (rv != KERN_SUCCESS) 3709 return (rv); 3710 new_entry = prev_entry->next; 3711 KASSERT(new_entry->end == top || new_entry->start == bot, 3712 ("Bad entry start/end for new stack entry")); 3713 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3714 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3715 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3716 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3717 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3718 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3719 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 3720 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 3721 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 3722 if (rv != KERN_SUCCESS) 3723 (void)vm_map_delete(map, bot, top); 3724 return (rv); 3725 } 3726 3727 /* 3728 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 3729 * successfully grow the stack. 3730 */ 3731 static int 3732 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 3733 { 3734 vm_map_entry_t stack_entry; 3735 struct proc *p; 3736 struct vmspace *vm; 3737 struct ucred *cred; 3738 vm_offset_t gap_end, gap_start, grow_start; 3739 size_t grow_amount, guard, max_grow; 3740 rlim_t lmemlim, stacklim, vmemlim; 3741 int rv, rv1; 3742 bool gap_deleted, grow_down, is_procstack; 3743 #ifdef notyet 3744 uint64_t limit; 3745 #endif 3746 #ifdef RACCT 3747 int error; 3748 #endif 3749 3750 p = curproc; 3751 vm = p->p_vmspace; 3752 3753 /* 3754 * Disallow stack growth when the access is performed by a 3755 * debugger or AIO daemon. The reason is that the wrong 3756 * resource limits are applied. 3757 */ 3758 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 3759 return (KERN_FAILURE); 3760 3761 MPASS(!map->system_map); 3762 3763 guard = stack_guard_page * PAGE_SIZE; 3764 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3765 stacklim = lim_cur(curthread, RLIMIT_STACK); 3766 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3767 retry: 3768 /* If addr is not in a hole for a stack grow area, no need to grow. */ 3769 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 3770 return (KERN_FAILURE); 3771 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 3772 return (KERN_SUCCESS); 3773 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 3774 stack_entry = gap_entry->next; 3775 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 3776 stack_entry->start != gap_entry->end) 3777 return (KERN_FAILURE); 3778 grow_amount = round_page(stack_entry->start - addr); 3779 grow_down = true; 3780 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 3781 stack_entry = gap_entry->prev; 3782 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 3783 stack_entry->end != gap_entry->start) 3784 return (KERN_FAILURE); 3785 grow_amount = round_page(addr + 1 - stack_entry->end); 3786 grow_down = false; 3787 } else { 3788 return (KERN_FAILURE); 3789 } 3790 max_grow = gap_entry->end - gap_entry->start; 3791 if (guard > max_grow) 3792 return (KERN_NO_SPACE); 3793 max_grow -= guard; 3794 if (grow_amount > max_grow) 3795 return (KERN_NO_SPACE); 3796 3797 /* 3798 * If this is the main process stack, see if we're over the stack 3799 * limit. 