xref: /freebsd/sys/vm/vm_map.c (revision 0610f417a4a664b7e3a8c57de800ae1f326a40e3)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153 
154 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157 
158 /*
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164 
165 /*
166  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
167  *
168  *	Asserts that the starting and ending region
169  *	addresses fall within the valid range of the map.
170  */
171 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
172 		{					\
173 		if (start < vm_map_min(map))		\
174 			start = vm_map_min(map);	\
175 		if (end > vm_map_max(map))		\
176 			end = vm_map_max(map);		\
177 		if (start > end)			\
178 			start = end;			\
179 		}
180 
181 /*
182  *	vm_map_startup:
183  *
184  *	Initialize the vm_map module.  Must be called before
185  *	any other vm_map routines.
186  *
187  *	Map and entry structures are allocated from the general
188  *	purpose memory pool with some exceptions:
189  *
190  *	- The kernel map and kmem submap are allocated statically.
191  *	- Kernel map entries are allocated out of a static pool.
192  *
193  *	These restrictions are necessary since malloc() uses the
194  *	maps and requires map entries.
195  */
196 
197 void
198 vm_map_startup(void)
199 {
200 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203 	    vm_map_zdtor,
204 #else
205 	    NULL,
206 #endif
207 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208 	uma_prealloc(mapzone, MAX_KMAP);
209 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216 	    vmspace_zdtor,
217 #else
218 	    NULL,
219 #endif
220 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222 
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226 	struct vmspace *vm;
227 
228 	vm = (struct vmspace *)mem;
229 
230 	vm->vm_map.pmap = NULL;
231 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232 	PMAP_LOCK_INIT(vmspace_pmap(vm));
233 	return (0);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286 	if (!pinit(vmspace_pmap(vm))) {
287 		uma_zfree(vmspace_zone, vm);
288 		return (NULL);
289 	}
290 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292 	vm->vm_refcnt = 1;
293 	vm->vm_shm = NULL;
294 	vm->vm_swrss = 0;
295 	vm->vm_tsize = 0;
296 	vm->vm_dsize = 0;
297 	vm->vm_ssize = 0;
298 	vm->vm_taddr = 0;
299 	vm->vm_daddr = 0;
300 	vm->vm_maxsaddr = 0;
301 	return (vm);
302 }
303 
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308 
309 	PROC_LOCK(p);
310 	racct_set(p, RACCT_DATA, 0);
311 	racct_set(p, RACCT_STACK, 0);
312 	racct_set(p, RACCT_RSS, 0);
313 	racct_set(p, RACCT_MEMLOCK, 0);
314 	racct_set(p, RACCT_VMEM, 0);
315 	PROC_UNLOCK(p);
316 }
317 #endif
318 
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322 
323 	CTR1(KTR_VM, "vmspace_free: %p", vm);
324 
325 	/*
326 	 * Make sure any SysV shm is freed, it might not have been in
327 	 * exit1().
328 	 */
329 	shmexit(vm);
330 
331 	/*
332 	 * Lock the map, to wait out all other references to it.
333 	 * Delete all of the mappings and pages they hold, then call
334 	 * the pmap module to reclaim anything left.
335 	 */
336 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337 	    vm_map_max(&vm->vm_map));
338 
339 	pmap_release(vmspace_pmap(vm));
340 	vm->vm_map.pmap = NULL;
341 	uma_zfree(vmspace_zone, vm);
342 }
343 
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347 
348 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349 	    "vmspace_free() called");
350 
351 	if (vm->vm_refcnt == 0)
352 		panic("vmspace_free: attempt to free already freed vmspace");
353 
354 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355 		vmspace_dofree(vm);
356 }
357 
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361 	struct vmspace *vm;
362 
363 	PROC_VMSPACE_LOCK(p);
364 	vm = p->p_vmspace;
365 	p->p_vmspace = NULL;
366 	PROC_VMSPACE_UNLOCK(p);
367 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368 	vmspace_free(vm);
369 }
370 
371 void
372 vmspace_exit(struct thread *td)
373 {
374 	int refcnt;
375 	struct vmspace *vm;
376 	struct proc *p;
377 
378 	/*
379 	 * Release user portion of address space.
380 	 * This releases references to vnodes,
381 	 * which could cause I/O if the file has been unlinked.
382 	 * Need to do this early enough that we can still sleep.
383 	 *
384 	 * The last exiting process to reach this point releases as
385 	 * much of the environment as it can. vmspace_dofree() is the
386 	 * slower fallback in case another process had a temporary
387 	 * reference to the vmspace.
388 	 */
389 
390 	p = td->td_proc;
391 	vm = p->p_vmspace;
392 	atomic_add_int(&vmspace0.vm_refcnt, 1);
393 	refcnt = vm->vm_refcnt;
394 	do {
395 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396 			/* Switch now since other proc might free vmspace */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = &vmspace0;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403 	if (refcnt == 1) {
404 		if (p->p_vmspace != vm) {
405 			/* vmspace not yet freed, switch back */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = vm;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 		pmap_remove_pages(vmspace_pmap(vm));
412 		/* Switch now since this proc will free vmspace */
413 		PROC_VMSPACE_LOCK(p);
414 		p->p_vmspace = &vmspace0;
415 		PROC_VMSPACE_UNLOCK(p);
416 		pmap_activate(td);
417 		vmspace_dofree(vm);
418 	}
419 #ifdef RACCT
420 	if (racct_enable)
421 		vmspace_container_reset(p);
422 #endif
423 }
424 
425 /* Acquire reference to vmspace owned by another process. */
426 
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430 	struct vmspace *vm;
431 	int refcnt;
432 
433 	PROC_VMSPACE_LOCK(p);
434 	vm = p->p_vmspace;
435 	if (vm == NULL) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		return (NULL);
438 	}
439 	refcnt = vm->vm_refcnt;
440 	do {
441 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
442 			PROC_VMSPACE_UNLOCK(p);
443 			return (NULL);
444 		}
445 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446 	if (vm != p->p_vmspace) {
447 		PROC_VMSPACE_UNLOCK(p);
448 		vmspace_free(vm);
449 		return (NULL);
450 	}
451 	PROC_VMSPACE_UNLOCK(p);
452 	return (vm);
453 }
454 
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	vmspace_free(oldvm);
494 }
495 
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499 
500 	if (map->system_map)
501 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502 	else
503 		sx_xlock_(&map->lock, file, line);
504 	map->timestamp++;
505 }
506 
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510 	vm_object_t object;
511 	struct vnode *vp;
512 	bool vp_held;
513 
514 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515 		return;
516 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517 	    ("Submap with execs"));
518 	object = entry->object.vm_object;
519 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
520 	if ((object->flags & OBJ_ANON) != 0)
521 		object = object->handle;
522 	else
523 		KASSERT(object->backing_object == NULL,
524 		    ("non-anon object %p shadows", object));
525 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526 	    entry, entry->object.vm_object));
527 
528 	/*
529 	 * Mostly, we do not lock the backing object.  It is
530 	 * referenced by the entry we are processing, so it cannot go
531 	 * away.
532 	 */
533 	vp = NULL;
534 	vp_held = false;
535 	if (object->type == OBJT_DEAD) {
536 		/*
537 		 * For OBJT_DEAD objects, v_writecount was handled in
538 		 * vnode_pager_dealloc().
539 		 */
540 	} else if (object->type == OBJT_VNODE) {
541 		vp = object->handle;
542 	} else if (object->type == OBJT_SWAP) {
543 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545 		    "entry %p, object %p, add %d", entry, object, add));
546 		/*
547 		 * Tmpfs VREG node, which was reclaimed, has
548 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549 		 * this case there is no v_writecount to adjust.
550 		 */
551 		VM_OBJECT_RLOCK(object);
552 		if ((object->flags & OBJ_TMPFS) != 0) {
553 			vp = object->un_pager.swp.swp_tmpfs;
554 			if (vp != NULL) {
555 				vhold(vp);
556 				vp_held = true;
557 			}
558 		}
559 		VM_OBJECT_RUNLOCK(object);
560 	} else {
561 		KASSERT(0,
562 		    ("vm_map_entry_set_vnode_text: wrong object type, "
563 		    "entry %p, object %p, add %d", entry, object, add));
564 	}
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp, 0);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map)
666 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667 	else {
668 		sx_xunlock_(&map->lock, file, line);
669 		vm_map_process_deferred();
670 	}
671 }
672 
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676 
677 	if (map->system_map)
678 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
679 	else
680 		sx_slock_(&map->lock, file, line);
681 }
682 
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686 
687 	if (map->system_map)
688 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689 	else {
690 		sx_sunlock_(&map->lock, file, line);
691 		vm_map_process_deferred();
692 	}
693 }
694 
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698 	int error;
699 
700 	error = map->system_map ?
701 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702 	    !sx_try_xlock_(&map->lock, file, line);
703 	if (error == 0)
704 		map->timestamp++;
705 	return (error == 0);
706 }
707 
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711 	int error;
712 
713 	error = map->system_map ?
714 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715 	    !sx_try_slock_(&map->lock, file, line);
716 	return (error == 0);
717 }
718 
719 /*
720  *	_vm_map_lock_upgrade:	[ internal use only ]
721  *
722  *	Tries to upgrade a read (shared) lock on the specified map to a write
723  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *	returned without a read or write lock held.
726  *
727  *	Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732 	unsigned int last_timestamp;
733 
734 	if (map->system_map) {
735 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736 	} else {
737 		if (!sx_try_upgrade_(&map->lock, file, line)) {
738 			last_timestamp = map->timestamp;
739 			sx_sunlock_(&map->lock, file, line);
740 			vm_map_process_deferred();
741 			/*
742 			 * If the map's timestamp does not change while the
743 			 * map is unlocked, then the upgrade succeeds.
744 			 */
745 			sx_xlock_(&map->lock, file, line);
746 			if (last_timestamp != map->timestamp) {
747 				sx_xunlock_(&map->lock, file, line);
748 				return (1);
749 			}
750 		}
751 	}
752 	map->timestamp++;
753 	return (0);
754 }
755 
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759 
760 	if (map->system_map) {
761 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762 	} else {
763 		VM_MAP_UNLOCK_CONSISTENT(map);
764 		sx_downgrade_(&map->lock, file, line);
765 	}
766 }
767 
768 /*
769  *	vm_map_locked:
770  *
771  *	Returns a non-zero value if the caller holds a write (exclusive) lock
772  *	on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777 
778 	if (map->system_map)
779 		return (mtx_owned(&map->system_mtx));
780 	else
781 		return (sx_xlocked(&map->lock));
782 }
783 
784 /*
785  *	_vm_map_unlock_and_wait:
786  *
787  *	Atomically releases the lock on the specified map and puts the calling
788  *	thread to sleep.  The calling thread will remain asleep until either
789  *	vm_map_wakeup() is performed on the map or the specified timeout is
790  *	exceeded.
791  *
792  *	WARNING!  This function does not perform deferred deallocations of
793  *	objects and map	entries.  Therefore, the calling thread is expected to
794  *	reacquire the map lock after reawakening and later perform an ordinary
795  *	unlock operation, such as vm_map_unlock(), before completing its
796  *	operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801 
802 	VM_MAP_UNLOCK_CONSISTENT(map);
803 	mtx_lock(&map_sleep_mtx);
804 	if (map->system_map)
805 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806 	else
807 		sx_xunlock_(&map->lock, file, line);
808 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809 	    timo));
810 }
811 
812 /*
813  *	vm_map_wakeup:
814  *
815  *	Awaken any threads that have slept on the map using
816  *	vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821 
822 	/*
823 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
824 	 * from being performed (and lost) between the map unlock
825 	 * and the msleep() in _vm_map_unlock_and_wait().
826 	 */
827 	mtx_lock(&map_sleep_mtx);
828 	mtx_unlock(&map_sleep_mtx);
829 	wakeup(&map->root);
830 }
831 
832 void
833 vm_map_busy(vm_map_t map)
834 {
835 
836 	VM_MAP_ASSERT_LOCKED(map);
837 	map->busy++;
838 }
839 
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848 		wakeup(&map->busy);
849 	}
850 }
851 
852 void
853 vm_map_wait_busy(vm_map_t map)
854 {
855 
856 	VM_MAP_ASSERT_LOCKED(map);
857 	while (map->busy) {
858 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859 		if (map->system_map)
860 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861 		else
862 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863 	}
864 	map->timestamp++;
865 }
866 
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870 	return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872 
873 /*
874  *	vm_map_create:
875  *
876  *	Creates and returns a new empty VM map with
877  *	the given physical map structure, and having
878  *	the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883 	vm_map_t result;
884 
885 	result = uma_zalloc(mapzone, M_WAITOK);
886 	CTR1(KTR_VM, "vm_map_create: %p", result);
887 	_vm_map_init(result, pmap, min, max);
888 	return (result);
889 }
890 
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898 
899 	map->header.eflags = MAP_ENTRY_HEADER;
900 	map->needs_wakeup = FALSE;
901 	map->system_map = 0;
902 	map->pmap = pmap;
903 	map->header.end = min;
904 	map->header.start = max;
905 	map->flags = 0;
906 	map->header.left = map->header.right = &map->header;
907 	map->root = NULL;
908 	map->timestamp = 0;
909 	map->busy = 0;
910 	map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912 	map->nupdates = 0;
913 #endif
914 }
915 
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919 
920 	_vm_map_init(map, pmap, min, max);
921 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922 	sx_init(&map->lock, "user map");
923 }
924 
925 /*
926  *	vm_map_entry_dispose:	[ internal use only ]
927  *
928  *	Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935 
936 /*
937  *	vm_map_entry_create:	[ internal use only ]
938  *
939  *	Allocates a VM map entry for insertion.
940  *	No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945 	vm_map_entry_t new_entry;
946 
947 	if (map->system_map)
948 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949 	else
950 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
951 	if (new_entry == NULL)
952 		panic("vm_map_entry_create: kernel resources exhausted");
953 	return (new_entry);
954 }
955 
956 /*
957  *	vm_map_entry_set_behavior:
958  *
959  *	Set the expected access behavior, either normal, random, or
960  *	sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966 	    (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968 
969 /*
970  *	vm_map_entry_max_free_{left,right}:
971  *
972  *	Compute the size of the largest free gap between two entries,
973  *	one the root of a tree and the other the ancestor of that root
974  *	that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979 
980 	return (root->left != left_ancestor ?
981 	    root->left->max_free : root->start - left_ancestor->end);
982 }
983 
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987 
988 	return (root->right != right_ancestor ?
989 	    root->right->max_free : right_ancestor->start - root->end);
990 }
991 
992 /*
993  *	vm_map_entry_{pred,succ}:
994  *
995  *	Find the {predecessor, successor} of the entry by taking one step
996  *	in the appropriate direction and backtracking as much as necessary.
997  *	vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002 	vm_map_entry_t prior;
1003 
1004 	prior = entry->left;
1005 	if (prior->right->start < entry->start) {
1006 		do
1007 			prior = prior->right;
1008 		while (prior->right != entry);
1009 	}
1010 	return (prior);
1011 }
1012 
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016 
1017 	return (a > b ? a : b);
1018 }
1019 
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1021 	vm_map_entry_t z;						\
1022 	vm_size_t max_free;						\
1023 									\
1024 	/*								\
1025 	 * Infer root->right->max_free == root->max_free when		\
1026 	 * y->max_free < root->max_free || root->max_free == 0.		\
1027 	 * Otherwise, look right to find it.				\
1028 	 */								\
1029 	y = root->left;							\
1030 	max_free = root->max_free;					\
1031 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
1032 	    ("%s: max_free invariant fails", __func__));		\
1033 	if (y == llist ? max_free > 0 : max_free - 1 < y->max_free)	\
1034 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1035 	if (y != llist && (test)) {					\
1036 		/* Rotate right and make y root. */			\
1037 		z = y->right;						\
1038 		if (z != root) {					\
1039 			root->left = z;					\
1040 			y->right = root;				\
1041 			if (max_free < y->max_free)			\
1042 			    root->max_free = max_free =			\
1043 			    vm_size_max(max_free, z->max_free);		\
1044 		} else if (max_free < y->max_free)			\
1045 			root->max_free = max_free =			\
1046 			    vm_size_max(max_free, root->start - y->end);\
1047 		root = y;						\
1048 		y = root->left;						\
1049 	}								\
1050 	/* Copy right->max_free.  Put root on rlist. */			\
1051 	root->max_free = max_free;					\
1052 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1053 	    ("%s: max_free not copied from right", __func__));		\
1054 	root->left = rlist;						\
1055 	rlist = root;							\
1056 	root = y != llist ? y : NULL;					\
1057 } while (0)
1058 
1059 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1060 	vm_map_entry_t z;						\
1061 	vm_size_t max_free;						\
1062 									\
1063 	/*								\
1064 	 * Infer root->left->max_free == root->max_free when		\
1065 	 * y->max_free < root->max_free || root->max_free == 0.		\
1066 	 * Otherwise, look left to find it.				\
1067 	 */								\
1068 	y = root->right;						\
1069 	max_free = root->max_free;					\
1070 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1071 	    ("%s: max_free invariant fails", __func__));		\
1072 	if (y == rlist ? max_free > 0 : max_free - 1 < y->max_free)	\
1073 		max_free = vm_map_entry_max_free_left(root, llist);	\
1074 	if (y != rlist && (test)) {					\
1075 		/* Rotate left and make y root. */			\
1076 		z = y->left;						\
1077 		if (z != root) {					\
1078 			root->right = z;				\
1079 			y->left = root;					\
1080 			if (max_free < y->max_free)			\
1081 			    root->max_free = max_free =			\
1082 			    vm_size_max(max_free, z->max_free);		\
1083 		} else if (max_free < y->max_free)			\
1084 			root->max_free = max_free =			\
1085 			    vm_size_max(max_free, y->start - root->end);\
1086 		root = y;						\
1087 		y = root->right;					\
1088 	}								\
1089 	/* Copy left->max_free.  Put root on llist. */			\
1090 	root->max_free = max_free;					\
1091 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1092 	    ("%s: max_free not copied from left", __func__));		\
1093 	root->right = llist;						\
1094 	llist = root;							\
1095 	root = y != rlist ? y : NULL;					\
1096 } while (0)
1097 
1098 /*
1099  * Walk down the tree until we find addr or a gap where addr would go, breaking
1100  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1101  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1102  * the two sides in reverse order (bottom-up), with llist linked by the right
1103  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1104  * lists terminated by &map->header.  This function, and the subsequent call to
1105  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1106  * values in &map->header.
