1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/uma.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a self-adjusting binary search tree of these 106 * entries is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 static struct mtx map_sleep_mtx; 122 static uma_zone_t mapentzone; 123 static uma_zone_t kmapentzone; 124 static uma_zone_t mapzone; 125 static uma_zone_t vmspace_zone; 126 static struct vm_object kmapentobj; 127 static int vmspace_zinit(void *mem, int size, int flags); 128 static void vmspace_zfini(void *mem, int size); 129 static int vm_map_zinit(void *mem, int ize, int flags); 130 static void vm_map_zfini(void *mem, int size); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 #ifdef INVARIANTS 136 static void vm_map_zdtor(void *mem, int size, void *arg); 137 static void vmspace_zdtor(void *mem, int size, void *arg); 138 #endif 139 140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 143 144 /* 145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 146 * stable. 147 */ 148 #define PROC_VMSPACE_LOCK(p) do { } while (0) 149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 150 151 /* 152 * VM_MAP_RANGE_CHECK: [ internal use only ] 153 * 154 * Asserts that the starting and ending region 155 * addresses fall within the valid range of the map. 156 */ 157 #define VM_MAP_RANGE_CHECK(map, start, end) \ 158 { \ 159 if (start < vm_map_min(map)) \ 160 start = vm_map_min(map); \ 161 if (end > vm_map_max(map)) \ 162 end = vm_map_max(map); \ 163 if (start > end) \ 164 start = end; \ 165 } 166 167 /* 168 * vm_map_startup: 169 * 170 * Initialize the vm_map module. Must be called before 171 * any other vm_map routines. 172 * 173 * Map and entry structures are allocated from the general 174 * purpose memory pool with some exceptions: 175 * 176 * - The kernel map and kmem submap are allocated statically. 177 * - Kernel map entries are allocated out of a static pool. 178 * 179 * These restrictions are necessary since malloc() uses the 180 * maps and requires map entries. 181 */ 182 183 void 184 vm_map_startup(void) 185 { 186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 188 #ifdef INVARIANTS 189 vm_map_zdtor, 190 #else 191 NULL, 192 #endif 193 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uma_prealloc(mapzone, MAX_KMAP); 195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 198 uma_prealloc(kmapentzone, MAX_KMAPENT); 199 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 200 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 201 } 202 203 static void 204 vmspace_zfini(void *mem, int size) 205 { 206 struct vmspace *vm; 207 208 vm = (struct vmspace *)mem; 209 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 210 } 211 212 static int 213 vmspace_zinit(void *mem, int size, int flags) 214 { 215 struct vmspace *vm; 216 217 vm = (struct vmspace *)mem; 218 219 vm->vm_map.pmap = NULL; 220 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 221 return (0); 222 } 223 224 static void 225 vm_map_zfini(void *mem, int size) 226 { 227 vm_map_t map; 228 229 map = (vm_map_t)mem; 230 mtx_destroy(&map->system_mtx); 231 sx_destroy(&map->lock); 232 } 233 234 static int 235 vm_map_zinit(void *mem, int size, int flags) 236 { 237 vm_map_t map; 238 239 map = (vm_map_t)mem; 240 map->nentries = 0; 241 map->size = 0; 242 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "user map"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 */ 276 struct vmspace * 277 vmspace_alloc(min, max) 278 vm_offset_t min, max; 279 { 280 struct vmspace *vm; 281 282 vm = uma_zalloc(vmspace_zone, M_WAITOK); 283 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 284 uma_zfree(vmspace_zone, vm); 285 return (NULL); 286 } 287 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 288 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 289 vm->vm_refcnt = 1; 290 vm->vm_shm = NULL; 291 vm->vm_swrss = 0; 292 vm->vm_tsize = 0; 293 vm->vm_dsize = 0; 294 vm->vm_ssize = 0; 295 vm->vm_taddr = 0; 296 vm->vm_daddr = 0; 297 vm->vm_maxsaddr = 0; 298 return (vm); 299 } 300 301 void 302 vm_init2(void) 303 { 304 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 305 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 306 maxproc * 2 + maxfiles); 307 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 308 #ifdef INVARIANTS 309 vmspace_zdtor, 310 #else 311 NULL, 312 #endif 313 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 314 } 315 316 static inline void 317 vmspace_dofree(struct vmspace *vm) 318 { 319 320 CTR1(KTR_VM, "vmspace_free: %p", vm); 321 322 /* 323 * Make sure any SysV shm is freed, it might not have been in 324 * exit1(). 325 */ 326 shmexit(vm); 327 328 /* 329 * Lock the map, to wait out all other references to it. 330 * Delete all of the mappings and pages they hold, then call 331 * the pmap module to reclaim anything left. 332 */ 333 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 334 vm->vm_map.max_offset); 335 336 pmap_release(vmspace_pmap(vm)); 337 vm->vm_map.pmap = NULL; 338 uma_zfree(vmspace_zone, vm); 339 } 340 341 void 342 vmspace_free(struct vmspace *vm) 343 { 344 345 if (vm->vm_refcnt == 0) 346 panic("vmspace_free: attempt to free already freed vmspace"); 347 348 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 349 vmspace_dofree(vm); 350 } 351 352 void 353 vmspace_exitfree(struct proc *p) 354 { 355 struct vmspace *vm; 356 357 PROC_VMSPACE_LOCK(p); 358 vm = p->p_vmspace; 359 p->p_vmspace = NULL; 360 PROC_VMSPACE_UNLOCK(p); 361 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 362 vmspace_free(vm); 363 } 364 365 void 366 vmspace_exit(struct thread *td) 367 { 368 int refcnt; 369 struct vmspace *vm; 370 struct proc *p; 371 372 /* 373 * Release user portion of address space. 374 * This releases references to vnodes, 375 * which could cause I/O if the file has been unlinked. 376 * Need to do this early enough that we can still sleep. 377 * 378 * The last exiting process to reach this point releases as 379 * much of the environment as it can. vmspace_dofree() is the 380 * slower fallback in case another process had a temporary 381 * reference to the vmspace. 382 */ 383 384 p = td->td_proc; 385 vm = p->p_vmspace; 386 atomic_add_int(&vmspace0.vm_refcnt, 1); 387 do { 388 refcnt = vm->vm_refcnt; 389 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 390 /* Switch now since other proc might free vmspace */ 391 PROC_VMSPACE_LOCK(p); 392 p->p_vmspace = &vmspace0; 393 PROC_VMSPACE_UNLOCK(p); 394 pmap_activate(td); 395 } 396 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 397 if (refcnt == 1) { 398 if (p->p_vmspace != vm) { 399 /* vmspace not yet freed, switch back */ 400 PROC_VMSPACE_LOCK(p); 401 p->p_vmspace = vm; 402 PROC_VMSPACE_UNLOCK(p); 403 pmap_activate(td); 404 } 405 pmap_remove_pages(vmspace_pmap(vm)); 406 /* Switch now since this proc will free vmspace */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = &vmspace0; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 vmspace_dofree(vm); 412 } 413 } 414 415 /* Acquire reference to vmspace owned by another process. */ 416 417 struct vmspace * 418 vmspace_acquire_ref(struct proc *p) 419 { 420 struct vmspace *vm; 421 int refcnt; 422 423 PROC_VMSPACE_LOCK(p); 424 vm = p->p_vmspace; 425 if (vm == NULL) { 426 PROC_VMSPACE_UNLOCK(p); 427 return (NULL); 428 } 429 do { 430 refcnt = vm->vm_refcnt; 431 if (refcnt <= 0) { /* Avoid 0->1 transition */ 432 PROC_VMSPACE_UNLOCK(p); 433 return (NULL); 434 } 435 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 436 if (vm != p->p_vmspace) { 437 PROC_VMSPACE_UNLOCK(p); 438 vmspace_free(vm); 439 return (NULL); 440 } 441 PROC_VMSPACE_UNLOCK(p); 442 return (vm); 443 } 444 445 void 446 _vm_map_lock(vm_map_t map, const char *file, int line) 447 { 448 449 if (map->system_map) 450 _mtx_lock_flags(&map->system_mtx, 0, file, line); 451 else 452 (void)_sx_xlock(&map->lock, 0, file, line); 453 map->timestamp++; 454 } 455 456 static void 457 vm_map_process_deferred(void) 458 { 459 struct thread *td; 460 vm_map_entry_t entry; 461 462 td = curthread; 463 464 while ((entry = td->td_map_def_user) != NULL) { 465 td->td_map_def_user = entry->next; 466 vm_map_entry_deallocate(entry, FALSE); 467 } 468 } 469 470 void 471 _vm_map_unlock(vm_map_t map, const char *file, int line) 472 { 473 474 if (map->system_map) 475 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 476 else { 477 _sx_xunlock(&map->lock, file, line); 478 vm_map_process_deferred(); 479 } 480 } 481 482 void 483 _vm_map_lock_read(vm_map_t map, const char *file, int line) 484 { 485 486 if (map->system_map) 487 _mtx_lock_flags(&map->system_mtx, 0, file, line); 488 else 489 (void)_sx_slock(&map->lock, 0, file, line); 490 } 491 492 void 493 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 494 { 495 496 if (map->system_map) 497 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 498 else { 499 _sx_sunlock(&map->lock, file, line); 500 vm_map_process_deferred(); 501 } 502 } 503 504 int 505 _vm_map_trylock(vm_map_t map, const char *file, int line) 506 { 507 int error; 508 509 error = map->system_map ? 510 !_mtx_trylock(&map->system_mtx, 0, file, line) : 511 !_sx_try_xlock(&map->lock, file, line); 512 if (error == 0) 513 map->timestamp++; 514 return (error == 0); 515 } 516 517 int 518 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 519 { 520 int error; 521 522 error = map->system_map ? 523 !_mtx_trylock(&map->system_mtx, 0, file, line) : 524 !_sx_try_slock(&map->lock, file, line); 525 return (error == 0); 526 } 527 528 /* 529 * _vm_map_lock_upgrade: [ internal use only ] 530 * 531 * Tries to upgrade a read (shared) lock on the specified map to a write 532 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 533 * non-zero value if the upgrade fails. If the upgrade fails, the map is 534 * returned without a read or write lock held. 535 * 536 * Requires that the map be read locked. 537 */ 538 int 539 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 540 { 541 unsigned int last_timestamp; 542 543 if (map->system_map) { 544 #ifdef INVARIANTS 545 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 546 #endif 547 } else { 548 if (!_sx_try_upgrade(&map->lock, file, line)) { 549 last_timestamp = map->timestamp; 550 _sx_sunlock(&map->lock, file, line); 551 vm_map_process_deferred(); 552 /* 553 * If the map's timestamp does not change while the 554 * map is unlocked, then the upgrade succeeds. 555 */ 556 (void)_sx_xlock(&map->lock, 0, file, line); 557 if (last_timestamp != map->timestamp) { 558 _sx_xunlock(&map->lock, file, line); 559 return (1); 560 } 561 } 562 } 563 map->timestamp++; 564 return (0); 565 } 566 567 void 568 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 569 { 570 571 if (map->system_map) { 572 #ifdef INVARIANTS 573 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 574 #endif 575 } else 576 _sx_downgrade(&map->lock, file, line); 577 } 578 579 /* 580 * vm_map_locked: 581 * 582 * Returns a non-zero value if the caller holds a write (exclusive) lock 583 * on the specified map and the value "0" otherwise. 584 */ 585 int 586 vm_map_locked(vm_map_t map) 587 { 588 589 if (map->system_map) 590 return (mtx_owned(&map->system_mtx)); 591 else 592 return (sx_xlocked(&map->lock)); 593 } 594 595 #ifdef INVARIANTS 596 static void 597 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 598 { 599 600 if (map->system_map) 601 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 602 else 603 _sx_assert(&map->lock, SA_XLOCKED, file, line); 604 } 605 606 #if 0 607 static void 608 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 609 { 610 611 if (map->system_map) 612 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 613 else 614 _sx_assert(&map->lock, SA_SLOCKED, file, line); 615 } 616 #endif 617 618 #define VM_MAP_ASSERT_LOCKED(map) \ 619 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 620 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 621 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 622 #else 623 #define VM_MAP_ASSERT_LOCKED(map) 624 #define VM_MAP_ASSERT_LOCKED_READ(map) 625 #endif 626 627 /* 628 * _vm_map_unlock_and_wait: 629 * 630 * Atomically releases the lock on the specified map and puts the calling 631 * thread to sleep. The calling thread will remain asleep until either 632 * vm_map_wakeup() is performed on the map or the specified timeout is 633 * exceeded. 634 * 635 * WARNING! This function does not perform deferred deallocations of 636 * objects and map entries. Therefore, the calling thread is expected to 637 * reacquire the map lock after reawakening and later perform an ordinary 638 * unlock operation, such as vm_map_unlock(), before completing its 639 * operation on the map. 640 */ 641 int 642 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 643 { 644 645 mtx_lock(&map_sleep_mtx); 646 if (map->system_map) 647 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 648 else 649 _sx_xunlock(&map->lock, file, line); 650 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 651 timo)); 652 } 653 654 /* 655 * vm_map_wakeup: 656 * 657 * Awaken any threads that have slept on the map using 658 * vm_map_unlock_and_wait(). 