3800 */ 3801 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 3802 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 3803 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 3804 return (KERN_NO_SPACE); 3805 3806 #ifdef RACCT 3807 if (racct_enable) { 3808 PROC_LOCK(p); 3809 if (is_procstack && racct_set(p, RACCT_STACK, 3810 ctob(vm->vm_ssize) + grow_amount)) { 3811 PROC_UNLOCK(p); 3812 return (KERN_NO_SPACE); 3813 } 3814 PROC_UNLOCK(p); 3815 } 3816 #endif 3817 3818 grow_amount = roundup(grow_amount, sgrowsiz); 3819 if (grow_amount > max_grow) 3820 grow_amount = max_grow; 3821 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3822 grow_amount = trunc_page((vm_size_t)stacklim) - 3823 ctob(vm->vm_ssize); 3824 } 3825 3826 #ifdef notyet 3827 PROC_LOCK(p); 3828 limit = racct_get_available(p, RACCT_STACK); 3829 PROC_UNLOCK(p); 3830 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3831 grow_amount = limit - ctob(vm->vm_ssize); 3832 #endif 3833 3834 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 3835 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3836 rv = KERN_NO_SPACE; 3837 goto out; 3838 } 3839 #ifdef RACCT 3840 if (racct_enable) { 3841 PROC_LOCK(p); 3842 if (racct_set(p, RACCT_MEMLOCK, 3843 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3844 PROC_UNLOCK(p); 3845 rv = KERN_NO_SPACE; 3846 goto out; 3847 } 3848 PROC_UNLOCK(p); 3849 } 3850 #endif 3851 } 3852 3853 /* If we would blow our VMEM resource limit, no go */ 3854 if (map->size + grow_amount > vmemlim) { 3855 rv = KERN_NO_SPACE; 3856 goto out; 3857 } 3858 #ifdef RACCT 3859 if (racct_enable) { 3860 PROC_LOCK(p); 3861 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3862 PROC_UNLOCK(p); 3863 rv = KERN_NO_SPACE; 3864 goto out; 3865 } 3866 PROC_UNLOCK(p); 3867 } 3868 #endif 3869 3870 if (vm_map_lock_upgrade(map)) { 3871 gap_entry = NULL; 3872 vm_map_lock_read(map); 3873 goto retry; 3874 } 3875 3876 if (grow_down) { 3877 grow_start = gap_entry->end - grow_amount; 3878 if (gap_entry->start + grow_amount == gap_entry->end) { 3879 gap_start = gap_entry->start; 3880 gap_end = gap_entry->end; 3881 vm_map_entry_delete(map, gap_entry); 3882 gap_deleted = true; 3883 } else { 3884 MPASS(gap_entry->start < gap_entry->end - grow_amount); 3885 gap_entry->end -= grow_amount; 3886 vm_map_entry_resize_free(map, gap_entry); 3887 gap_deleted = false; 3888 } 3889 rv = vm_map_insert(map, NULL, 0, grow_start, 3890 grow_start + grow_amount, 3891 stack_entry->protection, stack_entry->max_protection, 3892 MAP_STACK_GROWS_DOWN); 3893 if (rv != KERN_SUCCESS) { 3894 if (gap_deleted) { 3895 rv1 = vm_map_insert(map, NULL, 0, gap_start, 3896 gap_end, VM_PROT_NONE, VM_PROT_NONE, 3897 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 3898 MPASS(rv1 == KERN_SUCCESS); 3899 } else { 3900 gap_entry->end += grow_amount; 3901 vm_map_entry_resize_free(map, gap_entry); 3902 } 3903 } 3904 } else { 3905 grow_start = stack_entry->end; 3906 cred = stack_entry->cred; 3907 if (cred == NULL && stack_entry->object.vm_object != NULL) 3908 cred = stack_entry->object.vm_object->cred; 3909 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3910 rv = KERN_NO_SPACE; 3911 /* Grow the underlying object if applicable. */ 3912 else if (stack_entry->object.vm_object == NULL || 3913 vm_object_coalesce(stack_entry->object.vm_object, 3914 stack_entry->offset, 3915 (vm_size_t)(stack_entry->end - stack_entry->start), 3916 (vm_size_t)grow_amount, cred != NULL)) { 3917 if (gap_entry->start + grow_amount == gap_entry->end) 3918 vm_map_entry_delete(map, gap_entry); 3919 else 3920 gap_entry->start += grow_amount; 3921 stack_entry->end += grow_amount; 3922 map->size += grow_amount; 3923 vm_map_entry_resize_free(map, stack_entry); 3924 rv = KERN_SUCCESS; 3925 } else 3926 rv = KERN_FAILURE; 3927 } 3928 if (rv == KERN_SUCCESS && is_procstack) 3929 vm->vm_ssize += btoc(grow_amount); 3930 3931 /* 3932 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3933 */ 3934 