1107  */
1108 static __always_inline vm_map_entry_t
1109 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1110     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1111 {
1112 	vm_map_entry_t left, right, root, y;
1113 
1114 	left = right = &map->header;
1115 	root = map->root;
1116 	while (root != NULL && root->max_free >= length) {
1117 		KASSERT(left->end <= root->start &&
1118 		    root->end <= right->start,
1119 		    ("%s: root not within tree bounds", __func__));
1120 		if (addr < root->start) {
1121 			SPLAY_LEFT_STEP(root, y, left, right,
1122 			    y->max_free >= length && addr < y->start);
1123 		} else if (addr >= root->end) {
1124 			SPLAY_RIGHT_STEP(root, y, left, right,
1125 			    y->max_free >= length && addr >= y->end);
1126 		} else
1127 			break;
1128 	}
1129 	*llist = left;
1130 	*rlist = right;
1131 	return (root);
1132 }
1133 
1134 static __always_inline void
1135 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1136 {
1137 	vm_map_entry_t hi, right, y;
1138 
1139 	right = *rlist;
1140 	hi = root->right == right ? NULL : root->right;
1141 	if (hi == NULL)
1142 		return;
1143 	do
1144 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1145 	while (hi != NULL);
1146 	*rlist = right;
1147 }
1148 
1149 static __always_inline void
1150 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1151 {
1152 	vm_map_entry_t left, lo, y;
1153 
1154 	left = *llist;
1155 	lo = root->left == left ? NULL : root->left;
1156 	if (lo == NULL)
1157 		return;
1158 	do
1159 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1160 	while (lo != NULL);
1161 	*llist = left;
1162 }
1163 
1164 static inline void
1165 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1166 {
1167 	vm_map_entry_t tmp;
1168 
1169 	tmp = *b;
1170 	*b = *a;
1171 	*a = tmp;
1172 }
1173 
1174 /*
1175  * Walk back up the two spines, flip the pointers and set max_free.  The
1176  * subtrees of the root go at the bottom of llist and rlist.
1177  */
1178 static vm_size_t
1179 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1180     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1181 {
1182 	do {
1183 		/*
1184 		 * The max_free values of the children of llist are in
1185 		 * llist->max_free and max_free.  Update with the
1186 		 * max value.
1187 		 */
1188 		llist->max_free = max_free =
1189 		    vm_size_max(llist->max_free, max_free);
1190 		vm_map_entry_swap(&llist->right, &tail);
1191 		vm_map_entry_swap(&tail, &llist);
1192 	} while (llist != header);
1193 	root->left = tail;
1194 	return (max_free);
1195 }
1196 
1197 /*
1198  * When llist is known to be the predecessor of root.
1199  */
1200 static inline vm_size_t
1201 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1202     vm_map_entry_t llist)
1203 {
1204 	vm_size_t max_free;
1205 
1206 	max_free = root->start - llist->end;
1207 	if (llist != header) {
1208 		max_free = vm_map_splay_merge_left_walk(header, root,
1209 		    root, max_free, llist);
1210 	} else {
1211 		root->left = header;
1212 		header->right = root;
1213 	}
1214 	return (max_free);
1215 }
1216 
1217 /*
1218  * When llist may or may not be the predecessor of root.
1219  */
1220 static inline vm_size_t
1221 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1222     vm_map_entry_t llist)
1223 {
1224 	vm_size_t max_free;
1225 
1226 	max_free = vm_map_entry_max_free_left(root, llist);
1227 	if (llist != header) {
1228 		max_free = vm_map_splay_merge_left_walk(header, root,
1229 		    root->left == llist ? root : root->left,
1230 		    max_free, llist);
1231 	}
1232 	return (max_free);
1233 }
1234 
1235 static vm_size_t
1236 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1237     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1238 {
1239 	do {
1240 		/*
1241 		 * The max_free values of the children of rlist are in
1242 		 * rlist->max_free and max_free.  Update with the
1243 		 * max value.
1244 		 */
1245 		rlist->max_free = max_free =
1246 		    vm_size_max(rlist->max_free, max_free);
1247 		vm_map_entry_swap(&rlist->left, &tail);
1248 		vm_map_entry_swap(&tail, &rlist);
1249 	} while (rlist != header);
1250 	root->right = tail;
1251 	return (max_free);
1252 }
1253 
1254 /*
1255  * When rlist is known to be the succecessor of root.
1256  */
1257 static inline vm_size_t
1258 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1259     vm_map_entry_t rlist)
1260 {
1261 	vm_size_t max_free;
1262 
1263 	max_free = rlist->start - root->end;
1264 	if (rlist != header) {
1265 		max_free = vm_map_splay_merge_right_walk(header, root,
1266 		    root, max_free, rlist);
1267 	} else {
1268 		root->right = header;
1269 		header->left = root;
1270 	}
1271 	return (max_free);
1272 }
1273 
1274 /*
1275  * When rlist may or may not be the succecessor of root.
1276  */
1277 static inline vm_size_t
1278 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1279     vm_map_entry_t rlist)
1280 {
1281 	vm_size_t max_free;
1282 
1283 	max_free = vm_map_entry_max_free_right(root, rlist);
1284 	if (rlist != header) {
1285 		max_free = vm_map_splay_merge_right_walk(header, root,
1286 		    root->right == rlist ? root : root->right,
1287 		    max_free, rlist);
1288 	}
1289 	return (max_free);
1290 }
1291 
1292 /*
1293  *	vm_map_splay:
1294  *
1295  *	The Sleator and Tarjan top-down splay algorithm with the
1296  *	following variation.  Max_free must be computed bottom-up, so
1297  *	on the downward pass, maintain the left and right spines in
1298  *	reverse order.  Then, make a second pass up each side to fix
1299  *	the pointers and compute max_free.  The time bound is O(log n)
1300  *	amortized.
1301  *
1302  *	The tree is threaded, which means that there are no null pointers.
1303  *	When a node has no left child, its left pointer points to its
1304  *	predecessor, which the last ancestor on the search path from the root
1305  *	where the search branched right.  Likewise, when a node has no right
1306  *	child, its right pointer points to its successor.  The map header node
1307  *	is the predecessor of the first map entry, and the successor of the
1308  *	last.
1309  *
1310  *	The new root is the vm_map_entry containing "addr", or else an
1311  *	adjacent entry (lower if possible) if addr is not in the tree.
1312  *
1313  *	The map must be locked, and leaves it so.
1314  *
1315  *	Returns: the new root.
1316  */
1317 static vm_map_entry_t
1318 vm_map_splay(vm_map_t map, vm_offset_t addr)
1319 {
1320 	vm_map_entry_t header, llist, rlist, root;
1321 	vm_size_t max_free_left, max_free_right;
1322 
1323 	header = &map->header;
1324 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1325 	if (root != NULL) {
1326 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1327 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1328 	} else if (llist != header) {
1329 		/*
1330 		 * Recover the greatest node in the left
1331 		 * subtree and make it the root.
1332 		 */
1333 		root = llist;
1334 		llist = root->right;
1335 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1336 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1337 	} else if (rlist != header) {
1338 		/*
1339 		 * Recover the least node in the right
1340 		 * subtree and make it the root.
1341 		 */
1342 		root = rlist;
1343 		rlist = root->left;
1344 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1345 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346 	} else {
1347 		/* There is no root. */
1348 		return (NULL);
1349 	}
1350 	root->max_free = vm_size_max(max_free_left, max_free_right);
1351 	map->root = root;
1352 	VM_MAP_ASSERT_CONSISTENT(map);
1353 	return (root);
1354 }
1355 
1356 /*
1357  *	vm_map_entry_{un,}link:
1358  *
1359  *	Insert/remove entries from maps.
1360  */
1361 static void
1362 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1363 {
1364 	vm_map_entry_t header, llist, rlist, root;
1365 
1366 	CTR3(KTR_VM,
1367 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1368 	    map->nentries, entry);
1369 	VM_MAP_ASSERT_LOCKED(map);
1370 	map->nentries++;
1371 	header = &map->header;
1372 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1373 	KASSERT(root == NULL,
1374 	    ("vm_map_entry_link: link object already mapped"));
1375 	root = entry;
1376 	root->max_free = vm_size_max(
1377 	    vm_map_splay_merge_pred(header, root, llist),
1378 	    vm_map_splay_merge_succ(header, root, rlist));
1379 	map->root = root;
1380 	VM_MAP_ASSERT_CONSISTENT(map);
1381 }
1382 
1383 enum unlink_merge_type {
1384 	UNLINK_MERGE_NONE,
1385 	UNLINK_MERGE_NEXT
1386 };
1387 
1388 static void
1389 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1390     enum unlink_merge_type op)
1391 {
1392 	vm_map_entry_t header, llist, rlist, root;
1393 	vm_size_t max_free_left, max_free_right;
1394 
1395 	VM_MAP_ASSERT_LOCKED(map);
1396 	header = &map->header;
1397 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398 	KASSERT(root != NULL,
1399 	    ("vm_map_entry_unlink: unlink object not mapped"));
1400 
1401 	vm_map_splay_findprev(root, &llist);
1402 	vm_map_splay_findnext(root, &rlist);
1403 	if (op == UNLINK_MERGE_NEXT) {
1404 		rlist->start = root->start;
1405 		rlist->offset = root->offset;
1406 	}
1407 	if (llist != header) {
1408 		root = llist;
1409 		llist = root->right;
1410 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1411 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1412 	} else if (rlist != header) {
1413 		root = rlist;
1414 		rlist = root->left;
1415 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1416 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1417 	} else {
1418 		header->left = header->right = header;
1419 		root = NULL;
1420 	}
1421 	if (root != NULL)
1422 		root->max_free = vm_size_max(max_free_left, max_free_right);
1423 	map->root = root;
1424 	VM_MAP_ASSERT_CONSISTENT(map);
1425 	map->nentries--;
1426 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1427 	    map->nentries, entry);
1428 }
1429 
1430 /*
1431  *	vm_map_entry_resize:
1432  *
1433  *	Resize a vm_map_entry, recompute the amount of free space that
1434  *	follows it and propagate that value up the tree.
1435  *
1436  *	The map must be locked, and leaves it so.
1437  */
1438 static void
1439 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1440 {
1441 	vm_map_entry_t header, llist, rlist, root;
1442 
1443 	VM_MAP_ASSERT_LOCKED(map);
1444 	header = &map->header;
1445 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1446 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1447 	vm_map_splay_findnext(root, &rlist);
1448 	entry->end += grow_amount;
1449 	root->max_free = vm_size_max(
1450 	    vm_map_splay_merge_left(header, root, llist),
1451 	    vm_map_splay_merge_succ(header, root, rlist));
1452 	map->root = root;
1453 	VM_MAP_ASSERT_CONSISTENT(map);
1454 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1455 	    __func__, map, map->nentries, entry);
1456 }
1457 
1458 /*
1459  *	vm_map_lookup_entry:	[ internal use only ]
1460  *
1461  *	Finds the map entry containing (or
1462  *	immediately preceding) the specified address
1463  *	in the given map; the entry is returned
1464  *	in the "entry" parameter.  The boolean
1465  *	result indicates whether the address is
1466  *	actually contained in the map.
1467  */
1468 boolean_t
1469 vm_map_lookup_entry(
1470 	vm_map_t map,
1471 	vm_offset_t address,
1472 	vm_map_entry_t *entry)	/* OUT */
1473 {
1474 	vm_map_entry_t cur, header, lbound, ubound;
1475 	boolean_t locked;
1476 
1477 	/*
1478 	 * If the map is empty, then the map entry immediately preceding
1479 	 * "address" is the map's header.
1480 	 */
1481 	header = &map->header;
1482 	cur = map->root;
1483 	if (cur == NULL) {
1484 		*entry = header;
1485 		return (FALSE);
1486 	}
1487 	if (address >= cur->start && cur->end > address) {
1488 		*entry = cur;
1489 		return (TRUE);
1490 	}
1491 	if ((locked = vm_map_locked(map)) ||
1492 	    sx_try_upgrade(&map->lock)) {
1493 		/*
1494 		 * Splay requires a write lock on the map.  However, it only
1495 		 * restructures the binary search tree; it does not otherwise
1496 		 * change the map.  Thus, the map's timestamp need not change
1497 		 * on a temporary upgrade.
1498 		 */
1499 		cur = vm_map_splay(map, address);
1500 		if (!locked) {
1501 			VM_MAP_UNLOCK_CONSISTENT(map);
1502 			sx_downgrade(&map->lock);
1503 		}
1504 
1505 		/*
1506 		 * If "address" is contained within a map entry, the new root
1507 		 * is that map entry.  Otherwise, the new root is a map entry
1508 		 * immediately before or after "address".
1509 		 */
1510 		if (address < cur->start) {
1511 			*entry = header;
1512 			return (FALSE);
1513 		}
1514 		*entry = cur;
1515 		return (address < cur->end);
1516 	}
1517 	/*
1518 	 * Since the map is only locked for read access, perform a
1519 	 * standard binary search tree lookup for "address".
1520 	 */
1521 	lbound = ubound = header;
1522 	for (;;) {
1523 		if (address < cur->start) {
1524 			ubound = cur;
1525 			cur = cur->left;
1526 			if (cur == lbound)
1527 				break;
1528 		} else if (cur->end <= address) {
1529 			lbound = cur;
1530 			cur = cur->right;
1531 			if (cur == ubound)
1532 				break;
1533 		} else {
1534 			*entry = cur;
1535 			return (TRUE);
1536 		}
1537 	}
1538 	*entry = lbound;
1539 	return (FALSE);
1540 }
1541 
1542 /*
1543  *	vm_map_insert:
1544  *
1545  *	Inserts the given whole VM object into the target
1546  *	map at the specified address range.  The object's
1547  *	size should match that of the address range.
1548  *
1549  *	Requires that the map be locked, and leaves it so.
1550  *
1551  *	If object is non-NULL, ref count must be bumped by caller
1552  *	prior to making call to account for the new entry.
1553  */
1554 int
1555 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1556     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1557 {
1558 	vm_map_entry_t new_entry, next_entry, prev_entry;
1559 	struct ucred *cred;
1560 	vm_eflags_t protoeflags;
1561 	vm_inherit_t inheritance;
1562 
1563 	VM_MAP_ASSERT_LOCKED(map);
1564 	KASSERT(object != kernel_object ||
1565 	    (cow & MAP_COPY_ON_WRITE) == 0,
1566 	    ("vm_map_insert: kernel object and COW"));
1567 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1568 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1569 	KASSERT((prot & ~max) == 0,
1570 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1571 
1572 	/*
1573 	 * Check that the start and end points are not bogus.
1574 	 */
1575 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1576 	    start >= end)
1577 		return (KERN_INVALID_ADDRESS);
1578 
1579 	/*
1580 	 * Find the entry prior to the proposed starting address; if it's part
1581 	 * of an existing entry, this range is bogus.
1582 	 */
1583 	if (vm_map_lookup_entry(map, start, &prev_entry))
1584 		return (KERN_NO_SPACE);
1585 
1586 	/*
1587 	 * Assert that the next entry doesn't overlap the end point.
1588 	 */
1589 	next_entry = vm_map_entry_succ(prev_entry);
1590 	if (next_entry->start < end)
1591 		return (KERN_NO_SPACE);
1592 
1593 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1594 	    max != VM_PROT_NONE))
1595 		return (KERN_INVALID_ARGUMENT);
1596 
1597 	protoeflags = 0;
1598 	if (cow & MAP_COPY_ON_WRITE)
1599 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1600 	if (cow & MAP_NOFAULT)
1601 		protoeflags |= MAP_ENTRY_NOFAULT;
1602 	if (cow & MAP_DISABLE_SYNCER)
1603 		protoeflags |= MAP_ENTRY_NOSYNC;
1604 	if (cow & MAP_DISABLE_COREDUMP)
1605 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1606 	if (cow & MAP_STACK_GROWS_DOWN)
1607 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1608 	if (cow & MAP_STACK_GROWS_UP)
1609 		protoeflags |= MAP_ENTRY_GROWS_UP;
1610 	if (cow & MAP_WRITECOUNT)
1611 		protoeflags |= MAP_ENTRY_WRITECNT;
1612 	if (cow & MAP_VN_EXEC)
1613 		protoeflags |= MAP_ENTRY_VN_EXEC;
1614 	if ((cow & MAP_CREATE_GUARD) != 0)
1615 		protoeflags |= MAP_ENTRY_GUARD;
1616 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1617 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1618 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1619 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1620 	if (cow & MAP_INHERIT_SHARE)
1621 		inheritance = VM_INHERIT_SHARE;
1622 	else
1623 		inheritance = VM_INHERIT_DEFAULT;
1624 
1625 	cred = NULL;
1626 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1627 		goto charged;
1628 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1629 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1630 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1631 			return (KERN_RESOURCE_SHORTAGE);
1632 		KASSERT(object == NULL ||
1633 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1634 		    object->cred == NULL,
1635 		    ("overcommit: vm_map_insert o %p", object));
1636 		cred = curthread->td_ucred;
1637 	}
1638 
1639 charged:
1640 	/* Expand the kernel pmap, if necessary. */
1641 	if (map == kernel_map && end > kernel_vm_end)
1642 		pmap_growkernel(end);
1643 	if (object != NULL) {
1644 		/*
1645 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1646 		 * is trivially proven to be the only mapping for any
1647 		 * of the object's pages.  (Object granularity
1648 		 * reference counting is insufficient to recognize
1649 		 * aliases with precision.)
1650 		 */
1651 		if ((object->flags & OBJ_ANON) != 0) {
1652 			VM_OBJECT_WLOCK(object);
1653 			if (object->ref_count > 1 || object->shadow_count != 0)
1654 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1655 			VM_OBJECT_WUNLOCK(object);
1656 		}
1657 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1658 	    protoeflags &&
1659 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1660 	    MAP_VN_EXEC)) == 0 &&
1661 	    prev_entry->end == start && (prev_entry->cred == cred ||
1662 	    (prev_entry->object.vm_object != NULL &&
1663 	    prev_entry->object.vm_object->cred == cred)) &&
1664 	    vm_object_coalesce(prev_entry->object.vm_object,
1665 	    prev_entry->offset,
1666 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1667 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1668 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1669 		/*
1670 		 * We were able to extend the object.  Determine if we
1671 		 * can extend the previous map entry to include the
1672 		 * new range as well.
1673 		 */
1674 		if (prev_entry->inheritance == inheritance &&
1675 		    prev_entry->protection == prot &&
1676 		    prev_entry->max_protection == max &&
1677 		    prev_entry->wired_count == 0) {
1678 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1679 			    0, ("prev_entry %p has incoherent wiring",
1680 			    prev_entry));
1681 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1682 				map->size += end - prev_entry->end;
1683 			vm_map_entry_resize(map, prev_entry,
1684 			    end - prev_entry->end);
1685 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1686 			return (KERN_SUCCESS);
1687 		}
1688 
1689 		/*
1690 		 * If we can extend the object but cannot extend the
1691 		 * map entry, we have to create a new map entry.  We
1692 		 * must bump the ref count on the extended object to
1693 		 * account for it.  object may be NULL.