659 */ 660 void 661 vm_map_wakeup(vm_map_t map) 662 { 663 664 /* 665 * Acquire and release map_sleep_mtx to prevent a wakeup() 666 * from being performed (and lost) between the map unlock 667 * and the msleep() in _vm_map_unlock_and_wait(). 668 */ 669 mtx_lock(&map_sleep_mtx); 670 mtx_unlock(&map_sleep_mtx); 671 wakeup(&map->root); 672 } 673 674 void 675 vm_map_busy(vm_map_t map) 676 { 677 678 VM_MAP_ASSERT_LOCKED(map); 679 map->busy++; 680 } 681 682 void 683 vm_map_unbusy(vm_map_t map) 684 { 685 686 VM_MAP_ASSERT_LOCKED(map); 687 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 688 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 689 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 690 wakeup(&map->busy); 691 } 692 } 693 694 void 695 vm_map_wait_busy(vm_map_t map) 696 { 697 698 VM_MAP_ASSERT_LOCKED(map); 699 while (map->busy) { 700 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 701 if (map->system_map) 702 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 703 else 704 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 705 } 706 map->timestamp++; 707 } 708 709 long 710 vmspace_resident_count(struct vmspace *vmspace) 711 { 712 return pmap_resident_count(vmspace_pmap(vmspace)); 713 } 714 715 long 716 vmspace_wired_count(struct vmspace *vmspace) 717 { 718 return pmap_wired_count(vmspace_pmap(vmspace)); 719 } 720 721 /* 722 * vm_map_create: 723 * 724 * Creates and returns a new empty VM map with 725 * the given physical map structure, and having 726 * the given lower and upper address bounds. 727 */ 728 vm_map_t 729 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 730 { 731 vm_map_t result; 732 733 result = uma_zalloc(mapzone, M_WAITOK); 734 CTR1(KTR_VM, "vm_map_create: %p", result); 735 _vm_map_init(result, pmap, min, max); 736 return (result); 737 } 738 739 /* 740 * Initialize an existing vm_map structure 741 * such as that in the vmspace structure. 742 */ 743 static void 744 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 745 { 746 747 map->header.next = map->header.prev = &map->header; 748 map->needs_wakeup = FALSE; 749 map->system_map = 0; 750 map->pmap = pmap; 751 map->min_offset = min; 752 map->max_offset = max; 753 map->flags = 0; 754 map->root = NULL; 755 map->timestamp = 0; 756 map->busy = 0; 757 } 758 759 void 760 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 761 { 762 763 _vm_map_init(map, pmap, min, max); 764 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 765 sx_init(&map->lock, "user map"); 766 } 767 768 /* 769 * vm_map_entry_dispose: [ internal use only ] 770 * 771 * Inverse of vm_map_entry_create. 772 */ 773 static void 774 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 775 { 776 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 777 } 778 779 /* 780 * vm_map_entry_create: [ internal use only ] 781 * 782 * Allocates a VM map entry for insertion. 783 * No entry fields are filled in. 784 */ 785 static vm_map_entry_t 786 vm_map_entry_create(vm_map_t map) 787 { 788 vm_map_entry_t new_entry; 789 790 if (map->system_map) 791 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 792 else 793 new_entry = uma_zalloc(mapentzone, M_WAITOK); 794 if (new_entry == NULL) 795 panic("vm_map_entry_create: kernel resources exhausted"); 796 return (new_entry); 797 } 798 799 /* 800 * vm_map_entry_set_behavior: 801 * 802 * Set the expected access behavior, either normal, random, or 803 * sequential. 804 */ 805 static inline void 806 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 807 { 808 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 809 (behavior & MAP_ENTRY_BEHAV_MASK); 810 } 811 812 /* 813 * vm_map_entry_set_max_free: 814 * 815 * Set the max_free field in a vm_map_entry. 816 */ 817 static inline void 818 vm_map_entry_set_max_free(vm_map_entry_t entry) 819 { 820 821 entry->max_free = entry->adj_free; 822 if (entry->left != NULL && entry->left->max_free > entry->max_free) 823 entry->max_free = entry->left->max_free; 824 if (entry->right != NULL && entry->right->max_free > entry->max_free) 825 entry->max_free = entry->right->max_free; 826 } 827 828 /* 829 * vm_map_entry_splay: 830 * 831 * The Sleator and Tarjan top-down splay algorithm with the 832 * following variation. Max_free must be computed bottom-up, so 833 * on the downward pass, maintain the left and right spines in 834 * reverse order. Then, make a second pass up each side to fix 835 * the pointers and compute max_free. The time bound is O(log n) 836 * amortized. 837 * 838 * The new root is the vm_map_entry containing "addr", or else an 839 * adjacent entry (lower or higher) if addr is not in the tree. 840 * 841 * The map must be locked, and leaves it so. 842 * 843 * Returns: the new root. 844 */ 845 static vm_map_entry_t 846 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 847 { 848 vm_map_entry_t llist, rlist; 849 vm_map_entry_t ltree, rtree; 850 vm_map_entry_t y; 851 852 /* Special case of empty tree. */ 853 if (root == NULL) 854 return (root); 855 856 /* 857 * Pass One: Splay down the tree until we find addr or a NULL 858 * pointer where addr would go. llist and rlist are the two 859 * sides in reverse order (bottom-up), with llist linked by 860 * the right pointer and rlist linked by the left pointer in 861 * the vm_map_entry. Wait until Pass Two to set max_free on 862 * the two spines. 863 */ 864 llist = NULL; 865 rlist = NULL; 866 for (;;) { 867 /* root is never NULL in here. */ 868 if (addr < root->start) { 869 y = root->left; 870 if (y == NULL) 871 break; 872 if (addr < y->start && y->left != NULL) { 873 /* Rotate right and put y on rlist. */ 874 root->left = y->right; 875 y->right = root; 876 vm_map_entry_set_max_free(root); 877 root = y->left; 878 y->left = rlist; 879 rlist = y; 880 } else { 881 /* Put root on rlist. */ 882 root->left = rlist; 883 rlist = root; 884 root = y; 885 } 886 } else if (addr >= root->end) { 887 y = root->right; 888 if (y == NULL) 889 break; 890 if (addr >= y->end && y->right != NULL) { 891 /* Rotate left and put y on llist. */ 892 root->right = y->left; 893 y->left = root; 894 vm_map_entry_set_max_free(root); 895 root = y->right; 896 y->right = llist; 897 llist = y; 898 } else { 899 /* Put root on llist. */ 900 root->right = llist; 901 llist = root; 902 root = y; 903 } 904 } else 905 break; 906 } 907 908 /* 909 * Pass Two: Walk back up the two spines, flip the pointers 910 * and set max_free. The subtrees of the root go at the 911 * bottom of llist and rlist. 912 */ 913 ltree = root->left; 914 while (llist != NULL) { 915 y = llist->right; 916 llist->right = ltree; 917 vm_map_entry_set_max_free(llist); 918 ltree = llist; 919 llist = y; 920 } 921 rtree = root->right; 922 while (rlist != NULL) { 923 y = rlist->left; 924 rlist->left = rtree; 925 vm_map_entry_set_max_free(rlist); 926 rtree = rlist; 927 rlist = y; 928 } 929 930 /* 931 * Final assembly: add ltree and rtree as subtrees of root. 932 */ 933 root->left = ltree; 934 root->right = rtree; 935 vm_map_entry_set_max_free(root); 936 937 return (root); 938 } 939 940 /* 941 * vm_map_entry_{un,}link: 942 * 943 * Insert/remove entries from maps. 944 */ 945 static void 946 vm_map_entry_link(vm_map_t map, 947 vm_map_entry_t after_where, 948 vm_map_entry_t entry) 949 { 950 951 CTR4(KTR_VM, 952 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 953 map->nentries, entry, after_where); 954 VM_MAP_ASSERT_LOCKED(map); 955 map->nentries++; 956 entry->prev = after_where; 957 entry->next = after_where->next; 958 entry->next->prev = entry; 959 after_where->next = entry; 960 961 if (after_where != &map->header) { 962 if (after_where != map->root) 963 vm_map_entry_splay(after_where->start, map->root); 964 entry->right = after_where->right; 965 entry->left = after_where; 966 after_where->right = NULL; 967 after_where->adj_free = entry->start - after_where->end; 968 vm_map_entry_set_max_free(after_where); 969 } else { 970 entry->right = map->root; 971 entry->left = NULL; 972 } 973 entry->adj_free = (entry->next == &map->header ? map->max_offset : 974 entry->next->start) - entry->end; 975 vm_map_entry_set_max_free(entry); 976 map->root = entry; 977 } 978 979 static void 980 vm_map_entry_unlink(vm_map_t map, 981 vm_map_entry_t entry) 982 { 983 vm_map_entry_t next, prev, root; 984 985 VM_MAP_ASSERT_LOCKED(map); 986 if (entry != map->root) 987 vm_map_entry_splay(entry->start, map->root); 988 if (entry->left == NULL) 989 root = entry->right; 990 else { 991 root = vm_map_entry_splay(entry->start, entry->left); 992 root->right = entry->right; 993 root->adj_free = (entry->next == &map->header ? map->max_offset : 994 entry->next->start) - root->end; 995 vm_map_entry_set_max_free(root); 996 } 997 map->root = root; 998 999 prev = entry->prev; 1000 next = entry->next; 1001 next->prev = prev; 1002 prev->next = next; 1003 map->nentries--; 1004 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1005 map->nentries, entry); 1006 } 1007 1008 /* 1009 * vm_map_entry_resize_free: 1010 * 1011 * Recompute the amount of free space following a vm_map_entry 1012 * and propagate that value up the tree. Call this function after 1013 * resizing a map entry in-place, that is, without a call to 1014 * vm_map_entry_link() or _unlink(). 1015 * 1016 * The map must be locked, and leaves it so. 1017 */ 1018 static void 1019 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1020 { 1021 1022 /* 1023 * Using splay trees without parent pointers, propagating 1024 * max_free up the tree is done by moving the entry to the 1025 * root and making the change there. 1026 */ 1027 if (entry != map->root) 1028 map->root = vm_map_entry_splay(entry->start, map->root); 1029 1030 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1031 entry->next->start) - entry->end; 1032 vm_map_entry_set_max_free(entry); 1033 } 1034 1035 /* 1036 * vm_map_lookup_entry: [ internal use only ] 1037 * 1038 * Finds the map entry containing (or 1039 * immediately preceding) the specified address 1040 * in the given map; the entry is returned 1041 * in the "entry" parameter. The boolean 1042 * result indicates whether the address is 1043 * actually contained in the map. 1044 */ 1045 boolean_t 1046 vm_map_lookup_entry( 1047 vm_map_t map, 1048 vm_offset_t address, 1049 vm_map_entry_t *entry) /* OUT */ 1050 { 1051 vm_map_entry_t cur; 1052 boolean_t locked; 1053 1054 /* 1055 * If the map is empty, then the map entry immediately preceding 1056 * "address" is the map's header. 1057 */ 1058 cur = map->root; 1059 if (cur == NULL) 1060 *entry = &map->header; 1061 else if (address >= cur->start && cur->end > address) { 1062 *entry = cur; 1063 return (TRUE); 1064 } else if ((locked = vm_map_locked(map)) || 1065 sx_try_upgrade(&map->lock)) { 1066 /* 1067 * Splay requires a write lock on the map. However, it only 1068 * restructures the binary search tree; it does not otherwise 1069 * change the map. Thus, the map's timestamp need not change 1070 * on a temporary upgrade. 1071 */ 1072 map->root = cur = vm_map_entry_splay(address, cur); 1073 if (!locked) 1074 sx_downgrade(&map->lock); 1075 1076 /* 1077 * If "address" is contained within a map entry, the new root 1078 * is that map entry. Otherwise, the new root is a map entry 1079 * immediately before or after "address". 1080 */ 1081 if (address >= cur->start) { 1082 *entry = cur; 1083 if (cur->end > address) 1084 return (TRUE); 1085 } else 1086 *entry = cur->prev; 1087 } else 1088 /* 1089 * Since the map is only locked for read access, perform a 1090 * standard binary search tree lookup for "address". 1091 */ 1092 for (;;) { 1093 if (address < cur->start) { 1094 if (cur->left == NULL) { 1095 *entry = cur->prev; 1096 break; 1097 } 1098 cur = cur->left; 1099 } else if (cur->end > address) { 1100 *entry = cur; 1101 return (TRUE); 1102 } else { 1103 if (cur->right == NULL) { 1104 *entry = cur; 1105 break; 1106 } 1107 cur = cur->right; 1108 } 1109 } 1110 return (FALSE); 1111 } 1112 1113 /* 1114 * vm_map_insert: 1115 * 1116 * Inserts the given whole VM object into the target 1117 * map at the specified address range. The object's 1118 * size should match that of the address range. 1119 * 1120 * Requires that the map be locked, and leaves it so. 1121 * 1122 * If object is non-NULL, ref count must be bumped by caller 1123 * prior to making call to account for the new entry. 1124 */ 1125 int 1126 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1127 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1128 int cow) 1129 { 1130 vm_map_entry_t new_entry; 1131 vm_map_entry_t prev_entry; 1132 vm_map_entry_t temp_entry; 1133 vm_eflags_t protoeflags; 1134 struct ucred *cred; 1135 boolean_t charge_prev_obj; 1136 1137 VM_MAP_ASSERT_LOCKED(map); 1138 1139 /* 1140 * Check that the start and end points are not bogus. 1141 */ 1142 if ((start < map->min_offset) || (end > map->max_offset) || 1143 (start >= end)) 1144 return (KERN_INVALID_ADDRESS); 1145 1146 /* 1147 * Find the entry prior to the proposed starting address; if it's part 1148 * of an existing entry, this range is bogus. 