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 3935 vm_map_unlock(map); 3936 vm_map_wire(map, grow_start, grow_start + grow_amount, 3937 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 3938 vm_map_lock_read(map); 3939 } else 3940 vm_map_lock_downgrade(map); 3941 3942 out: 3943 #ifdef RACCT 3944 if (racct_enable && rv != KERN_SUCCESS) { 3945 PROC_LOCK(p); 3946 error = racct_set(p, RACCT_VMEM, map->size); 3947 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3948 if (!old_mlock) { 3949 error = racct_set(p, RACCT_MEMLOCK, 3950 ptoa(pmap_wired_count(map->pmap))); 3951 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3952 } 3953 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3954 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3955 PROC_UNLOCK(p); 3956 } 3957 #endif 3958 3959 return (rv); 3960 } 3961 3962 /* 3963 * Unshare the specified VM space for exec. If other processes are 3964 * mapped to it, then create a new one. The new vmspace is null. 3965 */ 3966 int 3967 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3968 { 3969 struct vmspace *oldvmspace = p->p_vmspace; 3970 struct vmspace *newvmspace; 3971 3972 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3973 ("vmspace_exec recursed")); 3974 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 3975 if (newvmspace == NULL) 3976 return (ENOMEM); 3977 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3978 /* 3979 * This code is written like this for prototype purposes. The 3980 * goal is to avoid running down the vmspace here, but let the 3981 * other process's that are still using the vmspace to finally 3982 * run it down. Even though there is little or no chance of blocking 3983 * here, it is a good idea to keep this form for future mods. 3984 */ 3985 PROC_VMSPACE_LOCK(p); 3986 p->p_vmspace = newvmspace; 3987 PROC_VMSPACE_UNLOCK(p); 3988 if (p == curthread->td_proc) 3989 pmap_activate(curthread); 3990 curthread->td_pflags |= TDP_EXECVMSPC; 3991 return (0); 3992 } 3993 3994 /* 3995 * Unshare the specified VM space for forcing COW. This 3996 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3997 */ 3998 int 3999 vmspace_unshare(struct proc *p) 4000 { 4001 struct vmspace *oldvmspace = p->p_vmspace; 4002 struct vmspace *newvmspace; 4003 vm_ooffset_t fork_charge; 4004 4005 if (oldvmspace->vm_refcnt == 1) 4006 return (0); 4007 fork_charge = 0; 4008 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4009 if (newvmspace == NULL) 4010 return (ENOMEM); 4011 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4012 vmspace_free(newvmspace); 4013 return (ENOMEM); 4014 } 4015 PROC_VMSPACE_LOCK(p); 4016 p->p_vmspace = newvmspace; 4017 PROC_VMSPACE_UNLOCK(p); 4018 if (p == curthread->td_proc) 4019 pmap_activate(curthread); 4020 vmspace_free(oldvmspace); 4021 return (0); 4022 } 4023 4024 /* 4025 * vm_map_lookup: 4026 * 4027 * Finds the VM object, offset, and 4028 * protection for a given virtual address in the 4029 * specified map, assuming a page fault of the 4030 * type specified. 4031 * 4032 * Leaves the map in question locked for read; return 4033 * values are guaranteed until a vm_map_lookup_done 4034 * call is performed. Note that the map argument 4035 * is in/out; the returned map must be used in 4036 * the call to vm_map_lookup_done. 4037 * 4038 * A handle (out_entry) is returned for use in 4039 * vm_map_lookup_done, to make that fast. 4040 * 4041 * If a lookup is requested with "write protection" 4042 * specified, the map may be changed to perform virtual 4043 * copying operations, although the data referenced will 4044 * remain the same. 4045 */ 4046 