1694 		 */
1695 		object = prev_entry->object.vm_object;
1696 		offset = prev_entry->offset +
1697 		    (prev_entry->end - prev_entry->start);
1698 		vm_object_reference(object);
1699 		if (cred != NULL && object != NULL && object->cred != NULL &&
1700 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1701 			/* Object already accounts for this uid. */
1702 			cred = NULL;
1703 		}
1704 	}
1705 	if (cred != NULL)
1706 		crhold(cred);
1707 
1708 	/*
1709 	 * Create a new entry
1710 	 */
1711 	new_entry = vm_map_entry_create(map);
1712 	new_entry->start = start;
1713 	new_entry->end = end;
1714 	new_entry->cred = NULL;
1715 
1716 	new_entry->eflags = protoeflags;
1717 	new_entry->object.vm_object = object;
1718 	new_entry->offset = offset;
1719 
1720 	new_entry->inheritance = inheritance;
1721 	new_entry->protection = prot;
1722 	new_entry->max_protection = max;
1723 	new_entry->wired_count = 0;
1724 	new_entry->wiring_thread = NULL;
1725 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1726 	new_entry->next_read = start;
1727 
1728 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1729 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1730 	new_entry->cred = cred;
1731 
1732 	/*
1733 	 * Insert the new entry into the list
1734 	 */
1735 	vm_map_entry_link(map, new_entry);
1736 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1737 		map->size += new_entry->end - new_entry->start;
1738 
1739 	/*
1740 	 * Try to coalesce the new entry with both the previous and next
1741 	 * entries in the list.  Previously, we only attempted to coalesce
1742 	 * with the previous entry when object is NULL.  Here, we handle the
1743 	 * other cases, which are less common.
1744 	 */
1745 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1746 	vm_map_try_merge_entries(map, new_entry, next_entry);
1747 
1748 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1749 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1750 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1751 	}
1752 
1753 	return (KERN_SUCCESS);
1754 }
1755 
1756 /*
1757  *	vm_map_findspace:
1758  *
1759  *	Find the first fit (lowest VM address) for "length" free bytes
1760  *	beginning at address >= start in the given map.
1761  *
1762  *	In a vm_map_entry, "max_free" is the maximum amount of
1763  *	contiguous free space between an entry in its subtree and a
1764  *	neighbor of that entry.  This allows finding a free region in
1765  *	one path down the tree, so O(log n) amortized with splay
1766  *	trees.
1767  *
1768  *	The map must be locked, and leaves it so.
1769  *
1770  *	Returns: starting address if sufficient space,
1771  *		 vm_map_max(map)-length+1 if insufficient space.
1772  */
1773 vm_offset_t
1774 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1775 {
1776 	vm_map_entry_t header, llist, rlist, root, y;
1777 	vm_size_t left_length, max_free_left, max_free_right;
1778 	vm_offset_t gap_end;
1779 
1780 	/*
1781 	 * Request must fit within min/max VM address and must avoid
1782 	 * address wrap.
1783 	 */
1784 	start = MAX(start, vm_map_min(map));
1785 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1786 		return (vm_map_max(map) - length + 1);
1787 
1788 	/* Empty tree means wide open address space. */
1789 	if (map->root == NULL)
1790 		return (start);
1791 
1792 	/*
1793 	 * After splay_split, if start is within an entry, push it to the start
1794 	 * of the following gap.  If rlist is at the end of the gap containing
1795 	 * start, save the end of that gap in gap_end to see if the gap is big
1796 	 * enough; otherwise set gap_end to start skip gap-checking and move
1797 	 * directly to a search of the right subtree.
1798 	 */
1799 	header = &map->header;
1800 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1801 	gap_end = rlist->start;
1802 	if (root != NULL) {
1803 		start = root->end;
1804 		if (root->right != rlist)
1805 			gap_end = start;
1806 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1807 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1808 	} else if (rlist != header) {
1809 		root = rlist;
1810 		rlist = root->left;
1811 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1812 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1813 	} else {
1814 		root = llist;
1815 		llist = root->right;
1816 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1817 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1818 	}
1819 	root->max_free = vm_size_max(max_free_left, max_free_right);
1820 	map->root = root;
1821 	VM_MAP_ASSERT_CONSISTENT(map);
1822 	if (length <= gap_end - start)
1823 		return (start);
1824 
1825 	/* With max_free, can immediately tell if no solution. */
1826 	if (root->right == header || length > root->right->max_free)
1827 		return (vm_map_max(map) - length + 1);
1828 
1829 	/*
1830 	 * Splay for the least large-enough gap in the right subtree.
1831 	 */
1832 	llist = rlist = header;
1833 	for (left_length = 0;;
1834 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1835 		if (length <= left_length)
1836 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1837 			    length <= vm_map_entry_max_free_left(y, llist));
1838 		else
1839 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1840 			    length > vm_map_entry_max_free_left(y, root));
1841 		if (root == NULL)
1842 			break;
1843 	}
1844 	root = llist;
1845 	llist = root->right;
1846 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1847 	if (rlist == header) {
1848 		root->max_free = vm_size_max(max_free_left,
1849 		    vm_map_splay_merge_succ(header, root, rlist));
1850 	} else {
1851 		y = rlist;
1852 		rlist = y->left;
1853 		y->max_free = vm_size_max(
1854 		    vm_map_splay_merge_pred(root, y, root),
1855 		    vm_map_splay_merge_right(header, y, rlist));
1856 		root->max_free = vm_size_max(max_free_left, y->max_free);
1857 	}
1858 	map->root = root;
1859 	VM_MAP_ASSERT_CONSISTENT(map);
1860 	return (root->end);
1861 }
1862 
1863 int
1864 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1865     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1866     vm_prot_t max, int cow)
1867 {
1868 	vm_offset_t end;
1869 	int result;
1870 
1871 	end = start + length;
1872 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1873 	    object == NULL,
1874 	    ("vm_map_fixed: non-NULL backing object for stack"));
1875 	vm_map_lock(map);
1876 	VM_MAP_RANGE_CHECK(map, start, end);
1877 	if ((cow & MAP_CHECK_EXCL) == 0)
1878 		vm_map_delete(map, start, end);
1879 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1880 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1881 		    prot, max, cow);
1882 	} else {
1883 		result = vm_map_insert(map, object, offset, start, end,
1884 		    prot, max, cow);
1885 	}
1886 	vm_map_unlock(map);
1887 	return (result);
1888 }
1889 
1890 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1891 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1892 
1893 static int cluster_anon = 1;
1894 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1895     &cluster_anon, 0,
1896     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1897 
1898 static bool
1899 clustering_anon_allowed(vm_offset_t addr)
1900 {
1901 
1902 	switch (cluster_anon) {
1903 	case 0:
1904 		return (false);
1905 	case 1:
1906 		return (addr == 0);
1907 	case 2:
1908 	default:
1909 		return (true);
1910 	}
1911 }
1912 
1913 static long aslr_restarts;
1914 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1915     &aslr_restarts, 0,
1916     "Number of aslr failures");
1917 
1918 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1919 
1920 /*
1921  * Searches for the specified amount of free space in the given map with the
1922  * specified alignment.  Performs an address-ordered, first-fit search from
1923  * the given address "*addr", with an optional upper bound "max_addr".  If the
1924  * parameter "alignment" is zero, then the alignment is computed from the
1925  * given (object, offset) pair so as to enable the greatest possible use of
1926  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1927  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1928  *
1929  * The map must be locked.  Initially, there must be at least "length" bytes
1930  * of free space at the given address.
1931  */
1932 static int
1933 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1934     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1935     vm_offset_t alignment)
1936 {
1937 	vm_offset_t aligned_addr, free_addr;
1938 
1939 	VM_MAP_ASSERT_LOCKED(map);
1940 	free_addr = *addr;
1941 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1942 	    ("caller failed to provide space %#jx at address %p",
1943 	     (uintmax_t)length, (void *)free_addr));
1944 	for (;;) {
1945 		/*
1946 		 * At the start of every iteration, the free space at address
1947 		 * "*addr" is at least "length" bytes.
1948 		 */
1949 		if (alignment == 0)
1950 			pmap_align_superpage(object, offset, addr, length);
1951 		else if ((*addr & (alignment - 1)) != 0) {
1952 			*addr &= ~(alignment - 1);
1953 			*addr += alignment;
1954 		}
1955 		aligned_addr = *addr;
1956 		if (aligned_addr == free_addr) {
1957 			/*
1958 			 * Alignment did not change "*addr", so "*addr" must
1959 			 * still provide sufficient free space.
1960 			 */
1961 			return (KERN_SUCCESS);
1962 		}
1963 
1964 		/*
1965 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1966 		 * be a valid address, in which case vm_map_findspace() cannot
1967 		 * be relied upon to fail.
1968 		 */
1969 		if (aligned_addr < free_addr)
1970 			return (KERN_NO_SPACE);
1971 		*addr = vm_map_findspace(map, aligned_addr, length);
1972 		if (*addr + length > vm_map_max(map) ||
1973 		    (max_addr != 0 && *addr + length > max_addr))
1974 			return (KERN_NO_SPACE);
1975 		free_addr = *addr;
1976 		if (free_addr == aligned_addr) {
1977 			/*
1978 			 * If a successful call to vm_map_findspace() did not
1979 			 * change "*addr", then "*addr" must still be aligned
1980 			 * and provide sufficient free space.
1981 			 */
1982 			return (KERN_SUCCESS);
1983 		}
1984 	}
1985 }
1986 
1987 /*
1988  *	vm_map_find finds an unallocated region in the target address
1989  *	map with the given length.  The search is defined to be
1990  *	first-fit from the specified address; the region found is
1991  *	returned in the same parameter.
1992  *
1993  *	If object is non-NULL, ref count must be bumped by caller
1994  *	prior to making call to account for the new entry.
1995  */
1996 int
1997 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1998 	    vm_offset_t *addr,	/* IN/OUT */
1999 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2000 	    vm_prot_t prot, vm_prot_t max, int cow)
2001 {
2002 	vm_offset_t alignment, curr_min_addr, min_addr;
2003 	int gap, pidx, rv, try;
2004 	bool cluster, en_aslr, update_anon;
2005 
2006 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2007 	    object == NULL,
2008 	    ("vm_map_find: non-NULL backing object for stack"));
2009 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2010 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2011 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2012 	    (object->flags & OBJ_COLORED) == 0))
2013 		find_space = VMFS_ANY_SPACE;
2014 	if (find_space >> 8 != 0) {
2015 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2016 		alignment = (vm_offset_t)1 << (find_space >> 8);
2017 	} else
2018 		alignment = 0;
2019 	en_aslr = (map->flags & MAP_ASLR) != 0;
2020 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2021 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2022 	    find_space != VMFS_NO_SPACE && object == NULL &&
2023 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2024 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2025 	curr_min_addr = min_addr = *addr;
2026 	if (en_aslr && min_addr == 0 && !cluster &&
2027 	    find_space != VMFS_NO_SPACE &&
2028 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2029 		curr_min_addr = min_addr = vm_map_min(map);
2030 	try = 0;
2031 	vm_map_lock(map);
2032 	if (cluster) {
2033 		curr_min_addr = map->anon_loc;
2034 		if (curr_min_addr == 0)
2035 			cluster = false;
2036 	}
2037 	if (find_space != VMFS_NO_SPACE) {
2038 		KASSERT(find_space == VMFS_ANY_SPACE ||
2039 		    find_space == VMFS_OPTIMAL_SPACE ||
2040 		    find_space == VMFS_SUPER_SPACE ||
2041 		    alignment != 0, ("unexpected VMFS flag"));
2042 again:
2043 		/*
2044 		 * When creating an anonymous mapping, try clustering
2045 		 * with an existing anonymous mapping first.
2046 		 *
2047 		 * We make up to two attempts to find address space
2048 		 * for a given find_space value. The first attempt may
2049 		 * apply randomization or may cluster with an existing
2050 		 * anonymous mapping. If this first attempt fails,
2051 		 * perform a first-fit search of the available address
2052 		 * space.
2053 		 *
2054 		 * If all tries failed, and find_space is
2055 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2056 		 * Again enable clustering and randomization.
2057 		 */
2058 		try++;
2059 		MPASS(try <= 2);
2060 
2061 		if (try == 2) {
2062 			/*
2063 			 * Second try: we failed either to find a
2064 			 * suitable region for randomizing the
2065 			 * allocation, or to cluster with an existing
2066 			 * mapping.  Retry with free run.
2067 			 */
2068 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2069 			    vm_map_min(map) : min_addr;
2070 			atomic_add_long(&aslr_restarts, 1);
2071 		}
2072 
2073 		if (try == 1 && en_aslr && !cluster) {
2074 			/*
2075 			 * Find space for allocation, including
2076 			 * gap needed for later randomization.
2077 			 */
2078 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2079 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2080 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2081 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2082 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2083 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2084 			*addr = vm_map_findspace(map, curr_min_addr,
2085 			    length + gap * pagesizes[pidx]);
2086 			if (*addr + length + gap * pagesizes[pidx] >
2087 			    vm_map_max(map))
2088 				goto again;
2089 			/* And randomize the start address. */
2090 			*addr += (arc4random() % gap) * pagesizes[pidx];
2091 			if (max_addr != 0 && *addr + length > max_addr)
2092 				goto again;
2093 		} else {
2094 			*addr = vm_map_findspace(map, curr_min_addr, length);
2095 			if (*addr + length > vm_map_max(map) ||
2096 			    (max_addr != 0 && *addr + length > max_addr)) {
2097 				if (cluster) {
2098 					cluster = false;
2099 					MPASS(try == 1);
2100 					goto again;
2101 				}
2102 				rv = KERN_NO_SPACE;
2103 				goto done;
2104 			}
2105 		}
2106 
2107 		if (find_space != VMFS_ANY_SPACE &&
2108 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2109 		    max_addr, alignment)) != KERN_SUCCESS) {
2110 			if (find_space == VMFS_OPTIMAL_SPACE) {
2111 				find_space = VMFS_ANY_SPACE;
2112 				curr_min_addr = min_addr;
2113 				cluster = update_anon;
2114 				try = 0;
2115 				goto again;
2116 			}
2117 			goto done;
2118 		}
2119 	} else if ((cow & MAP_REMAP) != 0) {
2120 		if (*addr < vm_map_min(map) ||
2121 		    *addr + length > vm_map_max(map) ||
2122 		    *addr + length <= length) {
2123 			rv = KERN_INVALID_ADDRESS;
2124 			goto done;
2125 		}
2126 		vm_map_delete(map, *addr, *addr + length);
2127 	}
2128 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2129 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2130 		    max, cow);
2131 	} else {
2132 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2133 		    prot, max, cow);
2134 	}
2135 	if (rv == KERN_SUCCESS && update_anon)
2136 		map->anon_loc = *addr + length;
2137 done:
2138 	vm_map_unlock(map);
2139 	return (rv);
2140 }
2141 
2142 /*
2143  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2144  *	additional parameter (min_addr) and treats the given address
2145  *	(*addr) differently.  Specifically, it treats *addr as a hint
2146  *	and not as the minimum address where the mapping is created.
2147  *
2148  *	This function works in two phases.  First, it tries to
2149  *	allocate above the hint.  If that fails and the hint is
2150  *	greater than min_addr, it performs a second pass, replacing
2151  *	the hint with min_addr as the minimum address for the
2152  *	allocation.
2153  */
2154 int
2155 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2156     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2157     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2158     int cow)
2159 {
2160 	vm_offset_t hint;
2161 	int rv;
2162 
2163 	hint = *addr;
2164 	for (;;) {
2165 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2166 		    find_space, prot, max, cow);
2167 		if (rv == KERN_SUCCESS || min_addr >= hint)
2168 			return (rv);
2169 		*addr = hint = min_addr;
2170 	}
2171 }
2172 
2173 /*
2174  * A map entry with any of the following flags set must not be merged with
2175  * another entry.
2176  */
2177 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2178 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2179 
2180 static bool
2181 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2182 {
2183 
2184 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2185 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2186 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2187 	    prev, entry));
2188 	return (prev->end == entry->start &&
2189 	    prev->object.vm_object == entry->object.vm_object &&
2190 	    (prev->object.vm_object == NULL ||
2191 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2192 	    prev->eflags == entry->eflags &&
2193 	    prev->protection == entry->protection &&
2194 	    prev->max_protection == entry->max_protection &&
2195 	    prev->inheritance == entry->inheritance &&
2196 	    prev->wired_count == entry->wired_count &&
2197 	    prev->cred == entry->cred);
2198 }
2199 
2200 static void
2201 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2202 {
2203 
2204 	/*
2205 	 * If the backing object is a vnode object, vm_object_deallocate()
2206 	 * calls vrele().  However, vrele() does not lock the vnode because
2207 	 * the vnode has additional references.  Thus, the map lock can be
2208 	 * kept without causing a lock-order reversal with the vnode lock.
2209 	 *
2210 	 * Since we count the number of virtual page mappings in
2211 	 * object->un_pager.vnp.writemappings, the writemappings value
2212 	 * should not be adjusted when the entry is disposed of.
2213 	 */
2214 	if (entry->object.vm_object != NULL)
2215 		vm_object_deallocate(entry->object.vm_object);
2216 	if (entry->cred != NULL)
2217 		crfree(entry->cred);
2218 	vm_map_entry_dispose(map, entry);
2219 }
2220 
2221 /*
2222  *	vm_map_try_merge_entries:
2223  *
2224  *	Compare the given map entry to its predecessor, and merge its precessor
2225  *	into it if possible.  The entry remains valid, and may be extended.
2226  *	The predecessor may be deleted.
2227  *
2228  *	The map must be locked.
2229  */
2230 void
2231 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2232     vm_map_entry_t entry)
2233 {
2234 
2235 	VM_MAP_ASSERT_LOCKED(map);
2236 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2237 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2238 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2239 		vm_map_merged_neighbor_dispose(map, prev_entry);
2240 	}
2241 }
2242 
2243 /*
2244  *	vm_map_entry_back:
2245  *
2246  *	Allocate an object to back a map entry.
2247  */
2248 static inline void
2249 vm_map_entry_back(vm_map_entry_t entry)
2250 {
2251 	vm_object_t object;
2252 
2253 	KASSERT(entry->object.vm_object == NULL,
2254 	    ("map entry %p has backing object", entry));
2255 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2256 	    ("map entry %p is a submap", entry));
2257 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2258 	    entry->cred, entry->end - entry->start);
2259 	entry->object.vm_object = object;
2260 	entry->offset = 0;
2261 	entry->cred = NULL;
2262 }
2263 
2264 /*
2265  *	vm_map_entry_charge_object
2266  *
2267  *	If there is no object backing this entry, create one.  Otherwise, if
2268  *	the entry has cred, give it to the backing object.