1149 */ 1150 if (vm_map_lookup_entry(map, start, &temp_entry)) 1151 return (KERN_NO_SPACE); 1152 1153 prev_entry = temp_entry; 1154 1155 /* 1156 * Assert that the next entry doesn't overlap the end point. 1157 */ 1158 if ((prev_entry->next != &map->header) && 1159 (prev_entry->next->start < end)) 1160 return (KERN_NO_SPACE); 1161 1162 protoeflags = 0; 1163 charge_prev_obj = FALSE; 1164 1165 if (cow & MAP_COPY_ON_WRITE) 1166 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1167 1168 if (cow & MAP_NOFAULT) { 1169 protoeflags |= MAP_ENTRY_NOFAULT; 1170 1171 KASSERT(object == NULL, 1172 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1173 } 1174 if (cow & MAP_DISABLE_SYNCER) 1175 protoeflags |= MAP_ENTRY_NOSYNC; 1176 if (cow & MAP_DISABLE_COREDUMP) 1177 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1178 1179 cred = NULL; 1180 KASSERT((object != kmem_object && object != kernel_object) || 1181 ((object == kmem_object || object == kernel_object) && 1182 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1183 ("kmem or kernel object and cow")); 1184 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1185 goto charged; 1186 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1187 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1188 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1189 return (KERN_RESOURCE_SHORTAGE); 1190 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1191 object->cred == NULL, 1192 ("OVERCOMMIT: vm_map_insert o %p", object)); 1193 cred = curthread->td_ucred; 1194 crhold(cred); 1195 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1196 charge_prev_obj = TRUE; 1197 } 1198 1199 charged: 1200 /* Expand the kernel pmap, if necessary. */ 1201 if (map == kernel_map && end > kernel_vm_end) 1202 pmap_growkernel(end); 1203 if (object != NULL) { 1204 /* 1205 * OBJ_ONEMAPPING must be cleared unless this mapping 1206 * is trivially proven to be the only mapping for any 1207 * of the object's pages. (Object granularity 1208 * reference counting is insufficient to recognize 1209 * aliases with precision.) 1210 */ 1211 VM_OBJECT_LOCK(object); 1212 if (object->ref_count > 1 || object->shadow_count != 0) 1213 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1214 VM_OBJECT_UNLOCK(object); 1215 } 1216 else if ((prev_entry != &map->header) && 1217 (prev_entry->eflags == protoeflags) && 1218 (prev_entry->end == start) && 1219 (prev_entry->wired_count == 0) && 1220 (prev_entry->cred == cred || 1221 (prev_entry->object.vm_object != NULL && 1222 (prev_entry->object.vm_object->cred == cred))) && 1223 vm_object_coalesce(prev_entry->object.vm_object, 1224 prev_entry->offset, 1225 (vm_size_t)(prev_entry->end - prev_entry->start), 1226 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1227 /* 1228 * We were able to extend the object. Determine if we 1229 * can extend the previous map entry to include the 1230 * new range as well. 1231 */ 1232 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1233 (prev_entry->protection == prot) && 1234 (prev_entry->max_protection == max)) { 1235 map->size += (end - prev_entry->end); 1236 prev_entry->end = end; 1237 vm_map_entry_resize_free(map, prev_entry); 1238 vm_map_simplify_entry(map, prev_entry); 1239 if (cred != NULL) 1240 crfree(cred); 1241 return (KERN_SUCCESS); 1242 } 1243 1244 /* 1245 * If we can extend the object but cannot extend the 1246 * map entry, we have to create a new map entry. We 1247 * must bump the ref count on the extended object to 1248 * account for it. object may be NULL. 1249 */ 1250 object = prev_entry->object.vm_object; 1251 offset = prev_entry->offset + 1252 (prev_entry->end - prev_entry->start); 1253 vm_object_reference(object); 1254 if (cred != NULL && object != NULL && object->cred != NULL && 1255 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1256 /* Object already accounts for this uid. */ 1257 crfree(cred); 1258 cred = NULL; 1259 } 1260 } 1261 1262 /* 1263 * NOTE: if conditionals fail, object can be NULL here. This occurs 1264 * in things like the buffer map where we manage kva but do not manage 1265 * backing objects. 1266 */ 1267 1268 /* 1269 * Create a new entry 1270 */ 1271 new_entry = vm_map_entry_create(map); 1272 new_entry->start = start; 1273 new_entry->end = end; 1274 new_entry->cred = NULL; 1275 1276 new_entry->eflags = protoeflags; 1277 new_entry->object.vm_object = object; 1278 new_entry->offset = offset; 1279 new_entry->avail_ssize = 0; 1280 1281 new_entry->inheritance = VM_INHERIT_DEFAULT; 1282 new_entry->protection = prot; 1283 new_entry->max_protection = max; 1284 new_entry->wired_count = 0; 1285 1286 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1287 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1288 new_entry->cred = cred; 1289 1290 /* 1291 * Insert the new entry into the list 1292 */ 1293 vm_map_entry_link(map, prev_entry, new_entry); 1294 map->size += new_entry->end - new_entry->start; 1295 1296 #if 0 1297 /* 1298 * Temporarily removed to avoid MAP_STACK panic, due to 1299 * MAP_STACK being a huge hack. Will be added back in 1300 * when MAP_STACK (and the user stack mapping) is fixed. 1301 */ 1302 /* 1303 * It may be possible to simplify the entry 1304 */ 1305 vm_map_simplify_entry(map, new_entry); 1306 #endif 1307 1308 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1309 vm_map_pmap_enter(map, start, prot, 1310 object, OFF_TO_IDX(offset), end - start, 1311 cow & MAP_PREFAULT_PARTIAL); 1312 } 1313 1314 return (KERN_SUCCESS); 1315 } 1316 1317 /* 1318 * vm_map_findspace: 1319 * 1320 * Find the first fit (lowest VM address) for "length" free bytes 1321 * beginning at address >= start in the given map. 1322 * 1323 * In a vm_map_entry, "adj_free" is the amount of free space 1324 * adjacent (higher address) to this entry, and "max_free" is the 1325 * maximum amount of contiguous free space in its subtree. This 1326 * allows finding a free region in one path down the tree, so 1327 * O(log n) amortized with splay trees. 1328 * 1329 * The map must be locked, and leaves it so. 1330 * 1331 * Returns: 0 on success, and starting address in *addr, 1332 * 1 if insufficient space. 1333 */ 1334 int 1335 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1336 vm_offset_t *addr) /* OUT */ 1337 { 1338 vm_map_entry_t entry; 1339 vm_offset_t st; 1340 1341 /* 1342 * Request must fit within min/max VM address and must avoid 1343 * address wrap. 1344 */ 1345 if (start < map->min_offset) 1346 start = map->min_offset; 1347 if (start + length > map->max_offset || start + length < start) 1348 return (1); 1349 1350 /* Empty tree means wide open address space. */ 1351 if (map->root == NULL) { 1352 *addr = start; 1353 return (0); 1354 } 1355 1356 /* 1357 * After splay, if start comes before root node, then there 1358 * must be a gap from start to the root. 1359 */ 1360 map->root = vm_map_entry_splay(start, map->root); 1361 if (start + length <= map->root->start) { 1362 *addr = start; 1363 return (0); 1364 } 1365 1366 /* 1367 * Root is the last node that might begin its gap before 1368 * start, and this is the last comparison where address 1369 * wrap might be a problem. 1370 */ 1371 st = (start > map->root->end) ? start : map->root->end; 1372 if (length <= map->root->end + map->root->adj_free - st) { 1373 *addr = st; 1374 return (0); 1375 } 1376 1377 /* With max_free, can immediately tell if no solution. */ 1378 entry = map->root->right; 1379 if (entry == NULL || length > entry->max_free) 1380 return (1); 1381 1382 /* 1383 * Search the right subtree in the order: left subtree, root, 1384 * right subtree (first fit). The previous splay implies that 1385 * all regions in the right subtree have addresses > start. 1386 */ 1387 while (entry != NULL) { 1388 if (entry->left != NULL && entry->left->max_free >= length) 1389 entry = entry->left; 1390 else if (entry->adj_free >= length) { 1391 *addr = entry->end; 1392 return (0); 1393 } else 1394 entry = entry->right; 1395 } 1396 1397 /* Can't get here, so panic if we do. */ 1398 panic("vm_map_findspace: max_free corrupt"); 1399 } 1400 1401 int 1402 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1403 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1404 vm_prot_t max, int cow) 1405 { 1406 vm_offset_t end; 1407 int result; 1408 1409 end = start + length; 1410 vm_map_lock(map); 1411 VM_MAP_RANGE_CHECK(map, start, end); 1412 (void) vm_map_delete(map, start, end); 1413 result = vm_map_insert(map, object, offset, start, end, prot, 1414 max, cow); 1415 vm_map_unlock(map); 1416 return (result); 1417 } 1418 1419 /* 1420 * vm_map_find finds an unallocated region in the target address 1421 * map with the given length. The search is defined to be 1422 * first-fit from the specified address; the region found is 1423 * returned in the same parameter. 1424 * 1425 * If object is non-NULL, ref count must be bumped by caller 1426 * prior to making call to account for the new entry. 1427 */ 1428 int 1429 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1430 vm_offset_t *addr, /* IN/OUT */ 1431 vm_size_t length, int find_space, vm_prot_t prot, 1432 vm_prot_t max, int cow) 1433 { 1434 vm_offset_t start; 1435 int result; 1436 1437 start = *addr; 1438 vm_map_lock(map); 1439 do { 1440 if (find_space != VMFS_NO_SPACE) { 1441 if (vm_map_findspace(map, start, length, addr)) { 1442 vm_map_unlock(map); 1443 return (KERN_NO_SPACE); 1444 } 1445 switch (find_space) { 1446 case VMFS_ALIGNED_SPACE: 1447 pmap_align_superpage(object, offset, addr, 1448 length); 1449 break; 1450 #ifdef VMFS_TLB_ALIGNED_SPACE 1451 case VMFS_TLB_ALIGNED_SPACE: 1452 pmap_align_tlb(addr); 1453 break; 1454 #endif 1455 default: 1456 break; 1457 } 1458 1459 start = *addr; 1460 } 1461 result = vm_map_insert(map, object, offset, start, start + 1462 length, prot, max, cow); 1463 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1464 #ifdef VMFS_TLB_ALIGNED_SPACE 1465 || find_space == VMFS_TLB_ALIGNED_SPACE 1466 #endif 1467 )); 1468 vm_map_unlock(map); 1469 return (result); 1470 } 1471 1472 /* 1473 * vm_map_simplify_entry: 1474 * 1475 * Simplify the given map entry by merging with either neighbor. This 1476 * routine also has the ability to merge with both neighbors. 1477 * 1478 * The map must be locked. 1479 * 1480 * This routine guarentees that the passed entry remains valid (though 1481 * possibly extended). When merging, this routine may delete one or 1482 * both neighbors. 1483 */ 1484 void 1485 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1486 { 1487 vm_map_entry_t next, prev; 1488 vm_size_t prevsize, esize; 1489 1490 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1491 return; 1492 1493 prev = entry->prev; 1494 if (prev != &map->header) { 1495 prevsize = prev->end - prev->start; 1496 if ( (prev->end == entry->start) && 1497 (prev->object.vm_object == entry->object.vm_object) && 1498 (!prev->object.vm_object || 1499 (prev->offset + prevsize == entry->offset)) && 1500 (prev->eflags == entry->eflags) && 1501 (prev->protection == entry->protection) && 1502 (prev->max_protection == entry->max_protection) && 1503 (prev->inheritance == entry->inheritance) && 1504 (prev->wired_count == entry->wired_count) && 1505 (prev->cred == entry->cred)) { 1506 vm_map_entry_unlink(map, prev); 1507 entry->start = prev->start; 1508 entry->offset = prev->offset; 1509 if (entry->prev != &map->header) 1510 vm_map_entry_resize_free(map, entry->prev); 1511 1512 /* 1513 * If the backing object is a vnode object, 1514 * vm_object_deallocate() calls vrele(). 1515 * However, vrele() does not lock the vnode 1516 * because the vnode has additional 1517 * references. Thus, the map lock can be kept 1518 * without causing a lock-order reversal with 1519 * the vnode lock. 1520 */ 1521 if (prev->object.vm_object) 1522 vm_object_deallocate(prev->object.vm_object); 1523 if (prev->cred != NULL) 1524 crfree(prev->cred); 1525 vm_map_entry_dispose(map, prev); 1526 } 1527 } 1528 1529 next = entry->next; 1530 if (next != &map->header) { 1531 esize = entry->end - entry->start; 1532 if ((entry->end == next->start) && 1533 (next->object.vm_object == entry->object.vm_object) && 1534 (!entry->object.vm_object || 1535 (entry->offset + esize == next->offset)) && 1536 (next->eflags == entry->eflags) && 1537 (next->protection == entry->protection) && 1538 (next->max_protection == entry->max_protection) && 1539 (next->inheritance == entry->inheritance) && 1540 (next->wired_count == entry->wired_count) && 1541 (next->cred == entry->cred)) { 1542 vm_map_entry_unlink(map, next); 1543 entry->end = next->end; 1544 vm_map_entry_resize_free(map, entry); 1545 1546 /* 1547 * See comment above. 