int 4047 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4048 vm_offset_t vaddr, 4049 vm_prot_t fault_typea, 4050 vm_map_entry_t *out_entry, /* OUT */ 4051 vm_object_t *object, /* OUT */ 4052 vm_pindex_t *pindex, /* OUT */ 4053 vm_prot_t *out_prot, /* OUT */ 4054 boolean_t *wired) /* OUT */ 4055 { 4056 vm_map_entry_t entry; 4057 vm_map_t map = *var_map; 4058 vm_prot_t prot; 4059 vm_prot_t fault_type = fault_typea; 4060 vm_object_t eobject; 4061 vm_size_t size; 4062 struct ucred *cred; 4063 4064 RetryLookup: 4065 4066 vm_map_lock_read(map); 4067 4068 RetryLookupLocked: 4069 /* 4070 * Lookup the faulting address. 4071 */ 4072 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4073 vm_map_unlock_read(map); 4074 return (KERN_INVALID_ADDRESS); 4075 } 4076 4077 entry = *out_entry; 4078 4079 /* 4080 * Handle submaps. 4081 */ 4082 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4083 vm_map_t old_map = map; 4084 4085 *var_map = map = entry->object.sub_map; 4086 vm_map_unlock_read(old_map); 4087 goto RetryLookup; 4088 } 4089 4090 /* 4091 * Check whether this task is allowed to have this page. 4092 */ 4093 prot = entry->protection; 4094 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4095 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4096 if (prot == VM_PROT_NONE && map != kernel_map && 4097 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4098 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4099 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4100 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4101 goto RetryLookupLocked; 4102 } 4103 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4104 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4105 vm_map_unlock_read(map); 4106 return (KERN_PROTECTION_FAILURE); 4107 } 4108 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4109 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4110 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4111 ("entry %p flags %x", entry, entry->eflags)); 4112 if ((fault_typea & VM_PROT_COPY) != 0 && 4113 (entry->max_protection & VM_PROT_WRITE) == 0 && 4114 (entry->eflags & MAP_ENTRY_COW) == 0) { 4115 vm_map_unlock_read(map); 4116 return (KERN_PROTECTION_FAILURE); 4117 } 4118 4119 /* 4120 * If this page is not pageable, we have to get it for all possible 4121 * accesses. 4122 */ 4123 *wired = (entry->wired_count != 0); 4124 if (*wired) 4125 fault_type = entry->protection; 4126 size = entry->end - entry->start; 4127 /* 4128 * If the entry was copy-on-write, we either ... 4129 */ 4130 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4131 /* 4132 * If we want to write the page, we may as well handle that 4133 * now since we've got the map locked. 4134 * 4135 * If we don't need to write the page, we just demote the 4136 * permissions allowed. 4137 */ 4138 if ((fault_type & VM_PROT_WRITE) != 0 || 4139 (fault_typea & VM_PROT_COPY) != 0) { 4140 /* 4141 * Make a new object, and place it in the object 4142 * chain. Note that no new references have appeared 4143 * -- one just moved from the map to the new 4144 * object. 4145 */ 4146 if (vm_map_lock_upgrade(map)) 4147 goto RetryLookup; 4148 4149 if (entry->cred == NULL) { 4150 /* 4151 * The debugger owner is charged for 4152 * the memory. 4153 */ 4154 cred = curthread->td_ucred; 4155 crhold(cred); 4156 if (!swap_reserve_by_cred(size, cred)) { 4157 crfree(cred); 4158 vm_map_unlock(map); 4159 return (KERN_RESOURCE_SHORTAGE); 4160 } 4161 entry->cred = cred; 4162 } 4163 vm_object_shadow(&entry->object.vm_object, 4164 &entry->offset, size); 4165 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4166 eobject = entry->object.vm_object; 4167 if (eobject->cred != NULL) { 4168 /* 4169 * The object was not shadowed. 