2269  */
2270 static inline void
2271 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2272 {
2273 
2274 	VM_MAP_ASSERT_LOCKED(map);
2275 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2276 	    ("map entry %p is a submap", entry));
2277 	if (entry->object.vm_object == NULL && !map->system_map &&
2278 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2279 		vm_map_entry_back(entry);
2280 	else if (entry->object.vm_object != NULL &&
2281 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2282 	    entry->cred != NULL) {
2283 		VM_OBJECT_WLOCK(entry->object.vm_object);
2284 		KASSERT(entry->object.vm_object->cred == NULL,
2285 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2286 		entry->object.vm_object->cred = entry->cred;
2287 		entry->object.vm_object->charge = entry->end - entry->start;
2288 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2289 		entry->cred = NULL;
2290 	}
2291 }
2292 
2293 /*
2294  *	vm_map_entry_clone
2295  *
2296  *	Create a duplicate map entry for clipping.
2297  */
2298 static vm_map_entry_t
2299 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2300 {
2301 	vm_map_entry_t new_entry;
2302 
2303 	VM_MAP_ASSERT_LOCKED(map);
2304 
2305 	/*
2306 	 * Create a backing object now, if none exists, so that more individual
2307 	 * objects won't be created after the map entry is split.
2308 	 */
2309 	vm_map_entry_charge_object(map, entry);
2310 
2311 	/* Clone the entry. */
2312 	new_entry = vm_map_entry_create(map);
2313 	*new_entry = *entry;
2314 	if (new_entry->cred != NULL)
2315 		crhold(entry->cred);
2316 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2317 		vm_object_reference(new_entry->object.vm_object);
2318 		vm_map_entry_set_vnode_text(new_entry, true);
2319 		/*
2320 		 * The object->un_pager.vnp.writemappings for the object of
2321 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2322 		 * virtual pages are re-distributed among the clipped entries,
2323 		 * so the sum is left the same.
2324 		 */
2325 	}
2326 	return (new_entry);
2327 }
2328 
2329 /*
2330  *	vm_map_clip_start:	[ internal use only ]
2331  *
2332  *	Asserts that the given entry begins at or after
2333  *	the specified address; if necessary,
2334  *	it splits the entry into two.
2335  */
2336 #define vm_map_clip_start(map, entry, startaddr) \
2337 { \
2338 	if (startaddr > entry->start) \
2339 		_vm_map_clip_start(map, entry, startaddr); \
2340 }
2341 
2342 /*
2343  *	This routine is called only when it is known that
2344  *	the entry must be split.
2345  */
2346 static void
2347 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2348 {
2349 	vm_map_entry_t new_entry;
2350 
2351 	VM_MAP_ASSERT_LOCKED(map);
2352 	KASSERT(entry->end > start && entry->start < start,
2353 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2354 
2355 	new_entry = vm_map_entry_clone(map, entry);
2356 
2357 	/*
2358 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2359 	 * so that this entry has the specified starting address.
2360 	 */
2361 	new_entry->end = start;
2362 	entry->offset += (start - entry->start);
2363 	entry->start = start;
2364 	vm_map_entry_link(map, new_entry);
2365 }
2366 
2367 /*
2368  *	vm_map_clip_end:	[ internal use only ]
2369  *
2370  *	Asserts that the given entry ends at or before
2371  *	the specified address; if necessary,
2372  *	it splits the entry into two.
2373  */
2374 #define vm_map_clip_end(map, entry, endaddr) \
2375 { \
2376 	if ((endaddr) < (entry->end)) \
2377 		_vm_map_clip_end((map), (entry), (endaddr)); \
2378 }
2379 
2380 /*
2381  *	This routine is called only when it is known that
2382  *	the entry must be split.
2383  */
2384 static void
2385 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2386 {
2387 	vm_map_entry_t new_entry;
2388 
2389 	VM_MAP_ASSERT_LOCKED(map);
2390 	KASSERT(entry->start < end && entry->end > end,
2391 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2392 
2393 	new_entry = vm_map_entry_clone(map, entry);
2394 
2395 	/*
2396 	 * Split off the back portion.  Insert the new entry AFTER this one,
2397 	 * so that this entry has the specified ending address.
2398 	 */
2399 	new_entry->start = entry->end = end;
2400 	new_entry->offset += (end - entry->start);
2401 	vm_map_entry_link(map, new_entry);
2402 }
2403 
2404 /*
2405  *	vm_map_submap:		[ kernel use only ]
2406  *
2407  *	Mark the given range as handled by a subordinate map.
2408  *
2409  *	This range must have been created with vm_map_find,
2410  *	and no other operations may have been performed on this
2411  *	range prior to calling vm_map_submap.
2412  *
2413  *	Only a limited number of operations can be performed
2414  *	within this rage after calling vm_map_submap:
2415  *		vm_fault
2416  *	[Don't try vm_map_copy!]
2417  *
2418  *	To remove a submapping, one must first remove the
2419  *	range from the superior map, and then destroy the
2420  *	submap (if desired).  [Better yet, don't try it.]
2421  */
2422 int
2423 vm_map_submap(
2424 	vm_map_t map,
2425 	vm_offset_t start,
2426 	vm_offset_t end,
2427 	vm_map_t submap)
2428 {
2429 	vm_map_entry_t entry;
2430 	int result;
2431 
2432 	result = KERN_INVALID_ARGUMENT;
2433 
2434 	vm_map_lock(submap);
2435 	submap->flags |= MAP_IS_SUB_MAP;
2436 	vm_map_unlock(submap);
2437 
2438 	vm_map_lock(map);
2439 
2440 	VM_MAP_RANGE_CHECK(map, start, end);
2441 
2442 	if (vm_map_lookup_entry(map, start, &entry)) {
2443 		vm_map_clip_start(map, entry, start);
2444 	} else
2445 		entry = vm_map_entry_succ(entry);
2446 
2447 	vm_map_clip_end(map, entry, end);
2448 
2449 	if ((entry->start == start) && (entry->end == end) &&
2450 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2451 	    (entry->object.vm_object == NULL)) {
2452 		entry->object.sub_map = submap;
2453 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2454 		result = KERN_SUCCESS;
2455 	}
2456 	vm_map_unlock(map);
2457 
2458 	if (result != KERN_SUCCESS) {
2459 		vm_map_lock(submap);
2460 		submap->flags &= ~MAP_IS_SUB_MAP;
2461 		vm_map_unlock(submap);
2462 	}
2463 	return (result);
2464 }
2465 
2466 /*
2467  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2468  */
2469 #define	MAX_INIT_PT	96
2470 
2471 /*
2472  *	vm_map_pmap_enter:
2473  *
2474  *	Preload the specified map's pmap with mappings to the specified
2475  *	object's memory-resident pages.  No further physical pages are
2476  *	allocated, and no further virtual pages are retrieved from secondary
2477  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2478  *	limited number of page mappings are created at the low-end of the
2479  *	specified address range.  (For this purpose, a superpage mapping
2480  *	counts as one page mapping.)  Otherwise, all resident pages within
2481  *	the specified address range are mapped.
2482  */
2483 static void
2484 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2485     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2486 {
2487 	vm_offset_t start;
2488 	vm_page_t p, p_start;
2489 	vm_pindex_t mask, psize, threshold, tmpidx;
2490 
2491 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2492 		return;
2493 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2494 		VM_OBJECT_WLOCK(object);
2495 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2496 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2497 			    size);
2498 			VM_OBJECT_WUNLOCK(object);
2499 			return;
2500 		}
2501 		VM_OBJECT_LOCK_DOWNGRADE(object);
2502 	} else
2503 		VM_OBJECT_RLOCK(object);
2504 
2505 	psize = atop(size);
2506 	if (psize + pindex > object->size) {
2507 		if (pindex >= object->size) {
2508 			VM_OBJECT_RUNLOCK(object);
2509 			return;
2510 		}
2511 		psize = object->size - pindex;
2512 	}
2513 
2514 	start = 0;
2515 	p_start = NULL;
2516 	threshold = MAX_INIT_PT;
2517 
2518 	p = vm_page_find_least(object, pindex);
2519 	/*
2520 	 * Assert: the variable p is either (1) the page with the
2521 	 * least pindex greater than or equal to the parameter pindex
2522 	 * or (2) NULL.
2523 	 */
2524 	for (;
2525 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2526 	     p = TAILQ_NEXT(p, listq)) {
2527 		/*
2528 		 * don't allow an madvise to blow away our really
2529 		 * free pages allocating pv entries.
2530 		 */
2531 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2532 		    vm_page_count_severe()) ||
2533 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2534 		    tmpidx >= threshold)) {
2535 			psize = tmpidx;
2536 			break;
2537 		}
2538 		if (vm_page_all_valid(p)) {
2539 			if (p_start == NULL) {
2540 				start = addr + ptoa(tmpidx);
2541 				p_start = p;
2542 			}
2543 			/* Jump ahead if a superpage mapping is possible. */
2544 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2545 			    (pagesizes[p->psind] - 1)) == 0) {
2546 				mask = atop(pagesizes[p->psind]) - 1;
2547 				if (tmpidx + mask < psize &&
2548 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2549 					p += mask;
2550 					threshold += mask;
2551 				}
2552 			}
2553 		} else if (p_start != NULL) {
2554 			pmap_enter_object(map->pmap, start, addr +
2555 			    ptoa(tmpidx), p_start, prot);
2556 			p_start = NULL;
2557 		}
2558 	}
2559 	if (p_start != NULL)
2560 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2561 		    p_start, prot);
2562 	VM_OBJECT_RUNLOCK(object);
2563 }
2564 
2565 /*
2566  *	vm_map_protect:
2567  *
2568  *	Sets the protection of the specified address
2569  *	region in the target map.  If "set_max" is
2570  *	specified, the maximum protection is to be set;
2571  *	otherwise, only the current protection is affected.
2572  */
2573 int
2574 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2575 	       vm_prot_t new_prot, boolean_t set_max)
2576 {
2577 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2578 	vm_object_t obj;
2579 	struct ucred *cred;
2580 	vm_prot_t old_prot;
2581 	int rv;
2582 
2583 	if (start == end)
2584 		return (KERN_SUCCESS);
2585 
2586 again:
2587 	in_tran = NULL;
2588 	vm_map_lock(map);
2589 
2590 	/*
2591 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2592 	 * need to fault pages into the map and will drop the map lock while
2593 	 * doing so, and the VM object may end up in an inconsistent state if we
2594 	 * update the protection on the map entry in between faults.
2595 	 */
2596 	vm_map_wait_busy(map);
2597 
2598 	VM_MAP_RANGE_CHECK(map, start, end);
2599 
2600 	if (!vm_map_lookup_entry(map, start, &first_entry))
2601 		first_entry = vm_map_entry_succ(first_entry);
2602 
2603 	/*
2604 	 * Make a first pass to check for protection violations.
2605 	 */
2606 	for (entry = first_entry; entry->start < end;
2607 	    entry = vm_map_entry_succ(entry)) {
2608 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2609 			continue;
2610 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2611 			vm_map_unlock(map);
2612 			return (KERN_INVALID_ARGUMENT);
2613 		}
2614 		if ((new_prot & entry->max_protection) != new_prot) {
2615 			vm_map_unlock(map);
2616 			return (KERN_PROTECTION_FAILURE);
2617 		}
2618 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2619 			in_tran = entry;
2620 	}
2621 
2622 	/*
2623 	 * Postpone the operation until all in-transition map entries have
2624 	 * stabilized.  An in-transition entry might already have its pages
2625 	 * wired and wired_count incremented, but not yet have its
2626 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2627 	 * vm_fault_copy_entry() in the final loop below.
2628 	 */
2629 	if (in_tran != NULL) {
2630 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2631 		vm_map_unlock_and_wait(map, 0);
2632 		goto again;
2633 	}
2634 
2635 	/*
2636 	 * Before changing the protections, try to reserve swap space for any
2637 	 * private (i.e., copy-on-write) mappings that are transitioning from
2638 	 * read-only to read/write access.  If a reservation fails, break out
2639 	 * of this loop early and let the next loop simplify the entries, since
2640 	 * some may now be mergeable.
2641 	 */
2642 	rv = KERN_SUCCESS;
2643 	vm_map_clip_start(map, first_entry, start);
2644 	for (entry = first_entry; entry->start < end;
2645 	    entry = vm_map_entry_succ(entry)) {
2646 		vm_map_clip_end(map, entry, end);
2647 
2648 		if (set_max ||
2649 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2650 		    ENTRY_CHARGED(entry) ||
2651 		    (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2652 			continue;
2653 		}
2654 
2655 		cred = curthread->td_ucred;
2656 		obj = entry->object.vm_object;
2657 
2658 		if (obj == NULL ||
2659 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2660 			if (!swap_reserve(entry->end - entry->start)) {
2661 				rv = KERN_RESOURCE_SHORTAGE;
2662 				end = entry->end;
2663 				break;
2664 			}
2665 			crhold(cred);
2666 			entry->cred = cred;
2667 			continue;
2668 		}
2669 
2670 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2671 			continue;
2672 		VM_OBJECT_WLOCK(obj);
2673 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2674 			VM_OBJECT_WUNLOCK(obj);
2675 			continue;
2676 		}
2677 
2678 		/*
2679 		 * Charge for the whole object allocation now, since
2680 		 * we cannot distinguish between non-charged and
2681 		 * charged clipped mapping of the same object later.
2682 		 */
2683 		KASSERT(obj->charge == 0,
2684 		    ("vm_map_protect: object %p overcharged (entry %p)",
2685 		    obj, entry));
2686 		if (!swap_reserve(ptoa(obj->size))) {
2687 			VM_OBJECT_WUNLOCK(obj);
2688 			rv = KERN_RESOURCE_SHORTAGE;
2689 			end = entry->end;
2690 			break;
2691 		}
2692 
2693 		crhold(cred);
2694 		obj->cred = cred;
2695 		obj->charge = ptoa(obj->size);
2696 		VM_OBJECT_WUNLOCK(obj);
2697 	}
2698 
2699 	/*
2700 	 * If enough swap space was available, go back and fix up protections.
2701 	 * Otherwise, just simplify entries, since some may have been modified.
2702 	 * [Note that clipping is not necessary the second time.]
2703 	 */
2704 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2705 	    entry->start < end;
2706 	    vm_map_try_merge_entries(map, prev_entry, entry),
2707 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2708 		if (rv != KERN_SUCCESS ||
2709 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2710 			continue;
2711 
2712 		old_prot = entry->protection;
2713 
2714 		if (set_max)
2715 			entry->protection =
2716 			    (entry->max_protection = new_prot) &
2717 			    old_prot;
2718 		else
2719 			entry->protection = new_prot;
2720 
2721 		/*
2722 		 * For user wired map entries, the normal lazy evaluation of
2723 		 * write access upgrades through soft page faults is
2724 		 * undesirable.  Instead, immediately copy any pages that are
2725 		 * copy-on-write and enable write access in the physical map.
2726 		 */
2727 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2728 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2729 		    (old_prot & VM_PROT_WRITE) == 0)
2730 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2731 
2732 		/*
2733 		 * When restricting access, update the physical map.  Worry
2734 		 * about copy-on-write here.
2735 		 */
2736 		if ((old_prot & ~entry->protection) != 0) {
2737 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2738 							VM_PROT_ALL)
2739 			pmap_protect(map->pmap, entry->start,
2740 			    entry->end,
2741 			    entry->protection & MASK(entry));
2742 #undef	MASK
2743 		}
2744 	}
2745 	vm_map_try_merge_entries(map, prev_entry, entry);
2746 	vm_map_unlock(map);
2747 	return (rv);
2748 }
2749 
2750 /*
2751  *	vm_map_madvise:
2752  *
2753  *	This routine traverses a processes map handling the madvise
2754  *	system call.  Advisories are classified as either those effecting
2755  *	the vm_map_entry structure, or those effecting the underlying
2756  *	objects.
2757  */
2758 int
2759 vm_map_madvise(
2760 	vm_map_t map,
2761 	vm_offset_t start,
2762 	vm_offset_t end,
2763 	int behav)
2764 {
2765 	vm_map_entry_t entry, prev_entry;
2766 	bool modify_map;
2767 
2768 	/*
2769 	 * Some madvise calls directly modify the vm_map_entry, in which case
2770 	 * we need to use an exclusive lock on the map and we need to perform
2771 	 * various clipping operations.  Otherwise we only need a read-lock
2772 	 * on the map.
2773 	 */
2774 	switch(behav) {
2775 	case MADV_NORMAL:
2776 	case MADV_SEQUENTIAL:
2777 	case MADV_RANDOM:
2778 	case MADV_NOSYNC:
2779 	case MADV_AUTOSYNC:
2780 	case MADV_NOCORE:
2781 	case MADV_CORE:
2782 		if (start == end)
2783 			return (0);
2784 		modify_map = true;
2785 		vm_map_lock(map);
2786 		break;
2787 	case MADV_WILLNEED:
2788 	case MADV_DONTNEED:
2789 	case MADV_FREE:
2790 		if (start == end)
2791 			return (0);
2792 		modify_map = false;
2793 		vm_map_lock_read(map);
2794 		break;
2795 	default:
2796 		return (EINVAL);
2797 	}
2798 
2799 	/*
2800 	 * Locate starting entry and clip if necessary.
2801 	 */
2802 	VM_MAP_RANGE_CHECK(map, start, end);
2803 
2804 	if (vm_map_lookup_entry(map, start, &entry)) {
2805 		if (modify_map)
2806 			vm_map_clip_start(map, entry, start);
2807 		prev_entry = vm_map_entry_pred(entry);
2808 	} else {
2809 		prev_entry = entry;
2810 		entry = vm_map_entry_succ(entry);
2811 	}
2812 
2813 	if (modify_map) {
2814 		/*
2815 		 * madvise behaviors that are implemented in the vm_map_entry.
2816 		 *
2817 		 * We clip the vm_map_entry so that behavioral changes are
2818 		 * limited to the specified address range.
2819 		 */
2820 		for (; entry->start < end;
2821 		     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2822 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2823 				continue;
2824 
2825 			vm_map_clip_end(map, entry, end);
2826 
2827 			switch (behav) {
2828 			case MADV_NORMAL:
2829 				vm_map_entry_set_behavior(entry,
2830 				    MAP_ENTRY_BEHAV_NORMAL);
2831 				break;
2832 			case MADV_SEQUENTIAL:
2833 				vm_map_entry_set_behavior(entry,
2834 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2835 				break;
2836 			case MADV_RANDOM:
2837 				vm_map_entry_set_behavior(entry,
2838 				    MAP_ENTRY_BEHAV_RANDOM);
2839 				break;
2840 			case MADV_NOSYNC:
2841 				entry->eflags |= MAP_ENTRY_NOSYNC;
2842 				break;
2843 			case MADV_AUTOSYNC:
2844 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
2845 				break;
2846 			case MADV_NOCORE:
2847 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2848 				break;
2849 			case MADV_CORE:
2850 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2851 				break;
2852 			default:
2853 				break;
2854 			}
2855 			vm_map_try_merge_entries(map, prev_entry, entry);
2856 		}
2857 		vm_map_try_merge_entries(map, prev_entry, entry);
2858 		vm_map_unlock(map);
2859 	} else {
2860 		vm_pindex_t pstart, pend;
2861 
2862 		/*
2863 		 * madvise behaviors that are implemented in the underlying
2864 		 * vm_object.