1548 */ 1549 if (next->object.vm_object) 1550 vm_object_deallocate(next->object.vm_object); 1551 if (next->cred != NULL) 1552 crfree(next->cred); 1553 vm_map_entry_dispose(map, next); 1554 } 1555 } 1556 } 1557 /* 1558 * vm_map_clip_start: [ internal use only ] 1559 * 1560 * Asserts that the given entry begins at or after 1561 * the specified address; if necessary, 1562 * it splits the entry into two. 1563 */ 1564 #define vm_map_clip_start(map, entry, startaddr) \ 1565 { \ 1566 if (startaddr > entry->start) \ 1567 _vm_map_clip_start(map, entry, startaddr); \ 1568 } 1569 1570 /* 1571 * This routine is called only when it is known that 1572 * the entry must be split. 1573 */ 1574 static void 1575 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1576 { 1577 vm_map_entry_t new_entry; 1578 1579 VM_MAP_ASSERT_LOCKED(map); 1580 1581 /* 1582 * Split off the front portion -- note that we must insert the new 1583 * entry BEFORE this one, so that this entry has the specified 1584 * starting address. 1585 */ 1586 vm_map_simplify_entry(map, entry); 1587 1588 /* 1589 * If there is no object backing this entry, we might as well create 1590 * one now. If we defer it, an object can get created after the map 1591 * is clipped, and individual objects will be created for the split-up 1592 * map. This is a bit of a hack, but is also about the best place to 1593 * put this improvement. 1594 */ 1595 if (entry->object.vm_object == NULL && !map->system_map) { 1596 vm_object_t object; 1597 object = vm_object_allocate(OBJT_DEFAULT, 1598 atop(entry->end - entry->start)); 1599 entry->object.vm_object = object; 1600 entry->offset = 0; 1601 if (entry->cred != NULL) { 1602 object->cred = entry->cred; 1603 object->charge = entry->end - entry->start; 1604 entry->cred = NULL; 1605 } 1606 } else if (entry->object.vm_object != NULL && 1607 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1608 entry->cred != NULL) { 1609 VM_OBJECT_LOCK(entry->object.vm_object); 1610 KASSERT(entry->object.vm_object->cred == NULL, 1611 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1612 entry->object.vm_object->cred = entry->cred; 1613 entry->object.vm_object->charge = entry->end - entry->start; 1614 VM_OBJECT_UNLOCK(entry->object.vm_object); 1615 entry->cred = NULL; 1616 } 1617 1618 new_entry = vm_map_entry_create(map); 1619 *new_entry = *entry; 1620 1621 new_entry->end = start; 1622 entry->offset += (start - entry->start); 1623 entry->start = start; 1624 if (new_entry->cred != NULL) 1625 crhold(entry->cred); 1626 1627 vm_map_entry_link(map, entry->prev, new_entry); 1628 1629 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1630 vm_object_reference(new_entry->object.vm_object); 1631 } 1632 } 1633 1634 /* 1635 * vm_map_clip_end: [ internal use only ] 1636 * 1637 * Asserts that the given entry ends at or before 1638 * the specified address; if necessary, 1639 * it splits the entry into two. 1640 */ 1641 #define vm_map_clip_end(map, entry, endaddr) \ 1642 { \ 1643 if ((endaddr) < (entry->end)) \ 1644 _vm_map_clip_end((map), (entry), (endaddr)); \ 1645 } 1646 1647 /* 1648 * This routine is called only when it is known that 1649 * the entry must be split. 1650 */ 1651 static void 1652 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1653 { 1654 vm_map_entry_t new_entry; 1655 1656 VM_MAP_ASSERT_LOCKED(map); 1657 1658 /* 1659 * If there is no object backing this entry, we might as well create 1660 * one now. If we defer it, an object can get created after the map 1661 * is clipped, and individual objects will be created for the split-up 1662 * map. This is a bit of a hack, but is also about the best place to 1663 * put this improvement. 1664 */ 1665 if (entry->object.vm_object == NULL && !map->system_map) { 1666 vm_object_t object; 1667 object = vm_object_allocate(OBJT_DEFAULT, 1668 atop(entry->end - entry->start)); 1669 entry->object.vm_object = object; 1670 entry->offset = 0; 1671 if (entry->cred != NULL) { 1672 object->cred = entry->cred; 1673 object->charge = entry->end - entry->start; 1674 entry->cred = NULL; 1675 } 1676 } else if (entry->object.vm_object != NULL && 1677 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1678 entry->cred != NULL) { 1679 VM_OBJECT_LOCK(entry->object.vm_object); 1680 KASSERT(entry->object.vm_object->cred == NULL, 1681 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1682 entry->object.vm_object->cred = entry->cred; 1683 entry->object.vm_object->charge = entry->end - entry->start; 1684 VM_OBJECT_UNLOCK(entry->object.vm_object); 1685 entry->cred = NULL; 1686 } 1687 1688 /* 1689 * Create a new entry and insert it AFTER the specified entry 1690 */ 1691 new_entry = vm_map_entry_create(map); 1692 *new_entry = *entry; 1693 1694 new_entry->start = entry->end = end; 1695 new_entry->offset += (end - entry->start); 1696 if (new_entry->cred != NULL) 1697 crhold(entry->cred); 1698 1699 vm_map_entry_link(map, entry, new_entry); 1700 1701 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1702 vm_object_reference(new_entry->object.vm_object); 1703 } 1704 } 1705 1706 /* 1707 * vm_map_submap: [ kernel use only ] 1708 * 1709 * Mark the given range as handled by a subordinate map. 1710 * 1711 * This range must have been created with vm_map_find, 1712 * and no other operations may have been performed on this 1713 * range prior to calling vm_map_submap. 1714 * 1715 * Only a limited number of operations can be performed 1716 * within this rage after calling vm_map_submap: 1717 * vm_fault 1718 * [Don't try vm_map_copy!] 1719 * 1720 * To remove a submapping, one must first remove the 1721 * range from the superior map, and then destroy the 1722 * submap (if desired). [Better yet, don't try it.] 1723 */ 1724 int 1725 vm_map_submap( 1726 vm_map_t map, 1727 vm_offset_t start, 1728 vm_offset_t end, 1729 vm_map_t submap) 1730 { 1731 vm_map_entry_t entry; 1732 int result = KERN_INVALID_ARGUMENT; 1733 1734 vm_map_lock(map); 1735 1736 VM_MAP_RANGE_CHECK(map, start, end); 1737 1738 if (vm_map_lookup_entry(map, start, &entry)) { 1739 vm_map_clip_start(map, entry, start); 1740 } else 1741 entry = entry->next; 1742 1743 vm_map_clip_end(map, entry, end); 1744 1745 if ((entry->start == start) && (entry->end == end) && 1746 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1747 (entry->object.vm_object == NULL)) { 1748 entry->object.sub_map = submap; 1749 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1750 result = KERN_SUCCESS; 1751 } 1752 vm_map_unlock(map); 1753 1754 return (result); 1755 } 1756 1757 /* 1758 * The maximum number of pages to map 1759 */ 1760 #define MAX_INIT_PT 96 1761 1762 /* 1763 * vm_map_pmap_enter: 1764 * 1765 * Preload read-only mappings for the given object's resident pages into 1766 * the given map. This eliminates the soft faults on process startup and 1767 * immediately after an mmap(2). Because these are speculative mappings, 1768 * cached pages are not reactivated and mapped. 1769 */ 1770 void 1771 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1772 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1773 { 1774 vm_offset_t start; 1775 vm_page_t p, p_start; 1776 vm_pindex_t psize, tmpidx; 1777 1778 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1779 return; 1780 VM_OBJECT_LOCK(object); 1781 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1782 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1783 goto unlock_return; 1784 } 1785 1786 psize = atop(size); 1787 1788 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1789 object->resident_page_count > MAX_INIT_PT) 1790 goto unlock_return; 1791 1792 if (psize + pindex > object->size) { 1793 if (object->size < pindex) 1794 goto unlock_return; 1795 psize = object->size - pindex; 1796 } 1797 1798 start = 0; 1799 p_start = NULL; 1800 1801 p = vm_page_find_least(object, pindex); 1802 /* 1803 * Assert: the variable p is either (1) the page with the 1804 * least pindex greater than or equal to the parameter pindex 1805 * or (2) NULL. 1806 */ 1807 for (; 1808 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1809 p = TAILQ_NEXT(p, listq)) { 1810 /* 1811 * don't allow an madvise to blow away our really 1812 * free pages allocating pv entries. 1813 */ 1814 if ((flags & MAP_PREFAULT_MADVISE) && 1815 cnt.v_free_count < cnt.v_free_reserved) { 1816 psize = tmpidx; 1817 break; 1818 } 1819 if (p->valid == VM_PAGE_BITS_ALL) { 1820 if (p_start == NULL) { 1821 start = addr + ptoa(tmpidx); 1822 p_start = p; 1823 } 1824 } else if (p_start != NULL) { 1825 pmap_enter_object(map->pmap, start, addr + 1826 ptoa(tmpidx), p_start, prot); 1827 p_start = NULL; 1828 } 1829 } 1830 if (p_start != NULL) 1831 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1832 p_start, prot); 1833 unlock_return: 1834 VM_OBJECT_UNLOCK(object); 1835 } 1836 1837 /* 1838 * vm_map_protect: 1839 * 1840 * Sets the protection of the specified address 1841 * region in the target map. If "set_max" is 1842 * specified, the maximum protection is to be set; 1843 * otherwise, only the current protection is affected. 1844 */ 1845 int 1846 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1847 vm_prot_t new_prot, boolean_t set_max) 1848 { 1849 vm_map_entry_t current, entry; 1850 vm_object_t obj; 1851 struct ucred *cred; 1852 vm_prot_t old_prot; 1853 1854 vm_map_lock(map); 1855 1856 VM_MAP_RANGE_CHECK(map, start, end); 1857 1858 if (vm_map_lookup_entry(map, start, &entry)) { 1859 vm_map_clip_start(map, entry, start); 1860 } else { 1861 entry = entry->next; 1862 } 1863 1864 /* 1865 * Make a first pass to check for protection violations. 1866 */ 1867 current = entry; 1868 while ((current != &map->header) && (current->start < end)) { 1869 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1870 vm_map_unlock(map); 1871 return (KERN_INVALID_ARGUMENT); 1872 } 1873 if ((new_prot & current->max_protection) != new_prot) { 1874 vm_map_unlock(map); 1875 return (KERN_PROTECTION_FAILURE); 1876 } 1877 current = current->next; 1878 } 1879 1880 1881 /* 1882 * Do an accounting pass for private read-only mappings that 1883 * now will do cow due to allowed write (e.g. debugger sets 1884 * breakpoint on text segment) 1885 */ 1886 for (current = entry; (current != &map->header) && 1887 (current->start < end); current = current->next) { 1888 1889 vm_map_clip_end(map, current, end); 1890 1891 if (set_max || 1892 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1893 ENTRY_CHARGED(current)) { 1894 continue; 1895 } 1896 1897 cred = curthread->td_ucred; 1898 obj = current->object.vm_object; 1899 1900 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1901 if (!swap_reserve(current->end - current->start)) { 1902 vm_map_unlock(map); 1903 return (KERN_RESOURCE_SHORTAGE); 1904 } 1905 crhold(cred); 1906 current->cred = cred; 1907 continue; 1908 } 1909 1910 VM_OBJECT_LOCK(obj); 1911 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1912 VM_OBJECT_UNLOCK(obj); 1913 continue; 1914 } 1915 1916 /* 1917 * Charge for the whole object allocation now, since 1918 * we cannot distinguish between non-charged and 1919 * charged clipped mapping of the same object later. 1920 */ 1921 KASSERT(obj->charge == 0, 1922 ("vm_map_protect: object %p overcharged\n", obj)); 1923 if (!swap_reserve(ptoa(obj->size))) { 1924 VM_OBJECT_UNLOCK(obj); 1925 vm_map_unlock(map); 1926 return (KERN_RESOURCE_SHORTAGE); 1927 } 1928 1929 crhold(cred); 1930 obj->cred = cred; 1931 obj->charge = ptoa(obj->size); 1932 VM_OBJECT_UNLOCK(obj); 1933 } 1934 1935 /* 1936 * Go back and fix up protections. [Note that clipping is not 1937 * necessary the second time.] 1938 */ 1939 current = entry; 1940 while ((current != &map->header) && (current->start < end)) { 1941 old_prot = current->protection; 1942 1943 if (set_max) 1944 current->protection = 1945 (current->max_protection = new_prot) & 1946 old_prot; 1947 else 1948 current->protection = new_prot; 1949 1950 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1951 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1952 (current->protection & VM_PROT_WRITE) != 0 && 1953 (old_prot & VM_PROT_WRITE) == 0) { 1954 vm_fault_copy_entry(map, map, current, current, NULL); 1955 } 1956 1957 /* 1958 * When restricting access, update the physical map. Worry 1959 * about copy-on-write here. 1960 */ 1961 if ((old_prot & ~current->protection) != 0) { 1962 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1963 VM_PROT_ALL) 1964 pmap_protect(map->pmap, current->start, 1965 current->end, 1966 current->protection & MASK(current)); 1967 #undef MASK 1968 } 1969 vm_map_simplify_entry(map, current); 1970 current = current->next; 1971 } 1972 vm_map_unlock(map); 1973 return (KERN_SUCCESS); 1974 } 1975 1976 /* 1977 * vm_map_madvise: 1978 * 1979 * This routine traverses a processes map handling the madvise 1980 * system call. Advisories are classified as either those effecting 1981 * the vm_map_entry structure, or those effecting the underlying 1982 * objects. 