1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t mapzone; 132 static uma_zone_t vmspace_zone; 133 static int vmspace_zinit(void *mem, int size, int flags); 134 static int vm_map_zinit(void *mem, int ize, int flags); 135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 136 vm_offset_t max); 137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 141 vm_map_entry_t gap_entry); 142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 143 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 144 #ifdef INVARIANTS 145 static void vm_map_zdtor(void *mem, int size, void *arg); 146 static void vmspace_zdtor(void *mem, int size, void *arg); 147 #endif 148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 149 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 150 int cow); 151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 152 vm_offset_t failed_addr); 153 154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 155 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 156 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 157 158 /* 159 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 160 * stable. 161 */ 162 #define PROC_VMSPACE_LOCK(p) do { } while (0) 163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 164 165 /* 166 * VM_MAP_RANGE_CHECK: [ internal use only ] 167 * 168 * Asserts that the starting and ending region 169 * addresses fall within the valid range of the map. 170 */ 171 #define VM_MAP_RANGE_CHECK(map, start, end) \ 172 { \ 173 if (start < vm_map_min(map)) \ 174 start = vm_map_min(map); \ 175 if (end > vm_map_max(map)) \ 176 end = vm_map_max(map); \ 177 if (start > end) \ 178 start = end; \ 179 } 180 181 /* 182 * vm_map_startup: 183 * 184 * Initialize the vm_map module. Must be called before 185 * any other vm_map routines. 186 * 187 * Map and entry structures are allocated from the general 188 * purpose memory pool with some exceptions: 189 * 190 * - The kernel map and kmem submap are allocated statically. 191 * - Kernel map entries are allocated out of a static pool. 192 * 193 * These restrictions are necessary since malloc() uses the 194 * maps and requires map entries. 195 */ 196 197 void 198 vm_map_startup(void) 199 { 200 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 201 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 202 #ifdef INVARIANTS 203 vm_map_zdtor, 204 #else 205 NULL, 206 #endif 207 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 208 uma_prealloc(mapzone, MAX_KMAP); 209 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 211 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 212 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 214 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 215 #ifdef INVARIANTS 216 vmspace_zdtor, 217 #else 218 NULL, 219 #endif 220 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 221 } 222 223 static int 224 vmspace_zinit(void *mem, int size, int flags) 225 { 226 struct vmspace *vm; 227 228 vm = (struct vmspace *)mem; 229 230 vm->vm_map.pmap = NULL; 231 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 232 PMAP_LOCK_INIT(vmspace_pmap(vm)); 233 return (0); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 memset(map, 0, sizeof(*map)); 243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "vm map (user)"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 * 277 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 278 */ 279 struct vmspace * 280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 286 if (!pinit(vmspace_pmap(vm))) { 287 uma_zfree(vmspace_zone, vm); 288 return (NULL); 289 } 290 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 291 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 292 vm->vm_refcnt = 1; 293 vm->vm_shm = NULL; 294 vm->vm_swrss = 0; 295 vm->vm_tsize = 0; 296 vm->vm_dsize = 0; 297 vm->vm_ssize = 0; 298 vm->vm_taddr = 0; 299 vm->vm_daddr = 0; 300 vm->vm_maxsaddr = 0; 301 return (vm); 302 } 303 304 #ifdef RACCT 305 static void 306 vmspace_container_reset(struct proc *p) 307 { 308 309 PROC_LOCK(p); 310 racct_set(p, RACCT_DATA, 0); 311 racct_set(p, RACCT_STACK, 0); 312 racct_set(p, RACCT_RSS, 0); 313 racct_set(p, RACCT_MEMLOCK, 0); 314 racct_set(p, RACCT_VMEM, 0); 315 PROC_UNLOCK(p); 316 } 317 #endif 318 319 static inline void 320 vmspace_dofree(struct vmspace *vm) 321 { 322 323 CTR1(KTR_VM, "vmspace_free: %p", vm); 324 325 /* 326 * Make sure any SysV shm is freed, it might not have been in 327 * exit1(). 328 */ 329 shmexit(vm); 330 331 /* 332 * Lock the map, to wait out all other references to it. 333 * Delete all of the mappings and pages they hold, then call 334 * the pmap module to reclaim anything left. 335 */ 336 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 337 vm_map_max(&vm->vm_map)); 338 339 pmap_release(vmspace_pmap(vm)); 340 vm->vm_map.pmap = NULL; 341 uma_zfree(vmspace_zone, vm); 342 } 343 344 void 345 vmspace_free(struct vmspace *vm) 346 { 347 348 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 349 "vmspace_free() called"); 350 351 if (vm->vm_refcnt == 0) 352 panic("vmspace_free: attempt to free already freed vmspace"); 353 354 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 355 vmspace_dofree(vm); 356 } 357 358 void 359 vmspace_exitfree(struct proc *p) 360 { 361 struct vmspace *vm; 362 363 PROC_VMSPACE_LOCK(p); 364 vm = p->p_vmspace; 365 p->p_vmspace = NULL; 366 PROC_VMSPACE_UNLOCK(p); 367 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 368 vmspace_free(vm); 369 } 370 371 void 372 vmspace_exit(struct thread *td) 373 { 374 int refcnt; 375 struct vmspace *vm; 376 struct proc *p; 377 378 /* 379 * Release user portion of address space. 380 * This releases references to vnodes, 381 * which could cause I/O if the file has been unlinked. 382 * Need to do this early enough that we can still sleep. 383 * 384 * The last exiting process to reach this point releases as 385 * much of the environment as it can. vmspace_dofree() is the 386 * slower fallback in case another process had a temporary 387 * reference to the vmspace. 388 */ 389 390 p = td->td_proc; 391 vm = p->p_vmspace; 392 atomic_add_int(&vmspace0.vm_refcnt, 1); 393 refcnt = vm->vm_refcnt; 394 do { 395 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 396 /* Switch now since other proc might free vmspace */ 397 PROC_VMSPACE_LOCK(p); 398 p->p_vmspace = &vmspace0; 399 PROC_VMSPACE_UNLOCK(p); 400 pmap_activate(td); 401 } 402 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 403 if (refcnt == 1) { 404 if (p->p_vmspace != vm) { 405 /* vmspace not yet freed, switch back */ 406 PROC_VMSPACE_LOCK(p); 407 p->p_vmspace = vm; 408 PROC_VMSPACE_UNLOCK(p); 409 pmap_activate(td); 410 } 411 pmap_remove_pages(vmspace_pmap(vm)); 412 /* Switch now since this proc will free vmspace */ 413 PROC_VMSPACE_LOCK(p); 414 p->p_vmspace = &vmspace0; 415 PROC_VMSPACE_UNLOCK(p); 416 pmap_activate(td); 417 vmspace_dofree(vm); 418 } 419 #ifdef RACCT 420 if (racct_enable) 421 vmspace_container_reset(p); 422 #endif 423 } 424 425 /* Acquire reference to vmspace owned by another process. */ 426 427 struct vmspace * 428 vmspace_acquire_ref(struct proc *p) 429 { 430 struct vmspace *vm; 431 int refcnt; 432 433 PROC_VMSPACE_LOCK(p); 434 vm = p->p_vmspace; 435 if (vm == NULL) { 436 PROC_VMSPACE_UNLOCK(p); 437 return (NULL); 438 } 439 refcnt = vm->vm_refcnt; 440 do { 441 if (refcnt <= 0) { /* Avoid 0->1 transition */ 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 446 if (vm != p->p_vmspace) { 447 PROC_VMSPACE_UNLOCK(p); 448 vmspace_free(vm); 449 return (NULL); 450 } 451 PROC_VMSPACE_UNLOCK(p); 452 return (vm); 453 } 454 455 /* 456 * Switch between vmspaces in an AIO kernel process. 457 * 458 * The new vmspace is either the vmspace of a user process obtained 459 * from an active AIO request or the initial vmspace of the AIO kernel 460 * process (when it is idling). Because user processes will block to 461 * drain any active AIO requests before proceeding in exit() or 462 * execve(), the reference count for vmspaces from AIO requests can 463 * never be 0. Similarly, AIO kernel processes hold an extra 464 * reference on their initial vmspace for the life of the process. As 465 * a result, the 'newvm' vmspace always has a non-zero reference 466 * count. This permits an additional reference on 'newvm' to be 467 * acquired via a simple atomic increment rather than the loop in 468 * vmspace_acquire_ref() above. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 vmspace_free(oldvm); 494 } 495 496 void 497 _vm_map_lock(vm_map_t map, const char *file, int line) 498 { 499 500 if (map->system_map) 501 mtx_lock_flags_(&map->system_mtx, 0, file, line); 502 else 503 sx_xlock_(&map->lock, file, line); 504 map->timestamp++; 505 } 506 507 void 508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 509 { 510 vm_object_t object; 511 struct vnode *vp; 512 bool vp_held; 513 514 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 515 return; 516 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 517 ("Submap with execs")); 518 object = entry->object.vm_object; 519 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 520 if ((object->flags & OBJ_ANON) != 0) 521 object = object->handle; 522 else 523 KASSERT(object->backing_object == NULL, 524 ("non-anon object %p shadows", object)); 525 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 526 entry, entry->object.vm_object)); 527 528 /* 529 * Mostly, we do not lock the backing object. It is 530 * referenced by the entry we are processing, so it cannot go 531 * away. 532 */ 533 vp = NULL; 534 vp_held = false; 535 if (object->type == OBJT_DEAD) { 536 /* 537 * For OBJT_DEAD objects, v_writecount was handled in 538 * vnode_pager_dealloc(). 539 */ 540 } else if (object->type == OBJT_VNODE) { 541 vp = object->handle; 542 } else if (object->type == OBJT_SWAP) { 543 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 544 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 545 "entry %p, object %p, add %d", entry, object, add)); 546 /* 547 * Tmpfs VREG node, which was reclaimed, has 548 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 549 * this case there is no v_writecount to adjust. 550 */ 551 VM_OBJECT_RLOCK(object); 552 if ((object->flags & OBJ_TMPFS) != 0) { 553 vp = object->un_pager.swp.swp_tmpfs; 554 if (vp != NULL) { 555 vhold(vp); 556 vp_held = true; 557 } 558 } 559 VM_OBJECT_RUNLOCK(object); 560 } else { 561 KASSERT(0, 562 ("vm_map_entry_set_vnode_text: wrong object type, " 563 "entry %p, object %p, add %d", entry, object, add)); 564 } 565 if (vp != NULL) { 566 if (add) { 567 VOP_SET_TEXT_CHECKED(vp); 568 } else { 569 vn_lock(vp, LK_SHARED | LK_RETRY); 570 VOP_UNSET_TEXT_CHECKED(vp); 571 VOP_UNLOCK(vp, 0); 572 } 573 if (vp_held) 574 vdrop(vp); 575 } 576 } 577 578 /* 579 * Use a different name for this vm_map_entry field when it's use 580 * is not consistent with its use as part of an ordered search tree. 581 */ 582 #define defer_next right 583 584 static void 585 vm_map_process_deferred(void) 586 { 587 struct thread *td; 588 vm_map_entry_t entry, next; 589 vm_object_t object; 590 591 td = curthread; 592 entry = td->td_map_def_user; 593 td->td_map_def_user = NULL; 594 while (entry != NULL) { 595 next = entry->defer_next; 596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 597 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 598 MAP_ENTRY_VN_EXEC)); 599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 600 /* 601 * Decrement the object's writemappings and 602 * possibly the vnode's v_writecount. 603 */ 604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 605 ("Submap with writecount")); 606 object = entry->object.vm_object; 607 KASSERT(object != NULL, ("No object for writecount")); 608 vm_pager_release_writecount(object, entry->start, 609 entry->end); 610 } 611 vm_map_entry_set_vnode_text(entry, false); 612 vm_map_entry_deallocate(entry, FALSE); 613 entry = next; 614 } 615 } 616 617 #ifdef INVARIANTS 618 static void 619 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 620 { 621 622 if (map->system_map) 623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 624 else 625 sx_assert_(&map->lock, SA_XLOCKED, file, line); 626 } 627 628 #define VM_MAP_ASSERT_LOCKED(map) \ 629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 630 631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 632 #ifdef DIAGNOSTIC 633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 634 #else 635 static int enable_vmmap_check = VMMAP_CHECK_NONE; 636 #endif 637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 638 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 639 640 static void _vm_map_assert_consistent(vm_map_t map, int check); 641 642 #define VM_MAP_ASSERT_CONSISTENT(map) \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 644 #ifdef DIAGNOSTIC 645 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 646 if (map->nupdates > map->nentries) { \ 647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 648 map->nupdates = 0; \ 649 } \ 650 } while (0) 651 #else 652 #define VM_MAP_UNLOCK_CONSISTENT(map) 653 #endif 654 #else 655 #define VM_MAP_ASSERT_LOCKED(map) 656 #define VM_MAP_ASSERT_CONSISTENT(map) 657 #define VM_MAP_UNLOCK_CONSISTENT(map) 658 #endif /* INVARIANTS */ 659 660 void 661 _vm_map_unlock(vm_map_t map, const char *file, int line) 662 { 663 664 VM_MAP_UNLOCK_CONSISTENT(map); 665 if (map->system_map) 666 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 667 else { 668 sx_xunlock_(&map->lock, file, line); 669 vm_map_process_deferred(); 670 } 671 } 672 673 void 674 _vm_map_lock_read(vm_map_t map, const char *file, int line) 675 { 676 677 if (map->system_map) 678 mtx_lock_flags_(&map->system_mtx, 0, file, line); 679 else 680 sx_slock_(&map->lock, file, line); 681 } 682 683 void 684 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 685 { 686 687 if (map->system_map) 688 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 689 else { 690 sx_sunlock_(&map->lock, file, line); 691 vm_map_process_deferred(); 692 } 693 } 694 695 int 696 _vm_map_trylock(vm_map_t map, const char *file, int line) 697 { 698 int error; 699 700 error = map->system_map ? 701 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 702 !sx_try_xlock_(&map->lock, file, line); 703 if (error == 0) 704 map->timestamp++; 705 return (error == 0); 706 } 707 708 int 709 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 710 { 711 int error; 712 713 error = map->system_map ? 714 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 715 !sx_try_slock_(&map->lock, file, line); 716 return (error == 0); 717 } 718 719 /* 720 * _vm_map_lock_upgrade: [ internal use only ] 721 * 722 * Tries to upgrade a read (shared) lock on the specified map to a write 723 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 724 * non-zero value if the upgrade fails. If the upgrade fails, the map is 725 * returned without a read or write lock held. 726 * 727 * Requires that the map be read locked. 728 */ 729 int 730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 731 { 732 unsigned int last_timestamp; 733 734 if (map->system_map) { 735 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 736 } else { 737 if (!sx_try_upgrade_(&map->lock, file, line)) { 738 last_timestamp = map->timestamp; 739 sx_sunlock_(&map->lock, file, line); 740 vm_map_process_deferred(); 741 /* 742 * If the map's timestamp does not change while the 743 * map is unlocked, then the upgrade succeeds. 744 */ 745 sx_xlock_(&map->lock, file, line); 746 if (last_timestamp != map->timestamp) { 747 sx_xunlock_(&map->lock, file, line); 748 return (1); 749 } 750 } 751 } 752 map->timestamp++; 753 return (0); 754 } 755 756 void 757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 758 { 759 760 if (map->system_map) { 761 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 762 } else { 763 VM_MAP_UNLOCK_CONSISTENT(map); 764 sx_downgrade_(&map->lock, file, line); 765 } 766 } 767 768 /* 769 * vm_map_locked: 770 * 771 * Returns a non-zero value if the caller holds a write (exclusive) lock 772 * on the specified map and the value "0" otherwise. 773 */ 774 int 775 vm_map_locked(vm_map_t map) 776 { 777 778 if (map->system_map) 779 return (mtx_owned(&map->system_mtx)); 780 else 781 return (sx_xlocked(&map->lock)); 782 } 783 784 /* 785 * _vm_map_unlock_and_wait: 786 * 787 * Atomically releases the lock on the specified map and puts the calling 788 * thread to sleep. The calling thread will remain asleep until either 789 * vm_map_wakeup() is performed on the map or the specified timeout is 790 * exceeded. 791 * 792 * WARNING! This function does not perform deferred deallocations of 793 * objects and map entries. Therefore, the calling thread is expected to 794 * reacquire the map lock after reawakening and later perform an ordinary 795 * unlock operation, such as vm_map_unlock(), before completing its 796 * operation on the map. 797 */ 798 int 799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 800 { 801 802 VM_MAP_UNLOCK_CONSISTENT(map); 803 mtx_lock(&map_sleep_mtx); 804 if (map->system_map) 805 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 806 else 807 sx_xunlock_(&map->lock, file, line); 808 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 809 timo)); 810 } 811 812 /* 813 * vm_map_wakeup: 814 * 815 * Awaken any threads that have slept on the map using 816 * vm_map_unlock_and_wait(). 817 */ 818 void 819 vm_map_wakeup(vm_map_t map) 820 { 821 822 /* 823 * Acquire and release map_sleep_mtx to prevent a wakeup() 824 * from being performed (and lost) between the map unlock 825 * and the msleep() in _vm_map_unlock_and_wait(). 826 */ 827 mtx_lock(&map_sleep_mtx); 828 mtx_unlock(&map_sleep_mtx); 829 wakeup(&map->root); 830 } 831 832 void 833 vm_map_busy(vm_map_t map) 834 { 835 836 VM_MAP_ASSERT_LOCKED(map); 837 map->busy++; 838 } 839 840 void 841 vm_map_unbusy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 846 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 847 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 848 wakeup(&map->busy); 849 } 850 } 851 852 void 853 vm_map_wait_busy(vm_map_t map) 854 { 855 856 VM_MAP_ASSERT_LOCKED(map); 857 while (map->busy) { 858 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 859 if (map->system_map) 860 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 861 else 862 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 863 } 864 map->timestamp++; 865 } 866 867 long 868 vmspace_resident_count(struct vmspace *vmspace) 869 { 870 return pmap_resident_count(vmspace_pmap(vmspace)); 871 } 872 873 /* 874 * vm_map_create: 875 * 876 * Creates and returns a new empty VM map with 877 * the given physical map structure, and having 878 * the given lower and upper address bounds. 