2865 		 *
2866 		 * Since we don't clip the vm_map_entry, we have to clip
2867 		 * the vm_object pindex and count.
2868 		 */
2869 		for (; entry->start < end;
2870 		    entry = vm_map_entry_succ(entry)) {
2871 			vm_offset_t useEnd, useStart;
2872 
2873 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2874 				continue;
2875 
2876 			/*
2877 			 * MADV_FREE would otherwise rewind time to
2878 			 * the creation of the shadow object.  Because
2879 			 * we hold the VM map read-locked, neither the
2880 			 * entry's object nor the presence of a
2881 			 * backing object can change.
2882 			 */
2883 			if (behav == MADV_FREE &&
2884 			    entry->object.vm_object != NULL &&
2885 			    entry->object.vm_object->backing_object != NULL)
2886 				continue;
2887 
2888 			pstart = OFF_TO_IDX(entry->offset);
2889 			pend = pstart + atop(entry->end - entry->start);
2890 			useStart = entry->start;
2891 			useEnd = entry->end;
2892 
2893 			if (entry->start < start) {
2894 				pstart += atop(start - entry->start);
2895 				useStart = start;
2896 			}
2897 			if (entry->end > end) {
2898 				pend -= atop(entry->end - end);
2899 				useEnd = end;
2900 			}
2901 
2902 			if (pstart >= pend)
2903 				continue;
2904 
2905 			/*
2906 			 * Perform the pmap_advise() before clearing
2907 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2908 			 * concurrent pmap operation, such as pmap_remove(),
2909 			 * could clear a reference in the pmap and set
2910 			 * PGA_REFERENCED on the page before the pmap_advise()
2911 			 * had completed.  Consequently, the page would appear
2912 			 * referenced based upon an old reference that
2913 			 * occurred before this pmap_advise() ran.
2914 			 */
2915 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2916 				pmap_advise(map->pmap, useStart, useEnd,
2917 				    behav);
2918 
2919 			vm_object_madvise(entry->object.vm_object, pstart,
2920 			    pend, behav);
2921 
2922 			/*
2923 			 * Pre-populate paging structures in the
2924 			 * WILLNEED case.  For wired entries, the
2925 			 * paging structures are already populated.
2926 			 */
2927 			if (behav == MADV_WILLNEED &&
2928 			    entry->wired_count == 0) {
2929 				vm_map_pmap_enter(map,
2930 				    useStart,
2931 				    entry->protection,
2932 				    entry->object.vm_object,
2933 				    pstart,
2934 				    ptoa(pend - pstart),
2935 				    MAP_PREFAULT_MADVISE
2936 				);
2937 			}
2938 		}
2939 		vm_map_unlock_read(map);
2940 	}
2941 	return (0);
2942 }
2943 
2944 
2945 /*
2946  *	vm_map_inherit:
2947  *
2948  *	Sets the inheritance of the specified address
2949  *	range in the target map.  Inheritance
2950  *	affects how the map will be shared with
2951  *	child maps at the time of vmspace_fork.
2952  */
2953 int
2954 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2955 	       vm_inherit_t new_inheritance)
2956 {
2957 	vm_map_entry_t entry, prev_entry;
2958 
2959 	switch (new_inheritance) {
2960 	case VM_INHERIT_NONE:
2961 	case VM_INHERIT_COPY:
2962 	case VM_INHERIT_SHARE:
2963 	case VM_INHERIT_ZERO:
2964 		break;
2965 	default:
2966 		return (KERN_INVALID_ARGUMENT);
2967 	}
2968 	if (start == end)
2969 		return (KERN_SUCCESS);
2970 	vm_map_lock(map);
2971 	VM_MAP_RANGE_CHECK(map, start, end);
2972 	if (vm_map_lookup_entry(map, start, &prev_entry)) {
2973 		entry = prev_entry;
2974 		vm_map_clip_start(map, entry, start);
2975 		prev_entry = vm_map_entry_pred(entry);
2976 	} else
2977 		entry = vm_map_entry_succ(prev_entry);
2978 	for (; entry->start < end;
2979 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2980 		vm_map_clip_end(map, entry, end);
2981 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2982 		    new_inheritance != VM_INHERIT_ZERO)
2983 			entry->inheritance = new_inheritance;
2984 		vm_map_try_merge_entries(map, prev_entry, entry);
2985 	}
2986 	vm_map_try_merge_entries(map, prev_entry, entry);
2987 	vm_map_unlock(map);
2988 	return (KERN_SUCCESS);
2989 }
2990 
2991 /*
2992  *	vm_map_entry_in_transition:
2993  *
2994  *	Release the map lock, and sleep until the entry is no longer in
2995  *	transition.  Awake and acquire the map lock.  If the map changed while
2996  *	another held the lock, lookup a possibly-changed entry at or after the
2997  *	'start' position of the old entry.
2998  */
2999 static vm_map_entry_t
3000 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3001     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3002 {
3003 	vm_map_entry_t entry;
3004 	vm_offset_t start;
3005 	u_int last_timestamp;
3006 
3007 	VM_MAP_ASSERT_LOCKED(map);
3008 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3009 	    ("not in-tranition map entry %p", in_entry));
3010 	/*
3011 	 * We have not yet clipped the entry.
3012 	 */
3013 	start = MAX(in_start, in_entry->start);
3014 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3015 	last_timestamp = map->timestamp;
3016 	if (vm_map_unlock_and_wait(map, 0)) {
3017 		/*
3018 		 * Allow interruption of user wiring/unwiring?
3019 		 */
3020 	}
3021 	vm_map_lock(map);
3022 	if (last_timestamp + 1 == map->timestamp)
3023 		return (in_entry);
3024 
3025 	/*
3026 	 * Look again for the entry because the map was modified while it was
3027 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3028 	 * deleted.
3029 	 */
3030 	if (!vm_map_lookup_entry(map, start, &entry)) {
3031 		if (!holes_ok) {
3032 			*io_end = start;
3033 			return (NULL);
3034 		}
3035 		entry = vm_map_entry_succ(entry);
3036 	}
3037 	return (entry);
3038 }
3039 
3040 /*
3041  *	vm_map_unwire:
3042  *
3043  *	Implements both kernel and user unwiring.
3044  */
3045 int
3046 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3047     int flags)
3048 {
3049 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3050 	int rv;
3051 	bool holes_ok, need_wakeup, user_unwire;
3052 
3053 	if (start == end)
3054 		return (KERN_SUCCESS);
3055 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3056 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3057 	vm_map_lock(map);
3058 	VM_MAP_RANGE_CHECK(map, start, end);
3059 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3060 		if (holes_ok)
3061 			first_entry = vm_map_entry_succ(first_entry);
3062 		else {
3063 			vm_map_unlock(map);
3064 			return (KERN_INVALID_ADDRESS);
3065 		}
3066 	}
3067 	rv = KERN_SUCCESS;
3068 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3069 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3070 			/*
3071 			 * We have not yet clipped the entry.
3072 			 */
3073 			next_entry = vm_map_entry_in_transition(map, start,
3074 			    &end, holes_ok, entry);
3075 			if (next_entry == NULL) {
3076 				if (entry == first_entry) {
3077 					vm_map_unlock(map);
3078 					return (KERN_INVALID_ADDRESS);
3079 				}
3080 				rv = KERN_INVALID_ADDRESS;
3081 				break;
3082 			}
3083 			first_entry = (entry == first_entry) ?
3084 			    next_entry : NULL;
3085 			continue;
3086 		}
3087 		vm_map_clip_start(map, entry, start);
3088 		vm_map_clip_end(map, entry, end);
3089 		/*
3090 		 * Mark the entry in case the map lock is released.  (See
3091 		 * above.)
3092 		 */
3093 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3094 		    entry->wiring_thread == NULL,
3095 		    ("owned map entry %p", entry));
3096 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3097 		entry->wiring_thread = curthread;
3098 		next_entry = vm_map_entry_succ(entry);
3099 		/*
3100 		 * Check the map for holes in the specified region.
3101 		 * If holes_ok, skip this check.
3102 		 */
3103 		if (!holes_ok &&
3104 		    entry->end < end && next_entry->start > entry->end) {
3105 			end = entry->end;
3106 			rv = KERN_INVALID_ADDRESS;
3107 			break;
3108 		}
3109 		/*
3110 		 * If system unwiring, require that the entry is system wired.
3111 		 */
3112 		if (!user_unwire &&
3113 		    vm_map_entry_system_wired_count(entry) == 0) {
3114 			end = entry->end;
3115 			rv = KERN_INVALID_ARGUMENT;
3116 			break;
3117 		}
3118 	}
3119 	need_wakeup = false;
3120 	if (first_entry == NULL &&
3121 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3122 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3123 		prev_entry = first_entry;
3124 		entry = vm_map_entry_succ(first_entry);
3125 	} else {
3126 		prev_entry = vm_map_entry_pred(first_entry);
3127 		entry = first_entry;
3128 	}
3129 	for (; entry->start < end;
3130 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3131 		/*
3132 		 * If holes_ok was specified, an empty
3133 		 * space in the unwired region could have been mapped
3134 		 * while the map lock was dropped for draining
3135 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3136 		 * could be simultaneously wiring this new mapping
3137 		 * entry.  Detect these cases and skip any entries
3138 		 * marked as in transition by us.
3139 		 */
3140 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3141 		    entry->wiring_thread != curthread) {
3142 			KASSERT(holes_ok,
3143 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3144 			continue;
3145 		}
3146 
3147 		if (rv == KERN_SUCCESS && (!user_unwire ||
3148 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3149 			if (entry->wired_count == 1)
3150 				vm_map_entry_unwire(map, entry);
3151 			else
3152 				entry->wired_count--;
3153 			if (user_unwire)
3154 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3155 		}
3156 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3157 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3158 		KASSERT(entry->wiring_thread == curthread,
3159 		    ("vm_map_unwire: alien wire %p", entry));
3160 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3161 		entry->wiring_thread = NULL;
3162 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3163 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3164 			need_wakeup = true;
3165 		}
3166 		vm_map_try_merge_entries(map, prev_entry, entry);
3167 	}
3168 	vm_map_try_merge_entries(map, prev_entry, entry);
3169 	vm_map_unlock(map);
3170 	if (need_wakeup)
3171 		vm_map_wakeup(map);
3172 	return (rv);
3173 }
3174 
3175 static void
3176 vm_map_wire_user_count_sub(u_long npages)
3177 {
3178 
3179 	atomic_subtract_long(&vm_user_wire_count, npages);
3180 }
3181 
3182 static bool
3183 vm_map_wire_user_count_add(u_long npages)
3184 {
3185 	u_long wired;
3186 
3187 	wired = vm_user_wire_count;
3188 	do {
3189 		if (npages + wired > vm_page_max_user_wired)
3190 			return (false);
3191 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3192 	    npages + wired));
3193 
3194 	return (true);
3195 }
3196 
3197 /*
3198  *	vm_map_wire_entry_failure:
3199  *
3200  *	Handle a wiring failure on the given entry.
3201  *
3202  *	The map should be locked.
3203  */
3204 static void
3205 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3206     vm_offset_t failed_addr)
3207 {
3208 
3209 	VM_MAP_ASSERT_LOCKED(map);
3210 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3211 	    entry->wired_count == 1,
3212 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3213 	KASSERT(failed_addr < entry->end,
3214 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3215 
3216 	/*
3217 	 * If any pages at the start of this entry were successfully wired,
3218 	 * then unwire them.
3219 	 */
3220 	if (failed_addr > entry->start) {
3221 		pmap_unwire(map->pmap, entry->start, failed_addr);
3222 		vm_object_unwire(entry->object.vm_object, entry->offset,
3223 		    failed_addr - entry->start, PQ_ACTIVE);
3224 	}
3225 
3226 	/*
3227 	 * Assign an out-of-range value to represent the failure to wire this
3228 	 * entry.
3229 	 */
3230 	entry->wired_count = -1;
3231 }
3232 
3233 int
3234 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3235 {
3236 	int rv;
3237 
3238 	vm_map_lock(map);
3239 	rv = vm_map_wire_locked(map, start, end, flags);
3240 	vm_map_unlock(map);
3241 	return (rv);
3242 }
3243 
3244 
3245 /*
3246  *	vm_map_wire_locked:
3247  *
3248  *	Implements both kernel and user wiring.  Returns with the map locked,
3249  *	the map lock may be dropped.
3250  */
3251 int
3252 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3253 {
3254 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3255 	vm_offset_t faddr, saved_end, saved_start;
3256 	u_long npages;
3257 	u_int last_timestamp;
3258 	int rv;
3259 	bool holes_ok, need_wakeup, user_wire;
3260 	vm_prot_t prot;
3261 
3262 	VM_MAP_ASSERT_LOCKED(map);
3263 
3264 	if (start == end)
3265 		return (KERN_SUCCESS);
3266 	prot = 0;
3267 	if (flags & VM_MAP_WIRE_WRITE)
3268 		prot |= VM_PROT_WRITE;
3269 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3270 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3271 	VM_MAP_RANGE_CHECK(map, start, end);
3272 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3273 		if (holes_ok)
3274 			first_entry = vm_map_entry_succ(first_entry);
3275 		else
3276 			return (KERN_INVALID_ADDRESS);
3277 	}
3278 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3279 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3280 			/*
3281 			 * We have not yet clipped the entry.
3282 			 */
3283 			next_entry = vm_map_entry_in_transition(map, start,
3284 			    &end, holes_ok, entry);
3285 			if (next_entry == NULL) {
3286 				if (entry == first_entry)
3287 					return (KERN_INVALID_ADDRESS);
3288 				rv = KERN_INVALID_ADDRESS;
3289 				goto done;
3290 			}
3291 			first_entry = (entry == first_entry) ?
3292 			    next_entry : NULL;
3293 			continue;
3294 		}
3295 		vm_map_clip_start(map, entry, start);
3296 		vm_map_clip_end(map, entry, end);
3297 		/*
3298 		 * Mark the entry in case the map lock is released.  (See
3299 		 * above.)
3300 		 */
3301 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3302 		    entry->wiring_thread == NULL,
3303 		    ("owned map entry %p", entry));
3304 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3305 		entry->wiring_thread = curthread;
3306 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3307 		    || (entry->protection & prot) != prot) {
3308 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3309 			if (!holes_ok) {
3310 				end = entry->end;
3311 				rv = KERN_INVALID_ADDRESS;
3312 				goto done;
3313 			}
3314 		} else if (entry->wired_count == 0) {
3315 			entry->wired_count++;
3316 
3317 			npages = atop(entry->end - entry->start);
3318 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3319 				vm_map_wire_entry_failure(map, entry,
3320 				    entry->start);
3321 				end = entry->end;
3322 				rv = KERN_RESOURCE_SHORTAGE;
3323 				goto done;
3324 			}
3325 
3326 			/*
3327 			 * Release the map lock, relying on the in-transition
3328 			 * mark.  Mark the map busy for fork.
3329 			 */
3330 			saved_start = entry->start;
3331 			saved_end = entry->end;
3332 			last_timestamp = map->timestamp;
3333 			vm_map_busy(map);
3334 			vm_map_unlock(map);
3335 
3336 			faddr = saved_start;
3337 			do {
3338 				/*
3339 				 * Simulate a fault to get the page and enter
3340 				 * it into the physical map.
3341 				 */
3342 				if ((rv = vm_fault(map, faddr,
3343 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3344 				    KERN_SUCCESS)
3345 					break;
3346 			} while ((faddr += PAGE_SIZE) < saved_end);
3347 			vm_map_lock(map);
3348 			vm_map_unbusy(map);
3349 			if (last_timestamp + 1 != map->timestamp) {
3350 				/*
3351 				 * Look again for the entry because the map was
3352 				 * modified while it was unlocked.  The entry
3353 				 * may have been clipped, but NOT merged or
3354 				 * deleted.
3355 				 */
3356 				if (!vm_map_lookup_entry(map, saved_start,
3357 				    &next_entry))
3358 					KASSERT(false,
3359 					    ("vm_map_wire: lookup failed"));
3360 				first_entry = (entry == first_entry) ?
3361 				    next_entry : NULL;
3362 				for (entry = next_entry; entry->end < saved_end;
3363 				    entry = vm_map_entry_succ(entry)) {
3364 					/*
3365 					 * In case of failure, handle entries
3366 					 * that were not fully wired here;
3367 					 * fully wired entries are handled
3368 					 * later.
3369 					 */
3370 					if (rv != KERN_SUCCESS &&
3371 					    faddr < entry->end)
3372 						vm_map_wire_entry_failure(map,
3373 						    entry, faddr);
3374 				}
3375 			}
3376 			if (rv != KERN_SUCCESS) {
3377 				vm_map_wire_entry_failure(map, entry, faddr);
3378 				if (user_wire)
3379 					vm_map_wire_user_count_sub(npages);
3380 				end = entry->end;
3381 				goto done;
3382 			}
3383 		} else if (!user_wire ||
3384 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3385 			entry->wired_count++;
3386 		}
3387 		/*
3388 		 * Check the map for holes in the specified region.
3389 		 * If holes_ok was specified, skip this check.
3390 		 */
3391 		next_entry = vm_map_entry_succ(entry);
3392 		if (!holes_ok &&
3393 		    entry->end < end && next_entry->start > entry->end) {
3394 			end = entry->end;
3395 			rv = KERN_INVALID_ADDRESS;
3396 			goto done;
3397 		}
3398 	}
3399 	rv = KERN_SUCCESS;
3400 done:
3401 	need_wakeup = false;
3402 	if (first_entry == NULL &&
3403 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3404 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3405 		prev_entry = first_entry;
3406 		entry = vm_map_entry_succ(first_entry);
3407 	} else {
3408 		prev_entry = vm_map_entry_pred(first_entry);
3409 		entry = first_entry;
3410 	}
3411 	for (; entry->start < end;
3412 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3413 		/*
3414 		 * If holes_ok was specified, an empty
3415 		 * space in the unwired region could have been mapped
3416 		 * while the map lock was dropped for faulting in the
3417 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3418 		 * Moreover, another thread could be simultaneously
3419 		 * wiring this new mapping entry.  Detect these cases
3420 		 * and skip any entries marked as in transition not by us.
3421 		 */
3422 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3423 		    entry->wiring_thread != curthread) {
3424 			KASSERT(holes_ok,
3425 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3426 			continue;
3427 		}
3428 
3429 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3430 			/* do nothing */
3431 		} else if (rv == KERN_SUCCESS) {
3432 			if (user_wire)
3433 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3434 		} else if (entry->wired_count == -1) {
3435 			/*
3436 			 * Wiring failed on this entry.  Thus, unwiring is
3437 			 * unnecessary.