1983 */ 1984 int 1985 vm_map_madvise( 1986 vm_map_t map, 1987 vm_offset_t start, 1988 vm_offset_t end, 1989 int behav) 1990 { 1991 vm_map_entry_t current, entry; 1992 int modify_map = 0; 1993 1994 /* 1995 * Some madvise calls directly modify the vm_map_entry, in which case 1996 * we need to use an exclusive lock on the map and we need to perform 1997 * various clipping operations. Otherwise we only need a read-lock 1998 * on the map. 1999 */ 2000 switch(behav) { 2001 case MADV_NORMAL: 2002 case MADV_SEQUENTIAL: 2003 case MADV_RANDOM: 2004 case MADV_NOSYNC: 2005 case MADV_AUTOSYNC: 2006 case MADV_NOCORE: 2007 case MADV_CORE: 2008 modify_map = 1; 2009 vm_map_lock(map); 2010 break; 2011 case MADV_WILLNEED: 2012 case MADV_DONTNEED: 2013 case MADV_FREE: 2014 vm_map_lock_read(map); 2015 break; 2016 default: 2017 return (KERN_INVALID_ARGUMENT); 2018 } 2019 2020 /* 2021 * Locate starting entry and clip if necessary. 2022 */ 2023 VM_MAP_RANGE_CHECK(map, start, end); 2024 2025 if (vm_map_lookup_entry(map, start, &entry)) { 2026 if (modify_map) 2027 vm_map_clip_start(map, entry, start); 2028 } else { 2029 entry = entry->next; 2030 } 2031 2032 if (modify_map) { 2033 /* 2034 * madvise behaviors that are implemented in the vm_map_entry. 2035 * 2036 * We clip the vm_map_entry so that behavioral changes are 2037 * limited to the specified address range. 2038 */ 2039 for (current = entry; 2040 (current != &map->header) && (current->start < end); 2041 current = current->next 2042 ) { 2043 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2044 continue; 2045 2046 vm_map_clip_end(map, current, end); 2047 2048 switch (behav) { 2049 case MADV_NORMAL: 2050 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2051 break; 2052 case MADV_SEQUENTIAL: 2053 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2054 break; 2055 case MADV_RANDOM: 2056 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2057 break; 2058 case MADV_NOSYNC: 2059 current->eflags |= MAP_ENTRY_NOSYNC; 2060 break; 2061 case MADV_AUTOSYNC: 2062 current->eflags &= ~MAP_ENTRY_NOSYNC; 2063 break; 2064 case MADV_NOCORE: 2065 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2066 break; 2067 case MADV_CORE: 2068 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2069 break; 2070 default: 2071 break; 2072 } 2073 vm_map_simplify_entry(map, current); 2074 } 2075 vm_map_unlock(map); 2076 } else { 2077 vm_pindex_t pindex; 2078 int count; 2079 2080 /* 2081 * madvise behaviors that are implemented in the underlying 2082 * vm_object. 2083 * 2084 * Since we don't clip the vm_map_entry, we have to clip 2085 * the vm_object pindex and count. 2086 */ 2087 for (current = entry; 2088 (current != &map->header) && (current->start < end); 2089 current = current->next 2090 ) { 2091 vm_offset_t useStart; 2092 2093 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2094 continue; 2095 2096 pindex = OFF_TO_IDX(current->offset); 2097 count = atop(current->end - current->start); 2098 useStart = current->start; 2099 2100 if (current->start < start) { 2101 pindex += atop(start - current->start); 2102 count -= atop(start - current->start); 2103 useStart = start; 2104 } 2105 if (current->end > end) 2106 count -= atop(current->end - end); 2107 2108 if (count <= 0) 2109 continue; 2110 2111 vm_object_madvise(current->object.vm_object, 2112 pindex, count, behav); 2113 if (behav == MADV_WILLNEED) { 2114 vm_map_pmap_enter(map, 2115 useStart, 2116 current->protection, 2117 current->object.vm_object, 2118 pindex, 2119 (count << PAGE_SHIFT), 2120 MAP_PREFAULT_MADVISE 2121 ); 2122 } 2123 } 2124 vm_map_unlock_read(map); 2125 } 2126 return (0); 2127 } 2128 2129 2130 /* 2131 * vm_map_inherit: 2132 * 2133 * Sets the inheritance of the specified address 2134 * range in the target map. Inheritance 2135 * affects how the map will be shared with 2136 * child maps at the time of vmspace_fork. 2137 */ 2138 int 2139 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2140 vm_inherit_t new_inheritance) 2141 { 2142 vm_map_entry_t entry; 2143 vm_map_entry_t temp_entry; 2144 2145 switch (new_inheritance) { 2146 case VM_INHERIT_NONE: 2147 case VM_INHERIT_COPY: 2148 case VM_INHERIT_SHARE: 2149 break; 2150 default: 2151 return (KERN_INVALID_ARGUMENT); 2152 } 2153 vm_map_lock(map); 2154 VM_MAP_RANGE_CHECK(map, start, end); 2155 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2156 entry = temp_entry; 2157 vm_map_clip_start(map, entry, start); 2158 } else 2159 entry = temp_entry->next; 2160 while ((entry != &map->header) && (entry->start < end)) { 2161 vm_map_clip_end(map, entry, end); 2162 entry->inheritance = new_inheritance; 2163 vm_map_simplify_entry(map, entry); 2164 entry = entry->next; 2165 } 2166 vm_map_unlock(map); 2167 return (KERN_SUCCESS); 2168 } 2169 2170 /* 2171 * vm_map_unwire: 2172 * 2173 * Implements both kernel and user unwiring. 2174 */ 2175 int 2176 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2177 int flags) 2178 { 2179 vm_map_entry_t entry, first_entry, tmp_entry; 2180 vm_offset_t saved_start; 2181 unsigned int last_timestamp; 2182 int rv; 2183 boolean_t need_wakeup, result, user_unwire; 2184 2185 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2186 vm_map_lock(map); 2187 VM_MAP_RANGE_CHECK(map, start, end); 2188 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2189 if (flags & VM_MAP_WIRE_HOLESOK) 2190 first_entry = first_entry->next; 2191 else { 2192 vm_map_unlock(map); 2193 return (KERN_INVALID_ADDRESS); 2194 } 2195 } 2196 last_timestamp = map->timestamp; 2197 entry = first_entry; 2198 while (entry != &map->header && entry->start < end) { 2199 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2200 /* 2201 * We have not yet clipped the entry. 2202 */ 2203 saved_start = (start >= entry->start) ? start : 2204 entry->start; 2205 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2206 if (vm_map_unlock_and_wait(map, 0)) { 2207 /* 2208 * Allow interruption of user unwiring? 2209 */ 2210 } 2211 vm_map_lock(map); 2212 if (last_timestamp+1 != map->timestamp) { 2213 /* 2214 * Look again for the entry because the map was 2215 * modified while it was unlocked. 2216 * Specifically, the entry may have been 2217 * clipped, merged, or deleted. 2218 */ 2219 if (!vm_map_lookup_entry(map, saved_start, 2220 &tmp_entry)) { 2221 if (flags & VM_MAP_WIRE_HOLESOK) 2222 tmp_entry = tmp_entry->next; 2223 else { 2224 if (saved_start == start) { 2225 /* 2226 * First_entry has been deleted. 2227 */ 2228 vm_map_unlock(map); 2229 return (KERN_INVALID_ADDRESS); 2230 } 2231 end = saved_start; 2232 rv = KERN_INVALID_ADDRESS; 2233 goto done; 2234 } 2235 } 2236 if (entry == first_entry) 2237 first_entry = tmp_entry; 2238 else 2239 first_entry = NULL; 2240 entry = tmp_entry; 2241 } 2242 last_timestamp = map->timestamp; 2243 continue; 2244 } 2245 vm_map_clip_start(map, entry, start); 2246 vm_map_clip_end(map, entry, end); 2247 /* 2248 * Mark the entry in case the map lock is released. (See 2249 * above.) 2250 */ 2251 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2252 /* 2253 * Check the map for holes in the specified region. 2254 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2255 */ 2256 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2257 (entry->end < end && (entry->next == &map->header || 2258 entry->next->start > entry->end))) { 2259 end = entry->end; 2260 rv = KERN_INVALID_ADDRESS; 2261 goto done; 2262 } 2263 /* 2264 * If system unwiring, require that the entry is system wired. 2265 */ 2266 if (!user_unwire && 2267 vm_map_entry_system_wired_count(entry) == 0) { 2268 end = entry->end; 2269 rv = KERN_INVALID_ARGUMENT; 2270 goto done; 2271 } 2272 entry = entry->next; 2273 } 2274 rv = KERN_SUCCESS; 2275 done: 2276 need_wakeup = FALSE; 2277 if (first_entry == NULL) { 2278 result = vm_map_lookup_entry(map, start, &first_entry); 2279 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2280 first_entry = first_entry->next; 2281 else 2282 KASSERT(result, ("vm_map_unwire: lookup failed")); 2283 } 2284 entry = first_entry; 2285 while (entry != &map->header && entry->start < end) { 2286 if (rv == KERN_SUCCESS && (!user_unwire || 2287 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2288 if (user_unwire) 2289 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2290 entry->wired_count--; 2291 if (entry->wired_count == 0) { 2292 /* 2293 * Retain the map lock. 2294 */ 2295 vm_fault_unwire(map, entry->start, entry->end, 2296 entry->object.vm_object != NULL && 2297 (entry->object.vm_object->type == OBJT_DEVICE || 2298 entry->object.vm_object->type == OBJT_SG)); 2299 } 2300 } 2301 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2302 ("vm_map_unwire: in-transition flag missing")); 2303 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2304 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2305 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2306 need_wakeup = TRUE; 2307 } 2308 vm_map_simplify_entry(map, entry); 2309 entry = entry->next; 2310 } 2311 vm_map_unlock(map); 2312 if (need_wakeup) 2313 vm_map_wakeup(map); 2314 return (rv); 2315 } 2316 2317 /* 2318 * vm_map_wire: 2319 * 2320 * Implements both kernel and user wiring. 2321 */ 2322 int 2323 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2324 int flags) 2325 { 2326 vm_map_entry_t entry, first_entry, tmp_entry; 2327 vm_offset_t saved_end, saved_start; 2328 unsigned int last_timestamp; 2329 int rv; 2330 boolean_t fictitious, need_wakeup, result, user_wire; 2331 2332 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2333 vm_map_lock(map); 2334 VM_MAP_RANGE_CHECK(map, start, end); 2335 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2336 if (flags & VM_MAP_WIRE_HOLESOK) 2337 first_entry = first_entry->next; 2338 else { 2339 vm_map_unlock(map); 2340 return (KERN_INVALID_ADDRESS); 2341 } 2342 } 2343 last_timestamp = map->timestamp; 2344 entry = first_entry; 2345 while (entry != &map->header && entry->start < end) { 2346 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2347 /* 2348 * We have not yet clipped the entry. 2349 */ 2350 saved_start = (start >= entry->start) ? start : 2351 entry->start; 2352 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2353 if (vm_map_unlock_and_wait(map, 0)) { 2354 /* 2355 * Allow interruption of user wiring? 2356 */ 2357 } 2358 vm_map_lock(map); 2359 if (last_timestamp + 1 != map->timestamp) { 2360 /* 2361 * Look again for the entry because the map was 2362 * modified while it was unlocked. 2363 * Specifically, the entry may have been 2364 * clipped, merged, or deleted. 2365 */ 2366 if (!vm_map_lookup_entry(map, saved_start, 2367 &tmp_entry)) { 2368 if (flags & VM_MAP_WIRE_HOLESOK) 2369 tmp_entry = tmp_entry->next; 2370 else { 2371 if (saved_start == start) { 2372 /* 2373 * first_entry has been deleted. 2374 */ 2375 vm_map_unlock(map); 2376 return (KERN_INVALID_ADDRESS); 2377 } 2378 end = saved_start; 2379 rv = KERN_INVALID_ADDRESS; 2380 goto done; 2381 } 2382 } 2383 if (entry == first_entry) 2384 first_entry = tmp_entry; 2385 else 2386 first_entry = NULL; 2387 entry = tmp_entry; 2388 } 2389 last_timestamp = map->timestamp; 2390 continue; 2391 } 2392 vm_map_clip_start(map, entry, start); 2393 vm_map_clip_end(map, entry, end); 2394 /* 2395 * Mark the entry in case the map lock is released. (See 2396 * above.) 2397 */ 2398 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2399 /* 2400 * 2401 */ 2402 if (entry->wired_count == 0) { 2403 if ((entry->protection & (VM_PROT_READ|VM_PROT_EXECUTE)) 2404 == 0) { 2405 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2406 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2407 end = entry->end; 2408 rv = KERN_INVALID_ADDRESS; 2409 goto done; 2410 } 2411 goto next_entry; 2412 } 2413 entry->wired_count++; 2414 saved_start = entry->start; 2415 saved_end = entry->end; 2416 fictitious = entry->object.vm_object != NULL && 2417 (entry->object.vm_object->type == OBJT_DEVICE || 2418 entry->object.vm_object->type == OBJT_SG); 2419 /* 2420 * Release the map lock, relying on the in-transition 2421 * mark. Mark the map busy for fork. 2422 */ 2423 vm_map_busy(map); 2424 vm_map_unlock(map); 2425 rv = vm_fault_wire(map, saved_start, saved_end, 2426 fictitious); 2427 vm_map_lock(map); 2428 vm_map_unbusy(map); 2429 if (last_timestamp + 1 != map->timestamp) { 2430 /* 2431 * Look again for the entry because the map was 2432 * modified while it was unlocked. The entry 2433 * may have been clipped, but NOT merged or 2434 * deleted. 2435 */ 2436 result = vm_map_lookup_entry(map, saved_start, 2437 &tmp_entry); 2438 KASSERT(result, ("vm_map_wire: lookup failed")); 2439 if (entry == first_entry) 2440 first_entry = tmp_entry; 2441 else 2442 first_entry = NULL; 2443 entry = tmp_entry; 2444 while (entry->end < saved_end) { 2445 if (rv != KERN_SUCCESS) { 2446 KASSERT(entry->wired_count == 1, 2447 ("vm_map_wire: bad count")); 2448 entry->wired_count = -1; 2449 } 2450 entry = entry->next; 2451 } 2452 } 2453 last_timestamp = map->timestamp; 2454 if (rv != KERN_SUCCESS) { 2455 KASSERT(entry->wired_count == 1, 2456 ("vm_map_wire: bad count")); 2457 /* 2458 * Assign an out-of-range value to represent 2459 * the failure to wire this entry. 2460 */ 2461 entry->wired_count = -1; 2462 end = entry->end; 2463 goto done; 2464 } 2465 } else if (!user_wire || 2466 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2467 entry->wired_count++; 2468 } 2469 /* 2470 * Check the map for holes in the specified region. 