879 */ 880 vm_map_t 881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 882 { 883 vm_map_t result; 884 885 result = uma_zalloc(mapzone, M_WAITOK); 886 CTR1(KTR_VM, "vm_map_create: %p", result); 887 _vm_map_init(result, pmap, min, max); 888 return (result); 889 } 890 891 /* 892 * Initialize an existing vm_map structure 893 * such as that in the vmspace structure. 894 */ 895 static void 896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 897 { 898 899 map->header.eflags = MAP_ENTRY_HEADER; 900 map->needs_wakeup = FALSE; 901 map->system_map = 0; 902 map->pmap = pmap; 903 map->header.end = min; 904 map->header.start = max; 905 map->flags = 0; 906 map->header.left = map->header.right = &map->header; 907 map->root = NULL; 908 map->timestamp = 0; 909 map->busy = 0; 910 map->anon_loc = 0; 911 #ifdef DIAGNOSTIC 912 map->nupdates = 0; 913 #endif 914 } 915 916 void 917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 918 { 919 920 _vm_map_init(map, pmap, min, max); 921 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 922 sx_init(&map->lock, "user map"); 923 } 924 925 /* 926 * vm_map_entry_dispose: [ internal use only ] 927 * 928 * Inverse of vm_map_entry_create. 929 */ 930 static void 931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 932 { 933 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 934 } 935 936 /* 937 * vm_map_entry_create: [ internal use only ] 938 * 939 * Allocates a VM map entry for insertion. 940 * No entry fields are filled in. 941 */ 942 static vm_map_entry_t 943 vm_map_entry_create(vm_map_t map) 944 { 945 vm_map_entry_t new_entry; 946 947 if (map->system_map) 948 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 949 else 950 new_entry = uma_zalloc(mapentzone, M_WAITOK); 951 if (new_entry == NULL) 952 panic("vm_map_entry_create: kernel resources exhausted"); 953 return (new_entry); 954 } 955 956 /* 957 * vm_map_entry_set_behavior: 958 * 959 * Set the expected access behavior, either normal, random, or 960 * sequential. 961 */ 962 static inline void 963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 964 { 965 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 966 (behavior & MAP_ENTRY_BEHAV_MASK); 967 } 968 969 /* 970 * vm_map_entry_max_free_{left,right}: 971 * 972 * Compute the size of the largest free gap between two entries, 973 * one the root of a tree and the other the ancestor of that root 974 * that is the least or greatest ancestor found on the search path. 975 */ 976 static inline vm_size_t 977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 978 { 979 980 return (root->left != left_ancestor ? 981 root->left->max_free : root->start - left_ancestor->end); 982 } 983 984 static inline vm_size_t 985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 986 { 987 988 return (root->right != right_ancestor ? 989 root->right->max_free : right_ancestor->start - root->end); 990 } 991 992 /* 993 * vm_map_entry_{pred,succ}: 994 * 995 * Find the {predecessor, successor} of the entry by taking one step 996 * in the appropriate direction and backtracking as much as necessary. 997 * vm_map_entry_succ is defined in vm_map.h. 998 */ 999 static inline vm_map_entry_t 1000 vm_map_entry_pred(vm_map_entry_t entry) 1001 { 1002 vm_map_entry_t prior; 1003 1004 prior = entry->left; 1005 if (prior->right->start < entry->start) { 1006 do 1007 prior = prior->right; 1008 while (prior->right != entry); 1009 } 1010 return (prior); 1011 } 1012 1013 static inline vm_size_t 1014 vm_size_max(vm_size_t a, vm_size_t b) 1015 { 1016 1017 return (a > b ? a : b); 1018 } 1019 1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1021 vm_map_entry_t z; \ 1022 vm_size_t max_free; \ 1023 \ 1024 /* \ 1025 * Infer root->right->max_free == root->max_free when \ 1026 * y->max_free < root->max_free || root->max_free == 0. \ 1027 * Otherwise, look right to find it. \ 1028 */ \ 1029 y = root->left; \ 1030 max_free = root->max_free; \ 1031 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 1032 ("%s: max_free invariant fails", __func__)); \ 1033 if (y == llist ? max_free > 0 : max_free - 1 < y->max_free) \ 1034 max_free = vm_map_entry_max_free_right(root, rlist); \ 1035 if (y != llist && (test)) { \ 1036 /* Rotate right and make y root. */ \ 1037 z = y->right; \ 1038 if (z != root) { \ 1039 root->left = z; \ 1040 y->right = root; \ 1041 if (max_free < y->max_free) \ 1042 root->max_free = max_free = \ 1043 vm_size_max(max_free, z->max_free); \ 1044 } else if (max_free < y->max_free) \ 1045 root->max_free = max_free = \ 1046 vm_size_max(max_free, root->start - y->end);\ 1047 root = y; \ 1048 y = root->left; \ 1049 } \ 1050 /* Copy right->max_free. Put root on rlist. */ \ 1051 root->max_free = max_free; \ 1052 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1053 ("%s: max_free not copied from right", __func__)); \ 1054 root->left = rlist; \ 1055 rlist = root; \ 1056 root = y != llist ? y : NULL; \ 1057 } while (0) 1058 1059 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1060 vm_map_entry_t z; \ 1061 vm_size_t max_free; \ 1062 \ 1063 /* \ 1064 * Infer root->left->max_free == root->max_free when \ 1065 * y->max_free < root->max_free || root->max_free == 0. \ 1066 * Otherwise, look left to find it. \ 1067 */ \ 1068 y = root->right; \ 1069 max_free = root->max_free; \ 1070 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1071 ("%s: max_free invariant fails", __func__)); \ 1072 if (y == rlist ? max_free > 0 : max_free - 1 < y->max_free) \ 1073 max_free = vm_map_entry_max_free_left(root, llist); \ 1074 if (y != rlist && (test)) { \ 1075 /* Rotate left and make y root. */ \ 1076 z = y->left; \ 1077 if (z != root) { \ 1078 root->right = z; \ 1079 y->left = root; \ 1080 if (max_free < y->max_free) \ 1081 root->max_free = max_free = \ 1082 vm_size_max(max_free, z->max_free); \ 1083 } else if (max_free < y->max_free) \ 1084 root->max_free = max_free = \ 1085 vm_size_max(max_free, y->start - root->end);\ 1086 root = y; \ 1087 y = root->right; \ 1088 } \ 1089 /* Copy left->max_free. Put root on llist. */ \ 1090 root->max_free = max_free; \ 1091 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1092 ("%s: max_free not copied from left", __func__)); \ 1093 root->right = llist; \ 1094 llist = root; \ 1095 root = y != rlist ? y : NULL; \ 1096 } while (0) 1097 1098 /* 1099 * Walk down the tree until we find addr or a gap where addr would go, breaking 1100 * off left and right subtrees of nodes less than, or greater than addr. Treat 1101 * subtrees with root->max_free < length as empty trees. llist and rlist are 1102 * the two sides in reverse order (bottom-up), with llist linked by the right 1103 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1104 * lists terminated by &map->header. This function, and the subsequent call to 1105 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1106 * values in &map->header. 1107 */ 1108 static __always_inline vm_map_entry_t 1109 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1110 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1111 { 1112 vm_map_entry_t left, right, root, y; 1113 1114 left = right = &map->header; 1115 root = map->root; 1116 while (root != NULL && root->max_free >= length) { 1117 KASSERT(left->end <= root->start && 1118 root->end <= right->start, 1119 ("%s: root not within tree bounds", __func__)); 1120 if (addr < root->start) { 1121 SPLAY_LEFT_STEP(root, y, left, right, 1122 y->max_free >= length && addr < y->start); 1123 } else if (addr >= root->end) { 1124 SPLAY_RIGHT_STEP(root, y, left, right, 1125 y->max_free >= length && addr >= y->end); 1126 } else 1127 break; 1128 } 1129 *llist = left; 1130 *rlist = right; 1131 return (root); 1132 } 1133 1134 static __always_inline void 1135 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1136 { 1137 vm_map_entry_t hi, right, y; 1138 1139 right = *rlist; 1140 hi = root->right == right ? NULL : root->right; 1141 if (hi == NULL) 1142 return; 1143 do 1144 SPLAY_LEFT_STEP(hi, y, root, right, true); 1145 while (hi != NULL); 1146 *rlist = right; 1147 } 1148 1149 static __always_inline void 1150 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1151 { 1152 vm_map_entry_t left, lo, y; 1153 1154 left = *llist; 1155 lo = root->left == left ? NULL : root->left; 1156 if (lo == NULL) 1157 return; 1158 do 1159 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1160 while (lo != NULL); 1161 *llist = left; 1162 } 1163 1164 static inline void 1165 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1166 { 1167 vm_map_entry_t tmp; 1168 1169 tmp = *b; 1170 *b = *a; 1171 *a = tmp; 1172 } 1173 1174 /* 1175 * Walk back up the two spines, flip the pointers and set max_free. The 1176 * subtrees of the root go at the bottom of llist and rlist. 1177 */ 1178 static vm_size_t 1179 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1180 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1181 { 1182 do { 1183 /* 1184 * The max_free values of the children of llist are in 1185 * llist->max_free and max_free. Update with the 1186 * max value. 1187 */ 1188 llist->max_free = max_free = 1189 vm_size_max(llist->max_free, max_free); 1190 vm_map_entry_swap(&llist->right, &tail); 1191 vm_map_entry_swap(&tail, &llist); 1192 } while (llist != header); 1193 root->left = tail; 1194 return (max_free); 1195 } 1196 1197 /* 1198 * When llist is known to be the predecessor of root. 1199 */ 1200 static inline vm_size_t 1201 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1202 vm_map_entry_t llist) 1203 { 1204 vm_size_t max_free; 1205 1206 max_free = root->start - llist->end; 1207 if (llist != header) { 1208 max_free = vm_map_splay_merge_left_walk(header, root, 1209 root, max_free, llist); 1210 } else { 1211 root->left = header; 1212 header->right = root; 1213 } 1214 return (max_free); 1215 } 1216 1217 /* 1218 * When llist may or may not be the predecessor of root. 1219 */ 1220 static inline vm_size_t 1221 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1222 vm_map_entry_t llist) 1223 { 1224 vm_size_t max_free; 1225 1226 max_free = vm_map_entry_max_free_left(root, llist); 1227 if (llist != header) { 1228 max_free = vm_map_splay_merge_left_walk(header, root, 1229 root->left == llist ? root : root->left, 1230 max_free, llist); 1231 } 1232 return (max_free); 1233 } 1234 1235 static vm_size_t 1236 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1237 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1238 { 1239 do { 1240 /* 1241 * The max_free values of the children of rlist are in 1242 * rlist->max_free and max_free. Update with the 1243 * max value. 1244 */ 1245 rlist->max_free = max_free = 1246 vm_size_max(rlist->max_free, max_free); 1247 vm_map_entry_swap(&rlist->left, &tail); 1248 vm_map_entry_swap(&tail, &rlist); 1249 } while (rlist != header); 1250 root->right = tail; 1251 return (max_free); 1252 } 1253 1254 /* 1255 * When rlist is known to be the succecessor of root. 1256 */ 1257 static inline vm_size_t 1258 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1259 vm_map_entry_t rlist) 1260 { 1261 vm_size_t max_free; 1262 1263 max_free = rlist->start - root->end; 1264 if (rlist != header) { 1265 max_free = vm_map_splay_merge_right_walk(header, root, 1266 root, max_free, rlist); 1267 } else { 1268 root->right = header; 1269 header->left = root; 1270 } 1271 return (max_free); 1272 } 1273 1274 /* 1275 * When rlist may or may not be the succecessor of root. 1276 */ 1277 static inline vm_size_t 1278 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1279 vm_map_entry_t rlist) 1280 { 1281 vm_size_t max_free; 1282 1283 max_free = vm_map_entry_max_free_right(root, rlist); 1284 if (rlist != header) { 1285 max_free = vm_map_splay_merge_right_walk(header, root, 1286 root->right == rlist ? root : root->right, 1287 max_free, rlist); 1288 } 1289 return (max_free); 1290 } 1291 1292 /* 1293 * vm_map_splay: 1294 * 1295 * The Sleator and Tarjan top-down splay algorithm with the 1296 * following variation. Max_free must be computed bottom-up, so 1297 * on the downward pass, maintain the left and right spines in 1298 * reverse order. Then, make a second pass up each side to fix 1299 * the pointers and compute max_free. The time bound is O(log n) 1300 * amortized. 1301 * 1302 * The tree is threaded, which means that there are no null pointers. 1303 * When a node has no left child, its left pointer points to its 1304 * predecessor, which the last ancestor on the search path from the root 1305 * where the search branched right. Likewise, when a node has no right 1306 * child, its right pointer points to its successor. The map header node 1307 * is the predecessor of the first map entry, and the successor of the 1308 * last. 1309 * 1310 * The new root is the vm_map_entry containing "addr", or else an 1311 * adjacent entry (lower if possible) if addr is not in the tree. 1312 * 1313 * The map must be locked, and leaves it so. 1314 * 1315 * Returns: the new root. 1316 */ 1317 static vm_map_entry_t 1318 vm_map_splay(vm_map_t map, vm_offset_t addr) 1319 { 1320 vm_map_entry_t header, llist, rlist, root; 1321 vm_size_t max_free_left, max_free_right; 1322 1323 header = &map->header; 1324 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1325 if (root != NULL) { 1326 max_free_left = vm_map_splay_merge_left(header, root, llist); 1327 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1328 } else if (llist != header) { 1329 /* 1330 * Recover the greatest node in the left 1331 * subtree and make it the root. 1332 */ 1333 root = llist; 1334 llist = root->right; 1335 max_free_left = vm_map_splay_merge_left(header, root, llist); 1336 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1337 } else if (rlist != header) { 1338 /* 1339 * Recover the least node in the right 1340 * subtree and make it the root. 1341 */ 1342 root = rlist; 1343 rlist = root->left; 1344 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1345 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1346 } else { 1347 /* There is no root. */ 1348 return (NULL); 1349 } 1350 root->max_free = vm_size_max(max_free_left, max_free_right); 1351 map->root = root; 1352 VM_MAP_ASSERT_CONSISTENT(map); 1353 return (root); 1354 } 1355 1356 /* 1357 * vm_map_entry_{un,}link: 1358 * 1359 * Insert/remove entries from maps. 1360 */ 1361 static void 1362 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1363 { 1364 vm_map_entry_t header, llist, rlist, root; 1365 1366 CTR3(KTR_VM, 1367 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1368 map->nentries, entry); 1369 VM_MAP_ASSERT_LOCKED(map); 1370 map->nentries++; 1371 header = &map->header; 1372 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1373 KASSERT(root == NULL, 1374 ("vm_map_entry_link: link object already mapped")); 1375 root = entry; 1376 root->max_free = vm_size_max( 1377 vm_map_splay_merge_pred(header, root, llist), 1378 vm_map_splay_merge_succ(header, root, rlist)); 1379 map->root = root; 1380 VM_MAP_ASSERT_CONSISTENT(map); 1381 } 1382 1383 enum unlink_merge_type { 1384 UNLINK_MERGE_NONE, 1385 UNLINK_MERGE_NEXT 1386 }; 1387 1388 static void 1389 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1390 enum unlink_merge_type op) 1391 { 1392 vm_map_entry_t header, llist, rlist, root; 1393 vm_size_t max_free_left, max_free_right; 1394 1395 VM_MAP_ASSERT_LOCKED(map); 1396 header = &map->header; 1397 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1398 KASSERT(root != NULL, 1399 ("vm_map_entry_unlink: unlink object not mapped")); 1400 1401 vm_map_splay_findprev(root, &llist); 1402 vm_map_splay_findnext(root, &rlist); 1403 if (op == UNLINK_MERGE_NEXT) { 1404 rlist->start = root->start; 1405 rlist->offset = root->offset; 1406 } 1407 if (llist != header) { 1408 root = llist; 1409 llist = root->right; 1410 max_free_left = vm_map_splay_merge_left(header, root, llist); 1411 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1412 } else if (rlist != header) { 1413 root = rlist; 1414 rlist = root->left; 1415 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1416 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1417 } else { 1418 header->left = header->right = header; 1419 root = NULL; 1420 } 1421 if (root != NULL) 1422 root->max_free = vm_size_max(max_free_left, max_free_right); 1423 map->root = root; 1424 VM_MAP_ASSERT_CONSISTENT(map); 1425 map->nentries--; 1426 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1427 map->nentries, entry); 1428 } 1429 1430 /* 1431 * vm_map_entry_resize: 1432 * 1433 * Resize a vm_map_entry, recompute the amount of free space that 1434 * follows it and propagate that value up the tree. 1435 * 1436 * The map must be locked, and leaves it so. 1437 */ 1438 static void 1439 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1440 { 1441 vm_map_entry_t header, llist, rlist, root; 1442 1443 VM_MAP_ASSERT_LOCKED(map); 1444 header = &map->header; 1445 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1446 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1447 vm_map_splay_findnext(root, &rlist); 1448 entry->end += grow_amount; 1449 root->max_free = vm_size_max( 1450 vm_map_splay_merge_left(header, root, llist), 1451 vm_map_splay_merge_succ(header, root, rlist)); 1452 map->root = root; 1453 VM_MAP_ASSERT_CONSISTENT(map); 1454 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1455 __func__, map, map->nentries, entry); 1456 } 1457 1458 /* 1459 * vm_map_lookup_entry: [ internal use only ] 1460 * 1461 * Finds the map entry containing (or 1462 * immediately preceding) the specified address 1463 * in the given map; the entry is returned 1464 * in the "entry" parameter. The boolean 1465 * result indicates whether the address is 1466 * actually contained in the map. 1467 */ 1468 boolean_t 1469 vm_map_lookup_entry( 1470 vm_map_t map, 1471 vm_offset_t address, 1472 vm_map_entry_t *entry) /* OUT */ 1473 { 1474 vm_map_entry_t cur, header, lbound, ubound; 1475 boolean_t locked; 1476 1477 /* 1478 * If the map is empty, then the map entry immediately preceding 1479 * "address" is the map's header. 1480 */ 1481 header = &map->header; 1482 cur = map->root; 1483 if (cur == NULL) { 1484 *entry = header; 1485 return (FALSE); 1486 } 1487 if (address >= cur->start && cur->end > address) { 1488 *entry = cur; 1489 return (TRUE); 1490 } 1491 if ((locked = vm_map_locked(map)) || 1492 sx_try_upgrade(&map->lock)) { 1493 /* 1494 * Splay requires a write lock on the map. However, it only 1495 * restructures the binary search tree; it does not otherwise 1496 * change the map. Thus, the map's timestamp need not change 1497 * on a temporary upgrade. 1498 */ 1499 cur = vm_map_splay(map, address); 1500 if (!locked) { 1501 VM_MAP_UNLOCK_CONSISTENT(map); 1502 sx_downgrade(&map->lock); 1503 } 1504 1505 /* 1506 * If "address" is contained within a map entry, the new root 1507 * is that map entry. Otherwise, the new root is a map entry 1508 * immediately before or after "address". 