3438 			 */
3439 			entry->wired_count = 0;
3440 		} else if (!user_wire ||
3441 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3442 			/*
3443 			 * Undo the wiring.  Wiring succeeded on this entry
3444 			 * but failed on a later entry.
3445 			 */
3446 			if (entry->wired_count == 1) {
3447 				vm_map_entry_unwire(map, entry);
3448 				if (user_wire)
3449 					vm_map_wire_user_count_sub(
3450 					    atop(entry->end - entry->start));
3451 			} else
3452 				entry->wired_count--;
3453 		}
3454 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3455 		    ("vm_map_wire: in-transition flag missing %p", entry));
3456 		KASSERT(entry->wiring_thread == curthread,
3457 		    ("vm_map_wire: alien wire %p", entry));
3458 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3459 		    MAP_ENTRY_WIRE_SKIPPED);
3460 		entry->wiring_thread = NULL;
3461 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3462 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3463 			need_wakeup = true;
3464 		}
3465 		vm_map_try_merge_entries(map, prev_entry, entry);
3466 	}
3467 	vm_map_try_merge_entries(map, prev_entry, entry);
3468 	if (need_wakeup)
3469 		vm_map_wakeup(map);
3470 	return (rv);
3471 }
3472 
3473 /*
3474  * vm_map_sync
3475  *
3476  * Push any dirty cached pages in the address range to their pager.
3477  * If syncio is TRUE, dirty pages are written synchronously.
3478  * If invalidate is TRUE, any cached pages are freed as well.
3479  *
3480  * If the size of the region from start to end is zero, we are
3481  * supposed to flush all modified pages within the region containing
3482  * start.  Unfortunately, a region can be split or coalesced with
3483  * neighboring regions, making it difficult to determine what the
3484  * original region was.  Therefore, we approximate this requirement by
3485  * flushing the current region containing start.
3486  *
3487  * Returns an error if any part of the specified range is not mapped.
3488  */
3489 int
3490 vm_map_sync(
3491 	vm_map_t map,
3492 	vm_offset_t start,
3493 	vm_offset_t end,
3494 	boolean_t syncio,
3495 	boolean_t invalidate)
3496 {
3497 	vm_map_entry_t entry, first_entry, next_entry;
3498 	vm_size_t size;
3499 	vm_object_t object;
3500 	vm_ooffset_t offset;
3501 	unsigned int last_timestamp;
3502 	boolean_t failed;
3503 
3504 	vm_map_lock_read(map);
3505 	VM_MAP_RANGE_CHECK(map, start, end);
3506 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3507 		vm_map_unlock_read(map);
3508 		return (KERN_INVALID_ADDRESS);
3509 	} else if (start == end) {
3510 		start = first_entry->start;
3511 		end = first_entry->end;
3512 	}
3513 	/*
3514 	 * Make a first pass to check for user-wired memory and holes.
3515 	 */
3516 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3517 		if (invalidate &&
3518 		    (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3519 			vm_map_unlock_read(map);
3520 			return (KERN_INVALID_ARGUMENT);
3521 		}
3522 		next_entry = vm_map_entry_succ(entry);
3523 		if (end > entry->end &&
3524 		    entry->end != next_entry->start) {
3525 			vm_map_unlock_read(map);
3526 			return (KERN_INVALID_ADDRESS);
3527 		}
3528 	}
3529 
3530 	if (invalidate)
3531 		pmap_remove(map->pmap, start, end);
3532 	failed = FALSE;
3533 
3534 	/*
3535 	 * Make a second pass, cleaning/uncaching pages from the indicated
3536 	 * objects as we go.
3537 	 */
3538 	for (entry = first_entry; entry->start < end;) {
3539 		offset = entry->offset + (start - entry->start);
3540 		size = (end <= entry->end ? end : entry->end) - start;
3541 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3542 			vm_map_t smap;
3543 			vm_map_entry_t tentry;
3544 			vm_size_t tsize;
3545 
3546 			smap = entry->object.sub_map;
3547 			vm_map_lock_read(smap);
3548 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3549 			tsize = tentry->end - offset;
3550 			if (tsize < size)
3551 				size = tsize;
3552 			object = tentry->object.vm_object;
3553 			offset = tentry->offset + (offset - tentry->start);
3554 			vm_map_unlock_read(smap);
3555 		} else {
3556 			object = entry->object.vm_object;
3557 		}
3558 		vm_object_reference(object);
3559 		last_timestamp = map->timestamp;
3560 		vm_map_unlock_read(map);
3561 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3562 			failed = TRUE;
3563 		start += size;
3564 		vm_object_deallocate(object);
3565 		vm_map_lock_read(map);
3566 		if (last_timestamp == map->timestamp ||
3567 		    !vm_map_lookup_entry(map, start, &entry))
3568 			entry = vm_map_entry_succ(entry);
3569 	}
3570 
3571 	vm_map_unlock_read(map);
3572 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3573 }
3574 
3575 /*
3576  *	vm_map_entry_unwire:	[ internal use only ]
3577  *
3578  *	Make the region specified by this entry pageable.
3579  *
3580  *	The map in question should be locked.
3581  *	[This is the reason for this routine's existence.]
3582  */
3583 static void
3584 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3585 {
3586 	vm_size_t size;
3587 
3588 	VM_MAP_ASSERT_LOCKED(map);
3589 	KASSERT(entry->wired_count > 0,
3590 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3591 
3592 	size = entry->end - entry->start;
3593 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3594 		vm_map_wire_user_count_sub(atop(size));
3595 	pmap_unwire(map->pmap, entry->start, entry->end);
3596 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3597 	    PQ_ACTIVE);
3598 	entry->wired_count = 0;
3599 }
3600 
3601 static void
3602 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3603 {
3604 
3605 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3606 		vm_object_deallocate(entry->object.vm_object);
3607 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3608 }
3609 
3610 /*
3611  *	vm_map_entry_delete:	[ internal use only ]
3612  *
3613  *	Deallocate the given entry from the target map.
3614  */
3615 static void
3616 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3617 {
3618 	vm_object_t object;
3619 	vm_pindex_t offidxstart, offidxend, count, size1;
3620 	vm_size_t size;
3621 
3622 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3623 	object = entry->object.vm_object;
3624 
3625 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3626 		MPASS(entry->cred == NULL);
3627 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3628 		MPASS(object == NULL);
3629 		vm_map_entry_deallocate(entry, map->system_map);
3630 		return;
3631 	}
3632 
3633 	size = entry->end - entry->start;
3634 	map->size -= size;
3635 
3636 	if (entry->cred != NULL) {
3637 		swap_release_by_cred(size, entry->cred);
3638 		crfree(entry->cred);
3639 	}
3640 
3641 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3642 		entry->object.vm_object = NULL;
3643 	} else if ((object->flags & OBJ_ANON) != 0 ||
3644 	    object == kernel_object) {
3645 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3646 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3647 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3648 		count = atop(size);
3649 		offidxstart = OFF_TO_IDX(entry->offset);
3650 		offidxend = offidxstart + count;
3651 		VM_OBJECT_WLOCK(object);
3652 		if (object->ref_count != 1 &&
3653 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3654 		    object == kernel_object)) {
3655 			vm_object_collapse(object);
3656 
3657 			/*
3658 			 * The option OBJPR_NOTMAPPED can be passed here
3659 			 * because vm_map_delete() already performed
3660 			 * pmap_remove() on the only mapping to this range
3661 			 * of pages.
3662 			 */
3663 			vm_object_page_remove(object, offidxstart, offidxend,
3664 			    OBJPR_NOTMAPPED);
3665 			if (object->type == OBJT_SWAP)
3666 				swap_pager_freespace(object, offidxstart,
3667 				    count);
3668 			if (offidxend >= object->size &&
3669 			    offidxstart < object->size) {
3670 				size1 = object->size;
3671 				object->size = offidxstart;
3672 				if (object->cred != NULL) {
3673 					size1 -= object->size;
3674 					KASSERT(object->charge >= ptoa(size1),
3675 					    ("object %p charge < 0", object));
3676 					swap_release_by_cred(ptoa(size1),
3677 					    object->cred);
3678 					object->charge -= ptoa(size1);
3679 				}
3680 			}
3681 		}
3682 		VM_OBJECT_WUNLOCK(object);
3683 	}
3684 	if (map->system_map)
3685 		vm_map_entry_deallocate(entry, TRUE);
3686 	else {
3687 		entry->defer_next = curthread->td_map_def_user;
3688 		curthread->td_map_def_user = entry;
3689 	}
3690 }
3691 
3692 /*
3693  *	vm_map_delete:	[ internal use only ]
3694  *
3695  *	Deallocates the given address range from the target
3696  *	map.
3697  */
3698 int
3699 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3700 {
3701 	vm_map_entry_t entry;
3702 	vm_map_entry_t first_entry;
3703 
3704 	VM_MAP_ASSERT_LOCKED(map);
3705 	if (start == end)
3706 		return (KERN_SUCCESS);
3707 
3708 	/*
3709 	 * Find the start of the region, and clip it
3710 	 */
3711 	if (!vm_map_lookup_entry(map, start, &first_entry))
3712 		entry = vm_map_entry_succ(first_entry);
3713 	else {
3714 		entry = first_entry;
3715 		vm_map_clip_start(map, entry, start);
3716 	}
3717 
3718 	/*
3719 	 * Step through all entries in this region
3720 	 */
3721 	while (entry->start < end) {
3722 		vm_map_entry_t next;
3723 
3724 		/*
3725 		 * Wait for wiring or unwiring of an entry to complete.
3726 		 * Also wait for any system wirings to disappear on
3727 		 * user maps.
3728 		 */
3729 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3730 		    (vm_map_pmap(map) != kernel_pmap &&
3731 		    vm_map_entry_system_wired_count(entry) != 0)) {
3732 			unsigned int last_timestamp;
3733 			vm_offset_t saved_start;
3734 			vm_map_entry_t tmp_entry;
3735 
3736 			saved_start = entry->start;
3737 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3738 			last_timestamp = map->timestamp;
3739 			(void) vm_map_unlock_and_wait(map, 0);
3740 			vm_map_lock(map);
3741 			if (last_timestamp + 1 != map->timestamp) {
3742 				/*
3743 				 * Look again for the entry because the map was
3744 				 * modified while it was unlocked.
3745 				 * Specifically, the entry may have been
3746 				 * clipped, merged, or deleted.
3747 				 */
3748 				if (!vm_map_lookup_entry(map, saved_start,
3749 							 &tmp_entry))
3750 					entry = vm_map_entry_succ(tmp_entry);
3751 				else {
3752 					entry = tmp_entry;
3753 					vm_map_clip_start(map, entry,
3754 							  saved_start);
3755 				}
3756 			}
3757 			continue;
3758 		}
3759 		vm_map_clip_end(map, entry, end);
3760 
3761 		next = vm_map_entry_succ(entry);
3762 
3763 		/*
3764 		 * Unwire before removing addresses from the pmap; otherwise,
3765 		 * unwiring will put the entries back in the pmap.
3766 		 */
3767 		if (entry->wired_count != 0)
3768 			vm_map_entry_unwire(map, entry);
3769 
3770 		/*
3771 		 * Remove mappings for the pages, but only if the
3772 		 * mappings could exist.  For instance, it does not
3773 		 * make sense to call pmap_remove() for guard entries.
3774 		 */
3775 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3776 		    entry->object.vm_object != NULL)
3777 			pmap_remove(map->pmap, entry->start, entry->end);
3778 
3779 		if (entry->end == map->anon_loc)
3780 			map->anon_loc = entry->start;
3781 
3782 		/*
3783 		 * Delete the entry only after removing all pmap
3784 		 * entries pointing to its pages.  (Otherwise, its
3785 		 * page frames may be reallocated, and any modify bits
3786 		 * will be set in the wrong object!)
3787 		 */
3788 		vm_map_entry_delete(map, entry);
3789 		entry = next;
3790 	}
3791 	return (KERN_SUCCESS);
3792 }
3793 
3794 /*
3795  *	vm_map_remove:
3796  *
3797  *	Remove the given address range from the target map.
3798  *	This is the exported form of vm_map_delete.
3799  */
3800 int
3801 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3802 {
3803 	int result;
3804 
3805 	vm_map_lock(map);
3806 	VM_MAP_RANGE_CHECK(map, start, end);
3807 	result = vm_map_delete(map, start, end);
3808 	vm_map_unlock(map);
3809 	return (result);
3810 }
3811 
3812 /*
3813  *	vm_map_check_protection:
3814  *
3815  *	Assert that the target map allows the specified privilege on the
3816  *	entire address region given.  The entire region must be allocated.
3817  *
3818  *	WARNING!  This code does not and should not check whether the
3819  *	contents of the region is accessible.  For example a smaller file
3820  *	might be mapped into a larger address space.
3821  *
3822  *	NOTE!  This code is also called by munmap().
3823  *
3824  *	The map must be locked.  A read lock is sufficient.
3825  */
3826 boolean_t
3827 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3828 			vm_prot_t protection)
3829 {
3830 	vm_map_entry_t entry;
3831 	vm_map_entry_t tmp_entry;
3832 
3833 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3834 		return (FALSE);
3835 	entry = tmp_entry;
3836 
3837 	while (start < end) {
3838 		/*
3839 		 * No holes allowed!
3840 		 */
3841 		if (start < entry->start)
3842 			return (FALSE);
3843 		/*
3844 		 * Check protection associated with entry.
3845 		 */
3846 		if ((entry->protection & protection) != protection)
3847 			return (FALSE);
3848 		/* go to next entry */
3849 		start = entry->end;
3850 		entry = vm_map_entry_succ(entry);
3851 	}
3852 	return (TRUE);
3853 }
3854 
3855 
3856 /*
3857  *
3858  *	vm_map_copy_swap_object:
3859  *
3860  *	Copies a swap-backed object from an existing map entry to a
3861  *	new one.  Carries forward the swap charge.  May change the
3862  *	src object on return.
3863  */
3864 static void
3865 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3866     vm_offset_t size, vm_ooffset_t *fork_charge)
3867 {
3868 	vm_object_t src_object;
3869 	struct ucred *cred;
3870 	int charged;
3871 
3872 	src_object = src_entry->object.vm_object;
3873 	VM_OBJECT_WLOCK(src_object);
3874 	charged = ENTRY_CHARGED(src_entry);
3875 	vm_object_collapse(src_object);
3876 	if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3877 		vm_object_split(src_entry);
3878 		src_object = src_entry->object.vm_object;
3879 	}
3880 	vm_object_reference_locked(src_object);
3881 	vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3882 	if (src_entry->cred != NULL &&
3883 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3884 		KASSERT(src_object->cred == NULL,
3885 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3886 		     src_object));
3887 		src_object->cred = src_entry->cred;
3888 		src_object->charge = size;
3889 	}
3890 	VM_OBJECT_WUNLOCK(src_object);
3891 	dst_entry->object.vm_object = src_object;
3892 	if (charged) {
3893 		cred = curthread->td_ucred;
3894 		crhold(cred);
3895 		dst_entry->cred = cred;
3896 		*fork_charge += size;
3897 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3898 			crhold(cred);
3899 			src_entry->cred = cred;
3900 			*fork_charge += size;
3901 		}
3902 	}
3903 }
3904 
3905 /*
3906  *	vm_map_copy_entry:
3907  *
3908  *	Copies the contents of the source entry to the destination
3909  *	entry.  The entries *must* be aligned properly.
3910  */
3911 static void
3912 vm_map_copy_entry(
3913 	vm_map_t src_map,
3914 	vm_map_t dst_map,
3915 	vm_map_entry_t src_entry,
3916 	vm_map_entry_t dst_entry,
3917 	vm_ooffset_t *fork_charge)
3918 {
3919 	vm_object_t src_object;
3920 	vm_map_entry_t fake_entry;
3921 	vm_offset_t size;
3922 
3923 	VM_MAP_ASSERT_LOCKED(dst_map);
3924 
3925 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3926 		return;
3927 
3928 	if (src_entry->wired_count == 0 ||
3929 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3930 		/*
3931 		 * If the source entry is marked needs_copy, it is already
3932 		 * write-protected.
3933 		 */
3934 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3935 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3936 			pmap_protect(src_map->pmap,
3937 			    src_entry->start,
3938 			    src_entry->end,
3939 			    src_entry->protection & ~VM_PROT_WRITE);
3940 		}
3941 
3942 		/*
3943 		 * Make a copy of the object.
3944 		 */
3945 		size = src_entry->end - src_entry->start;
3946 		if ((src_object = src_entry->object.vm_object) != NULL) {
3947 			if (src_object->type == OBJT_DEFAULT ||
3948 			    src_object->type == OBJT_SWAP) {
3949 				vm_map_copy_swap_object(src_entry, dst_entry,
3950 				    size, fork_charge);
3951 				/* May have split/collapsed, reload obj. */
3952 				src_object = src_entry->object.vm_object;
3953 			} else {
3954 				vm_object_reference(src_object);
3955 				dst_entry->object.vm_object = src_object;
3956 			}
3957 			src_entry->eflags |= MAP_ENTRY_COW |
3958 			    MAP_ENTRY_NEEDS_COPY;
3959 			dst_entry->eflags |= MAP_ENTRY_COW |
3960 			    MAP_ENTRY_NEEDS_COPY;
3961 			dst_entry->offset = src_entry->offset;
3962 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3963 				/*
3964 				 * MAP_ENTRY_WRITECNT cannot
3965 				 * indicate write reference from
3966 				 * src_entry, since the entry is
3967 				 * marked as needs copy.  Allocate a
3968 				 * fake entry that is used to
3969 				 * decrement object->un_pager writecount
3970 				 * at the appropriate time.  Attach
3971 				 * fake_entry to the deferred list.
3972 				 */
3973 				fake_entry = vm_map_entry_create(dst_map);
3974 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3975 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3976 				vm_object_reference(src_object);
3977 				fake_entry->object.vm_object = src_object;
3978 				fake_entry->start = src_entry->start;
3979 				fake_entry->end = src_entry->end;
3980 				fake_entry->defer_next =
3981 				    curthread->td_map_def_user;
3982 				curthread->td_map_def_user = fake_entry;
3983 			}
3984 
3985 			pmap_copy(dst_map->pmap, src_map->pmap,
3986 			    dst_entry->start, dst_entry->end - dst_entry->start,
3987 			    src_entry->start);
3988 		} else {
3989 			dst_entry->object.vm_object = NULL;
3990 			dst_entry->offset = 0;
3991 			if (src_entry->cred != NULL) {
3992 				dst_entry->cred = curthread->td_ucred;
3993 				crhold(dst_entry->cred);
3994 				*fork_charge += size;
3995 			}
3996 		}
3997 	} else {
3998 		/*
3999 		 * We don't want to make writeable wired pages copy-on-write.
4000 		 * Immediately copy these pages into the new map by simulating
4001 		 * page faults.  The new pages are pageable.