2471 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2472 */ 2473 next_entry: 2474 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2475 (entry->end < end && (entry->next == &map->header || 2476 entry->next->start > entry->end))) { 2477 end = entry->end; 2478 rv = KERN_INVALID_ADDRESS; 2479 goto done; 2480 } 2481 entry = entry->next; 2482 } 2483 rv = KERN_SUCCESS; 2484 done: 2485 need_wakeup = FALSE; 2486 if (first_entry == NULL) { 2487 result = vm_map_lookup_entry(map, start, &first_entry); 2488 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2489 first_entry = first_entry->next; 2490 else 2491 KASSERT(result, ("vm_map_wire: lookup failed")); 2492 } 2493 entry = first_entry; 2494 while (entry != &map->header && entry->start < end) { 2495 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2496 goto next_entry_done; 2497 if (rv == KERN_SUCCESS) { 2498 if (user_wire) 2499 entry->eflags |= MAP_ENTRY_USER_WIRED; 2500 } else if (entry->wired_count == -1) { 2501 /* 2502 * Wiring failed on this entry. Thus, unwiring is 2503 * unnecessary. 2504 */ 2505 entry->wired_count = 0; 2506 } else { 2507 if (!user_wire || 2508 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2509 entry->wired_count--; 2510 if (entry->wired_count == 0) { 2511 /* 2512 * Retain the map lock. 2513 */ 2514 vm_fault_unwire(map, entry->start, entry->end, 2515 entry->object.vm_object != NULL && 2516 (entry->object.vm_object->type == OBJT_DEVICE || 2517 entry->object.vm_object->type == OBJT_SG)); 2518 } 2519 } 2520 next_entry_done: 2521 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2522 ("vm_map_wire: in-transition flag missing")); 2523 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2524 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2525 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2526 need_wakeup = TRUE; 2527 } 2528 vm_map_simplify_entry(map, entry); 2529 entry = entry->next; 2530 } 2531 vm_map_unlock(map); 2532 if (need_wakeup) 2533 vm_map_wakeup(map); 2534 return (rv); 2535 } 2536 2537 /* 2538 * vm_map_sync 2539 * 2540 * Push any dirty cached pages in the address range to their pager. 2541 * If syncio is TRUE, dirty pages are written synchronously. 2542 * If invalidate is TRUE, any cached pages are freed as well. 2543 * 2544 * If the size of the region from start to end is zero, we are 2545 * supposed to flush all modified pages within the region containing 2546 * start. Unfortunately, a region can be split or coalesced with 2547 * neighboring regions, making it difficult to determine what the 2548 * original region was. Therefore, we approximate this requirement by 2549 * flushing the current region containing start. 2550 * 2551 * Returns an error if any part of the specified range is not mapped. 2552 */ 2553 int 2554 vm_map_sync( 2555 vm_map_t map, 2556 vm_offset_t start, 2557 vm_offset_t end, 2558 boolean_t syncio, 2559 boolean_t invalidate) 2560 { 2561 vm_map_entry_t current; 2562 vm_map_entry_t entry; 2563 vm_size_t size; 2564 vm_object_t object; 2565 vm_ooffset_t offset; 2566 unsigned int last_timestamp; 2567 2568 vm_map_lock_read(map); 2569 VM_MAP_RANGE_CHECK(map, start, end); 2570 if (!vm_map_lookup_entry(map, start, &entry)) { 2571 vm_map_unlock_read(map); 2572 return (KERN_INVALID_ADDRESS); 2573 } else if (start == end) { 2574 start = entry->start; 2575 end = entry->end; 2576 } 2577 /* 2578 * Make a first pass to check for user-wired memory and holes. 2579 */ 2580 for (current = entry; current != &map->header && current->start < end; 2581 current = current->next) { 2582 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2583 vm_map_unlock_read(map); 2584 return (KERN_INVALID_ARGUMENT); 2585 } 2586 if (end > current->end && 2587 (current->next == &map->header || 2588 current->end != current->next->start)) { 2589 vm_map_unlock_read(map); 2590 return (KERN_INVALID_ADDRESS); 2591 } 2592 } 2593 2594 if (invalidate) 2595 pmap_remove(map->pmap, start, end); 2596 2597 /* 2598 * Make a second pass, cleaning/uncaching pages from the indicated 2599 * objects as we go. 2600 */ 2601 for (current = entry; current != &map->header && current->start < end;) { 2602 offset = current->offset + (start - current->start); 2603 size = (end <= current->end ? end : current->end) - start; 2604 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2605 vm_map_t smap; 2606 vm_map_entry_t tentry; 2607 vm_size_t tsize; 2608 2609 smap = current->object.sub_map; 2610 vm_map_lock_read(smap); 2611 (void) vm_map_lookup_entry(smap, offset, &tentry); 2612 tsize = tentry->end - offset; 2613 if (tsize < size) 2614 size = tsize; 2615 object = tentry->object.vm_object; 2616 offset = tentry->offset + (offset - tentry->start); 2617 vm_map_unlock_read(smap); 2618 } else { 2619 object = current->object.vm_object; 2620 } 2621 vm_object_reference(object); 2622 last_timestamp = map->timestamp; 2623 vm_map_unlock_read(map); 2624 vm_object_sync(object, offset, size, syncio, invalidate); 2625 start += size; 2626 vm_object_deallocate(object); 2627 vm_map_lock_read(map); 2628 if (last_timestamp == map->timestamp || 2629 !vm_map_lookup_entry(map, start, ¤t)) 2630 current = current->next; 2631 } 2632 2633 vm_map_unlock_read(map); 2634 return (KERN_SUCCESS); 2635 } 2636 2637 /* 2638 * vm_map_entry_unwire: [ internal use only ] 2639 * 2640 * Make the region specified by this entry pageable. 2641 * 2642 * The map in question should be locked. 2643 * [This is the reason for this routine's existence.] 2644 */ 2645 static void 2646 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2647 { 2648 vm_fault_unwire(map, entry->start, entry->end, 2649 entry->object.vm_object != NULL && 2650 (entry->object.vm_object->type == OBJT_DEVICE || 2651 entry->object.vm_object->type == OBJT_SG)); 2652 entry->wired_count = 0; 2653 } 2654 2655 static void 2656 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2657 { 2658 2659 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2660 vm_object_deallocate(entry->object.vm_object); 2661 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2662 } 2663 2664 /* 2665 * vm_map_entry_delete: [ internal use only ] 2666 * 2667 * Deallocate the given entry from the target map. 2668 */ 2669 static void 2670 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2671 { 2672 vm_object_t object; 2673 vm_pindex_t offidxstart, offidxend, count, size1; 2674 vm_ooffset_t size; 2675 2676 vm_map_entry_unlink(map, entry); 2677 object = entry->object.vm_object; 2678 size = entry->end - entry->start; 2679 map->size -= size; 2680 2681 if (entry->cred != NULL) { 2682 swap_release_by_cred(size, entry->cred); 2683 crfree(entry->cred); 2684 } 2685 2686 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2687 (object != NULL)) { 2688 KASSERT(entry->cred == NULL || object->cred == NULL || 2689 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2690 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2691 count = OFF_TO_IDX(size); 2692 offidxstart = OFF_TO_IDX(entry->offset); 2693 offidxend = offidxstart + count; 2694 VM_OBJECT_LOCK(object); 2695 if (object->ref_count != 1 && 2696 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2697 object == kernel_object || object == kmem_object)) { 2698 vm_object_collapse(object); 2699 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2700 if (object->type == OBJT_SWAP) 2701 swap_pager_freespace(object, offidxstart, count); 2702 if (offidxend >= object->size && 2703 offidxstart < object->size) { 2704 size1 = object->size; 2705 object->size = offidxstart; 2706 if (object->cred != NULL) { 2707 size1 -= object->size; 2708 KASSERT(object->charge >= ptoa(size1), 2709 ("vm_map_entry_delete: object->charge < 0")); 2710 swap_release_by_cred(ptoa(size1), object->cred); 2711 object->charge -= ptoa(size1); 2712 } 2713 } 2714 } 2715 VM_OBJECT_UNLOCK(object); 2716 } else 2717 entry->object.vm_object = NULL; 2718 if (map->system_map) 2719 vm_map_entry_deallocate(entry, TRUE); 2720 else { 2721 entry->next = curthread->td_map_def_user; 2722 curthread->td_map_def_user = entry; 2723 } 2724 } 2725 2726 /* 2727 * vm_map_delete: [ internal use only ] 2728 * 2729 * Deallocates the given address range from the target 2730 * map. 2731 */ 2732 int 2733 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2734 { 2735 vm_map_entry_t entry; 2736 vm_map_entry_t first_entry; 2737 2738 VM_MAP_ASSERT_LOCKED(map); 2739 2740 /* 2741 * Find the start of the region, and clip it 2742 */ 2743 if (!vm_map_lookup_entry(map, start, &first_entry)) 2744 entry = first_entry->next; 2745 else { 2746 entry = first_entry; 2747 vm_map_clip_start(map, entry, start); 2748 } 2749 2750 /* 2751 * Step through all entries in this region 2752 */ 2753 while ((entry != &map->header) && (entry->start < end)) { 2754 vm_map_entry_t next; 2755 2756 /* 2757 * Wait for wiring or unwiring of an entry to complete. 2758 * Also wait for any system wirings to disappear on 2759 * user maps. 2760 */ 2761 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2762 (vm_map_pmap(map) != kernel_pmap && 2763 vm_map_entry_system_wired_count(entry) != 0)) { 2764 unsigned int last_timestamp; 2765 vm_offset_t saved_start; 2766 vm_map_entry_t tmp_entry; 2767 2768 saved_start = entry->start; 2769 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2770 last_timestamp = map->timestamp; 2771 (void) vm_map_unlock_and_wait(map, 0); 2772 vm_map_lock(map); 2773 if (last_timestamp + 1 != map->timestamp) { 2774 /* 2775 * Look again for the entry because the map was 2776 * modified while it was unlocked. 2777 * Specifically, the entry may have been 2778 * clipped, merged, or deleted. 2779 */ 2780 if (!vm_map_lookup_entry(map, saved_start, 2781 &tmp_entry)) 2782 entry = tmp_entry->next; 2783 else { 2784 entry = tmp_entry; 2785 vm_map_clip_start(map, entry, 2786 saved_start); 2787 } 2788 } 2789 continue; 2790 } 2791 vm_map_clip_end(map, entry, end); 2792 2793 next = entry->next; 2794 2795 /* 2796 * Unwire before removing addresses from the pmap; otherwise, 2797 * unwiring will put the entries back in the pmap. 2798 */ 2799 if (entry->wired_count != 0) { 2800 vm_map_entry_unwire(map, entry); 2801 } 2802 2803 pmap_remove(map->pmap, entry->start, entry->end); 2804 2805 /* 2806 * Delete the entry only after removing all pmap 2807 * entries pointing to its pages. (Otherwise, its 2808 * page frames may be reallocated, and any modify bits 2809 * will be set in the wrong object!) 2810 */ 2811 vm_map_entry_delete(map, entry); 2812 entry = next; 2813 } 2814 return (KERN_SUCCESS); 2815 } 2816 2817 /* 2818 * vm_map_remove: 2819 * 2820 * Remove the given address range from the target map. 2821 * This is the exported form of vm_map_delete. 2822 */ 2823 int 2824 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2825 { 2826 int result; 2827 2828 vm_map_lock(map); 2829 VM_MAP_RANGE_CHECK(map, start, end); 2830 result = vm_map_delete(map, start, end); 2831 vm_map_unlock(map); 2832 return (result); 2833 } 2834 2835 /* 2836 * vm_map_check_protection: 2837 * 2838 * Assert that the target map allows the specified privilege on the 2839 * entire address region given. The entire region must be allocated. 2840 * 2841 * WARNING! This code does not and should not check whether the 2842 * contents of the region is accessible. For example a smaller file 2843 * might be mapped into a larger address space. 2844 * 2845 * NOTE! This code is also called by munmap(). 2846 * 2847 * The map must be locked. A read lock is sufficient. 2848 */ 2849 boolean_t 2850 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2851 vm_prot_t protection) 2852 { 2853 vm_map_entry_t entry; 2854 vm_map_entry_t tmp_entry; 2855 2856 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2857 return (FALSE); 2858 entry = tmp_entry; 2859 2860 while (start < end) { 2861 if (entry == &map->header) 2862 return (FALSE); 2863 /* 2864 * No holes allowed! 2865 */ 2866 if (start < entry->start) 2867 return (FALSE); 2868 /* 2869 * Check protection associated with entry. 2870 */ 2871 if ((entry->protection & protection) != protection) 2872 return (FALSE); 2873 /* go to next entry */ 2874 start = entry->end; 2875 entry = entry->next; 2876 } 2877 return (TRUE); 2878 } 2879 2880 /* 2881 * vm_map_copy_entry: 2882 * 2883 * Copies the contents of the source entry to the destination 2884 * entry. The entries *must* be aligned properly. 2885 */ 2886 static void 2887 vm_map_copy_entry( 2888 vm_map_t src_map, 2889 vm_map_t dst_map, 2890 vm_map_entry_t src_entry, 2891 vm_map_entry_t dst_entry, 2892 vm_ooffset_t *fork_charge) 2893 { 2894 vm_object_t src_object; 2895 vm_offset_t size; 2896 struct ucred *cred; 2897 int charged; 2898 2899 VM_MAP_ASSERT_LOCKED(dst_map); 2900 2901 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2902 return; 2903 2904 if (src_entry->wired_count == 0) { 2905 2906 /* 2907 * If the source entry is marked needs_copy, it is already 2908 * write-protected. 