1509 */ 1510 if (address < cur->start) { 1511 *entry = header; 1512 return (FALSE); 1513 } 1514 *entry = cur; 1515 return (address < cur->end); 1516 } 1517 /* 1518 * Since the map is only locked for read access, perform a 1519 * standard binary search tree lookup for "address". 1520 */ 1521 lbound = ubound = header; 1522 for (;;) { 1523 if (address < cur->start) { 1524 ubound = cur; 1525 cur = cur->left; 1526 if (cur == lbound) 1527 break; 1528 } else if (cur->end <= address) { 1529 lbound = cur; 1530 cur = cur->right; 1531 if (cur == ubound) 1532 break; 1533 } else { 1534 *entry = cur; 1535 return (TRUE); 1536 } 1537 } 1538 *entry = lbound; 1539 return (FALSE); 1540 } 1541 1542 /* 1543 * vm_map_insert: 1544 * 1545 * Inserts the given whole VM object into the target 1546 * map at the specified address range. The object's 1547 * size should match that of the address range. 1548 * 1549 * Requires that the map be locked, and leaves it so. 1550 * 1551 * If object is non-NULL, ref count must be bumped by caller 1552 * prior to making call to account for the new entry. 1553 */ 1554 int 1555 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1556 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1557 { 1558 vm_map_entry_t new_entry, next_entry, prev_entry; 1559 struct ucred *cred; 1560 vm_eflags_t protoeflags; 1561 vm_inherit_t inheritance; 1562 1563 VM_MAP_ASSERT_LOCKED(map); 1564 KASSERT(object != kernel_object || 1565 (cow & MAP_COPY_ON_WRITE) == 0, 1566 ("vm_map_insert: kernel object and COW")); 1567 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1568 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1569 KASSERT((prot & ~max) == 0, 1570 ("prot %#x is not subset of max_prot %#x", prot, max)); 1571 1572 /* 1573 * Check that the start and end points are not bogus. 1574 */ 1575 if (start < vm_map_min(map) || end > vm_map_max(map) || 1576 start >= end) 1577 return (KERN_INVALID_ADDRESS); 1578 1579 /* 1580 * Find the entry prior to the proposed starting address; if it's part 1581 * of an existing entry, this range is bogus. 1582 */ 1583 if (vm_map_lookup_entry(map, start, &prev_entry)) 1584 return (KERN_NO_SPACE); 1585 1586 /* 1587 * Assert that the next entry doesn't overlap the end point. 1588 */ 1589 next_entry = vm_map_entry_succ(prev_entry); 1590 if (next_entry->start < end) 1591 return (KERN_NO_SPACE); 1592 1593 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1594 max != VM_PROT_NONE)) 1595 return (KERN_INVALID_ARGUMENT); 1596 1597 protoeflags = 0; 1598 if (cow & MAP_COPY_ON_WRITE) 1599 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1600 if (cow & MAP_NOFAULT) 1601 protoeflags |= MAP_ENTRY_NOFAULT; 1602 if (cow & MAP_DISABLE_SYNCER) 1603 protoeflags |= MAP_ENTRY_NOSYNC; 1604 if (cow & MAP_DISABLE_COREDUMP) 1605 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1606 if (cow & MAP_STACK_GROWS_DOWN) 1607 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1608 if (cow & MAP_STACK_GROWS_UP) 1609 protoeflags |= MAP_ENTRY_GROWS_UP; 1610 if (cow & MAP_WRITECOUNT) 1611 protoeflags |= MAP_ENTRY_WRITECNT; 1612 if (cow & MAP_VN_EXEC) 1613 protoeflags |= MAP_ENTRY_VN_EXEC; 1614 if ((cow & MAP_CREATE_GUARD) != 0) 1615 protoeflags |= MAP_ENTRY_GUARD; 1616 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1617 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1618 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1619 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1620 if (cow & MAP_INHERIT_SHARE) 1621 inheritance = VM_INHERIT_SHARE; 1622 else 1623 inheritance = VM_INHERIT_DEFAULT; 1624 1625 cred = NULL; 1626 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1627 goto charged; 1628 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1629 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1630 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1631 return (KERN_RESOURCE_SHORTAGE); 1632 KASSERT(object == NULL || 1633 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1634 object->cred == NULL, 1635 ("overcommit: vm_map_insert o %p", object)); 1636 cred = curthread->td_ucred; 1637 } 1638 1639 charged: 1640 /* Expand the kernel pmap, if necessary. */ 1641 if (map == kernel_map && end > kernel_vm_end) 1642 pmap_growkernel(end); 1643 if (object != NULL) { 1644 /* 1645 * OBJ_ONEMAPPING must be cleared unless this mapping 1646 * is trivially proven to be the only mapping for any 1647 * of the object's pages. (Object granularity 1648 * reference counting is insufficient to recognize 1649 * aliases with precision.) 1650 */ 1651 if ((object->flags & OBJ_ANON) != 0) { 1652 VM_OBJECT_WLOCK(object); 1653 if (object->ref_count > 1 || object->shadow_count != 0) 1654 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1655 VM_OBJECT_WUNLOCK(object); 1656 } 1657 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1658 protoeflags && 1659 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1660 MAP_VN_EXEC)) == 0 && 1661 prev_entry->end == start && (prev_entry->cred == cred || 1662 (prev_entry->object.vm_object != NULL && 1663 prev_entry->object.vm_object->cred == cred)) && 1664 vm_object_coalesce(prev_entry->object.vm_object, 1665 prev_entry->offset, 1666 (vm_size_t)(prev_entry->end - prev_entry->start), 1667 (vm_size_t)(end - prev_entry->end), cred != NULL && 1668 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1669 /* 1670 * We were able to extend the object. Determine if we 1671 * can extend the previous map entry to include the 1672 * new range as well. 1673 */ 1674 if (prev_entry->inheritance == inheritance && 1675 prev_entry->protection == prot && 1676 prev_entry->max_protection == max && 1677 prev_entry->wired_count == 0) { 1678 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1679 0, ("prev_entry %p has incoherent wiring", 1680 prev_entry)); 1681 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1682 map->size += end - prev_entry->end; 1683 vm_map_entry_resize(map, prev_entry, 1684 end - prev_entry->end); 1685 vm_map_try_merge_entries(map, prev_entry, next_entry); 1686 return (KERN_SUCCESS); 1687 } 1688 1689 /* 1690 * If we can extend the object but cannot extend the 1691 * map entry, we have to create a new map entry. We 1692 * must bump the ref count on the extended object to 1693 * account for it. object may be NULL. 1694 */ 1695 object = prev_entry->object.vm_object; 1696 offset = prev_entry->offset + 1697 (prev_entry->end - prev_entry->start); 1698 vm_object_reference(object); 1699 if (cred != NULL && object != NULL && object->cred != NULL && 1700 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1701 /* Object already accounts for this uid. */ 1702 cred = NULL; 1703 } 1704 } 1705 if (cred != NULL) 1706 crhold(cred); 1707 1708 /* 1709 * Create a new entry 1710 */ 1711 new_entry = vm_map_entry_create(map); 1712 new_entry->start = start; 1713 new_entry->end = end; 1714 new_entry->cred = NULL; 1715 1716 new_entry->eflags = protoeflags; 1717 new_entry->object.vm_object = object; 1718 new_entry->offset = offset; 1719 1720 new_entry->inheritance = inheritance; 1721 new_entry->protection = prot; 1722 new_entry->max_protection = max; 1723 new_entry->wired_count = 0; 1724 new_entry->wiring_thread = NULL; 1725 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1726 new_entry->next_read = start; 1727 1728 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1729 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1730 new_entry->cred = cred; 1731 1732 /* 1733 * Insert the new entry into the list 1734 */ 1735 vm_map_entry_link(map, new_entry); 1736 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1737 map->size += new_entry->end - new_entry->start; 1738 1739 /* 1740 * Try to coalesce the new entry with both the previous and next 1741 * entries in the list. Previously, we only attempted to coalesce 1742 * with the previous entry when object is NULL. Here, we handle the 1743 * other cases, which are less common. 1744 */ 1745 vm_map_try_merge_entries(map, prev_entry, new_entry); 1746 vm_map_try_merge_entries(map, new_entry, next_entry); 1747 1748 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1749 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1750 end - start, cow & MAP_PREFAULT_PARTIAL); 1751 } 1752 1753 return (KERN_SUCCESS); 1754 } 1755 1756 /* 1757 * vm_map_findspace: 1758 * 1759 * Find the first fit (lowest VM address) for "length" free bytes 1760 * beginning at address >= start in the given map. 1761 * 1762 * In a vm_map_entry, "max_free" is the maximum amount of 1763 * contiguous free space between an entry in its subtree and a 1764 * neighbor of that entry. This allows finding a free region in 1765 * one path down the tree, so O(log n) amortized with splay 1766 * trees. 1767 * 1768 * The map must be locked, and leaves it so. 1769 * 1770 * Returns: starting address if sufficient space, 1771 * vm_map_max(map)-length+1 if insufficient space. 1772 */ 1773 vm_offset_t 1774 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1775 { 1776 vm_map_entry_t header, llist, rlist, root, y; 1777 vm_size_t left_length, max_free_left, max_free_right; 1778 vm_offset_t gap_end; 1779 1780 /* 1781 * Request must fit within min/max VM address and must avoid 1782 * address wrap. 1783 */ 1784 start = MAX(start, vm_map_min(map)); 1785 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1786 return (vm_map_max(map) - length + 1); 1787 1788 /* Empty tree means wide open address space. */ 1789 if (map->root == NULL) 1790 return (start); 1791 1792 /* 1793 * After splay_split, if start is within an entry, push it to the start 1794 * of the following gap. If rlist is at the end of the gap containing 1795 * start, save the end of that gap in gap_end to see if the gap is big 1796 * enough; otherwise set gap_end to start skip gap-checking and move 1797 * directly to a search of the right subtree. 1798 */ 1799 header = &map->header; 1800 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1801 gap_end = rlist->start; 1802 if (root != NULL) { 1803 start = root->end; 1804 if (root->right != rlist) 1805 gap_end = start; 1806 max_free_left = vm_map_splay_merge_left(header, root, llist); 1807 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1808 } else if (rlist != header) { 1809 root = rlist; 1810 rlist = root->left; 1811 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1812 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1813 } else { 1814 root = llist; 1815 llist = root->right; 1816 max_free_left = vm_map_splay_merge_left(header, root, llist); 1817 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1818 } 1819 root->max_free = vm_size_max(max_free_left, max_free_right); 1820 map->root = root; 1821 VM_MAP_ASSERT_CONSISTENT(map); 1822 if (length <= gap_end - start) 1823 return (start); 1824 1825 /* With max_free, can immediately tell if no solution. */ 1826 if (root->right == header || length > root->right->max_free) 1827 return (vm_map_max(map) - length + 1); 1828 1829 /* 1830 * Splay for the least large-enough gap in the right subtree. 1831 */ 1832 llist = rlist = header; 1833 for (left_length = 0;; 1834 left_length = vm_map_entry_max_free_left(root, llist)) { 1835 if (length <= left_length) 1836 SPLAY_LEFT_STEP(root, y, llist, rlist, 1837 length <= vm_map_entry_max_free_left(y, llist)); 1838 else 1839 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1840 length > vm_map_entry_max_free_left(y, root)); 1841 if (root == NULL) 1842 break; 1843 } 1844 root = llist; 1845 llist = root->right; 1846 max_free_left = vm_map_splay_merge_left(header, root, llist); 1847 if (rlist == header) { 1848 root->max_free = vm_size_max(max_free_left, 1849 vm_map_splay_merge_succ(header, root, rlist)); 1850 } else { 1851 y = rlist; 1852 rlist = y->left; 1853 y->max_free = vm_size_max( 1854 vm_map_splay_merge_pred(root, y, root), 1855 vm_map_splay_merge_right(header, y, rlist)); 1856 root->max_free = vm_size_max(max_free_left, y->max_free); 1857 } 1858 map->root = root; 1859 VM_MAP_ASSERT_CONSISTENT(map); 1860 return (root->end); 1861 } 1862 1863 int 1864 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1865 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1866 vm_prot_t max, int cow) 1867 { 1868 vm_offset_t end; 1869 int result; 1870 1871 end = start + length; 1872 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1873 object == NULL, 1874 ("vm_map_fixed: non-NULL backing object for stack")); 1875 vm_map_lock(map); 1876 VM_MAP_RANGE_CHECK(map, start, end); 1877 if ((cow & MAP_CHECK_EXCL) == 0) 1878 vm_map_delete(map, start, end); 1879 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1880 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1881 prot, max, cow); 1882 } else { 1883 result = vm_map_insert(map, object, offset, start, end, 1884 prot, max, cow); 1885 } 1886 vm_map_unlock(map); 1887 return (result); 1888 } 1889 1890 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1891 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1892 1893 static int cluster_anon = 1; 1894 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1895 &cluster_anon, 0, 1896 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1897 1898 static bool 1899 clustering_anon_allowed(vm_offset_t addr) 1900 { 1901 1902 switch (cluster_anon) { 1903 case 0: 1904 return (false); 1905 case 1: 1906 return (addr == 0); 1907 case 2: 1908 default: 1909 return (true); 1910 } 1911 } 1912 1913 static long aslr_restarts; 1914 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1915 &aslr_restarts, 0, 1916 "Number of aslr failures"); 1917 1918 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1919 1920 /* 1921 * Searches for the specified amount of free space in the given map with the 1922 * specified alignment. Performs an address-ordered, first-fit search from 1923 * the given address "*addr", with an optional upper bound "max_addr". If the 1924 * parameter "alignment" is zero, then the alignment is computed from the 1925 * given (object, offset) pair so as to enable the greatest possible use of 1926 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1927 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1928 * 1929 * The map must be locked. Initially, there must be at least "length" bytes 1930 * of free space at the given address. 1931 */ 1932 static int 1933 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1934 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1935 vm_offset_t alignment) 1936 { 1937 vm_offset_t aligned_addr, free_addr; 1938 1939 VM_MAP_ASSERT_LOCKED(map); 1940 free_addr = *addr; 1941 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1942 ("caller failed to provide space %#jx at address %p", 1943 (uintmax_t)length, (void *)free_addr)); 1944 for (;;) { 1945 /* 1946 * At the start of every iteration, the free space at address 1947 * "*addr" is at least "length" bytes. 1948 */ 1949 if (alignment == 0) 1950 pmap_align_superpage(object, offset, addr, length); 1951 else if ((*addr & (alignment - 1)) != 0) { 1952 *addr &= ~(alignment - 1); 1953 *addr += alignment; 1954 } 1955 aligned_addr = *addr; 1956 if (aligned_addr == free_addr) { 1957 /* 1958 * Alignment did not change "*addr", so "*addr" must 1959 * still provide sufficient free space. 1960 */ 1961 return (KERN_SUCCESS); 1962 } 1963 1964 /* 1965 * Test for address wrap on "*addr". A wrapped "*addr" could 1966 * be a valid address, in which case vm_map_findspace() cannot 1967 * be relied upon to fail. 1968 */ 1969 if (aligned_addr < free_addr) 1970 return (KERN_NO_SPACE); 1971 *addr = vm_map_findspace(map, aligned_addr, length); 1972 if (*addr + length > vm_map_max(map) || 1973 (max_addr != 0 && *addr + length > max_addr)) 1974 return (KERN_NO_SPACE); 1975 free_addr = *addr; 1976 if (free_addr == aligned_addr) { 1977 /* 1978 * If a successful call to vm_map_findspace() did not 1979 * change "*addr", then "*addr" must still be aligned 1980 * and provide sufficient free space. 1981 */ 1982 return (KERN_SUCCESS); 1983 } 1984 } 1985 } 1986 1987 /* 1988 * vm_map_find finds an unallocated region in the target address 1989 * map with the given length. The search is defined to be 1990 * first-fit from the specified address; the region found is 1991 * returned in the same parameter. 1992 * 1993 * If object is non-NULL, ref count must be bumped by caller 1994 * prior to making call to account for the new entry. 1995 */ 1996 int 1997 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1998 vm_offset_t *addr, /* IN/OUT */ 1999 vm_size_t length, vm_offset_t max_addr, int find_space, 2000 vm_prot_t prot, vm_prot_t max, int cow) 2001 { 2002 vm_offset_t alignment, curr_min_addr, min_addr; 2003 int gap, pidx, rv, try; 2004 bool cluster, en_aslr, update_anon; 2005 2006 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2007 object == NULL, 2008 ("vm_map_find: non-NULL backing object for stack")); 2009 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2010 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2011 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2012 (object->flags & OBJ_COLORED) == 0)) 2013 find_space = VMFS_ANY_SPACE; 2014 if (find_space >> 8 != 0) { 2015 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2016 alignment = (vm_offset_t)1 << (find_space >> 8); 2017 } else 2018 alignment = 0; 2019 en_aslr = (map->flags & MAP_ASLR) != 0; 2020 update_anon = cluster = clustering_anon_allowed(*addr) && 2021 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2022 find_space != VMFS_NO_SPACE && object == NULL && 2023 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2024 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2025 curr_min_addr = min_addr = *addr; 2026 if (en_aslr && min_addr == 0 && !cluster && 2027 find_space != VMFS_NO_SPACE && 2028 (map->flags & MAP_ASLR_IGNSTART) != 0) 2029 curr_min_addr = min_addr = vm_map_min(map); 2030 try = 0; 2031 vm_map_lock(map); 2032 if (cluster) { 2033 curr_min_addr = map->anon_loc; 2034 if (curr_min_addr == 0) 2035 cluster = false; 2036 } 2037 if (find_space != VMFS_NO_SPACE) { 2038 KASSERT(find_space == VMFS_ANY_SPACE || 2039 find_space == VMFS_OPTIMAL_SPACE || 2040 find_space == VMFS_SUPER_SPACE || 2041 alignment != 0, ("unexpected VMFS flag")); 2042 again: 2043 /* 2044 * When creating an anonymous mapping, try clustering 2045 * with an existing anonymous mapping first. 2046 * 2047 * We make up to two attempts to find address space 2048 * for a given find_space value. The first attempt may 2049 * apply randomization or may cluster with an existing 2050 * anonymous mapping. If this first attempt fails, 2051 * perform a first-fit search of the available address 2052 * space. 2053 * 2054 * If all tries failed, and find_space is 2055 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2056 * Again enable clustering and randomization. 