4170 */ 4171 swap_release_by_cred(size, entry->cred); 4172 crfree(entry->cred); 4173 entry->cred = NULL; 4174 } else if (entry->cred != NULL) { 4175 VM_OBJECT_WLOCK(eobject); 4176 eobject->cred = entry->cred; 4177 eobject->charge = size; 4178 VM_OBJECT_WUNLOCK(eobject); 4179 entry->cred = NULL; 4180 } 4181 4182 vm_map_lock_downgrade(map); 4183 } else { 4184 /* 4185 * We're attempting to read a copy-on-write page -- 4186 * don't allow writes. 4187 */ 4188 prot &= ~VM_PROT_WRITE; 4189 } 4190 } 4191 4192 /* 4193 * Create an object if necessary. 4194 */ 4195 if (entry->object.vm_object == NULL && 4196 !map->system_map) { 4197 if (vm_map_lock_upgrade(map)) 4198 goto RetryLookup; 4199 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4200 atop(size)); 4201 entry->offset = 0; 4202 if (entry->cred != NULL) { 4203 VM_OBJECT_WLOCK(entry->object.vm_object); 4204 entry->object.vm_object->cred = entry->cred; 4205 entry->object.vm_object->charge = size; 4206 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4207 entry->cred = NULL; 4208 } 4209 vm_map_lock_downgrade(map); 4210 } 4211 4212 /* 4213 * Return the object/offset from this entry. If the entry was 4214 * copy-on-write or empty, it has been fixed up. 4215 */ 4216 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4217 *object = entry->object.vm_object; 4218 4219 *out_prot = prot; 4220 return (KERN_SUCCESS); 4221 } 4222 4223 /* 4224 * vm_map_lookup_locked: 4225 * 4226 * Lookup the faulting address. A version of vm_map_lookup that returns 4227 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4228 */ 4229 int 4230 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4231 vm_offset_t vaddr, 4232 vm_prot_t fault_typea, 4233 vm_map_entry_t *out_entry, /* OUT */ 4234 vm_object_t *object, /* OUT */ 4235 vm_pindex_t *pindex, /* OUT */ 4236 vm_prot_t *out_prot, /* OUT */ 4237 boolean_t *wired) /* OUT */ 4238 { 4239 vm_map_entry_t entry; 4240 vm_map_t map = *var_map; 4241 vm_prot_t prot; 4242 vm_prot_t fault_type = fault_typea; 4243 4244 /* 4245 * Lookup the faulting address. 4246 */ 4247 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4248 return (KERN_INVALID_ADDRESS); 4249 4250 entry = *out_entry; 4251 4252 /* 4253 * Fail if the entry refers to a submap. 4254 */ 4255 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4256 return (KERN_FAILURE); 4257 4258 /* 4259 * Check whether this task is allowed to have this page. 4260 */ 4261 prot = entry->protection; 4262 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4263 if ((fault_type & prot) != fault_type) 4264 return (KERN_PROTECTION_FAILURE); 4265 4266 /* 4267 * If this page is not pageable, we have to get it for all possible 4268 * accesses. 4269 */ 4270 *wired = (entry->wired_count != 0); 4271 if (*wired) 4272 fault_type = entry->protection; 4273 4274 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4275 /* 4276 * Fail if the entry was copy-on-write for a write fault. 4277 */ 4278 if (fault_type & VM_PROT_WRITE) 4279 return (KERN_FAILURE); 4280 /* 4281 * We're attempting to read a copy-on-write page -- 4282 * don't allow writes. 4283 */ 4284 prot &= ~VM_PROT_WRITE; 4285 } 4286 4287 /* 4288 * Fail if an object should be created. 