2909 */ 2910 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2911 pmap_protect(src_map->pmap, 2912 src_entry->start, 2913 src_entry->end, 2914 src_entry->protection & ~VM_PROT_WRITE); 2915 } 2916 2917 /* 2918 * Make a copy of the object. 2919 */ 2920 size = src_entry->end - src_entry->start; 2921 if ((src_object = src_entry->object.vm_object) != NULL) { 2922 VM_OBJECT_LOCK(src_object); 2923 charged = ENTRY_CHARGED(src_entry); 2924 if ((src_object->handle == NULL) && 2925 (src_object->type == OBJT_DEFAULT || 2926 src_object->type == OBJT_SWAP)) { 2927 vm_object_collapse(src_object); 2928 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2929 vm_object_split(src_entry); 2930 src_object = src_entry->object.vm_object; 2931 } 2932 } 2933 vm_object_reference_locked(src_object); 2934 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2935 if (src_entry->cred != NULL && 2936 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2937 KASSERT(src_object->cred == NULL, 2938 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2939 src_object)); 2940 src_object->cred = src_entry->cred; 2941 src_object->charge = size; 2942 } 2943 VM_OBJECT_UNLOCK(src_object); 2944 dst_entry->object.vm_object = src_object; 2945 if (charged) { 2946 cred = curthread->td_ucred; 2947 crhold(cred); 2948 dst_entry->cred = cred; 2949 *fork_charge += size; 2950 if (!(src_entry->eflags & 2951 MAP_ENTRY_NEEDS_COPY)) { 2952 crhold(cred); 2953 src_entry->cred = cred; 2954 *fork_charge += size; 2955 } 2956 } 2957 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2958 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2959 dst_entry->offset = src_entry->offset; 2960 } else { 2961 dst_entry->object.vm_object = NULL; 2962 dst_entry->offset = 0; 2963 if (src_entry->cred != NULL) { 2964 dst_entry->cred = curthread->td_ucred; 2965 crhold(dst_entry->cred); 2966 *fork_charge += size; 2967 } 2968 } 2969 2970 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2971 dst_entry->end - dst_entry->start, src_entry->start); 2972 } else { 2973 /* 2974 * Of course, wired down pages can't be set copy-on-write. 2975 * Cause wired pages to be copied into the new map by 2976 * simulating faults (the new pages are pageable) 2977 */ 2978 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2979 fork_charge); 2980 } 2981 } 2982 2983 /* 2984 * vmspace_map_entry_forked: 2985 * Update the newly-forked vmspace each time a map entry is inherited 2986 * or copied. The values for vm_dsize and vm_tsize are approximate 2987 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 2988 */ 2989 static void 2990 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 2991 vm_map_entry_t entry) 2992 { 2993 vm_size_t entrysize; 2994 vm_offset_t newend; 2995 2996 entrysize = entry->end - entry->start; 2997 vm2->vm_map.size += entrysize; 2998 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 2999 vm2->vm_ssize += btoc(entrysize); 3000 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3001 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3002 newend = MIN(entry->end, 3003 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3004 vm2->vm_dsize += btoc(newend - entry->start); 3005 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3006 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3007 newend = MIN(entry->end, 3008 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3009 vm2->vm_tsize += btoc(newend - entry->start); 3010 } 3011 } 3012 3013 /* 3014 * vmspace_fork: 3015 * Create a new process vmspace structure and vm_map 3016 * based on those of an existing process. The new map 3017 * is based on the old map, according to the inheritance 3018 * values on the regions in that map. 3019 * 3020 * XXX It might be worth coalescing the entries added to the new vmspace. 3021 * 3022 * The source map must not be locked. 3023 */ 3024 struct vmspace * 3025 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3026 { 3027 struct vmspace *vm2; 3028 vm_map_t old_map = &vm1->vm_map; 3029 vm_map_t new_map; 3030 vm_map_entry_t old_entry; 3031 vm_map_entry_t new_entry; 3032 vm_object_t object; 3033 int locked; 3034 3035 vm_map_lock(old_map); 3036 if (old_map->busy) 3037 vm_map_wait_busy(old_map); 3038 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3039 if (vm2 == NULL) 3040 goto unlock_and_return; 3041 vm2->vm_taddr = vm1->vm_taddr; 3042 vm2->vm_daddr = vm1->vm_daddr; 3043 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3044 new_map = &vm2->vm_map; /* XXX */ 3045 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3046 KASSERT(locked, ("vmspace_fork: lock failed")); 3047 new_map->timestamp = 1; 3048 3049 old_entry = old_map->header.next; 3050 3051 while (old_entry != &old_map->header) { 3052 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3053 panic("vm_map_fork: encountered a submap"); 3054 3055 switch (old_entry->inheritance) { 3056 case VM_INHERIT_NONE: 3057 break; 3058 3059 case VM_INHERIT_SHARE: 3060 /* 3061 * Clone the entry, creating the shared object if necessary. 3062 */ 3063 object = old_entry->object.vm_object; 3064 if (object == NULL) { 3065 object = vm_object_allocate(OBJT_DEFAULT, 3066 atop(old_entry->end - old_entry->start)); 3067 old_entry->object.vm_object = object; 3068 old_entry->offset = 0; 3069 if (old_entry->cred != NULL) { 3070 object->cred = old_entry->cred; 3071 object->charge = old_entry->end - 3072 old_entry->start; 3073 old_entry->cred = NULL; 3074 } 3075 } 3076 3077 /* 3078 * Add the reference before calling vm_object_shadow 3079 * to insure that a shadow object is created. 3080 */ 3081 vm_object_reference(object); 3082 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3083 vm_object_shadow(&old_entry->object.vm_object, 3084 &old_entry->offset, 3085 atop(old_entry->end - old_entry->start)); 3086 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3087 /* Transfer the second reference too. */ 3088 vm_object_reference( 3089 old_entry->object.vm_object); 3090 3091 /* 3092 * As in vm_map_simplify_entry(), the 3093 * vnode lock will not be acquired in 3094 * this call to vm_object_deallocate(). 3095 */ 3096 vm_object_deallocate(object); 3097 object = old_entry->object.vm_object; 3098 } 3099 VM_OBJECT_LOCK(object); 3100 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3101 if (old_entry->cred != NULL) { 3102 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3103 object->cred = old_entry->cred; 3104 object->charge = old_entry->end - old_entry->start; 3105 old_entry->cred = NULL; 3106 } 3107 VM_OBJECT_UNLOCK(object); 3108 3109 /* 3110 * Clone the entry, referencing the shared object. 3111 */ 3112 new_entry = vm_map_entry_create(new_map); 3113 *new_entry = *old_entry; 3114 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3115 MAP_ENTRY_IN_TRANSITION); 3116 new_entry->wired_count = 0; 3117 3118 /* 3119 * Insert the entry into the new map -- we know we're 3120 * inserting at the end of the new map. 3121 */ 3122 vm_map_entry_link(new_map, new_map->header.prev, 3123 new_entry); 3124 vmspace_map_entry_forked(vm1, vm2, new_entry); 3125 3126 /* 3127 * Update the physical map 3128 */ 3129 pmap_copy(new_map->pmap, old_map->pmap, 3130 new_entry->start, 3131 (old_entry->end - old_entry->start), 3132 old_entry->start); 3133 break; 3134 3135 case VM_INHERIT_COPY: 3136 /* 3137 * Clone the entry and link into the map. 3138 */ 3139 new_entry = vm_map_entry_create(new_map); 3140 *new_entry = *old_entry; 3141 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3142 MAP_ENTRY_IN_TRANSITION); 3143 new_entry->wired_count = 0; 3144 new_entry->object.vm_object = NULL; 3145 new_entry->cred = NULL; 3146 vm_map_entry_link(new_map, new_map->header.prev, 3147 new_entry); 3148 vmspace_map_entry_forked(vm1, vm2, new_entry); 3149 vm_map_copy_entry(old_map, new_map, old_entry, 3150 new_entry, fork_charge); 3151 break; 3152 } 3153 old_entry = old_entry->next; 3154 } 3155 unlock_and_return: 3156 vm_map_unlock(old_map); 3157 if (vm2 != NULL) 3158 vm_map_unlock(new_map); 3159 3160 return (vm2); 3161 } 3162 3163 int 3164 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3165 vm_prot_t prot, vm_prot_t max, int cow) 3166 { 3167 vm_map_entry_t new_entry, prev_entry; 3168 vm_offset_t bot, top; 3169 vm_size_t init_ssize; 3170 int orient, rv; 3171 rlim_t vmemlim; 3172 3173 /* 3174 * The stack orientation is piggybacked with the cow argument. 3175 * Extract it into orient and mask the cow argument so that we 3176 * don't pass it around further. 3177 * NOTE: We explicitly allow bi-directional stacks. 3178 */ 3179 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3180 cow &= ~orient; 3181 KASSERT(orient != 0, ("No stack grow direction")); 3182 3183 if (addrbos < vm_map_min(map) || 3184 addrbos > vm_map_max(map) || 3185 addrbos + max_ssize < addrbos) 3186 return (KERN_NO_SPACE); 3187 3188 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3189 3190 PROC_LOCK(curthread->td_proc); 3191 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3192 PROC_UNLOCK(curthread->td_proc); 3193 3194 vm_map_lock(map); 3195 3196 /* If addr is already mapped, no go */ 3197 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3198 vm_map_unlock(map); 3199 return (KERN_NO_SPACE); 3200 } 3201 3202 /* If we would blow our VMEM resource limit, no go */ 3203 if (map->size + init_ssize > vmemlim) { 3204 vm_map_unlock(map); 3205 return (KERN_NO_SPACE); 3206 } 3207 3208 /* 3209 * If we can't accomodate max_ssize in the current mapping, no go. 3210 * However, we need to be aware that subsequent user mappings might 3211 * map into the space we have reserved for stack, and currently this 3212 * space is not protected. 3213 * 3214 * Hopefully we will at least detect this condition when we try to 3215 * grow the stack. 3216 */ 3217 if ((prev_entry->next != &map->header) && 3218 (prev_entry->next->start < addrbos + max_ssize)) { 3219 vm_map_unlock(map); 3220 return (KERN_NO_SPACE); 3221 } 3222 3223 /* 3224 * We initially map a stack of only init_ssize. We will grow as 3225 * needed later. Depending on the orientation of the stack (i.e. 3226 * the grow direction) we either map at the top of the range, the 3227 * bottom of the range or in the middle. 3228 * 3229 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3230 * and cow to be 0. Possibly we should eliminate these as input 3231 * parameters, and just pass these values here in the insert call. 3232 */ 3233 if (orient == MAP_STACK_GROWS_DOWN) 3234 bot = addrbos + max_ssize - init_ssize; 3235 else if (orient == MAP_STACK_GROWS_UP) 3236 bot = addrbos; 3237 else 3238 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3239 top = bot + init_ssize; 3240 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3241 3242 /* Now set the avail_ssize amount. */ 3243 if (rv == KERN_SUCCESS) { 3244 if (prev_entry != &map->header) 3245 vm_map_clip_end(map, prev_entry, bot); 3246 new_entry = prev_entry->next; 3247 if (new_entry->end != top || new_entry->start != bot) 3248 panic("Bad entry start/end for new stack entry"); 3249 3250 new_entry->avail_ssize = max_ssize - init_ssize; 3251 if (orient & MAP_STACK_GROWS_DOWN) 3252 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3253 if (orient & MAP_STACK_GROWS_UP) 3254 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3255 } 3256 3257 vm_map_unlock(map); 3258 return (rv); 3259 } 3260 3261 static int stack_guard_page = 0; 3262 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3263 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3264 &stack_guard_page, 0, 3265 "Insert stack guard page ahead of the growable segments."); 3266 3267 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3268 * desired address is already mapped, or if we successfully grow 3269 * the stack. Also returns KERN_SUCCESS if addr is outside the 3270 * stack range (this is strange, but preserves compatibility with 3271 * the grow function in vm_machdep.c). 3272 */ 3273 int 3274 vm_map_growstack(struct proc *p, vm_offset_t addr) 3275 { 3276 vm_map_entry_t next_entry, prev_entry; 3277 vm_map_entry_t new_entry, stack_entry; 3278 struct vmspace *vm = p->p_vmspace; 3279 vm_map_t map = &vm->vm_map; 3280 vm_offset_t end; 3281 size_t grow_amount, max_grow; 3282 rlim_t stacklim, vmemlim; 3283 int is_procstack, rv; 3284 struct ucred *cred; 3285 3286 Retry: 3287 PROC_LOCK(p); 3288 stacklim = lim_cur(p, RLIMIT_STACK); 3289 vmemlim = lim_cur(p, RLIMIT_VMEM); 3290 PROC_UNLOCK(p); 3291 3292 vm_map_lock_read(map); 3293 3294 /* If addr is already in the entry range, no need to grow.*/ 3295 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3296 vm_map_unlock_read(map); 3297 return (KERN_SUCCESS); 3298 } 3299 3300 next_entry = prev_entry->next; 3301 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3302 /* 3303 * This entry does not grow upwards. Since the address lies 3304 * beyond this entry, the next entry (if one exists) has to 3305 * be a downward growable entry. The entry list header is 3306 * never a growable entry, so it suffices to check the flags. 