2057 */ 2058 try++; 2059 MPASS(try <= 2); 2060 2061 if (try == 2) { 2062 /* 2063 * Second try: we failed either to find a 2064 * suitable region for randomizing the 2065 * allocation, or to cluster with an existing 2066 * mapping. Retry with free run. 2067 */ 2068 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2069 vm_map_min(map) : min_addr; 2070 atomic_add_long(&aslr_restarts, 1); 2071 } 2072 2073 if (try == 1 && en_aslr && !cluster) { 2074 /* 2075 * Find space for allocation, including 2076 * gap needed for later randomization. 2077 */ 2078 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2079 (find_space == VMFS_SUPER_SPACE || find_space == 2080 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2081 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2082 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2083 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2084 *addr = vm_map_findspace(map, curr_min_addr, 2085 length + gap * pagesizes[pidx]); 2086 if (*addr + length + gap * pagesizes[pidx] > 2087 vm_map_max(map)) 2088 goto again; 2089 /* And randomize the start address. */ 2090 *addr += (arc4random() % gap) * pagesizes[pidx]; 2091 if (max_addr != 0 && *addr + length > max_addr) 2092 goto again; 2093 } else { 2094 *addr = vm_map_findspace(map, curr_min_addr, length); 2095 if (*addr + length > vm_map_max(map) || 2096 (max_addr != 0 && *addr + length > max_addr)) { 2097 if (cluster) { 2098 cluster = false; 2099 MPASS(try == 1); 2100 goto again; 2101 } 2102 rv = KERN_NO_SPACE; 2103 goto done; 2104 } 2105 } 2106 2107 if (find_space != VMFS_ANY_SPACE && 2108 (rv = vm_map_alignspace(map, object, offset, addr, length, 2109 max_addr, alignment)) != KERN_SUCCESS) { 2110 if (find_space == VMFS_OPTIMAL_SPACE) { 2111 find_space = VMFS_ANY_SPACE; 2112 curr_min_addr = min_addr; 2113 cluster = update_anon; 2114 try = 0; 2115 goto again; 2116 } 2117 goto done; 2118 } 2119 } else if ((cow & MAP_REMAP) != 0) { 2120 if (*addr < vm_map_min(map) || 2121 *addr + length > vm_map_max(map) || 2122 *addr + length <= length) { 2123 rv = KERN_INVALID_ADDRESS; 2124 goto done; 2125 } 2126 vm_map_delete(map, *addr, *addr + length); 2127 } 2128 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2129 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2130 max, cow); 2131 } else { 2132 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2133 prot, max, cow); 2134 } 2135 if (rv == KERN_SUCCESS && update_anon) 2136 map->anon_loc = *addr + length; 2137 done: 2138 vm_map_unlock(map); 2139 return (rv); 2140 } 2141 2142 /* 2143 * vm_map_find_min() is a variant of vm_map_find() that takes an 2144 * additional parameter (min_addr) and treats the given address 2145 * (*addr) differently. Specifically, it treats *addr as a hint 2146 * and not as the minimum address where the mapping is created. 2147 * 2148 * This function works in two phases. First, it tries to 2149 * allocate above the hint. If that fails and the hint is 2150 * greater than min_addr, it performs a second pass, replacing 2151 * the hint with min_addr as the minimum address for the 2152 * allocation. 2153 */ 2154 int 2155 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2156 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2157 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2158 int cow) 2159 { 2160 vm_offset_t hint; 2161 int rv; 2162 2163 hint = *addr; 2164 for (;;) { 2165 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2166 find_space, prot, max, cow); 2167 if (rv == KERN_SUCCESS || min_addr >= hint) 2168 return (rv); 2169 *addr = hint = min_addr; 2170 } 2171 } 2172 2173 /* 2174 * A map entry with any of the following flags set must not be merged with 2175 * another entry. 2176 */ 2177 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2178 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2179 2180 static bool 2181 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2182 { 2183 2184 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2185 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2186 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2187 prev, entry)); 2188 return (prev->end == entry->start && 2189 prev->object.vm_object == entry->object.vm_object && 2190 (prev->object.vm_object == NULL || 2191 prev->offset + (prev->end - prev->start) == entry->offset) && 2192 prev->eflags == entry->eflags && 2193 prev->protection == entry->protection && 2194 prev->max_protection == entry->max_protection && 2195 prev->inheritance == entry->inheritance && 2196 prev->wired_count == entry->wired_count && 2197 prev->cred == entry->cred); 2198 } 2199 2200 static void 2201 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2202 { 2203 2204 /* 2205 * If the backing object is a vnode object, vm_object_deallocate() 2206 * calls vrele(). However, vrele() does not lock the vnode because 2207 * the vnode has additional references. Thus, the map lock can be 2208 * kept without causing a lock-order reversal with the vnode lock. 2209 * 2210 * Since we count the number of virtual page mappings in 2211 * object->un_pager.vnp.writemappings, the writemappings value 2212 * should not be adjusted when the entry is disposed of. 2213 */ 2214 if (entry->object.vm_object != NULL) 2215 vm_object_deallocate(entry->object.vm_object); 2216 if (entry->cred != NULL) 2217 crfree(entry->cred); 2218 vm_map_entry_dispose(map, entry); 2219 } 2220 2221 /* 2222 * vm_map_try_merge_entries: 2223 * 2224 * Compare the given map entry to its predecessor, and merge its precessor 2225 * into it if possible. The entry remains valid, and may be extended. 2226 * The predecessor may be deleted. 2227 * 2228 * The map must be locked. 2229 */ 2230 void 2231 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2232 vm_map_entry_t entry) 2233 { 2234 2235 VM_MAP_ASSERT_LOCKED(map); 2236 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2237 vm_map_mergeable_neighbors(prev_entry, entry)) { 2238 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2239 vm_map_merged_neighbor_dispose(map, prev_entry); 2240 } 2241 } 2242 2243 /* 2244 * vm_map_entry_back: 2245 * 2246 * Allocate an object to back a map entry. 2247 */ 2248 static inline void 2249 vm_map_entry_back(vm_map_entry_t entry) 2250 { 2251 vm_object_t object; 2252 2253 KASSERT(entry->object.vm_object == NULL, 2254 ("map entry %p has backing object", entry)); 2255 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2256 ("map entry %p is a submap", entry)); 2257 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2258 entry->cred, entry->end - entry->start); 2259 entry->object.vm_object = object; 2260 entry->offset = 0; 2261 entry->cred = NULL; 2262 } 2263 2264 /* 2265 * vm_map_entry_charge_object 2266 * 2267 * If there is no object backing this entry, create one. Otherwise, if 2268 * the entry has cred, give it to the backing object. 2269 */ 2270 static inline void 2271 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2272 { 2273 2274 VM_MAP_ASSERT_LOCKED(map); 2275 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2276 ("map entry %p is a submap", entry)); 2277 if (entry->object.vm_object == NULL && !map->system_map && 2278 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2279 vm_map_entry_back(entry); 2280 else if (entry->object.vm_object != NULL && 2281 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2282 entry->cred != NULL) { 2283 VM_OBJECT_WLOCK(entry->object.vm_object); 2284 KASSERT(entry->object.vm_object->cred == NULL, 2285 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2286 entry->object.vm_object->cred = entry->cred; 2287 entry->object.vm_object->charge = entry->end - entry->start; 2288 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2289 entry->cred = NULL; 2290 } 2291 } 2292 2293 /* 2294 * vm_map_entry_clone 2295 * 2296 * Create a duplicate map entry for clipping. 2297 */ 2298 static vm_map_entry_t 2299 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2300 { 2301 vm_map_entry_t new_entry; 2302 2303 VM_MAP_ASSERT_LOCKED(map); 2304 2305 /* 2306 * Create a backing object now, if none exists, so that more individual 2307 * objects won't be created after the map entry is split. 2308 */ 2309 vm_map_entry_charge_object(map, entry); 2310 2311 /* Clone the entry. */ 2312 new_entry = vm_map_entry_create(map); 2313 *new_entry = *entry; 2314 if (new_entry->cred != NULL) 2315 crhold(entry->cred); 2316 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2317 vm_object_reference(new_entry->object.vm_object); 2318 vm_map_entry_set_vnode_text(new_entry, true); 2319 /* 2320 * The object->un_pager.vnp.writemappings for the object of 2321 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2322 * virtual pages are re-distributed among the clipped entries, 2323 * so the sum is left the same. 2324 */ 2325 } 2326 return (new_entry); 2327 } 2328 2329 /* 2330 * vm_map_clip_start: [ internal use only ] 2331 * 2332 * Asserts that the given entry begins at or after 2333 * the specified address; if necessary, 2334 * it splits the entry into two. 2335 */ 2336 #define vm_map_clip_start(map, entry, startaddr) \ 2337 { \ 2338 if (startaddr > entry->start) \ 2339 _vm_map_clip_start(map, entry, startaddr); \ 2340 } 2341 2342 /* 2343 * This routine is called only when it is known that 2344 * the entry must be split. 2345 */ 2346 static void 2347 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2348 { 2349 vm_map_entry_t new_entry; 2350 2351 VM_MAP_ASSERT_LOCKED(map); 2352 KASSERT(entry->end > start && entry->start < start, 2353 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2354 2355 new_entry = vm_map_entry_clone(map, entry); 2356 2357 /* 2358 * Split off the front portion. Insert the new entry BEFORE this one, 2359 * so that this entry has the specified starting address. 2360 */ 2361 new_entry->end = start; 2362 entry->offset += (start - entry->start); 2363 entry->start = start; 2364 vm_map_entry_link(map, new_entry); 2365 } 2366 2367 /* 2368 * vm_map_clip_end: [ internal use only ] 2369 * 2370 * Asserts that the given entry ends at or before 2371 * the specified address; if necessary, 2372 * it splits the entry into two. 2373 */ 2374 #define vm_map_clip_end(map, entry, endaddr) \ 2375 { \ 2376 if ((endaddr) < (entry->end)) \ 2377 _vm_map_clip_end((map), (entry), (endaddr)); \ 2378 } 2379 2380 /* 2381 * This routine is called only when it is known that 2382 * the entry must be split. 2383 */ 2384 static void 2385 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2386 { 2387 vm_map_entry_t new_entry; 2388 2389 VM_MAP_ASSERT_LOCKED(map); 2390 KASSERT(entry->start < end && entry->end > end, 2391 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2392 2393 new_entry = vm_map_entry_clone(map, entry); 2394 2395 /* 2396 * Split off the back portion. Insert the new entry AFTER this one, 2397 * so that this entry has the specified ending address. 2398 */ 2399 new_entry->start = entry->end = end; 2400 new_entry->offset += (end - entry->start); 2401 vm_map_entry_link(map, new_entry); 2402 } 2403 2404 /* 2405 * vm_map_submap: [ kernel use only ] 2406 * 2407 * Mark the given range as handled by a subordinate map. 2408 * 2409 * This range must have been created with vm_map_find, 2410 * and no other operations may have been performed on this 2411 * range prior to calling vm_map_submap. 2412 * 2413 * Only a limited number of operations can be performed 2414 * within this rage after calling vm_map_submap: 2415 * vm_fault 2416 * [Don't try vm_map_copy!] 2417 * 2418 * To remove a submapping, one must first remove the 2419 * range from the superior map, and then destroy the 2420 * submap (if desired). [Better yet, don't try it.] 2421 */ 2422 int 2423 vm_map_submap( 2424 vm_map_t map, 2425 vm_offset_t start, 2426 vm_offset_t end, 2427 vm_map_t submap) 2428 { 2429 vm_map_entry_t entry; 2430 int result; 2431 2432 result = KERN_INVALID_ARGUMENT; 2433 2434 vm_map_lock(submap); 2435 submap->flags |= MAP_IS_SUB_MAP; 2436 vm_map_unlock(submap); 2437 2438 vm_map_lock(map); 2439 2440 VM_MAP_RANGE_CHECK(map, start, end); 2441 2442 if (vm_map_lookup_entry(map, start, &entry)) { 2443 vm_map_clip_start(map, entry, start); 2444 } else 2445 entry = vm_map_entry_succ(entry); 2446 2447 vm_map_clip_end(map, entry, end); 2448 2449 if ((entry->start == start) && (entry->end == end) && 2450 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2451 (entry->object.vm_object == NULL)) { 2452 entry->object.sub_map = submap; 2453 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2454 result = KERN_SUCCESS; 2455 } 2456 vm_map_unlock(map); 2457 2458 if (result != KERN_SUCCESS) { 2459 vm_map_lock(submap); 2460 submap->flags &= ~MAP_IS_SUB_MAP; 2461 vm_map_unlock(submap); 2462 } 2463 return (result); 2464 } 2465 2466 /* 2467 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2468 */ 2469 #define MAX_INIT_PT 96 2470 2471 /* 2472 * vm_map_pmap_enter: 2473 * 2474 * Preload the specified map's pmap with mappings to the specified 2475 * object's memory-resident pages. No further physical pages are 2476 * allocated, and no further virtual pages are retrieved from secondary 2477 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2478 * limited number of page mappings are created at the low-end of the 2479 * specified address range. (For this purpose, a superpage mapping 2480 * counts as one page mapping.) Otherwise, all resident pages within 2481 * the specified address range are mapped. 2482 */ 2483 static void 2484 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2485 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2486 { 2487 vm_offset_t start; 2488 vm_page_t p, p_start; 2489 vm_pindex_t mask, psize, threshold, tmpidx; 2490 2491 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2492 return; 2493 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2494 VM_OBJECT_WLOCK(object); 2495 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2496 pmap_object_init_pt(map->pmap, addr, object, pindex, 2497 size); 2498 VM_OBJECT_WUNLOCK(object); 2499 return; 2500 } 2501 VM_OBJECT_LOCK_DOWNGRADE(object); 2502 } else 2503 VM_OBJECT_RLOCK(object); 2504 2505 psize = atop(size); 2506 if (psize + pindex > object->size) { 2507 if (pindex >= object->size) { 2508 VM_OBJECT_RUNLOCK(object); 2509 return; 2510 } 2511 psize = object->size - pindex; 2512 } 2513 2514 start = 0; 2515 p_start = NULL; 2516 threshold = MAX_INIT_PT; 2517 2518 p = vm_page_find_least(object, pindex); 2519 /* 2520 * Assert: the variable p is either (1) the page with the 2521 * least pindex greater than or equal to the parameter pindex 2522 * or (2) NULL. 2523 */ 2524 for (; 2525 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2526 p = TAILQ_NEXT(p, listq)) { 2527 /* 2528 * don't allow an madvise to blow away our really 2529 * free pages allocating pv entries. 2530 */ 2531 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2532 vm_page_count_severe()) || 2533 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2534 tmpidx >= threshold)) { 2535 psize = tmpidx; 2536 break; 2537 } 2538 if (vm_page_all_valid(p)) { 2539 if (p_start == NULL) { 2540 start = addr + ptoa(tmpidx); 2541 p_start = p; 2542 } 2543 /* Jump ahead if a superpage mapping is possible. */ 2544 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2545 (pagesizes[p->psind] - 1)) == 0) { 2546 mask = atop(pagesizes[p->psind]) - 1; 2547 if (tmpidx + mask < psize && 2548 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2549 p += mask; 2550 threshold += mask; 2551 } 2552 } 2553 } else if (p_start != NULL) { 2554 pmap_enter_object(map->pmap, start, addr + 2555 ptoa(tmpidx), p_start, prot); 2556 p_start = NULL; 2557 } 2558 } 2559 if (p_start != NULL) 2560 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2561 p_start, prot); 2562 VM_OBJECT_RUNLOCK(object); 2563 } 2564 2565 /* 2566 * vm_map_protect: 2567 * 2568 * Sets the protection of the specified address 2569 * region in the target map. If "set_max" is 2570 * specified, the maximum protection is to be set; 2571 * otherwise, only the current protection is affected. 2572 */ 2573 int 2574 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2575 vm_prot_t new_prot, boolean_t set_max) 2576 { 2577 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2578 vm_object_t obj; 2579 struct ucred *cred; 2580 vm_prot_t old_prot; 2581 int rv; 2582 2583 if (start == end) 2584 return (KERN_SUCCESS); 2585 2586 again: 2587 in_tran = NULL; 2588 vm_map_lock(map); 2589 2590 /* 2591 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2592 * need to fault pages into the map and will drop the map lock while 2593 * doing so, and the VM object may end up in an inconsistent state if we 2594 * update the protection on the map entry in between faults. 2595 */ 2596 vm_map_wait_busy(map); 2597 2598 VM_MAP_RANGE_CHECK(map, start, end); 2599 2600 if (!vm_map_lookup_entry(map, start, &first_entry)) 2601 first_entry = vm_map_entry_succ(first_entry); 2602 2603 /* 2604 * Make a first pass to check for protection violations. 2605 */ 2606 for (entry = first_entry; entry->start < end; 2607 entry = vm_map_entry_succ(entry)) { 2608 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2609 continue; 2610 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2611 vm_map_unlock(map); 2612 return (KERN_INVALID_ARGUMENT); 2613 } 2614 if ((new_prot & entry->max_protection) != new_prot) { 2615 vm_map_unlock(map); 2616 return (KERN_PROTECTION_FAILURE); 2617 } 2618 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2619 in_tran = entry; 2620 } 2621 2622 /* 2623 * Postpone the operation until all in-transition map entries have 2624 * stabilized. An in-transition entry might already have its pages 2625 * wired and wired_count incremented, but not yet have its 2626 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2627 * vm_fault_copy_entry() in the final loop below. 2628 */ 2629 if (in_tran != NULL) { 2630 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2631 vm_map_unlock_and_wait(map, 0); 2632 goto again; 2633 } 2634 2635 /* 2636 * Before changing the protections, try to reserve swap space for any 2637 * private (i.e., copy-on-write) mappings that are transitioning from 2638 * read-only to read/write access. If a reservation fails, break out 2639 * of this loop early and let the next loop simplify the entries, since 2640 * some may now be mergeable. 