4289 */ 4290 if (entry->object.vm_object == NULL && !map->system_map) 4291 return (KERN_FAILURE); 4292 4293 /* 4294 * Return the object/offset from this entry. If the entry was 4295 * copy-on-write or empty, it has been fixed up. 4296 */ 4297 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4298 *object = entry->object.vm_object; 4299 4300 *out_prot = prot; 4301 return (KERN_SUCCESS); 4302 } 4303 4304 /* 4305 * vm_map_lookup_done: 4306 * 4307 * Releases locks acquired by a vm_map_lookup 4308 * (according to the handle returned by that lookup). 4309 */ 4310 void 4311 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4312 { 4313 /* 4314 * Unlock the main-level map 4315 */ 4316 vm_map_unlock_read(map); 4317 } 4318 4319 vm_offset_t 4320 vm_map_max_KBI(const struct vm_map *map) 4321 { 4322 4323 return (vm_map_max(map)); 4324 } 4325 4326 vm_offset_t 4327 vm_map_min_KBI(const struct vm_map *map) 4328 { 4329 4330 return (vm_map_min(map)); 4331 } 4332 4333 pmap_t 4334 vm_map_pmap_KBI(vm_map_t map) 4335 { 4336 4337 return (map->pmap); 4338 } 4339 4340 #include "opt_ddb.h" 4341 #ifdef DDB 4342 #include <sys/kernel.h> 4343 4344 #include <ddb/ddb.h> 4345 4346 static void 4347 vm_map_print(vm_map_t map) 4348 { 4349 vm_map_entry_t entry; 4350 4351 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4352 (void *)map, 4353 (void *)map->pmap, map->nentries, map->timestamp); 4354 4355 db_indent += 2; 4356 for (entry = map->header.next; entry != &map->header; 4357 entry = entry->next) { 4358 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4359 (void *)entry, (void *)entry->start, (void *)entry->end, 4360 entry->eflags); 4361 { 4362 static char *inheritance_name[4] = 4363 {"share", "copy", "none", "donate_copy"}; 4364 4365 db_iprintf(" prot=%x/%x/%s", 4366 entry->protection, 4367 entry->max_protection, 4368 inheritance_name[(int)(unsigned char)entry->inheritance]); 4369 if (entry->wired_count != 0) 4370 db_printf(", wired"); 4371 } 4372 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4373 db_printf(", share=%p, offset=0x%jx\n", 4374 (void *)entry->object.sub_map, 4375 (uintmax_t)entry->offset); 4376 if ((entry->prev == &map->header) || 4377 (entry->prev->object.sub_map != 4378 entry->object.sub_map)) { 4379 db_indent += 2; 4380 vm_map_print((vm_map_t)entry->object.sub_map); 4381 db_indent -= 2; 4382 } 4383 } else { 4384 if (entry->cred != NULL) 4385 db_printf(", ruid %d", entry->cred->cr_ruid); 4386 db_printf(", object=%p, offset=0x%jx", 4387 (void *)entry->object.vm_object, 4388 (uintmax_t)entry->offset); 4389 if (entry->object.vm_object && entry->object.vm_object->cred) 4390 db_printf(", obj ruid %d charge %jx", 4391 entry->object.vm_object->cred->cr_ruid, 4392 (uintmax_t)entry->object.vm_object->charge); 4393 if (entry->eflags & MAP_ENTRY_COW) 4394 db_printf(", copy (%s)", 4395 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4396 db_printf("\n"); 4397 4398 if ((entry->prev == &map->header) || 4399 (entry->prev->object.vm_object != 4400 entry->object.vm_object)) { 4401 db_indent += 2; 4402 vm_object_print((db_expr_t)(intptr_t) 4403 entry->object.vm_object, 4404 0, 0, (char *)0); 4405 db_indent -= 2; 4406 } 4407 } 4408 } 4409 db_indent -= 2; 4410 } 4411 4412 DB_SHOW_COMMAND(map, map) 4413 { 4414 4415 if (!have_addr) { 4416 db_printf("usage: show map <addr>\n"); 4417 return; 4418 } 4419 vm_map_print((vm_map_t)addr); 4420 } 4421 4422 DB_SHOW_COMMAND(procvm, procvm) 4423 { 4424 struct proc *p; 4425 4426 if (have_addr) { 4427 p = db_lookup_proc(addr); 4428 } else { 4429 p = curproc; 4430 } 4431 4432 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4433 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4434 (void *)vmspace_pmap(p->p_vmspace)); 4435 4436 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4437 } 4438 4439 #endif /* DDB */ 4440