4002 		 */
4003 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4004 		    fork_charge);
4005 	}
4006 }
4007 
4008 /*
4009  * vmspace_map_entry_forked:
4010  * Update the newly-forked vmspace each time a map entry is inherited
4011  * or copied.  The values for vm_dsize and vm_tsize are approximate
4012  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4013  */
4014 static void
4015 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4016     vm_map_entry_t entry)
4017 {
4018 	vm_size_t entrysize;
4019 	vm_offset_t newend;
4020 
4021 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4022 		return;
4023 	entrysize = entry->end - entry->start;
4024 	vm2->vm_map.size += entrysize;
4025 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4026 		vm2->vm_ssize += btoc(entrysize);
4027 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4028 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4029 		newend = MIN(entry->end,
4030 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4031 		vm2->vm_dsize += btoc(newend - entry->start);
4032 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4033 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4034 		newend = MIN(entry->end,
4035 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4036 		vm2->vm_tsize += btoc(newend - entry->start);
4037 	}
4038 }
4039 
4040 /*
4041  * vmspace_fork:
4042  * Create a new process vmspace structure and vm_map
4043  * based on those of an existing process.  The new map
4044  * is based on the old map, according to the inheritance
4045  * values on the regions in that map.
4046  *
4047  * XXX It might be worth coalescing the entries added to the new vmspace.
4048  *
4049  * The source map must not be locked.
4050  */
4051 struct vmspace *
4052 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4053 {
4054 	struct vmspace *vm2;
4055 	vm_map_t new_map, old_map;
4056 	vm_map_entry_t new_entry, old_entry;
4057 	vm_object_t object;
4058 	int error, locked;
4059 	vm_inherit_t inh;
4060 
4061 	old_map = &vm1->vm_map;
4062 	/* Copy immutable fields of vm1 to vm2. */
4063 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4064 	    pmap_pinit);
4065 	if (vm2 == NULL)
4066 		return (NULL);
4067 
4068 	vm2->vm_taddr = vm1->vm_taddr;
4069 	vm2->vm_daddr = vm1->vm_daddr;
4070 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4071 	vm_map_lock(old_map);
4072 	if (old_map->busy)
4073 		vm_map_wait_busy(old_map);
4074 	new_map = &vm2->vm_map;
4075 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4076 	KASSERT(locked, ("vmspace_fork: lock failed"));
4077 
4078 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4079 	if (error != 0) {
4080 		sx_xunlock(&old_map->lock);
4081 		sx_xunlock(&new_map->lock);
4082 		vm_map_process_deferred();
4083 		vmspace_free(vm2);
4084 		return (NULL);
4085 	}
4086 
4087 	new_map->anon_loc = old_map->anon_loc;
4088 
4089 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4090 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4091 			panic("vm_map_fork: encountered a submap");
4092 
4093 		inh = old_entry->inheritance;
4094 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4095 		    inh != VM_INHERIT_NONE)
4096 			inh = VM_INHERIT_COPY;
4097 
4098 		switch (inh) {
4099 		case VM_INHERIT_NONE:
4100 			break;
4101 
4102 		case VM_INHERIT_SHARE:
4103 			/*
4104 			 * Clone the entry, creating the shared object if
4105 			 * necessary.
4106 			 */
4107 			object = old_entry->object.vm_object;
4108 			if (object == NULL) {
4109 				vm_map_entry_back(old_entry);
4110 				object = old_entry->object.vm_object;
4111 			}
4112 
4113 			/*
4114 			 * Add the reference before calling vm_object_shadow
4115 			 * to insure that a shadow object is created.
4116 			 */
4117 			vm_object_reference(object);
4118 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4119 				vm_object_shadow(&old_entry->object.vm_object,
4120 				    &old_entry->offset,
4121 				    old_entry->end - old_entry->start,
4122 				    old_entry->cred,
4123 				    /* Transfer the second reference too. */
4124 				    true);
4125 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4126 				old_entry->cred = NULL;
4127 				vm_object_reference(
4128 				    old_entry->object.vm_object);
4129 
4130 				/*
4131 				 * As in vm_map_merged_neighbor_dispose(),
4132 				 * the vnode lock will not be acquired in
4133 				 * this call to vm_object_deallocate().
4134 				 */
4135 				vm_object_deallocate(object);
4136 				object = old_entry->object.vm_object;
4137 			} else {
4138 				VM_OBJECT_WLOCK(object);
4139 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4140 				if (old_entry->cred != NULL) {
4141 					KASSERT(object->cred == NULL,
4142 					    ("vmspace_fork both cred"));
4143 					object->cred = old_entry->cred;
4144 					object->charge = old_entry->end -
4145 					    old_entry->start;
4146 					old_entry->cred = NULL;
4147 				}
4148 
4149 				/*
4150 				 * Assert the correct state of the vnode
4151 				 * v_writecount while the object is locked, to
4152 				 * not relock it later for the assertion
4153 				 * correctness.
4154 				 */
4155 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4156 				    object->type == OBJT_VNODE) {
4157 					KASSERT(((struct vnode *)object->
4158 					    handle)->v_writecount > 0,
4159 					    ("vmspace_fork: v_writecount %p",
4160 					    object));
4161 					KASSERT(object->un_pager.vnp.
4162 					    writemappings > 0,
4163 					    ("vmspace_fork: vnp.writecount %p",
4164 					    object));
4165 				}
4166 				VM_OBJECT_WUNLOCK(object);
4167 			}
4168 
4169 			/*
4170 			 * Clone the entry, referencing the shared object.
4171 			 */
4172 			new_entry = vm_map_entry_create(new_map);
4173 			*new_entry = *old_entry;
4174 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4175 			    MAP_ENTRY_IN_TRANSITION);
4176 			new_entry->wiring_thread = NULL;
4177 			new_entry->wired_count = 0;
4178 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4179 				vm_pager_update_writecount(object,
4180 				    new_entry->start, new_entry->end);
4181 			}
4182 			vm_map_entry_set_vnode_text(new_entry, true);
4183 
4184 			/*
4185 			 * Insert the entry into the new map -- we know we're
4186 			 * inserting at the end of the new map.
4187 			 */
4188 			vm_map_entry_link(new_map, new_entry);
4189 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4190 
4191 			/*
4192 			 * Update the physical map
4193 			 */
4194 			pmap_copy(new_map->pmap, old_map->pmap,
4195 			    new_entry->start,
4196 			    (old_entry->end - old_entry->start),
4197 			    old_entry->start);
4198 			break;
4199 
4200 		case VM_INHERIT_COPY:
4201 			/*
4202 			 * Clone the entry and link into the map.
4203 			 */
4204 			new_entry = vm_map_entry_create(new_map);
4205 			*new_entry = *old_entry;
4206 			/*
4207 			 * Copied entry is COW over the old object.
4208 			 */
4209 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4210 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4211 			new_entry->wiring_thread = NULL;
4212 			new_entry->wired_count = 0;
4213 			new_entry->object.vm_object = NULL;
4214 			new_entry->cred = NULL;
4215 			vm_map_entry_link(new_map, new_entry);
4216 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4217 			vm_map_copy_entry(old_map, new_map, old_entry,
4218 			    new_entry, fork_charge);
4219 			vm_map_entry_set_vnode_text(new_entry, true);
4220 			break;
4221 
4222 		case VM_INHERIT_ZERO:
4223 			/*
4224 			 * Create a new anonymous mapping entry modelled from
4225 			 * the old one.
4226 			 */
4227 			new_entry = vm_map_entry_create(new_map);
4228 			memset(new_entry, 0, sizeof(*new_entry));
4229 
4230 			new_entry->start = old_entry->start;
4231 			new_entry->end = old_entry->end;
4232 			new_entry->eflags = old_entry->eflags &
4233 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4234 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4235 			new_entry->protection = old_entry->protection;
4236 			new_entry->max_protection = old_entry->max_protection;
4237 			new_entry->inheritance = VM_INHERIT_ZERO;
4238 
4239 			vm_map_entry_link(new_map, new_entry);
4240 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4241 
4242 			new_entry->cred = curthread->td_ucred;
4243 			crhold(new_entry->cred);
4244 			*fork_charge += (new_entry->end - new_entry->start);
4245 
4246 			break;
4247 		}
4248 	}
4249 	/*
4250 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4251 	 * map entries, which cannot be done until both old_map and
4252 	 * new_map locks are released.
4253 	 */
4254 	sx_xunlock(&old_map->lock);
4255 	sx_xunlock(&new_map->lock);
4256 	vm_map_process_deferred();
4257 
4258 	return (vm2);
4259 }
4260 
4261 /*
4262  * Create a process's stack for exec_new_vmspace().  This function is never
4263  * asked to wire the newly created stack.
4264  */
4265 int
4266 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4267     vm_prot_t prot, vm_prot_t max, int cow)
4268 {
4269 	vm_size_t growsize, init_ssize;
4270 	rlim_t vmemlim;
4271 	int rv;
4272 
4273 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4274 	growsize = sgrowsiz;
4275 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4276 	vm_map_lock(map);
4277 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4278 	/* If we would blow our VMEM resource limit, no go */
4279 	if (map->size + init_ssize > vmemlim) {
4280 		rv = KERN_NO_SPACE;
4281 		goto out;
4282 	}
4283 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4284 	    max, cow);
4285 out:
4286 	vm_map_unlock(map);
4287 	return (rv);
4288 }
4289 
4290 static int stack_guard_page = 1;
4291 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4292     &stack_guard_page, 0,
4293     "Specifies the number of guard pages for a stack that grows");
4294 
4295 static int
4296 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4297     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4298 {
4299 	vm_map_entry_t new_entry, prev_entry;
4300 	vm_offset_t bot, gap_bot, gap_top, top;
4301 	vm_size_t init_ssize, sgp;
4302 	int orient, rv;
4303 
4304 	/*
4305 	 * The stack orientation is piggybacked with the cow argument.
4306 	 * Extract it into orient and mask the cow argument so that we
4307 	 * don't pass it around further.
4308 	 */
4309 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4310 	KASSERT(orient != 0, ("No stack grow direction"));
4311 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4312 	    ("bi-dir stack"));
4313 
4314 	if (addrbos < vm_map_min(map) ||
4315 	    addrbos + max_ssize > vm_map_max(map) ||
4316 	    addrbos + max_ssize <= addrbos)
4317 		return (KERN_INVALID_ADDRESS);
4318 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4319 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4320 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4321 	if (sgp >= max_ssize)
4322 		return (KERN_INVALID_ARGUMENT);
4323 
4324 	init_ssize = growsize;
4325 	if (max_ssize < init_ssize + sgp)
4326 		init_ssize = max_ssize - sgp;
4327 
4328 	/* If addr is already mapped, no go */
4329 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4330 		return (KERN_NO_SPACE);
4331 
4332 	/*
4333 	 * If we can't accommodate max_ssize in the current mapping, no go.
4334 	 */
4335 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4336 		return (KERN_NO_SPACE);
4337 
4338 	/*
4339 	 * We initially map a stack of only init_ssize.  We will grow as
4340 	 * needed later.  Depending on the orientation of the stack (i.e.
4341 	 * the grow direction) we either map at the top of the range, the
4342 	 * bottom of the range or in the middle.
4343 	 *
4344 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4345 	 * and cow to be 0.  Possibly we should eliminate these as input
4346 	 * parameters, and just pass these values here in the insert call.
4347 	 */
4348 	if (orient == MAP_STACK_GROWS_DOWN) {
4349 		bot = addrbos + max_ssize - init_ssize;
4350 		top = bot + init_ssize;
4351 		gap_bot = addrbos;
4352 		gap_top = bot;
4353 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4354 		bot = addrbos;
4355 		top = bot + init_ssize;
4356 		gap_bot = top;
4357 		gap_top = addrbos + max_ssize;
4358 	}
4359 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4360 	if (rv != KERN_SUCCESS)
4361 		return (rv);
4362 	new_entry = vm_map_entry_succ(prev_entry);
4363 	KASSERT(new_entry->end == top || new_entry->start == bot,
4364 	    ("Bad entry start/end for new stack entry"));
4365 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4366 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4367 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4368 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4369 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4370 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4371 	if (gap_bot == gap_top)
4372 		return (KERN_SUCCESS);
4373 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4374 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4375 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4376 	if (rv == KERN_SUCCESS) {
4377 		/*
4378 		 * Gap can never successfully handle a fault, so
4379 		 * read-ahead logic is never used for it.  Re-use
4380 		 * next_read of the gap entry to store
4381 		 * stack_guard_page for vm_map_growstack().
4382 		 */
4383 		if (orient == MAP_STACK_GROWS_DOWN)
4384 			vm_map_entry_pred(new_entry)->next_read = sgp;
4385 		else
4386 			vm_map_entry_succ(new_entry)->next_read = sgp;
4387 	} else {
4388 		(void)vm_map_delete(map, bot, top);
4389 	}
4390 	return (rv);
4391 }
4392 
4393 /*
4394  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4395  * successfully grow the stack.
4396  */
4397 static int
4398 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4399 {
4400 	vm_map_entry_t stack_entry;
4401 	struct proc *p;
4402 	struct vmspace *vm;
4403 	struct ucred *cred;
4404 	vm_offset_t gap_end, gap_start, grow_start;
4405 	vm_size_t grow_amount, guard, max_grow;
4406 	rlim_t lmemlim, stacklim, vmemlim;
4407 	int rv, rv1;
4408 	bool gap_deleted, grow_down, is_procstack;
4409 #ifdef notyet
4410 	uint64_t limit;
4411 #endif
4412 #ifdef RACCT
4413 	int error;
4414 #endif
4415 
4416 	p = curproc;
4417 	vm = p->p_vmspace;
4418 
4419 	/*
4420 	 * Disallow stack growth when the access is performed by a
4421 	 * debugger or AIO daemon.  The reason is that the wrong
4422 	 * resource limits are applied.
4423 	 */
4424 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4425 	    p->p_textvp == NULL))
4426 		return (KERN_FAILURE);
4427 
4428 	MPASS(!map->system_map);
4429 
4430 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4431 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4432 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4433 retry:
4434 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4435 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4436 		return (KERN_FAILURE);
4437 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4438 		return (KERN_SUCCESS);
4439 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4440 		stack_entry = vm_map_entry_succ(gap_entry);
4441 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4442 		    stack_entry->start != gap_entry->end)
4443 			return (KERN_FAILURE);
4444 		grow_amount = round_page(stack_entry->start - addr);
4445 		grow_down = true;
4446 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4447 		stack_entry = vm_map_entry_pred(gap_entry);
4448 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4449 		    stack_entry->end != gap_entry->start)
4450 			return (KERN_FAILURE);
4451 		grow_amount = round_page(addr + 1 - stack_entry->end);
4452 		grow_down = false;
4453 	} else {
4454 		return (KERN_FAILURE);
4455 	}
4456 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4457 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4458 	    gap_entry->next_read;
4459 	max_grow = gap_entry->end - gap_entry->start;
4460 	if (guard > max_grow)
4461 		return (KERN_NO_SPACE);
4462 	max_grow -= guard;
4463 	if (grow_amount > max_grow)
4464 		return (KERN_NO_SPACE);
4465 
4466 	/*
4467 	 * If this is the main process stack, see if we're over the stack
4468 	 * limit.
4469 	 */
4470 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4471 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4472 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4473 		return (KERN_NO_SPACE);
4474 
4475 #ifdef RACCT
4476 	if (racct_enable) {
4477 		PROC_LOCK(p);
4478 		if (is_procstack && racct_set(p, RACCT_STACK,
4479 		    ctob(vm->vm_ssize) + grow_amount)) {
4480 			PROC_UNLOCK(p);
4481 			return (KERN_NO_SPACE);
4482 		}
4483 		PROC_UNLOCK(p);
4484 	}
4485 #endif
4486 
4487 	grow_amount = roundup(grow_amount, sgrowsiz);
4488 	if (grow_amount > max_grow)
4489 		grow_amount = max_grow;
4490 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4491 		grow_amount = trunc_page((vm_size_t)stacklim) -
4492 		    ctob(vm->vm_ssize);
4493 	}
4494 
4495 #ifdef notyet
4496 	PROC_LOCK(p);
4497 	limit = racct_get_available(p, RACCT_STACK);
4498 	PROC_UNLOCK(p);
4499 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4500 		grow_amount = limit - ctob(vm->vm_ssize);
4501 #endif
4502 
4503 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4504 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4505 			rv = KERN_NO_SPACE;
4506 			goto out;
4507 		}
4508 #ifdef RACCT
4509 		if (racct_enable) {
4510 			PROC_LOCK(p);
4511 			if (racct_set(p, RACCT_MEMLOCK,
4512 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4513 				PROC_UNLOCK(p);
4514 				rv = KERN_NO_SPACE;
4515 				goto out;
4516 			}
4517 			PROC_UNLOCK(p);
4518 		}
4519 #endif
4520 	}
4521 
4522 	/* If we would blow our VMEM resource limit, no go */
4523 	if (map->size + grow_amount > vmemlim) {
4524 		rv = KERN_NO_SPACE;
4525 		goto out;
4526 	}
4527 #ifdef RACCT
4528 	if (racct_enable) {
4529 		PROC_LOCK(p);
4530 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4531 			PROC_UNLOCK(p);
4532 			rv = KERN_NO_SPACE;
4533 			goto out;
4534 		}
4535 		PROC_UNLOCK(p);
4536 	}
4537 #endif
4538 
4539 	if (vm_map_lock_upgrade(map)) {
4540 		gap_entry = NULL;
4541 		vm_map_lock_read(map);
4542 		goto retry;
4543 	}
4544 
4545 	if (grow_down) {
4546 		grow_start = gap_entry->end - grow_amount;
4547 		if (gap_entry->start + grow_amount == gap_entry->end) {
4548 			gap_start = gap_entry->start;
4549 			gap_end = gap_entry->end;
4550 			vm_map_entry_delete(map, gap_entry);
4551 			gap_deleted = true;
4552 		} else {
4553 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4554 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4555 			gap_deleted = false;
4556 		}
4557 		rv = vm_map_insert(map, NULL, 0, grow_start,
4558 		    grow_start + grow_amount,
4559 		    stack_entry->protection, stack_entry->max_protection,
4560 		    MAP_STACK_GROWS_DOWN);
4561 		if (rv != KERN_SUCCESS) {
4562 			if (gap_deleted) {
4563 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4564 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4565 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4566 				MPASS(rv1 == KERN_SUCCESS);
4567 			} else
4568 				vm_map_entry_resize(map, gap_entry,
4569 				    grow_amount);
4570 		}
4571 	} else {
4572 		grow_start = stack_entry->end;
4573 		cred = stack_entry->cred;
4574 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4575 			cred = stack_entry->object.vm_object->cred;
4576 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4577 			rv = KERN_NO_SPACE;
4578 		/* Grow the underlying object if applicable. */
4579 		else if (stack_entry->object.vm_object == NULL ||
4580 		    vm_object_coalesce(stack_entry->object.vm_object,
4581 		    stack_entry->offset,
4582 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4583 		    grow_amount, cred != NULL)) {
4584 			if (gap_entry->start + grow_amount == gap_entry->end) {
4585 				vm_map_entry_delete(map, gap_entry);
4586 				vm_map_entry_resize(map, stack_entry,
4587 				    grow_amount);
4588 			} else {
4589 				gap_entry->start += grow_amount;
4590 				stack_entry->end += grow_amount;
4591 			}
4592 			map->size += grow_amount;
4593 			rv = KERN_SUCCESS;
4594 		} else
4595 			rv = KERN_FAILURE;
4596 	}
4597 	if (rv == KERN_SUCCESS && is_procstack)
4598 		vm->vm_ssize += btoc(grow_amount);
4599 
4600 	/*
4601 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4602 	 */
4603 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4604 		rv = vm_map_wire_locked(map, grow_start,
4605 		    grow_start + grow_amount,
4606 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4607 	}
4608 	vm_map_lock_downgrade(map);
4609 
4610 out:
4611 #ifdef RACCT
4612 	if (racct_enable && rv != KERN_SUCCESS) {
4613 		PROC_LOCK(p);
4614 		error = racct_set(p, RACCT_VMEM, map->size);
4615 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4616 		if (!old_mlock) {
4617 			error = racct_set(p, RACCT_MEMLOCK,
4618 			    ptoa(pmap_wired_count(map->pmap)));
4619 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4620 		}
4621 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4622 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4623 		PROC_UNLOCK(p);
4624 	}
4625 #endif
4626 
4627 	return (rv);
4628 }
4629 
4630 /*
4631  * Unshare the specified VM space for exec.  If other processes are
4632  * mapped to it, then create a new one.  The new vmspace is null.