2641 */ 2642 rv = KERN_SUCCESS; 2643 vm_map_clip_start(map, first_entry, start); 2644 for (entry = first_entry; entry->start < end; 2645 entry = vm_map_entry_succ(entry)) { 2646 vm_map_clip_end(map, entry, end); 2647 2648 if (set_max || 2649 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2650 ENTRY_CHARGED(entry) || 2651 (entry->eflags & MAP_ENTRY_GUARD) != 0) { 2652 continue; 2653 } 2654 2655 cred = curthread->td_ucred; 2656 obj = entry->object.vm_object; 2657 2658 if (obj == NULL || 2659 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2660 if (!swap_reserve(entry->end - entry->start)) { 2661 rv = KERN_RESOURCE_SHORTAGE; 2662 end = entry->end; 2663 break; 2664 } 2665 crhold(cred); 2666 entry->cred = cred; 2667 continue; 2668 } 2669 2670 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2671 continue; 2672 VM_OBJECT_WLOCK(obj); 2673 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2674 VM_OBJECT_WUNLOCK(obj); 2675 continue; 2676 } 2677 2678 /* 2679 * Charge for the whole object allocation now, since 2680 * we cannot distinguish between non-charged and 2681 * charged clipped mapping of the same object later. 2682 */ 2683 KASSERT(obj->charge == 0, 2684 ("vm_map_protect: object %p overcharged (entry %p)", 2685 obj, entry)); 2686 if (!swap_reserve(ptoa(obj->size))) { 2687 VM_OBJECT_WUNLOCK(obj); 2688 rv = KERN_RESOURCE_SHORTAGE; 2689 end = entry->end; 2690 break; 2691 } 2692 2693 crhold(cred); 2694 obj->cred = cred; 2695 obj->charge = ptoa(obj->size); 2696 VM_OBJECT_WUNLOCK(obj); 2697 } 2698 2699 /* 2700 * If enough swap space was available, go back and fix up protections. 2701 * Otherwise, just simplify entries, since some may have been modified. 2702 * [Note that clipping is not necessary the second time.] 2703 */ 2704 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2705 entry->start < end; 2706 vm_map_try_merge_entries(map, prev_entry, entry), 2707 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2708 if (rv != KERN_SUCCESS || 2709 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2710 continue; 2711 2712 old_prot = entry->protection; 2713 2714 if (set_max) 2715 entry->protection = 2716 (entry->max_protection = new_prot) & 2717 old_prot; 2718 else 2719 entry->protection = new_prot; 2720 2721 /* 2722 * For user wired map entries, the normal lazy evaluation of 2723 * write access upgrades through soft page faults is 2724 * undesirable. Instead, immediately copy any pages that are 2725 * copy-on-write and enable write access in the physical map. 2726 */ 2727 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2728 (entry->protection & VM_PROT_WRITE) != 0 && 2729 (old_prot & VM_PROT_WRITE) == 0) 2730 vm_fault_copy_entry(map, map, entry, entry, NULL); 2731 2732 /* 2733 * When restricting access, update the physical map. Worry 2734 * about copy-on-write here. 2735 */ 2736 if ((old_prot & ~entry->protection) != 0) { 2737 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2738 VM_PROT_ALL) 2739 pmap_protect(map->pmap, entry->start, 2740 entry->end, 2741 entry->protection & MASK(entry)); 2742 #undef MASK 2743 } 2744 } 2745 vm_map_try_merge_entries(map, prev_entry, entry); 2746 vm_map_unlock(map); 2747 return (rv); 2748 } 2749 2750 /* 2751 * vm_map_madvise: 2752 * 2753 * This routine traverses a processes map handling the madvise 2754 * system call. Advisories are classified as either those effecting 2755 * the vm_map_entry structure, or those effecting the underlying 2756 * objects. 2757 */ 2758 int 2759 vm_map_madvise( 2760 vm_map_t map, 2761 vm_offset_t start, 2762 vm_offset_t end, 2763 int behav) 2764 { 2765 vm_map_entry_t entry, prev_entry; 2766 bool modify_map; 2767 2768 /* 2769 * Some madvise calls directly modify the vm_map_entry, in which case 2770 * we need to use an exclusive lock on the map and we need to perform 2771 * various clipping operations. Otherwise we only need a read-lock 2772 * on the map. 2773 */ 2774 switch(behav) { 2775 case MADV_NORMAL: 2776 case MADV_SEQUENTIAL: 2777 case MADV_RANDOM: 2778 case MADV_NOSYNC: 2779 case MADV_AUTOSYNC: 2780 case MADV_NOCORE: 2781 case MADV_CORE: 2782 if (start == end) 2783 return (0); 2784 modify_map = true; 2785 vm_map_lock(map); 2786 break; 2787 case MADV_WILLNEED: 2788 case MADV_DONTNEED: 2789 case MADV_FREE: 2790 if (start == end) 2791 return (0); 2792 modify_map = false; 2793 vm_map_lock_read(map); 2794 break; 2795 default: 2796 return (EINVAL); 2797 } 2798 2799 /* 2800 * Locate starting entry and clip if necessary. 2801 */ 2802 VM_MAP_RANGE_CHECK(map, start, end); 2803 2804 if (vm_map_lookup_entry(map, start, &entry)) { 2805 if (modify_map) 2806 vm_map_clip_start(map, entry, start); 2807 prev_entry = vm_map_entry_pred(entry); 2808 } else { 2809 prev_entry = entry; 2810 entry = vm_map_entry_succ(entry); 2811 } 2812 2813 if (modify_map) { 2814 /* 2815 * madvise behaviors that are implemented in the vm_map_entry. 2816 * 2817 * We clip the vm_map_entry so that behavioral changes are 2818 * limited to the specified address range. 2819 */ 2820 for (; entry->start < end; 2821 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2822 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2823 continue; 2824 2825 vm_map_clip_end(map, entry, end); 2826 2827 switch (behav) { 2828 case MADV_NORMAL: 2829 vm_map_entry_set_behavior(entry, 2830 MAP_ENTRY_BEHAV_NORMAL); 2831 break; 2832 case MADV_SEQUENTIAL: 2833 vm_map_entry_set_behavior(entry, 2834 MAP_ENTRY_BEHAV_SEQUENTIAL); 2835 break; 2836 case MADV_RANDOM: 2837 vm_map_entry_set_behavior(entry, 2838 MAP_ENTRY_BEHAV_RANDOM); 2839 break; 2840 case MADV_NOSYNC: 2841 entry->eflags |= MAP_ENTRY_NOSYNC; 2842 break; 2843 case MADV_AUTOSYNC: 2844 entry->eflags &= ~MAP_ENTRY_NOSYNC; 2845 break; 2846 case MADV_NOCORE: 2847 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 2848 break; 2849 case MADV_CORE: 2850 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2851 break; 2852 default: 2853 break; 2854 } 2855 vm_map_try_merge_entries(map, prev_entry, entry); 2856 } 2857 vm_map_try_merge_entries(map, prev_entry, entry); 2858 vm_map_unlock(map); 2859 } else { 2860 vm_pindex_t pstart, pend; 2861 2862 /* 2863 * madvise behaviors that are implemented in the underlying 2864 * vm_object. 2865 * 2866 * Since we don't clip the vm_map_entry, we have to clip 2867 * the vm_object pindex and count. 2868 */ 2869 for (; entry->start < end; 2870 entry = vm_map_entry_succ(entry)) { 2871 vm_offset_t useEnd, useStart; 2872 2873 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2874 continue; 2875 2876 /* 2877 * MADV_FREE would otherwise rewind time to 2878 * the creation of the shadow object. Because 2879 * we hold the VM map read-locked, neither the 2880 * entry's object nor the presence of a 2881 * backing object can change. 2882 */ 2883 if (behav == MADV_FREE && 2884 entry->object.vm_object != NULL && 2885 entry->object.vm_object->backing_object != NULL) 2886 continue; 2887 2888 pstart = OFF_TO_IDX(entry->offset); 2889 pend = pstart + atop(entry->end - entry->start); 2890 useStart = entry->start; 2891 useEnd = entry->end; 2892 2893 if (entry->start < start) { 2894 pstart += atop(start - entry->start); 2895 useStart = start; 2896 } 2897 if (entry->end > end) { 2898 pend -= atop(entry->end - end); 2899 useEnd = end; 2900 } 2901 2902 if (pstart >= pend) 2903 continue; 2904 2905 /* 2906 * Perform the pmap_advise() before clearing 2907 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2908 * concurrent pmap operation, such as pmap_remove(), 2909 * could clear a reference in the pmap and set 2910 * PGA_REFERENCED on the page before the pmap_advise() 2911 * had completed. Consequently, the page would appear 2912 * referenced based upon an old reference that 2913 * occurred before this pmap_advise() ran. 2914 */ 2915 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2916 pmap_advise(map->pmap, useStart, useEnd, 2917 behav); 2918 2919 vm_object_madvise(entry->object.vm_object, pstart, 2920 pend, behav); 2921 2922 /* 2923 * Pre-populate paging structures in the 2924 * WILLNEED case. For wired entries, the 2925 * paging structures are already populated. 2926 */ 2927 if (behav == MADV_WILLNEED && 2928 entry->wired_count == 0) { 2929 vm_map_pmap_enter(map, 2930 useStart, 2931 entry->protection, 2932 entry->object.vm_object, 2933 pstart, 2934 ptoa(pend - pstart), 2935 MAP_PREFAULT_MADVISE 2936 ); 2937 } 2938 } 2939 vm_map_unlock_read(map); 2940 } 2941 return (0); 2942 } 2943 2944 2945 /* 2946 * vm_map_inherit: 2947 * 2948 * Sets the inheritance of the specified address 2949 * range in the target map. Inheritance 2950 * affects how the map will be shared with 2951 * child maps at the time of vmspace_fork. 2952 */ 2953 int 2954 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2955 vm_inherit_t new_inheritance) 2956 { 2957 vm_map_entry_t entry, prev_entry; 2958 2959 switch (new_inheritance) { 2960 case VM_INHERIT_NONE: 2961 case VM_INHERIT_COPY: 2962 case VM_INHERIT_SHARE: 2963 case VM_INHERIT_ZERO: 2964 break; 2965 default: 2966 return (KERN_INVALID_ARGUMENT); 2967 } 2968 if (start == end) 2969 return (KERN_SUCCESS); 2970 vm_map_lock(map); 2971 VM_MAP_RANGE_CHECK(map, start, end); 2972 if (vm_map_lookup_entry(map, start, &prev_entry)) { 2973 entry = prev_entry; 2974 vm_map_clip_start(map, entry, start); 2975 prev_entry = vm_map_entry_pred(entry); 2976 } else 2977 entry = vm_map_entry_succ(prev_entry); 2978 for (; entry->start < end; 2979 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2980 vm_map_clip_end(map, entry, end); 2981 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2982 new_inheritance != VM_INHERIT_ZERO) 2983 entry->inheritance = new_inheritance; 2984 vm_map_try_merge_entries(map, prev_entry, entry); 2985 } 2986 vm_map_try_merge_entries(map, prev_entry, entry); 2987 vm_map_unlock(map); 2988 return (KERN_SUCCESS); 2989 } 2990 2991 /* 2992 * vm_map_entry_in_transition: 2993 * 2994 * Release the map lock, and sleep until the entry is no longer in 2995 * transition. Awake and acquire the map lock. If the map changed while 2996 * another held the lock, lookup a possibly-changed entry at or after the 2997 * 'start' position of the old entry. 2998 */ 2999 static vm_map_entry_t 3000 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3001 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3002 { 3003 vm_map_entry_t entry; 3004 vm_offset_t start; 3005 u_int last_timestamp; 3006 3007 VM_MAP_ASSERT_LOCKED(map); 3008 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3009 ("not in-tranition map entry %p", in_entry)); 3010 /* 3011 * We have not yet clipped the entry. 3012 */ 3013 start = MAX(in_start, in_entry->start); 3014 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3015 last_timestamp = map->timestamp; 3016 if (vm_map_unlock_and_wait(map, 0)) { 3017 /* 3018 * Allow interruption of user wiring/unwiring? 3019 */ 3020 } 3021 vm_map_lock(map); 3022 if (last_timestamp + 1 == map->timestamp) 3023 return (in_entry); 3024 3025 /* 3026 * Look again for the entry because the map was modified while it was 3027 * unlocked. Specifically, the entry may have been clipped, merged, or 3028 * deleted. 3029 */ 3030 if (!vm_map_lookup_entry(map, start, &entry)) { 3031 if (!holes_ok) { 3032 *io_end = start; 3033 return (NULL); 3034 } 3035 entry = vm_map_entry_succ(entry); 3036 } 3037 return (entry); 3038 } 3039 3040 /* 3041 * vm_map_unwire: 3042 * 3043 * Implements both kernel and user unwiring. 3044 */ 3045 int 3046 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3047 int flags) 3048 { 3049 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3050 int rv; 3051 bool holes_ok, need_wakeup, user_unwire; 3052 3053 if (start == end) 3054 return (KERN_SUCCESS); 3055 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3056 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3057 vm_map_lock(map); 3058 VM_MAP_RANGE_CHECK(map, start, end); 3059 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3060 if (holes_ok) 3061 first_entry = vm_map_entry_succ(first_entry); 3062 else { 3063 vm_map_unlock(map); 3064 return (KERN_INVALID_ADDRESS); 3065 } 3066 } 3067 rv = KERN_SUCCESS; 3068 for (entry = first_entry; entry->start < end; entry = next_entry) { 3069 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3070 /* 3071 * We have not yet clipped the entry. 3072 */ 3073 next_entry = vm_map_entry_in_transition(map, start, 3074 &end, holes_ok, entry); 3075 if (next_entry == NULL) { 3076 if (entry == first_entry) { 3077 vm_map_unlock(map); 3078 return (KERN_INVALID_ADDRESS); 3079 } 3080 rv = KERN_INVALID_ADDRESS; 3081 break; 3082 } 3083 first_entry = (entry == first_entry) ? 3084 next_entry : NULL; 3085 continue; 3086 } 3087 vm_map_clip_start(map, entry, start); 3088 vm_map_clip_end(map, entry, end); 3089 /* 3090 * Mark the entry in case the map lock is released. (See 3091 * above.) 3092 */ 3093 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3094 entry->wiring_thread == NULL, 3095 ("owned map entry %p", entry)); 3096 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3097 entry->wiring_thread = curthread; 3098 next_entry = vm_map_entry_succ(entry); 3099 /* 3100 * Check the map for holes in the specified region. 3101 * If holes_ok, skip this check. 3102 */ 3103 if (!holes_ok && 3104 entry->end < end && next_entry->start > entry->end) { 3105 end = entry->end; 3106 rv = KERN_INVALID_ADDRESS; 3107 break; 3108 } 3109 /* 3110 * If system unwiring, require that the entry is system wired. 3111 */ 3112 if (!user_unwire && 3113 vm_map_entry_system_wired_count(entry) == 0) { 3114 end = entry->end; 3115 rv = KERN_INVALID_ARGUMENT; 3116 break; 3117 } 3118 } 3119 need_wakeup = false; 3120 if (first_entry == NULL && 3121 !vm_map_lookup_entry(map, start, &first_entry)) { 3122 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3123 prev_entry = first_entry; 3124 entry = vm_map_entry_succ(first_entry); 3125 } else { 3126 prev_entry = vm_map_entry_pred(first_entry); 3127 entry = first_entry; 3128 } 3129 for (; entry->start < end; 3130 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3131 /* 3132 * If holes_ok was specified, an empty 3133 * space in the unwired region could have been mapped 3134 * while the map lock was dropped for draining 3135 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3136 * could be simultaneously wiring this new mapping 3137 * entry. Detect these cases and skip any entries 3138 * marked as in transition by us. 3139 */ 3140 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3141 entry->wiring_thread != curthread) { 3142 KASSERT(holes_ok, 3143 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3144 continue; 3145 } 3146 3147 if (rv == KERN_SUCCESS && (!user_unwire || 3148 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3149 if (entry->wired_count == 1) 3150 vm_map_entry_unwire(map, entry); 3151 else 3152 entry->wired_count--; 3153 if (user_unwire) 3154 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3155 } 3156 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3157 ("vm_map_unwire: in-transition flag missing %p", entry)); 3158 KASSERT(entry->wiring_thread == curthread, 3159 ("vm_map_unwire: alien wire %p", entry)); 3160 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3161 entry->wiring_thread = NULL; 3162 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3163 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3164 need_wakeup = true; 3165 } 3166 vm_map_try_merge_entries(map, prev_entry, entry); 3167 } 3168 vm_map_try_merge_entries(map, prev_entry, entry); 3169 vm_map_unlock(map); 3170 if (need_wakeup) 3171 vm_map_wakeup(map); 3172 return (rv); 3173 } 3174 3175 static void 3176 vm_map_wire_user_count_sub(u_long npages) 3177 { 3178 3179 atomic_subtract_long(&vm_user_wire_count, npages); 3180 } 3181 3182 static bool 3183 vm_map_wire_user_count_add(u_long npages) 3184 { 3185 u_long wired; 3186 3187 wired = vm_user_wire_count; 3188 do { 3189 if (npages + wired > vm_page_max_user_wired) 3190 return (false); 3191 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3192 npages + wired)); 3193 3194 return (true); 3195 } 3196 3197 /* 3198 * vm_map_wire_entry_failure: 3199 * 3200 * Handle a wiring failure on the given entry. 3201 * 3202 * The map should be locked. 3203 */ 3204 static void 3205 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3206 vm_offset_t failed_addr) 3207 { 3208 3209 VM_MAP_ASSERT_LOCKED(map); 3210 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3211 entry->wired_count == 1, 3212 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3213 KASSERT(failed_addr < entry->end, 3214 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3215 3216 /* 3217 * If any pages at the start of this entry were successfully wired, 3218 * then unwire them. 3219 */ 3220 if (failed_addr > entry->start) { 3221 pmap_unwire(map->pmap, entry->start, failed_addr); 3222 vm_object_unwire(entry->object.vm_object, entry->offset, 3223 failed_addr - entry->start, PQ_ACTIVE); 3224 } 3225 3226 /* 3227 * Assign an out-of-range value to represent the failure to wire this 3228 * entry. 3229 */ 3230 entry->wired_count = -1; 3231 } 3232 3233 int 3234 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3235 { 3236 int rv; 3237 3238 vm_map_lock(map); 3239 rv = vm_map_wire_locked(map, start, end, flags); 3240 vm_map_unlock(map); 3241 return (rv); 3242 } 3243 3244 3245 /* 3246 * vm_map_wire_locked: 3247 * 3248 * Implements both kernel and user wiring. Returns with the map locked, 3249 * the map lock may be dropped. 3250 */ 3251 int 3252 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3253 { 3254 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3255 vm_offset_t faddr, saved_end, saved_start; 3256 u_long npages; 3257 u_int last_timestamp; 3258 int rv; 3259 bool holes_ok, need_wakeup, user_wire; 3260 vm_prot_t prot; 3261 3262 VM_MAP_ASSERT_LOCKED(map); 3263 3264 if (start == end) 3265 return (KERN_SUCCESS); 3266 prot = 0; 3267 if (flags & VM_MAP_WIRE_WRITE) 3268 prot |= VM_PROT_WRITE; 3269 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3270 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3271 VM_MAP_RANGE_CHECK(map, start, end); 3272 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3273 if (holes_ok) 3274 first_entry = vm_map_entry_succ(first_entry); 3275 else 3276 return (KERN_INVALID_ADDRESS); 3277 } 3278 for (entry = first_entry; entry->start < end; entry = next_entry) { 3279 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3280 /* 3281 * We have not yet clipped the entry. 3282 */ 3283 next_entry = vm_map_entry_in_transition(map, start, 3284 &end, holes_ok, entry); 3285 if (next_entry == NULL) { 3286 if (entry == first_entry) 3287 return (KERN_INVALID_ADDRESS); 3288 rv = KERN_INVALID_ADDRESS; 3289 goto done; 3290 } 3291 first_entry = (entry == first_entry) ? 3292 next_entry : NULL; 3293 continue; 3294 } 3295 vm_map_clip_start(map, entry, start); 3296 vm_map_clip_end(map, entry, end); 3297 /* 3298 * Mark the entry in case the map lock is released. (See 3299 * above.) 3300 */ 3301 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3302 entry->wiring_thread == NULL, 3303 ("owned map entry %p", entry)); 3304 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3305 entry->wiring_thread = curthread; 3306 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3307 || (entry->protection & prot) != prot) { 3308 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3309 if (!holes_ok) { 3310 end = entry->end; 3311 rv = KERN_INVALID_ADDRESS; 3312 goto done; 3313 } 3314 } else if (entry->wired_count == 0) { 3315 entry->wired_count++; 3316 3317 npages = atop(entry->end - entry->start); 3318 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3319 vm_map_wire_entry_failure(map, entry, 3320 entry->start); 3321 end = entry->end; 3322 rv = KERN_RESOURCE_SHORTAGE; 3323 goto done; 3324 } 3325 3326 /* 3327 * Release the map lock, relying on the in-transition 3328 * mark. Mark the map busy for fork. 3329 */ 3330 saved_start = entry->start; 3331 saved_end = entry->end; 3332 last_timestamp = map->timestamp; 3333 vm_map_busy(map); 3334 vm_map_unlock(map); 3335 3336 faddr = saved_start; 3337 do { 3338 /* 3339 * Simulate a fault to get the page and enter 3340 * it into the physical map. 3341 */ 3342 if ((rv = vm_fault(map, faddr, 3343 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3344 KERN_SUCCESS) 3345 break; 3346 } while ((faddr += PAGE_SIZE) < saved_end); 3347 vm_map_lock(map); 3348 vm_map_unbusy(map); 3349 if (last_timestamp + 1 != map->timestamp) { 3350 /* 3351 * Look again for the entry because the map was 3352 * modified while it was unlocked. The entry 3353 * may have been clipped, but NOT merged or 3354 * deleted. 3355 */ 3356 if (!vm_map_lookup_entry(map, saved_start, 3357 &next_entry)) 3358 KASSERT(false, 3359 ("vm_map_wire: lookup failed")); 3360 first_entry = (entry == first_entry) ? 3361 next_entry : NULL; 3362 for (entry = next_entry; entry->end < saved_end; 3363 entry = vm_map_entry_succ(entry)) { 3364 /* 3365 * In case of failure, handle entries 3366 * that were not fully wired here; 3367 * fully wired entries are handled 3368 * later. 3369 */ 3370 if (rv != KERN_SUCCESS && 3371 faddr < entry->end) 3372 vm_map_wire_entry_failure(map, 3373 entry, faddr); 3374 } 3375 } 3376 if (rv != KERN_SUCCESS) { 3377 vm_map_wire_entry_failure(map, entry, faddr); 3378 if (user_wire) 3379 vm_map_wire_user_count_sub(npages); 3380 end = entry->end; 3381 goto done; 3382 } 3383 } else if (!user_wire || 3384 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3385 entry->wired_count++; 3386 } 3387 /* 3388 * Check the map for holes in the specified region. 3389 * If holes_ok was specified, skip this check. 3390 */ 3391 next_entry = vm_map_entry_succ(entry); 3392 if (!holes_ok && 3393 entry->end < end && next_entry->start > entry->end) { 3394 end = entry->end; 3395 rv = KERN_INVALID_ADDRESS; 3396 goto done; 3397 } 3398 } 3399 rv = KERN_SUCCESS; 3400 done: 3401 need_wakeup = false; 3402 if (first_entry == NULL && 3403 !vm_map_lookup_entry(map, start, &first_entry)) { 3404 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3405 prev_entry = first_entry; 3406 entry = vm_map_entry_succ(first_entry); 3407 } else { 3408 prev_entry = vm_map_entry_pred(first_entry); 3409 entry = first_entry; 3410 } 3411 for (; entry->start < end; 3412 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3413 /* 3414 * If holes_ok was specified, an empty 3415 * space in the unwired region could have been mapped 3416 * while the map lock was dropped for faulting in the 3417 * pages or draining MAP_ENTRY_IN_TRANSITION. 3418 * Moreover, another thread could be simultaneously 3419 * wiring this new mapping entry. Detect these cases 3420 * and skip any entries marked as in transition not by us. 3421 */ 3422 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3423 entry->wiring_thread != curthread) { 3424 KASSERT(holes_ok, 3425 ("vm_map_wire: !HOLESOK and new/changed entry")); 3426 continue; 3427 } 3428 3429 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3430 /* do nothing */ 3431 } else if (rv == KERN_SUCCESS) { 3432 if (user_wire) 3433 entry->eflags |= MAP_ENTRY_USER_WIRED; 3434 } else if (entry->wired_count == -1) { 3435 /* 3436 * Wiring failed on this entry. Thus, unwiring is 3437 * unnecessary. 3438 */ 3439 entry->wired_count = 0; 3440 } else if (!user_wire || 3441 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3442 /* 3443 * Undo the wiring. Wiring succeeded on this entry 3444 * but failed on a later entry. 3445 */ 3446 if (entry->wired_count == 1) { 3447 vm_map_entry_unwire(map, entry); 3448 if (user_wire) 3449 vm_map_wire_user_count_sub( 3450 atop(entry->end - entry->start)); 3451 } else 3452 entry->wired_count--; 3453 } 3454 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3455 ("vm_map_wire: in-transition flag missing %p", entry)); 3456 KASSERT(entry->wiring_thread == curthread, 3457 ("vm_map_wire: alien wire %p", entry)); 3458 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3459 MAP_ENTRY_WIRE_SKIPPED); 3460 entry->wiring_thread = NULL; 3461 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3462 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3463 need_wakeup = true; 3464 } 3465 vm_map_try_merge_entries(map, prev_entry, entry); 3466 } 3467 vm_map_try_merge_entries(map, prev_entry, entry); 3468 if (need_wakeup) 3469 vm_map_wakeup(map); 3470 return (rv); 3471 } 3472 3473 /* 3474 * vm_map_sync 3475 * 3476 * Push any dirty cached pages in the address range to their pager. 3477 * If syncio is TRUE, dirty pages are written synchronously. 3478 * If invalidate is TRUE, any cached pages are freed as well. 3479 * 3480 * If the size of the region from start to end is zero, we are 3481 * supposed to flush all modified pages within the region containing 3482 * start. Unfortunately, a region can be split or coalesced with 3483 * neighboring regions, making it difficult to determine what the 3484 * original region was. Therefore, we approximate this requirement by 3485 * flushing the current region containing start. 3486 * 3487 * Returns an error if any part of the specified range is not mapped. 3488 */ 3489 int 3490 vm_map_sync( 3491 vm_map_t map, 3492 vm_offset_t start, 3493 vm_offset_t end, 3494 boolean_t syncio, 3495 boolean_t invalidate) 3496 { 3497 vm_map_entry_t entry, first_entry, next_entry; 3498 vm_size_t size; 3499 vm_object_t object; 3500 vm_ooffset_t offset; 3501 unsigned int last_timestamp; 3502 boolean_t failed; 3503 3504 vm_map_lock_read(map); 3505 VM_MAP_RANGE_CHECK(map, start, end); 3506 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3507 vm_map_unlock_read(map); 3508 return (KERN_INVALID_ADDRESS); 3509 } else if (start == end) { 3510 start = first_entry->start; 3511 end = first_entry->end; 3512 } 3513 /* 3514 * Make a first pass to check for user-wired memory and holes. 3515 */ 3516 for (entry = first_entry; entry->start < end; entry = next_entry) { 3517 if (invalidate && 3518 (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3519 vm_map_unlock_read(map); 3520 return (KERN_INVALID_ARGUMENT); 3521 } 3522 next_entry = vm_map_entry_succ(entry); 3523 if (end > entry->end && 3524 entry->end != next_entry->start) { 3525 vm_map_unlock_read(map); 3526 return (KERN_INVALID_ADDRESS); 3527 } 3528 } 3529 3530 if (invalidate) 3531 pmap_remove(map->pmap, start, end); 3532 failed = FALSE; 3533 3534 /* 3535 * Make a second pass, cleaning/uncaching pages from the indicated 3536 * objects as we go. 3537 */ 3538 for (entry = first_entry; entry->start < end;) { 3539 offset = entry->offset + (start - entry->start); 3540 size = (end <= entry->end ? end : entry->end) - start; 3541 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3542 vm_map_t smap; 3543 vm_map_entry_t tentry; 3544 vm_size_t tsize; 3545 3546 smap = entry->object.sub_map; 3547 vm_map_lock_read(smap); 3548 (void) vm_map_lookup_entry(smap, offset, &tentry); 3549 tsize = tentry->end - offset; 3550 if (tsize < size) 3551 size = tsize; 3552 object = tentry->object.vm_object; 3553 offset = tentry->offset + (offset - tentry->start); 3554 vm_map_unlock_read(smap); 3555 } else { 3556 object = entry->object.vm_object; 3557 } 3558 vm_object_reference(object); 3559 last_timestamp = map->timestamp; 3560 vm_map_unlock_read(map); 3561 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3562 failed = TRUE; 3563 start += size; 3564 vm_object_deallocate(object); 3565 vm_map_lock_read(map); 3566 if (last_timestamp == map->timestamp || 3567 !vm_map_lookup_entry(map, start, &entry)) 3568 entry = vm_map_entry_succ(entry); 3569 } 3570 3571 vm_map_unlock_read(map); 3572 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3573 } 3574 3575 /* 3576 * vm_map_entry_unwire: [ internal use only ] 3577 * 3578 * Make the region specified by this entry pageable. 3579 * 3580 * The map in question should be locked. 3581 * [This is the reason for this routine's existence.] 3582 */ 3583 static void 3584 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3585 { 3586 vm_size_t size; 3587 3588 VM_MAP_ASSERT_LOCKED(map); 3589 KASSERT(entry->wired_count > 0, 3590 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3591 3592 size = entry->end - entry->start; 3593 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3594 vm_map_wire_user_count_sub(atop(size)); 3595 pmap_unwire(map->pmap, entry->start, entry->end); 3596 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3597 PQ_ACTIVE); 3598 entry->wired_count = 0; 3599 } 3600 3601 static void 3602 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3603 { 3604 3605 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3606 vm_object_deallocate(entry->object.vm_object); 3607 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3608 } 3609 3610 /* 3611 * vm_map_entry_delete: [ internal use only ] 3612 * 3613 * Deallocate the given entry from the target map. 3614 */ 3615 static void 3616 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3617 { 3618 vm_object_t object; 3619 vm_pindex_t offidxstart, offidxend, count, size1; 3620 vm_size_t size; 3621 3622 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3623 object = entry->object.vm_object; 3624 3625 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3626 MPASS(entry->cred == NULL); 3627 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3628 MPASS(object == NULL); 3629 vm_map_entry_deallocate(entry, map->system_map); 3630 return; 3631 } 3632 3633 size = entry->end - entry->start; 3634 map->size -= size; 3635 3636 if (entry->cred != NULL) { 3637 swap_release_by_cred(size, entry->cred); 3638 crfree(entry->cred); 3639 } 3640 3641 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3642 entry->object.vm_object = NULL; 3643 } else if ((object->flags & OBJ_ANON) != 0 || 3644 object == kernel_object) { 3645 KASSERT(entry->cred == NULL || object->cred == NULL || 3646 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3647 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3648 count = atop(size); 3649 offidxstart = OFF_TO_IDX(entry->offset); 3650 offidxend = offidxstart + count; 3651 VM_OBJECT_WLOCK(object); 3652 if (object->ref_count != 1 && 3653 ((object->flags & OBJ_ONEMAPPING) != 0 || 3654 object == kernel_object)) { 3655 vm_object_collapse(object); 3656 3657 /* 3658 * The option OBJPR_NOTMAPPED can be passed here 3659 * because vm_map_delete() already performed 3660 * pmap_remove() on the only mapping to this range 3661 * of pages. 3662 */ 3663 vm_object_page_remove(object, offidxstart, offidxend, 3664 OBJPR_NOTMAPPED); 3665 if (object->type == OBJT_SWAP) 3666 swap_pager_freespace(object, offidxstart, 3667 count); 3668 if (offidxend >= object->size && 3669 offidxstart < object->size) { 3670 size1 = object->size; 3671 object->size = offidxstart; 3672 if (object->cred != NULL) { 3673 size1 -= object->size; 3674 KASSERT(object->charge >= ptoa(size1), 3675 ("object %p charge < 0", object)); 3676 swap_release_by_cred(ptoa(size1), 3677 object->cred); 3678 object->charge -= ptoa(size1); 3679 } 3680 } 3681 } 3682 VM_OBJECT_WUNLOCK(object); 3683 } 3684 if (map->system_map) 3685 vm_map_entry_deallocate(entry, TRUE); 3686 else { 3687 entry->defer_next = curthread->td_map_def_user; 3688 curthread->td_map_def_user = entry; 3689 } 3690 } 3691 3692 /* 3693 * vm_map_delete: [ internal use only ] 3694 * 3695 * Deallocates the given address range from the target 3696 * map. 3697 */ 3698 int 3699 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3700 { 3701 vm_map_entry_t entry; 3702 vm_map_entry_t first_entry; 3703 3704 VM_MAP_ASSERT_LOCKED(map); 3705 if (start == end) 3706 return (KERN_SUCCESS); 3707 3708 /* 3709 * Find the start of the region, and clip it 3710 */ 3711 if (!vm_map_lookup_entry(map, start, &first_entry)) 3712 entry = vm_map_entry_succ(first_entry); 3713 else { 3714 entry = first_entry; 3715 vm_map_clip_start(map, entry, start); 3716 } 3717 3718 /* 3719 * Step through all entries in this region 3720 */ 3721 while (entry->start < end) { 3722 vm_map_entry_t next; 3723 3724 /* 3725 * Wait for wiring or unwiring of an entry to complete. 3726 * Also wait for any system wirings to disappear on 3727 * user maps. 3728 */ 3729 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3730 (vm_map_pmap(map) != kernel_pmap && 3731 vm_map_entry_system_wired_count(entry) != 0)) { 3732 unsigned int last_timestamp; 3733 vm_offset_t saved_start; 3734 vm_map_entry_t tmp_entry; 3735 3736 saved_start = entry->start; 3737 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3738 last_timestamp = map->timestamp; 3739 (void) vm_map_unlock_and_wait(map, 0); 3740 vm_map_lock(map); 3741 if (last_timestamp + 1 != map->timestamp) { 3742 /* 3743 * Look again for the entry because the map was 3744 * modified while it was unlocked. 3745 * Specifically, the entry may have been 3746 * clipped, merged, or deleted. 3747 */ 3748 if (!vm_map_lookup_entry(map, saved_start, 3749 &tmp_entry)) 3750 entry = vm_map_entry_succ(tmp_entry); 3751 else { 3752 entry = tmp_entry; 3753 vm_map_clip_start(map, entry, 3754 saved_start); 3755 } 3756 } 3757 continue; 3758 } 3759 vm_map_clip_end(map, entry, end); 3760 3761 next = vm_map_entry_succ(entry); 3762 3763 /* 3764 * Unwire before removing addresses from the pmap; otherwise, 3765 * unwiring will put the entries back in the pmap. 3766 */ 3767 if (entry->wired_count != 0) 3768 vm_map_entry_unwire(map, entry); 3769 3770 /* 3771 * Remove mappings for the pages, but only if the 3772 * mappings could exist. For instance, it does not 3773 * make sense to call pmap_remove() for guard entries. 3774 */ 3775 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3776 entry->object.vm_object != NULL) 3777 pmap_remove(map->pmap, entry->start, entry->end); 3778 3779 if (entry->end == map->anon_loc) 3780 map->anon_loc = entry->start; 3781 3782 /* 3783 * Delete the entry only after removing all pmap 3784 * entries pointing to its pages. (Otherwise, its 3785 * page frames may be reallocated, and any modify bits 3786 * will be set in the wrong object!) 3787 */ 3788 vm_map_entry_delete(map, entry); 3789 entry = next; 3790 } 3791 return (KERN_SUCCESS); 3792 } 3793 3794 /* 3795 * vm_map_remove: 3796 * 3797 * Remove the given address range from the target map. 3798 * This is the exported form of vm_map_delete. 3799 */ 3800 int 3801 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3802 { 3803 int result; 3804 3805 vm_map_lock(map); 3806 VM_MAP_RANGE_CHECK(map, start, end); 3807 result = vm_map_delete(map, start, end); 3808 vm_map_unlock(map); 3809 return (result); 3810 } 3811 3812 /* 3813 * vm_map_check_protection: 3814 * 3815 * Assert that the target map allows the specified privilege on the 3816 * entire address region given. The entire region must be allocated. 3817 * 3818 * WARNING! This code does not and should not check whether the 3819 * contents of the region is accessible. For example a smaller file 3820 * might be mapped into a larger address space. 3821 * 3822 * NOTE! This code is also called by munmap(). 3823 * 3824 * The map must be locked. A read lock is sufficient. 3825 */ 3826 boolean_t 3827 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3828 vm_prot_t protection) 3829 { 3830 vm_map_entry_t entry; 3831 vm_map_entry_t tmp_entry; 3832 3833 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3834 return (FALSE); 3835 entry = tmp_entry; 3836 3837 while (start < end) { 3838 /* 3839 * No holes allowed! 3840 */ 3841 if (start < entry->start) 3842 return (FALSE); 3843 /* 3844 * Check protection associated with entry. 3845 */ 3846 if ((entry->protection & protection) != protection) 3847 return (FALSE); 3848 /* go to next entry */ 3849 start = entry->end; 3850 entry = vm_map_entry_succ(entry); 3851 } 3852 return (TRUE); 3853 } 3854 3855 3856 /* 3857 * 3858 * vm_map_copy_swap_object: 3859 * 3860 * Copies a swap-backed object from an existing map entry to a 3861 * new one. Carries forward the swap charge. May change the 3862 * src object on return. 3863 */ 3864 static void 3865 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 3866 vm_offset_t size, vm_ooffset_t *fork_charge) 3867 { 3868 vm_object_t src_object; 3869 struct ucred *cred; 3870 int charged; 3871 3872 src_object = src_entry->object.vm_object; 3873 VM_OBJECT_WLOCK(src_object); 3874 charged = ENTRY_CHARGED(src_entry); 3875 vm_object_collapse(src_object); 3876 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3877 vm_object_split(src_entry); 3878 src_object = src_entry->object.vm_object; 3879 } 3880 vm_object_reference_locked(src_object); 3881 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3882 if (src_entry->cred != NULL && 3883 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3884 KASSERT(src_object->cred == NULL, 3885 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 3886 src_object)); 3887 src_object->cred = src_entry->cred; 3888 src_object->charge = size; 3889 } 3890 VM_OBJECT_WUNLOCK(src_object); 3891 dst_entry->object.vm_object = src_object; 3892 if (charged) { 3893 cred = curthread->td_ucred; 3894 crhold(cred); 3895 dst_entry->cred = cred; 3896 *fork_charge += size; 3897 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3898 crhold(cred); 3899 src_entry->cred = cred; 3900 *fork_charge += size; 3901 } 3902 } 3903 } 3904 3905 /* 3906 * vm_map_copy_entry: 3907 * 3908 * Copies the contents of the source entry to the destination 3909 * entry. The entries *must* be aligned properly. 3910 */ 3911 static void 3912 vm_map_copy_entry( 3913 vm_map_t src_map, 3914 vm_map_t dst_map, 3915 vm_map_entry_t src_entry, 3916 vm_map_entry_t dst_entry, 3917 vm_ooffset_t *fork_charge) 3918 { 3919 vm_object_t src_object; 3920 vm_map_entry_t fake_entry; 3921 vm_offset_t size; 3922 3923 VM_MAP_ASSERT_LOCKED(dst_map); 3924 3925 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3926 return; 3927 3928 if (src_entry->wired_count == 0 || 3929 (src_entry->protection & VM_PROT_WRITE) == 0) { 3930 /* 3931 * If the source entry is marked needs_copy, it is already 3932 * write-protected. 