4633  */
4634 int
4635 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4636 {
4637 	struct vmspace *oldvmspace = p->p_vmspace;
4638 	struct vmspace *newvmspace;
4639 
4640 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4641 	    ("vmspace_exec recursed"));
4642 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4643 	if (newvmspace == NULL)
4644 		return (ENOMEM);
4645 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4646 	/*
4647 	 * This code is written like this for prototype purposes.  The
4648 	 * goal is to avoid running down the vmspace here, but let the
4649 	 * other process's that are still using the vmspace to finally
4650 	 * run it down.  Even though there is little or no chance of blocking
4651 	 * here, it is a good idea to keep this form for future mods.
4652 	 */
4653 	PROC_VMSPACE_LOCK(p);
4654 	p->p_vmspace = newvmspace;
4655 	PROC_VMSPACE_UNLOCK(p);
4656 	if (p == curthread->td_proc)
4657 		pmap_activate(curthread);
4658 	curthread->td_pflags |= TDP_EXECVMSPC;
4659 	return (0);
4660 }
4661 
4662 /*
4663  * Unshare the specified VM space for forcing COW.  This
4664  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4665  */
4666 int
4667 vmspace_unshare(struct proc *p)
4668 {
4669 	struct vmspace *oldvmspace = p->p_vmspace;
4670 	struct vmspace *newvmspace;
4671 	vm_ooffset_t fork_charge;
4672 
4673 	if (oldvmspace->vm_refcnt == 1)
4674 		return (0);
4675 	fork_charge = 0;
4676 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4677 	if (newvmspace == NULL)
4678 		return (ENOMEM);
4679 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4680 		vmspace_free(newvmspace);
4681 		return (ENOMEM);
4682 	}
4683 	PROC_VMSPACE_LOCK(p);
4684 	p->p_vmspace = newvmspace;
4685 	PROC_VMSPACE_UNLOCK(p);
4686 	if (p == curthread->td_proc)
4687 		pmap_activate(curthread);
4688 	vmspace_free(oldvmspace);
4689 	return (0);
4690 }
4691 
4692 /*
4693  *	vm_map_lookup:
4694  *
4695  *	Finds the VM object, offset, and
4696  *	protection for a given virtual address in the
4697  *	specified map, assuming a page fault of the
4698  *	type specified.
4699  *
4700  *	Leaves the map in question locked for read; return
4701  *	values are guaranteed until a vm_map_lookup_done
4702  *	call is performed.  Note that the map argument
4703  *	is in/out; the returned map must be used in
4704  *	the call to vm_map_lookup_done.
4705  *
4706  *	A handle (out_entry) is returned for use in
4707  *	vm_map_lookup_done, to make that fast.
4708  *
4709  *	If a lookup is requested with "write protection"
4710  *	specified, the map may be changed to perform virtual
4711  *	copying operations, although the data referenced will
4712  *	remain the same.
4713  */
4714 int
4715 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4716 	      vm_offset_t vaddr,
4717 	      vm_prot_t fault_typea,
4718 	      vm_map_entry_t *out_entry,	/* OUT */
4719 	      vm_object_t *object,		/* OUT */
4720 	      vm_pindex_t *pindex,		/* OUT */
4721 	      vm_prot_t *out_prot,		/* OUT */
4722 	      boolean_t *wired)			/* OUT */
4723 {
4724 	vm_map_entry_t entry;
4725 	vm_map_t map = *var_map;
4726 	vm_prot_t prot;
4727 	vm_prot_t fault_type;
4728 	vm_object_t eobject;
4729 	vm_size_t size;
4730 	struct ucred *cred;
4731 
4732 RetryLookup:
4733 
4734 	vm_map_lock_read(map);
4735 
4736 RetryLookupLocked:
4737 	/*
4738 	 * Lookup the faulting address.
4739 	 */
4740 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4741 		vm_map_unlock_read(map);
4742 		return (KERN_INVALID_ADDRESS);
4743 	}
4744 
4745 	entry = *out_entry;
4746 
4747 	/*
4748 	 * Handle submaps.
4749 	 */
4750 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4751 		vm_map_t old_map = map;
4752 
4753 		*var_map = map = entry->object.sub_map;
4754 		vm_map_unlock_read(old_map);
4755 		goto RetryLookup;
4756 	}
4757 
4758 	/*
4759 	 * Check whether this task is allowed to have this page.
4760 	 */
4761 	prot = entry->protection;
4762 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4763 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4764 		if (prot == VM_PROT_NONE && map != kernel_map &&
4765 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4766 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4767 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4768 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4769 			goto RetryLookupLocked;
4770 	}
4771 	fault_type = fault_typea & VM_PROT_ALL;
4772 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4773 		vm_map_unlock_read(map);
4774 		return (KERN_PROTECTION_FAILURE);
4775 	}
4776 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4777 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4778 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4779 	    ("entry %p flags %x", entry, entry->eflags));
4780 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4781 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4782 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4783 		vm_map_unlock_read(map);
4784 		return (KERN_PROTECTION_FAILURE);
4785 	}
4786 
4787 	/*
4788 	 * If this page is not pageable, we have to get it for all possible
4789 	 * accesses.
4790 	 */
4791 	*wired = (entry->wired_count != 0);
4792 	if (*wired)
4793 		fault_type = entry->protection;
4794 	size = entry->end - entry->start;
4795 
4796 	/*
4797 	 * If the entry was copy-on-write, we either ...
4798 	 */
4799 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4800 		/*
4801 		 * If we want to write the page, we may as well handle that
4802 		 * now since we've got the map locked.
4803 		 *
4804 		 * If we don't need to write the page, we just demote the
4805 		 * permissions allowed.
4806 		 */
4807 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4808 		    (fault_typea & VM_PROT_COPY) != 0) {
4809 			/*
4810 			 * Make a new object, and place it in the object
4811 			 * chain.  Note that no new references have appeared
4812 			 * -- one just moved from the map to the new
4813 			 * object.
4814 			 */
4815 			if (vm_map_lock_upgrade(map))
4816 				goto RetryLookup;
4817 
4818 			if (entry->cred == NULL) {
4819 				/*
4820 				 * The debugger owner is charged for
4821 				 * the memory.
4822 				 */
4823 				cred = curthread->td_ucred;
4824 				crhold(cred);
4825 				if (!swap_reserve_by_cred(size, cred)) {
4826 					crfree(cred);
4827 					vm_map_unlock(map);
4828 					return (KERN_RESOURCE_SHORTAGE);
4829 				}
4830 				entry->cred = cred;
4831 			}
4832 			eobject = entry->object.vm_object;
4833 			vm_object_shadow(&entry->object.vm_object,
4834 			    &entry->offset, size, entry->cred, false);
4835 			if (eobject == entry->object.vm_object) {
4836 				/*
4837 				 * The object was not shadowed.
4838 				 */
4839 				swap_release_by_cred(size, entry->cred);
4840 				crfree(entry->cred);
4841 			}
4842 			entry->cred = NULL;
4843 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4844 
4845 			vm_map_lock_downgrade(map);
4846 		} else {
4847 			/*
4848 			 * We're attempting to read a copy-on-write page --
4849 			 * don't allow writes.
4850 			 */
4851 			prot &= ~VM_PROT_WRITE;
4852 		}
4853 	}
4854 
4855 	/*
4856 	 * Create an object if necessary.
4857 	 */
4858 	if (entry->object.vm_object == NULL && !map->system_map) {
4859 		if (vm_map_lock_upgrade(map))
4860 			goto RetryLookup;
4861 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
4862 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
4863 		entry->offset = 0;
4864 		entry->cred = NULL;
4865 		vm_map_lock_downgrade(map);
4866 	}
4867 
4868 	/*
4869 	 * Return the object/offset from this entry.  If the entry was
4870 	 * copy-on-write or empty, it has been fixed up.
4871 	 */
4872 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4873 	*object = entry->object.vm_object;
4874 
4875 	*out_prot = prot;
4876 	return (KERN_SUCCESS);
4877 }
4878 
4879 /*
4880  *	vm_map_lookup_locked:
4881  *
4882  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4883  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4884  */
4885 int
4886 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4887 		     vm_offset_t vaddr,
4888 		     vm_prot_t fault_typea,
4889 		     vm_map_entry_t *out_entry,	/* OUT */
4890 		     vm_object_t *object,	/* OUT */
4891 		     vm_pindex_t *pindex,	/* OUT */
4892 		     vm_prot_t *out_prot,	/* OUT */
4893 		     boolean_t *wired)		/* OUT */
4894 {
4895 	vm_map_entry_t entry;
4896 	vm_map_t map = *var_map;
4897 	vm_prot_t prot;
4898 	vm_prot_t fault_type = fault_typea;
4899 
4900 	/*
4901 	 * Lookup the faulting address.
4902 	 */
4903 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4904 		return (KERN_INVALID_ADDRESS);
4905 
4906 	entry = *out_entry;
4907 
4908 	/*
4909 	 * Fail if the entry refers to a submap.
4910 	 */
4911 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4912 		return (KERN_FAILURE);
4913 
4914 	/*
4915 	 * Check whether this task is allowed to have this page.
4916 	 */
4917 	prot = entry->protection;
4918 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4919 	if ((fault_type & prot) != fault_type)
4920 		return (KERN_PROTECTION_FAILURE);
4921 
4922 	/*
4923 	 * If this page is not pageable, we have to get it for all possible
4924 	 * accesses.
4925 	 */
4926 	*wired = (entry->wired_count != 0);
4927 	if (*wired)
4928 		fault_type = entry->protection;
4929 
4930 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4931 		/*
4932 		 * Fail if the entry was copy-on-write for a write fault.
4933 		 */
4934 		if (fault_type & VM_PROT_WRITE)
4935 			return (KERN_FAILURE);
4936 		/*
4937 		 * We're attempting to read a copy-on-write page --
4938 		 * don't allow writes.
4939 		 */
4940 		prot &= ~VM_PROT_WRITE;
4941 	}
4942 
4943 	/*
4944 	 * Fail if an object should be created.
4945 	 */
4946 	if (entry->object.vm_object == NULL && !map->system_map)
4947 		return (KERN_FAILURE);
4948 
4949 	/*
4950 	 * Return the object/offset from this entry.  If the entry was
4951 	 * copy-on-write or empty, it has been fixed up.
4952 	 */
4953 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4954 	*object = entry->object.vm_object;
4955 
4956 	*out_prot = prot;
4957 	return (KERN_SUCCESS);
4958 }
4959 
4960 /*
4961  *	vm_map_lookup_done:
4962  *
4963  *	Releases locks acquired by a vm_map_lookup
4964  *	(according to the handle returned by that lookup).
4965  */
4966 void
4967 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4968 {
4969 	/*
4970 	 * Unlock the main-level map
4971 	 */
4972 	vm_map_unlock_read(map);
4973 }
4974 
4975 vm_offset_t
4976 vm_map_max_KBI(const struct vm_map *map)
4977 {
4978 
4979 	return (vm_map_max(map));
4980 }
4981 
4982 vm_offset_t
4983 vm_map_min_KBI(const struct vm_map *map)
4984 {
4985 
4986 	return (vm_map_min(map));
4987 }
4988 
4989 pmap_t
4990 vm_map_pmap_KBI(vm_map_t map)
4991 {
4992 
4993 	return (map->pmap);
4994 }
4995 
4996 #ifdef INVARIANTS
4997 static void
4998 _vm_map_assert_consistent(vm_map_t map, int check)
4999 {
5000 	vm_map_entry_t entry, prev;
5001 	vm_map_entry_t cur, header, lbound, ubound;
5002 	vm_size_t max_left, max_right;
5003 
5004 #ifdef DIAGNOSTIC
5005 	++map->nupdates;
5006 #endif
5007 	if (enable_vmmap_check != check)
5008 		return;
5009 
5010 	header = prev = &map->header;
5011 	VM_MAP_ENTRY_FOREACH(entry, map) {
5012 		KASSERT(prev->end <= entry->start,
5013 		    ("map %p prev->end = %jx, start = %jx", map,
5014 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5015 		KASSERT(entry->start < entry->end,
5016 		    ("map %p start = %jx, end = %jx", map,
5017 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5018 		KASSERT(entry->left == header ||
5019 		    entry->left->start < entry->start,
5020 		    ("map %p left->start = %jx, start = %jx", map,
5021 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5022 		KASSERT(entry->right == header ||
5023 		    entry->start < entry->right->start,
5024 		    ("map %p start = %jx, right->start = %jx", map,
5025 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5026 		cur = map->root;
5027 		lbound = ubound = header;
5028 		for (;;) {
5029 			if (entry->start < cur->start) {
5030 				ubound = cur;
5031 				cur = cur->left;
5032 				KASSERT(cur != lbound,
5033 				    ("map %p cannot find %jx",
5034 				    map, (uintmax_t)entry->start));
5035 			} else if (cur->end <= entry->start) {
5036 				lbound = cur;
5037 				cur = cur->right;
5038 				KASSERT(cur != ubound,
5039 				    ("map %p cannot find %jx",
5040 				    map, (uintmax_t)entry->start));
5041 			} else {
5042 				KASSERT(cur == entry,
5043 				    ("map %p cannot find %jx",
5044 				    map, (uintmax_t)entry->start));
5045 				break;
5046 			}
5047 		}
5048 		max_left = vm_map_entry_max_free_left(entry, lbound);
5049 		max_right = vm_map_entry_max_free_right(entry, ubound);
5050 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5051 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5052 		    (uintmax_t)entry->max_free,
5053 		    (uintmax_t)max_left, (uintmax_t)max_right));
5054 		prev = entry;
5055 	}
5056 	KASSERT(prev->end <= entry->start,
5057 	    ("map %p prev->end = %jx, start = %jx", map,
5058 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5059 }
5060 #endif
5061 
5062 #include "opt_ddb.h"
5063 #ifdef DDB
5064 #include <sys/kernel.h>
5065 
5066 #include <ddb/ddb.h>
5067 
5068 static void
5069 vm_map_print(vm_map_t map)
5070 {
5071 	vm_map_entry_t entry, prev;
5072 
5073 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5074 	    (void *)map,
5075 	    (void *)map->pmap, map->nentries, map->timestamp);
5076 
5077 	db_indent += 2;
5078 	prev = &map->header;
5079 	VM_MAP_ENTRY_FOREACH(entry, map) {
5080 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5081 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5082 		    entry->eflags);
5083 		{
5084 			static char *inheritance_name[4] =
5085 			{"share", "copy", "none", "donate_copy"};
5086 
5087 			db_iprintf(" prot=%x/%x/%s",
5088 			    entry->protection,
5089 			    entry->max_protection,
5090 			    inheritance_name[(int)(unsigned char)
5091 			    entry->inheritance]);
5092 			if (entry->wired_count != 0)
5093 				db_printf(", wired");
5094 		}
5095 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5096 			db_printf(", share=%p, offset=0x%jx\n",
5097 			    (void *)entry->object.sub_map,
5098 			    (uintmax_t)entry->offset);
5099 			if (prev == &map->header ||
5100 			    prev->object.sub_map !=
5101 				entry->object.sub_map) {
5102 				db_indent += 2;
5103 				vm_map_print((vm_map_t)entry->object.sub_map);
5104 				db_indent -= 2;
5105 			}
5106 		} else {
5107 			if (entry->cred != NULL)
5108 				db_printf(", ruid %d", entry->cred->cr_ruid);
5109 			db_printf(", object=%p, offset=0x%jx",
5110 			    (void *)entry->object.vm_object,
5111 			    (uintmax_t)entry->offset);
5112 			if (entry->object.vm_object && entry->object.vm_object->cred)
5113 				db_printf(", obj ruid %d charge %jx",
5114 				    entry->object.vm_object->cred->cr_ruid,
5115 				    (uintmax_t)entry->object.vm_object->charge);
5116 			if (entry->eflags & MAP_ENTRY_COW)
5117 				db_printf(", copy (%s)",
5118 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5119 			db_printf("\n");
5120 
5121 			if (prev == &map->header ||
5122 			    prev->object.vm_object !=
5123 				entry->object.vm_object) {
5124 				db_indent += 2;
5125 				vm_object_print((db_expr_t)(intptr_t)
5126 						entry->object.vm_object,
5127 						0, 0, (char *)0);
5128 				db_indent -= 2;
5129 			}
5130 		}
5131 		prev = entry;
5132 	}
5133 	db_indent -= 2;
5134 }
5135 
5136 DB_SHOW_COMMAND(map, map)
5137 {
5138 
5139 	if (!have_addr) {
5140 		db_printf("usage: show map <addr>\n");
5141 		return;
5142 	}
5143 	vm_map_print((vm_map_t)addr);
5144 }
5145 
5146 DB_SHOW_COMMAND(procvm, procvm)
5147 {
5148 	struct proc *p;
5149 
5150 	if (have_addr) {
5151 		p = db_lookup_proc(addr);
5152 	} else {
5153 		p = curproc;
5154 	}
5155 
5156 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5157 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5158 	    (void *)vmspace_pmap(p->p_vmspace));
5159 
5160 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5161 }
5162 
5163 #endif /* DDB */
5164