3933 */ 3934 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3935 (src_entry->protection & VM_PROT_WRITE) != 0) { 3936 pmap_protect(src_map->pmap, 3937 src_entry->start, 3938 src_entry->end, 3939 src_entry->protection & ~VM_PROT_WRITE); 3940 } 3941 3942 /* 3943 * Make a copy of the object. 3944 */ 3945 size = src_entry->end - src_entry->start; 3946 if ((src_object = src_entry->object.vm_object) != NULL) { 3947 if (src_object->type == OBJT_DEFAULT || 3948 src_object->type == OBJT_SWAP) { 3949 vm_map_copy_swap_object(src_entry, dst_entry, 3950 size, fork_charge); 3951 /* May have split/collapsed, reload obj. */ 3952 src_object = src_entry->object.vm_object; 3953 } else { 3954 vm_object_reference(src_object); 3955 dst_entry->object.vm_object = src_object; 3956 } 3957 src_entry->eflags |= MAP_ENTRY_COW | 3958 MAP_ENTRY_NEEDS_COPY; 3959 dst_entry->eflags |= MAP_ENTRY_COW | 3960 MAP_ENTRY_NEEDS_COPY; 3961 dst_entry->offset = src_entry->offset; 3962 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3963 /* 3964 * MAP_ENTRY_WRITECNT cannot 3965 * indicate write reference from 3966 * src_entry, since the entry is 3967 * marked as needs copy. Allocate a 3968 * fake entry that is used to 3969 * decrement object->un_pager writecount 3970 * at the appropriate time. Attach 3971 * fake_entry to the deferred list. 3972 */ 3973 fake_entry = vm_map_entry_create(dst_map); 3974 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3975 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3976 vm_object_reference(src_object); 3977 fake_entry->object.vm_object = src_object; 3978 fake_entry->start = src_entry->start; 3979 fake_entry->end = src_entry->end; 3980 fake_entry->defer_next = 3981 curthread->td_map_def_user; 3982 curthread->td_map_def_user = fake_entry; 3983 } 3984 3985 pmap_copy(dst_map->pmap, src_map->pmap, 3986 dst_entry->start, dst_entry->end - dst_entry->start, 3987 src_entry->start); 3988 } else { 3989 dst_entry->object.vm_object = NULL; 3990 dst_entry->offset = 0; 3991 if (src_entry->cred != NULL) { 3992 dst_entry->cred = curthread->td_ucred; 3993 crhold(dst_entry->cred); 3994 *fork_charge += size; 3995 } 3996 } 3997 } else { 3998 /* 3999 * We don't want to make writeable wired pages copy-on-write. 4000 * Immediately copy these pages into the new map by simulating 4001 * page faults. The new pages are pageable. 4002 */ 4003 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4004 fork_charge); 4005 } 4006 } 4007 4008 /* 4009 * vmspace_map_entry_forked: 4010 * Update the newly-forked vmspace each time a map entry is inherited 4011 * or copied. The values for vm_dsize and vm_tsize are approximate 4012 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4013 */ 4014 static void 4015 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4016 vm_map_entry_t entry) 4017 { 4018 vm_size_t entrysize; 4019 vm_offset_t newend; 4020 4021 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4022 return; 4023 entrysize = entry->end - entry->start; 4024 vm2->vm_map.size += entrysize; 4025 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4026 vm2->vm_ssize += btoc(entrysize); 4027 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4028 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4029 newend = MIN(entry->end, 4030 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4031 vm2->vm_dsize += btoc(newend - entry->start); 4032 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4033 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4034 newend = MIN(entry->end, 4035 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4036 vm2->vm_tsize += btoc(newend - entry->start); 4037 } 4038 } 4039 4040 /* 4041 * vmspace_fork: 4042 * Create a new process vmspace structure and vm_map 4043 * based on those of an existing process. The new map 4044 * is based on the old map, according to the inheritance 4045 * values on the regions in that map. 4046 * 4047 * XXX It might be worth coalescing the entries added to the new vmspace. 4048 * 4049 * The source map must not be locked. 4050 */ 4051 struct vmspace * 4052 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4053 { 4054 struct vmspace *vm2; 4055 vm_map_t new_map, old_map; 4056 vm_map_entry_t new_entry, old_entry; 4057 vm_object_t object; 4058 int error, locked; 4059 vm_inherit_t inh; 4060 4061 old_map = &vm1->vm_map; 4062 /* Copy immutable fields of vm1 to vm2. */ 4063 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4064 pmap_pinit); 4065 if (vm2 == NULL) 4066 return (NULL); 4067 4068 vm2->vm_taddr = vm1->vm_taddr; 4069 vm2->vm_daddr = vm1->vm_daddr; 4070 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4071 vm_map_lock(old_map); 4072 if (old_map->busy) 4073 vm_map_wait_busy(old_map); 4074 new_map = &vm2->vm_map; 4075 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4076 KASSERT(locked, ("vmspace_fork: lock failed")); 4077 4078 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4079 if (error != 0) { 4080 sx_xunlock(&old_map->lock); 4081 sx_xunlock(&new_map->lock); 4082 vm_map_process_deferred(); 4083 vmspace_free(vm2); 4084 return (NULL); 4085 } 4086 4087 new_map->anon_loc = old_map->anon_loc; 4088 4089 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4090 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4091 panic("vm_map_fork: encountered a submap"); 4092 4093 inh = old_entry->inheritance; 4094 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4095 inh != VM_INHERIT_NONE) 4096 inh = VM_INHERIT_COPY; 4097 4098 switch (inh) { 4099 case VM_INHERIT_NONE: 4100 break; 4101 4102 case VM_INHERIT_SHARE: 4103 /* 4104 * Clone the entry, creating the shared object if 4105 * necessary. 4106 */ 4107 object = old_entry->object.vm_object; 4108 if (object == NULL) { 4109 vm_map_entry_back(old_entry); 4110 object = old_entry->object.vm_object; 4111 } 4112 4113 /* 4114 * Add the reference before calling vm_object_shadow 4115 * to insure that a shadow object is created. 4116 */ 4117 vm_object_reference(object); 4118 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4119 vm_object_shadow(&old_entry->object.vm_object, 4120 &old_entry->offset, 4121 old_entry->end - old_entry->start, 4122 old_entry->cred, 4123 /* Transfer the second reference too. */ 4124 true); 4125 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4126 old_entry->cred = NULL; 4127 vm_object_reference( 4128 old_entry->object.vm_object); 4129 4130 /* 4131 * As in vm_map_merged_neighbor_dispose(), 4132 * the vnode lock will not be acquired in 4133 * this call to vm_object_deallocate(). 4134 */ 4135 vm_object_deallocate(object); 4136 object = old_entry->object.vm_object; 4137 } else { 4138 VM_OBJECT_WLOCK(object); 4139 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4140 if (old_entry->cred != NULL) { 4141 KASSERT(object->cred == NULL, 4142 ("vmspace_fork both cred")); 4143 object->cred = old_entry->cred; 4144 object->charge = old_entry->end - 4145 old_entry->start; 4146 old_entry->cred = NULL; 4147 } 4148 4149 /* 4150 * Assert the correct state of the vnode 4151 * v_writecount while the object is locked, to 4152 * not relock it later for the assertion 4153 * correctness. 4154 */ 4155 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4156 object->type == OBJT_VNODE) { 4157 KASSERT(((struct vnode *)object-> 4158 handle)->v_writecount > 0, 4159 ("vmspace_fork: v_writecount %p", 4160 object)); 4161 KASSERT(object->un_pager.vnp. 4162 writemappings > 0, 4163 ("vmspace_fork: vnp.writecount %p", 4164 object)); 4165 } 4166 VM_OBJECT_WUNLOCK(object); 4167 } 4168 4169 /* 4170 * Clone the entry, referencing the shared object. 4171 */ 4172 new_entry = vm_map_entry_create(new_map); 4173 *new_entry = *old_entry; 4174 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4175 MAP_ENTRY_IN_TRANSITION); 4176 new_entry->wiring_thread = NULL; 4177 new_entry->wired_count = 0; 4178 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4179 vm_pager_update_writecount(object, 4180 new_entry->start, new_entry->end); 4181 } 4182 vm_map_entry_set_vnode_text(new_entry, true); 4183 4184 /* 4185 * Insert the entry into the new map -- we know we're 4186 * inserting at the end of the new map. 4187 */ 4188 vm_map_entry_link(new_map, new_entry); 4189 vmspace_map_entry_forked(vm1, vm2, new_entry); 4190 4191 /* 4192 * Update the physical map 4193 */ 4194 pmap_copy(new_map->pmap, old_map->pmap, 4195 new_entry->start, 4196 (old_entry->end - old_entry->start), 4197 old_entry->start); 4198 break; 4199 4200 case VM_INHERIT_COPY: 4201 /* 4202 * Clone the entry and link into the map. 4203 */ 4204 new_entry = vm_map_entry_create(new_map); 4205 *new_entry = *old_entry; 4206 /* 4207 * Copied entry is COW over the old object. 4208 */ 4209 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4210 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4211 new_entry->wiring_thread = NULL; 4212 new_entry->wired_count = 0; 4213 new_entry->object.vm_object = NULL; 4214 new_entry->cred = NULL; 4215 vm_map_entry_link(new_map, new_entry); 4216 vmspace_map_entry_forked(vm1, vm2, new_entry); 4217 vm_map_copy_entry(old_map, new_map, old_entry, 4218 new_entry, fork_charge); 4219 vm_map_entry_set_vnode_text(new_entry, true); 4220 break; 4221 4222 case VM_INHERIT_ZERO: 4223 /* 4224 * Create a new anonymous mapping entry modelled from 4225 * the old one. 4226 */ 4227 new_entry = vm_map_entry_create(new_map); 4228 memset(new_entry, 0, sizeof(*new_entry)); 4229 4230 new_entry->start = old_entry->start; 4231 new_entry->end = old_entry->end; 4232 new_entry->eflags = old_entry->eflags & 4233 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4234 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4235 new_entry->protection = old_entry->protection; 4236 new_entry->max_protection = old_entry->max_protection; 4237 new_entry->inheritance = VM_INHERIT_ZERO; 4238 4239 vm_map_entry_link(new_map, new_entry); 4240 vmspace_map_entry_forked(vm1, vm2, new_entry); 4241 4242 new_entry->cred = curthread->td_ucred; 4243 crhold(new_entry->cred); 4244 *fork_charge += (new_entry->end - new_entry->start); 4245 4246 break; 4247 } 4248 } 4249 /* 4250 * Use inlined vm_map_unlock() to postpone handling the deferred 4251 * map entries, which cannot be done until both old_map and 4252 * new_map locks are released. 4253 */ 4254 sx_xunlock(&old_map->lock); 4255 sx_xunlock(&new_map->lock); 4256 vm_map_process_deferred(); 4257 4258 return (vm2); 4259 } 4260 4261 /* 4262 * Create a process's stack for exec_new_vmspace(). This function is never 4263 * asked to wire the newly created stack. 4264 */ 4265 int 4266 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4267 vm_prot_t prot, vm_prot_t max, int cow) 4268 { 4269 vm_size_t growsize, init_ssize; 4270 rlim_t vmemlim; 4271 int rv; 4272 4273 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4274 growsize = sgrowsiz; 4275 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4276 vm_map_lock(map); 4277 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4278 /* If we would blow our VMEM resource limit, no go */ 4279 if (map->size + init_ssize > vmemlim) { 4280 rv = KERN_NO_SPACE; 4281 goto out; 4282 } 4283 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4284 max, cow); 4285 out: 4286 vm_map_unlock(map); 4287 return (rv); 4288 } 4289 4290 static int stack_guard_page = 1; 4291 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4292 &stack_guard_page, 0, 4293 "Specifies the number of guard pages for a stack that grows"); 4294 4295 static int 4296 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4297 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4298 { 4299 vm_map_entry_t new_entry, prev_entry; 4300 vm_offset_t bot, gap_bot, gap_top, top; 4301 vm_size_t init_ssize, sgp; 4302 int orient, rv; 4303 4304 /* 4305 * The stack orientation is piggybacked with the cow argument. 4306 * Extract it into orient and mask the cow argument so that we 4307 * don't pass it around further. 4308 */ 4309 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4310 KASSERT(orient != 0, ("No stack grow direction")); 4311 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4312 ("bi-dir stack")); 4313 4314 if (addrbos < vm_map_min(map) || 4315 addrbos + max_ssize > vm_map_max(map) || 4316 addrbos + max_ssize <= addrbos) 4317 return (KERN_INVALID_ADDRESS); 4318 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4319 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4320 (vm_size_t)stack_guard_page * PAGE_SIZE; 4321 if (sgp >= max_ssize) 4322 return (KERN_INVALID_ARGUMENT); 4323 4324 init_ssize = growsize; 4325 if (max_ssize < init_ssize + sgp) 4326 init_ssize = max_ssize - sgp; 4327 4328 /* If addr is already mapped, no go */ 4329 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4330 return (KERN_NO_SPACE); 4331 4332 /* 4333 * If we can't accommodate max_ssize in the current mapping, no go. 4334 */ 4335 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4336 return (KERN_NO_SPACE); 4337 4338 /* 4339 * We initially map a stack of only init_ssize. We will grow as 4340 * needed later. Depending on the orientation of the stack (i.e. 4341 * the grow direction) we either map at the top of the range, the 4342 * bottom of the range or in the middle. 4343 * 4344 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4345 * and cow to be 0. Possibly we should eliminate these as input 4346 * parameters, and just pass these values here in the insert call. 4347 */ 4348 if (orient == MAP_STACK_GROWS_DOWN) { 4349 bot = addrbos + max_ssize - init_ssize; 4350 top = bot + init_ssize; 4351 gap_bot = addrbos; 4352 gap_top = bot; 4353 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4354 bot = addrbos; 4355 top = bot + init_ssize; 4356 gap_bot = top; 4357 gap_top = addrbos + max_ssize; 4358 } 4359 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4360 if (rv != KERN_SUCCESS) 4361 return (rv); 4362 new_entry = vm_map_entry_succ(prev_entry); 4363 KASSERT(new_entry->end == top || new_entry->start == bot, 4364 ("Bad entry start/end for new stack entry")); 4365 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4366 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4367 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4368 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4369 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4370 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4371 if (gap_bot == gap_top) 4372 return (KERN_SUCCESS); 4373 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4374 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4375 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4376 if (rv == KERN_SUCCESS) { 4377 /* 4378 * Gap can never successfully handle a fault, so 4379 * read-ahead logic is never used for it. Re-use 4380 * next_read of the gap entry to store 4381 * stack_guard_page for vm_map_growstack(). 4382 */ 4383 if (orient == MAP_STACK_GROWS_DOWN) 4384 vm_map_entry_pred(new_entry)->next_read = sgp; 4385 else 4386 vm_map_entry_succ(new_entry)->next_read = sgp; 4387 } else { 4388 (void)vm_map_delete(map, bot, top); 4389 } 4390 return (rv); 4391 } 4392 4393 /* 4394 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4395 * successfully grow the stack. 4396 */ 4397 static int 4398 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4399 { 4400 vm_map_entry_t stack_entry; 4401 struct proc *p; 4402 struct vmspace *vm; 4403 struct ucred *cred; 4404 vm_offset_t gap_end, gap_start, grow_start; 4405 vm_size_t grow_amount, guard, max_grow; 4406 rlim_t lmemlim, stacklim, vmemlim; 4407 int rv, rv1; 4408 bool gap_deleted, grow_down, is_procstack; 4409 #ifdef notyet 4410 uint64_t limit; 4411 #endif 4412 #ifdef RACCT 4413 int error; 4414 #endif 4415 4416 p = curproc; 4417 vm = p->p_vmspace; 4418 4419 /* 4420 * Disallow stack growth when the access is performed by a 4421 * debugger or AIO daemon. The reason is that the wrong 4422 * resource limits are applied. 4423 */ 4424 if (p != initproc && (map != &p->p_vmspace->vm_map || 4425 p->p_textvp == NULL)) 4426 return (KERN_FAILURE); 4427 4428 MPASS(!map->system_map); 4429 4430 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4431 stacklim = lim_cur(curthread, RLIMIT_STACK); 4432 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4433 retry: 4434 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4435 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4436 return (KERN_FAILURE); 4437 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4438 return (KERN_SUCCESS); 4439 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4440 stack_entry = vm_map_entry_succ(gap_entry); 4441 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4442 stack_entry->start != gap_entry->end) 4443 return (KERN_FAILURE); 4444 grow_amount = round_page(stack_entry->start - addr); 4445 grow_down = true; 4446 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4447 stack_entry = vm_map_entry_pred(gap_entry); 4448 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4449 stack_entry->end != gap_entry->start) 4450 return (KERN_FAILURE); 4451 grow_amount = round_page(addr + 1 - stack_entry->end); 4452 grow_down = false; 4453 } else { 4454 return (KERN_FAILURE); 4455 } 4456 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4457 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4458 gap_entry->next_read; 4459 max_grow = gap_entry->end - gap_entry->start; 4460 if (guard > max_grow) 4461 return (KERN_NO_SPACE); 4462 max_grow -= guard; 4463 if (grow_amount > max_grow) 4464 return (KERN_NO_SPACE); 4465 4466 /* 4467 * If this is the main process stack, see if we're over the stack 4468 * limit. 4469 */ 4470 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4471 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4472 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4473 return (KERN_NO_SPACE); 4474 4475 #ifdef RACCT 4476 if (racct_enable) { 4477 PROC_LOCK(p); 4478 if (is_procstack && racct_set(p, RACCT_STACK, 4479 ctob(vm->vm_ssize) + grow_amount)) { 4480 PROC_UNLOCK(p); 4481 return (KERN_NO_SPACE); 4482 } 4483 PROC_UNLOCK(p); 4484 } 4485 #endif 4486 4487 grow_amount = roundup(grow_amount, sgrowsiz); 4488 if (grow_amount > max_grow) 4489 grow_amount = max_grow; 4490 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4491 grow_amount = trunc_page((vm_size_t)stacklim) - 4492 ctob(vm->vm_ssize); 4493 } 4494 4495 #ifdef notyet 4496 PROC_LOCK(p); 4497 limit = racct_get_available(p, RACCT_STACK); 4498 PROC_UNLOCK(p); 4499 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4500 grow_amount = limit - ctob(vm->vm_ssize); 4501 #endif 4502 4503 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4504 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4505 rv = KERN_NO_SPACE; 4506 goto out; 4507 } 4508 #ifdef RACCT 4509 if (racct_enable) { 4510 PROC_LOCK(p); 4511 if (racct_set(p, RACCT_MEMLOCK, 4512 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4513 PROC_UNLOCK(p); 4514 rv = KERN_NO_SPACE; 4515 goto out; 4516 } 4517 PROC_UNLOCK(p); 4518 } 4519 #endif 4520 } 4521 4522 /* If we would blow our VMEM resource limit, no go */ 4523 if (map->size + grow_amount > vmemlim) { 4524 rv = KERN_NO_SPACE; 4525 goto out; 4526 } 4527 #ifdef RACCT 4528 if (racct_enable) { 4529 PROC_LOCK(p); 4530 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4531 PROC_UNLOCK(p); 4532 rv = KERN_NO_SPACE; 4533 goto out; 4534 } 4535 PROC_UNLOCK(p); 4536 } 4537 #endif 4538 4539 if (vm_map_lock_upgrade(map)) { 4540 gap_entry = NULL; 4541 vm_map_lock_read(map); 4542 goto retry; 4543 } 4544 4545 if (grow_down) { 4546 grow_start = gap_entry->end - grow_amount; 4547 if (gap_entry->start + grow_amount == gap_entry->end) { 4548 gap_start = gap_entry->start; 4549 gap_end = gap_entry->end; 4550 vm_map_entry_delete(map, gap_entry); 4551 gap_deleted = true; 4552 } else { 4553 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4554 vm_map_entry_resize(map, gap_entry, -grow_amount); 4555 gap_deleted = false; 4556 } 4557 rv = vm_map_insert(map, NULL, 0, grow_start, 4558 grow_start + grow_amount, 4559 stack_entry->protection, stack_entry->max_protection, 4560 MAP_STACK_GROWS_DOWN); 4561 if (rv != KERN_SUCCESS) { 4562 if (gap_deleted) { 4563 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4564 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4565 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4566 MPASS(rv1 == KERN_SUCCESS); 4567 } else 4568 vm_map_entry_resize(map, gap_entry, 4569 grow_amount); 4570 } 4571 } else { 4572 grow_start = stack_entry->end; 4573 cred = stack_entry->cred; 4574 if (cred == NULL && stack_entry->object.vm_object != NULL) 4575 cred = stack_entry->object.vm_object->cred; 4576 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4577 rv = KERN_NO_SPACE; 4578 /* Grow the underlying object if applicable. */ 4579 else if (stack_entry->object.vm_object == NULL || 4580 vm_object_coalesce(stack_entry->object.vm_object, 4581 stack_entry->offset, 4582 (vm_size_t)(stack_entry->end - stack_entry->start), 4583 grow_amount, cred != NULL)) { 4584 if (gap_entry->start + grow_amount == gap_entry->end) { 4585 vm_map_entry_delete(map, gap_entry); 4586 vm_map_entry_resize(map, stack_entry, 4587 grow_amount); 4588 } else { 4589 gap_entry->start += grow_amount; 4590 stack_entry->end += grow_amount; 4591 } 4592 map->size += grow_amount; 4593 rv = KERN_SUCCESS; 4594 } else 4595 rv = KERN_FAILURE; 4596 } 4597 if (rv == KERN_SUCCESS && is_procstack) 4598 vm->vm_ssize += btoc(grow_amount); 4599 4600 /* 4601 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4602 */ 4603 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4604 rv = vm_map_wire_locked(map, grow_start, 4605 grow_start + grow_amount, 4606 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4607 } 4608 vm_map_lock_downgrade(map); 4609 4610 out: 4611 #ifdef RACCT 4612 if (racct_enable && rv != KERN_SUCCESS) { 4613 PROC_LOCK(p); 4614 error = racct_set(p, RACCT_VMEM, map->size); 4615 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4616 if (!old_mlock) { 4617 error = racct_set(p, RACCT_MEMLOCK, 4618 ptoa(pmap_wired_count(map->pmap))); 4619 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4620 } 4621 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4622 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4623 PROC_UNLOCK(p); 4624 } 4625 #endif 4626 4627 return (rv); 4628 } 4629 4630 /* 4631 * Unshare the specified VM space for exec. If other processes are 4632 * mapped to it, then create a new one. The new vmspace is null. 4633 */ 4634 int 4635 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4636 { 4637 struct vmspace *oldvmspace = p->p_vmspace; 4638 struct vmspace *newvmspace; 4639 4640 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4641 ("vmspace_exec recursed")); 4642 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4643 if (newvmspace == NULL) 4644 return (ENOMEM); 4645 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4646 /* 4647 * This code is written like this for prototype purposes. The 4648 * goal is to avoid running down the vmspace here, but let the 4649 * other process's that are still using the vmspace to finally 4650 * run it down. Even though there is little or no chance of blocking 4651 * here, it is a good idea to keep this form for future mods. 4652 */ 4653 PROC_VMSPACE_LOCK(p); 4654 p->p_vmspace = newvmspace; 4655 PROC_VMSPACE_UNLOCK(p); 4656 if (p == curthread->td_proc) 4657 pmap_activate(curthread); 4658 curthread->td_pflags |= TDP_EXECVMSPC; 4659 return (0); 4660 } 4661 4662 /* 4663 * Unshare the specified VM space for forcing COW. This 4664 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4665 */ 4666 int 4667 vmspace_unshare(struct proc *p) 4668 { 4669 struct vmspace *oldvmspace = p->p_vmspace; 4670 struct vmspace *newvmspace; 4671 vm_ooffset_t fork_charge; 4672 4673 if (oldvmspace->vm_refcnt == 1) 4674 return (0); 4675 fork_charge = 0; 4676 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4677 if (newvmspace == NULL) 4678 return (ENOMEM); 4679 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4680 vmspace_free(newvmspace); 4681 return (ENOMEM); 4682 } 4683 PROC_VMSPACE_LOCK(p); 4684 p->p_vmspace = newvmspace; 4685 PROC_VMSPACE_UNLOCK(p); 4686 if (p == curthread->td_proc) 4687 pmap_activate(curthread); 4688 vmspace_free(oldvmspace); 4689 return (0); 4690 } 4691 4692 /* 4693 * vm_map_lookup: 4694 * 4695 * Finds the VM object, offset, and 4696 * protection for a given virtual address in the 4697 * specified map, assuming a page fault of the 4698 * type specified. 4699 * 4700 * Leaves the map in question locked for read; return 4701 * values are guaranteed until a vm_map_lookup_done 4702 * call is performed. Note that the map argument 4703 * is in/out; the returned map must be used in 4704 * the call to vm_map_lookup_done. 4705 * 4706 * A handle (out_entry) is returned for use in 4707 * vm_map_lookup_done, to make that fast. 4708 * 4709 * If a lookup is requested with "write protection" 4710 * specified, the map may be changed to perform virtual 4711 * copying operations, although the data referenced will 4712 * remain the same. 4713 */ 4714 int 4715 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4716 vm_offset_t vaddr, 4717 vm_prot_t fault_typea, 4718 vm_map_entry_t *out_entry, /* OUT */ 4719 vm_object_t *object, /* OUT */ 4720 vm_pindex_t *pindex, /* OUT */ 4721 vm_prot_t *out_prot, /* OUT */ 4722 boolean_t *wired) /* OUT */ 4723 { 4724 vm_map_entry_t entry; 4725 vm_map_t map = *var_map; 4726 vm_prot_t prot; 4727 vm_prot_t fault_type; 4728 vm_object_t eobject; 4729 vm_size_t size; 4730 struct ucred *cred; 4731 4732 RetryLookup: 4733 4734 vm_map_lock_read(map); 4735 4736 RetryLookupLocked: 4737 /* 4738 * Lookup the faulting address. 4739 */ 4740 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4741 vm_map_unlock_read(map); 4742 return (KERN_INVALID_ADDRESS); 4743 } 4744 4745 entry = *out_entry; 4746 4747 /* 4748 * Handle submaps. 4749 */ 4750 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4751 vm_map_t old_map = map; 4752 4753 *var_map = map = entry->object.sub_map; 4754 vm_map_unlock_read(old_map); 4755 goto RetryLookup; 4756 } 4757 4758 /* 4759 * Check whether this task is allowed to have this page. 4760 */ 4761 prot = entry->protection; 4762 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4763 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4764 if (prot == VM_PROT_NONE && map != kernel_map && 4765 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4766 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4767 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4768 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4769 goto RetryLookupLocked; 4770 } 4771 fault_type = fault_typea & VM_PROT_ALL; 4772 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4773 vm_map_unlock_read(map); 4774 return (KERN_PROTECTION_FAILURE); 4775 } 4776 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4777 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4778 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4779 ("entry %p flags %x", entry, entry->eflags)); 4780 if ((fault_typea & VM_PROT_COPY) != 0 && 4781 (entry->max_protection & VM_PROT_WRITE) == 0 && 4782 (entry->eflags & MAP_ENTRY_COW) == 0) { 4783 vm_map_unlock_read(map); 4784 return (KERN_PROTECTION_FAILURE); 4785 } 4786 4787 /* 4788 * If this page is not pageable, we have to get it for all possible 4789 * accesses. 4790 */ 4791 *wired = (entry->wired_count != 0); 4792 if (*wired) 4793 fault_type = entry->protection; 4794 size = entry->end - entry->start; 4795 4796 /* 4797 * If the entry was copy-on-write, we either ... 4798 */ 4799 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4800 /* 4801 * If we want to write the page, we may as well handle that 4802 * now since we've got the map locked. 4803 * 4804 * If we don't need to write the page, we just demote the 4805 * permissions allowed. 4806 */ 4807 if ((fault_type & VM_PROT_WRITE) != 0 || 4808 (fault_typea & VM_PROT_COPY) != 0) { 4809 /* 4810 * Make a new object, and place it in the object 4811 * chain. Note that no new references have appeared 4812 * -- one just moved from the map to the new 4813 * object. 4814 */ 4815 if (vm_map_lock_upgrade(map)) 4816 goto RetryLookup; 4817 4818 if (entry->cred == NULL) { 4819 /* 4820 * The debugger owner is charged for 4821 * the memory. 4822 */ 4823 cred = curthread->td_ucred; 4824 crhold(cred); 4825 if (!swap_reserve_by_cred(size, cred)) { 4826 crfree(cred); 4827 vm_map_unlock(map); 4828 return (KERN_RESOURCE_SHORTAGE); 4829 } 4830 entry->cred = cred; 4831 } 4832 eobject = entry->object.vm_object; 4833 vm_object_shadow(&entry->object.vm_object, 4834 &entry->offset, size, entry->cred, false); 4835 if (eobject == entry->object.vm_object) { 4836 /* 4837 * The object was not shadowed. 4838 */ 4839 swap_release_by_cred(size, entry->cred); 4840 crfree(entry->cred); 4841 } 4842 entry->cred = NULL; 4843 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4844 4845 vm_map_lock_downgrade(map); 4846 } else { 4847 /* 4848 * We're attempting to read a copy-on-write page -- 4849 * don't allow writes. 4850 */ 4851 prot &= ~VM_PROT_WRITE; 4852 } 4853 } 4854 4855 /* 4856 * Create an object if necessary. 4857 */ 4858 if (entry->object.vm_object == NULL && !map->system_map) { 4859 if (vm_map_lock_upgrade(map)) 4860 goto RetryLookup; 4861 entry->object.vm_object = vm_object_allocate_anon(atop(size), 4862 NULL, entry->cred, entry->cred != NULL ? size : 0); 4863 entry->offset = 0; 4864 entry->cred = NULL; 4865 vm_map_lock_downgrade(map); 4866 } 4867 4868 /* 4869 * Return the object/offset from this entry. If the entry was 4870 * copy-on-write or empty, it has been fixed up. 4871 */ 4872 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4873 *object = entry->object.vm_object; 4874 4875 *out_prot = prot; 4876 return (KERN_SUCCESS); 4877 } 4878 4879 /* 4880 * vm_map_lookup_locked: 4881 * 4882 * Lookup the faulting address. A version of vm_map_lookup that returns 4883 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4884 */ 4885 int 4886 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4887 vm_offset_t vaddr, 4888 vm_prot_t fault_typea, 4889 vm_map_entry_t *out_entry, /* OUT */ 4890 vm_object_t *object, /* OUT */ 4891 vm_pindex_t *pindex, /* OUT */ 4892 vm_prot_t *out_prot, /* OUT */ 4893 boolean_t *wired) /* OUT */ 4894 { 4895 vm_map_entry_t entry; 4896 vm_map_t map = *var_map; 4897 vm_prot_t prot; 4898 vm_prot_t fault_type = fault_typea; 4899 4900 /* 4901 * Lookup the faulting address. 4902 */ 4903 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4904 return (KERN_INVALID_ADDRESS); 4905 4906 entry = *out_entry; 4907 4908 /* 4909 * Fail if the entry refers to a submap. 4910 */ 4911 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4912 return (KERN_FAILURE); 4913 4914 /* 4915 * Check whether this task is allowed to have this page. 4916 */ 4917 prot = entry->protection; 4918 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4919 if ((fault_type & prot) != fault_type) 4920 return (KERN_PROTECTION_FAILURE); 4921 4922 /* 4923 * If this page is not pageable, we have to get it for all possible 4924 * accesses. 4925 */ 4926 *wired = (entry->wired_count != 0); 4927 if (*wired) 4928 fault_type = entry->protection; 4929 4930 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4931 /* 4932 * Fail if the entry was copy-on-write for a write fault. 4933 */ 4934 if (fault_type & VM_PROT_WRITE) 4935 return (KERN_FAILURE); 4936 /* 4937 * We're attempting to read a copy-on-write page -- 4938 * don't allow writes. 4939 */ 4940 prot &= ~VM_PROT_WRITE; 4941 } 4942 4943 /* 4944 * Fail if an object should be created. 4945 */ 4946 if (entry->object.vm_object == NULL && !map->system_map) 4947 return (KERN_FAILURE); 4948 4949 /* 4950 * Return the object/offset from this entry. If the entry was 4951 * copy-on-write or empty, it has been fixed up. 4952 */ 4953 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4954 *object = entry->object.vm_object; 4955 4956 *out_prot = prot; 4957 return (KERN_SUCCESS); 4958 } 4959 4960 /* 4961 * vm_map_lookup_done: 4962 * 4963 * Releases locks acquired by a vm_map_lookup 4964 * (according to the handle returned by that lookup). 4965 */ 4966 void 4967 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4968 { 4969 /* 4970 * Unlock the main-level map 4971 */ 4972 vm_map_unlock_read(map); 4973 } 4974 4975 vm_offset_t 4976 vm_map_max_KBI(const struct vm_map *map) 4977 { 4978 4979 return (vm_map_max(map)); 4980 } 4981 4982 vm_offset_t 4983 vm_map_min_KBI(const struct vm_map *map) 4984 { 4985 4986 return (vm_map_min(map)); 4987 } 4988 4989 pmap_t 4990 vm_map_pmap_KBI(vm_map_t map) 4991 { 4992 4993 return (map->pmap); 4994 } 4995 4996 #ifdef INVARIANTS 4997 static void 4998 _vm_map_assert_consistent(vm_map_t map, int check) 4999 { 5000 vm_map_entry_t entry, prev; 5001 vm_map_entry_t cur, header, lbound, ubound; 5002 vm_size_t max_left, max_right; 5003 5004 #ifdef DIAGNOSTIC 5005 ++map->nupdates; 5006 #endif 5007 if (enable_vmmap_check != check) 5008 return; 5009 5010 header = prev = &map->header; 5011 VM_MAP_ENTRY_FOREACH(entry, map) { 5012 KASSERT(prev->end <= entry->start, 5013 ("map %p prev->end = %jx, start = %jx", map, 5014 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5015 KASSERT(entry->start < entry->end, 5016 ("map %p start = %jx, end = %jx", map, 5017 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5018 KASSERT(entry->left == header || 5019 entry->left->start < entry->start, 5020 ("map %p left->start = %jx, start = %jx", map, 5021 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5022 KASSERT(entry->right == header || 5023 entry->start < entry->right->start, 5024 ("map %p start = %jx, right->start = %jx", map, 5025 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5026 cur = map->root; 5027 lbound = ubound = header; 5028 for (;;) { 5029 if (entry->start < cur->start) { 5030 ubound = cur; 5031 cur = cur->left; 5032 KASSERT(cur != lbound, 5033 ("map %p cannot find %jx", 5034 map, (uintmax_t)entry->start)); 5035 } else if (cur->end <= entry->start) { 5036 lbound = cur; 5037 cur = cur->right; 5038 KASSERT(cur != ubound, 5039 ("map %p cannot find %jx", 5040 map, (uintmax_t)entry->start)); 5041 } else { 5042 KASSERT(cur == entry, 5043 ("map %p cannot find %jx", 5044 map, (uintmax_t)entry->start)); 5045 break; 5046 } 5047 } 5048 max_left = vm_map_entry_max_free_left(entry, lbound); 5049 max_right = vm_map_entry_max_free_right(entry, ubound); 5050 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5051 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5052 (uintmax_t)entry->max_free, 5053 (uintmax_t)max_left, (uintmax_t)max_right)); 5054 prev = entry; 5055 } 5056 KASSERT(prev->end <= entry->start, 5057 ("map %p prev->end = %jx, start = %jx", map, 5058 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5059 } 5060 #endif 5061 5062 #include "opt_ddb.h" 5063 #ifdef DDB 5064 #include <sys/kernel.h> 5065 5066 #include <ddb/ddb.h> 5067 5068 static void 5069 vm_map_print(vm_map_t map) 5070 { 5071 vm_map_entry_t entry, prev; 5072 5073 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5074 (void *)map, 5075 (void *)map->pmap, map->nentries, map->timestamp); 5076 5077 db_indent += 2; 5078 prev = &map->header; 5079 VM_MAP_ENTRY_FOREACH(entry, map) { 5080 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5081 (void *)entry, (void *)entry->start, (void *)entry->end, 5082 entry->eflags); 5083 { 5084 static char *inheritance_name[4] = 5085 {"share", "copy", "none", "donate_copy"}; 5086 5087 db_iprintf(" prot=%x/%x/%s", 5088 entry->protection, 5089 entry->max_protection, 5090 inheritance_name[(int)(unsigned char) 5091 entry->inheritance]); 5092 if (entry->wired_count != 0) 5093 db_printf(", wired"); 5094 } 5095 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5096 db_printf(", share=%p, offset=0x%jx\n", 5097 (void *)entry->object.sub_map, 5098 (uintmax_t)entry->offset); 5099 if (prev == &map->header || 5100 prev->object.sub_map != 5101 entry->object.sub_map) { 5102 db_indent += 2; 5103 vm_map_print((vm_map_t)entry->object.sub_map); 5104 db_indent -= 2; 5105 } 5106 } else { 5107 if (entry->cred != NULL) 5108 db_printf(", ruid %d", entry->cred->cr_ruid); 5109 db_printf(", object=%p, offset=0x%jx", 5110 (void *)entry->object.vm_object, 5111 (uintmax_t)entry->offset); 5112 if (entry->object.vm_object && entry->object.vm_object->cred) 5113 db_printf(", obj ruid %d charge %jx", 5114 entry->object.vm_object->cred->cr_ruid, 5115 (uintmax_t)entry->object.vm_object->charge); 5116 if (entry->eflags & MAP_ENTRY_COW) 5117 db_printf(", copy (%s)", 5118 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5119 db_printf("\n"); 5120 5121 if (prev == &map->header || 5122 prev->object.vm_object != 5123 entry->object.vm_object) { 5124 db_indent += 2; 5125 vm_object_print((db_expr_t)(intptr_t) 5126 entry->object.vm_object, 5127 0, 0, (char *)0); 5128 db_indent -= 2; 5129 } 5130 } 5131 prev = entry; 5132 } 5133 db_indent -= 2; 5134 } 5135 5136 DB_SHOW_COMMAND(map, map) 5137 { 5138 5139 if (!have_addr) { 5140 db_printf("usage: show map <addr>\n"); 5141 return; 5142 } 5143 vm_map_print((vm_map_t)addr); 5144 } 5145 5146 DB_SHOW_COMMAND(procvm, procvm) 5147 { 5148 struct proc *p; 5149 5150 if (have_addr) { 5151 p = db_lookup_proc(addr); 5152 } else { 5153 p = curproc; 5154 } 5155 5156 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5157 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5158 (void *)vmspace_pmap(p->p_vmspace)); 5159 5160 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5161 } 5162 5163 #endif /* DDB */ 5164