3307 */ 3308 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3309 vm_map_unlock_read(map); 3310 return (KERN_SUCCESS); 3311 } 3312 stack_entry = next_entry; 3313 } else { 3314 /* 3315 * This entry grows upward. If the next entry does not at 3316 * least grow downwards, this is the entry we need to grow. 3317 * otherwise we have two possible choices and we have to 3318 * select one. 3319 */ 3320 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3321 /* 3322 * We have two choices; grow the entry closest to 3323 * the address to minimize the amount of growth. 3324 */ 3325 if (addr - prev_entry->end <= next_entry->start - addr) 3326 stack_entry = prev_entry; 3327 else 3328 stack_entry = next_entry; 3329 } else 3330 stack_entry = prev_entry; 3331 } 3332 3333 if (stack_entry == next_entry) { 3334 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3335 KASSERT(addr < stack_entry->start, ("foo")); 3336 end = (prev_entry != &map->header) ? prev_entry->end : 3337 stack_entry->start - stack_entry->avail_ssize; 3338 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3339 max_grow = stack_entry->start - end; 3340 } else { 3341 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3342 KASSERT(addr >= stack_entry->end, ("foo")); 3343 end = (next_entry != &map->header) ? next_entry->start : 3344 stack_entry->end + stack_entry->avail_ssize; 3345 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3346 max_grow = end - stack_entry->end; 3347 } 3348 3349 if (grow_amount > stack_entry->avail_ssize) { 3350 vm_map_unlock_read(map); 3351 return (KERN_NO_SPACE); 3352 } 3353 3354 /* 3355 * If there is no longer enough space between the entries nogo, and 3356 * adjust the available space. Note: this should only happen if the 3357 * user has mapped into the stack area after the stack was created, 3358 * and is probably an error. 3359 * 3360 * This also effectively destroys any guard page the user might have 3361 * intended by limiting the stack size. 3362 */ 3363 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3364 if (vm_map_lock_upgrade(map)) 3365 goto Retry; 3366 3367 stack_entry->avail_ssize = max_grow; 3368 3369 vm_map_unlock(map); 3370 return (KERN_NO_SPACE); 3371 } 3372 3373 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3374 3375 /* 3376 * If this is the main process stack, see if we're over the stack 3377 * limit. 3378 */ 3379 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3380 vm_map_unlock_read(map); 3381 return (KERN_NO_SPACE); 3382 } 3383 3384 /* Round up the grow amount modulo SGROWSIZ */ 3385 grow_amount = roundup (grow_amount, sgrowsiz); 3386 if (grow_amount > stack_entry->avail_ssize) 3387 grow_amount = stack_entry->avail_ssize; 3388 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3389 grow_amount = trunc_page((vm_size_t)stacklim) - 3390 ctob(vm->vm_ssize); 3391 } 3392 3393 /* If we would blow our VMEM resource limit, no go */ 3394 if (map->size + grow_amount > vmemlim) { 3395 vm_map_unlock_read(map); 3396 return (KERN_NO_SPACE); 3397 } 3398 3399 if (vm_map_lock_upgrade(map)) 3400 goto Retry; 3401 3402 if (stack_entry == next_entry) { 3403 /* 3404 * Growing downward. 3405 */ 3406 /* Get the preliminary new entry start value */ 3407 addr = stack_entry->start - grow_amount; 3408 3409 /* 3410 * If this puts us into the previous entry, cut back our 3411 * growth to the available space. Also, see the note above. 3412 */ 3413 if (addr < end) { 3414 stack_entry->avail_ssize = max_grow; 3415 addr = end; 3416 if (stack_guard_page) 3417 addr += PAGE_SIZE; 3418 } 3419 3420 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3421 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3422 3423 /* Adjust the available stack space by the amount we grew. */ 3424 if (rv == KERN_SUCCESS) { 3425 if (prev_entry != &map->header) 3426 vm_map_clip_end(map, prev_entry, addr); 3427 new_entry = prev_entry->next; 3428 KASSERT(new_entry == stack_entry->prev, ("foo")); 3429 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3430 KASSERT(new_entry->start == addr, ("foo")); 3431 grow_amount = new_entry->end - new_entry->start; 3432 new_entry->avail_ssize = stack_entry->avail_ssize - 3433 grow_amount; 3434 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3435 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3436 } 3437 } else { 3438 /* 3439 * Growing upward. 3440 */ 3441 addr = stack_entry->end + grow_amount; 3442 3443 /* 3444 * If this puts us into the next entry, cut back our growth 3445 * to the available space. Also, see the note above. 3446 */ 3447 if (addr > end) { 3448 stack_entry->avail_ssize = end - stack_entry->end; 3449 addr = end; 3450 if (stack_guard_page) 3451 addr -= PAGE_SIZE; 3452 } 3453 3454 grow_amount = addr - stack_entry->end; 3455 cred = stack_entry->cred; 3456 if (cred == NULL && stack_entry->object.vm_object != NULL) 3457 cred = stack_entry->object.vm_object->cred; 3458 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3459 rv = KERN_NO_SPACE; 3460 /* Grow the underlying object if applicable. */ 3461 else if (stack_entry->object.vm_object == NULL || 3462 vm_object_coalesce(stack_entry->object.vm_object, 3463 stack_entry->offset, 3464 (vm_size_t)(stack_entry->end - stack_entry->start), 3465 (vm_size_t)grow_amount, cred != NULL)) { 3466 map->size += (addr - stack_entry->end); 3467 /* Update the current entry. */ 3468 stack_entry->end = addr; 3469 stack_entry->avail_ssize -= grow_amount; 3470 vm_map_entry_resize_free(map, stack_entry); 3471 rv = KERN_SUCCESS; 3472 3473 if (next_entry != &map->header) 3474 vm_map_clip_start(map, next_entry, addr); 3475 } else 3476 rv = KERN_FAILURE; 3477 } 3478 3479 if (rv == KERN_SUCCESS && is_procstack) 3480 vm->vm_ssize += btoc(grow_amount); 3481 3482 vm_map_unlock(map); 3483 3484 /* 3485 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3486 */ 3487 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3488 vm_map_wire(map, 3489 (stack_entry == next_entry) ? addr : addr - grow_amount, 3490 (stack_entry == next_entry) ? stack_entry->start : addr, 3491 (p->p_flag & P_SYSTEM) 3492 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3493 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3494 } 3495 3496 return (rv); 3497 } 3498 3499 /* 3500 * Unshare the specified VM space for exec. If other processes are 3501 * mapped to it, then create a new one. The new vmspace is null. 3502 */ 3503 int 3504 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3505 { 3506 struct vmspace *oldvmspace = p->p_vmspace; 3507 struct vmspace *newvmspace; 3508 3509 newvmspace = vmspace_alloc(minuser, maxuser); 3510 if (newvmspace == NULL) 3511 return (ENOMEM); 3512 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3513 /* 3514 * This code is written like this for prototype purposes. The 3515 * goal is to avoid running down the vmspace here, but let the 3516 * other process's that are still using the vmspace to finally 3517 * run it down. Even though there is little or no chance of blocking 3518 * here, it is a good idea to keep this form for future mods. 3519 */ 3520 PROC_VMSPACE_LOCK(p); 3521 p->p_vmspace = newvmspace; 3522 PROC_VMSPACE_UNLOCK(p); 3523 if (p == curthread->td_proc) 3524 pmap_activate(curthread); 3525 vmspace_free(oldvmspace); 3526 return (0); 3527 } 3528 3529 /* 3530 * Unshare the specified VM space for forcing COW. This 3531 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3532 */ 3533 int 3534 vmspace_unshare(struct proc *p) 3535 { 3536 struct vmspace *oldvmspace = p->p_vmspace; 3537 struct vmspace *newvmspace; 3538 vm_ooffset_t fork_charge; 3539 3540 if (oldvmspace->vm_refcnt == 1) 3541 return (0); 3542 fork_charge = 0; 3543 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3544 if (newvmspace == NULL) 3545 return (ENOMEM); 3546 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3547 vmspace_free(newvmspace); 3548 return (ENOMEM); 3549 } 3550 PROC_VMSPACE_LOCK(p); 3551 p->p_vmspace = newvmspace; 3552 PROC_VMSPACE_UNLOCK(p); 3553 if (p == curthread->td_proc) 3554 pmap_activate(curthread); 3555 vmspace_free(oldvmspace); 3556 return (0); 3557 } 3558 3559 /* 3560 * vm_map_lookup: 3561 * 3562 * Finds the VM object, offset, and 3563 * protection for a given virtual address in the 3564 * specified map, assuming a page fault of the 3565 * type specified. 3566 * 3567 * Leaves the map in question locked for read; return 3568 * values are guaranteed until a vm_map_lookup_done 3569 * call is performed. Note that the map argument 3570 * is in/out; the returned map must be used in 3571 * the call to vm_map_lookup_done. 3572 * 3573 * A handle (out_entry) is returned for use in 3574 * vm_map_lookup_done, to make that fast. 3575 * 3576 * If a lookup is requested with "write protection" 3577 * specified, the map may be changed to perform virtual 3578 * copying operations, although the data referenced will 3579 * remain the same. 3580 */ 3581 int 3582 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3583 vm_offset_t vaddr, 3584 vm_prot_t fault_typea, 3585 vm_map_entry_t *out_entry, /* OUT */ 3586 vm_object_t *object, /* OUT */ 3587 vm_pindex_t *pindex, /* OUT */ 3588 vm_prot_t *out_prot, /* OUT */ 3589 boolean_t *wired) /* OUT */ 3590 { 3591 vm_map_entry_t entry; 3592 vm_map_t map = *var_map; 3593 vm_prot_t prot; 3594 vm_prot_t fault_type = fault_typea; 3595 vm_object_t eobject; 3596 struct ucred *cred; 3597 vm_ooffset_t size; 3598 3599 RetryLookup:; 3600 3601 vm_map_lock_read(map); 3602 3603 /* 3604 * Lookup the faulting address. 3605 */ 3606 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3607 vm_map_unlock_read(map); 3608 return (KERN_INVALID_ADDRESS); 3609 } 3610 3611 entry = *out_entry; 3612 3613 /* 3614 * Handle submaps. 3615 */ 3616 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3617 vm_map_t old_map = map; 3618 3619 *var_map = map = entry->object.sub_map; 3620 vm_map_unlock_read(old_map); 3621 goto RetryLookup; 3622 } 3623 3624 /* 3625 * Check whether this task is allowed to have this page. 3626 */ 3627 prot = entry->protection; 3628 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3629 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3630 vm_map_unlock_read(map); 3631 return (KERN_PROTECTION_FAILURE); 3632 } 3633 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3634 (entry->eflags & MAP_ENTRY_COW) && 3635 (fault_type & VM_PROT_WRITE)) { 3636 vm_map_unlock_read(map); 3637 return (KERN_PROTECTION_FAILURE); 3638 } 3639 3640 /* 3641 * If this page is not pageable, we have to get it for all possible 3642 * accesses. 3643 */ 3644 *wired = (entry->wired_count != 0); 3645 if (*wired) 3646 fault_type = entry->protection; 3647 size = entry->end - entry->start; 3648 /* 3649 * If the entry was copy-on-write, we either ... 3650 */ 3651 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3652 /* 3653 * If we want to write the page, we may as well handle that 3654 * now since we've got the map locked. 3655 * 3656 * If we don't need to write the page, we just demote the 3657 * permissions allowed. 3658 */ 3659 if ((fault_type & VM_PROT_WRITE) != 0 || 3660 (fault_typea & VM_PROT_COPY) != 0) { 3661 /* 3662 * Make a new object, and place it in the object 3663 * chain. Note that no new references have appeared 3664 * -- one just moved from the map to the new 3665 * object. 3666 */ 3667 if (vm_map_lock_upgrade(map)) 3668 goto RetryLookup; 3669 3670 if (entry->cred == NULL) { 3671 /* 3672 * The debugger owner is charged for 3673 * the memory. 3674 */ 3675 cred = curthread->td_ucred; 3676 crhold(cred); 3677 if (!swap_reserve_by_cred(size, cred)) { 3678 crfree(cred); 3679 vm_map_unlock(map); 3680 return (KERN_RESOURCE_SHORTAGE); 3681 } 3682 entry->cred = cred; 3683 } 3684 vm_object_shadow( 3685 &entry->object.vm_object, 3686 &entry->offset, 3687 atop(size)); 3688 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3689 eobject = entry->object.vm_object; 3690 if (eobject->cred != NULL) { 3691 /* 3692 * The object was not shadowed. 3693 */ 3694 swap_release_by_cred(size, entry->cred); 3695 crfree(entry->cred); 3696 entry->cred = NULL; 3697 } else if (entry->cred != NULL) { 3698 VM_OBJECT_LOCK(eobject); 3699 eobject->cred = entry->cred; 3700 eobject->charge = size; 3701 VM_OBJECT_UNLOCK(eobject); 3702 entry->cred = NULL; 3703 } 3704 3705 vm_map_lock_downgrade(map); 3706 } else { 3707 /* 3708 * We're attempting to read a copy-on-write page -- 3709 * don't allow writes. 3710 */ 3711 prot &= ~VM_PROT_WRITE; 3712 } 3713 } 3714 3715 /* 3716 * Create an object if necessary. 3717 */ 3718 if (entry->object.vm_object == NULL && 3719 !map->system_map) { 3720 if (vm_map_lock_upgrade(map)) 3721 goto RetryLookup; 3722 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3723 atop(size)); 3724 entry->offset = 0; 3725 if (entry->cred != NULL) { 3726 VM_OBJECT_LOCK(entry->object.vm_object); 3727 entry->object.vm_object->cred = entry->cred; 3728 entry->object.vm_object->charge = size; 3729 VM_OBJECT_UNLOCK(entry->object.vm_object); 3730 entry->cred = NULL; 3731 } 3732 vm_map_lock_downgrade(map); 3733 } 3734 3735 /* 3736 * Return the object/offset from this entry. If the entry was 3737 * copy-on-write or empty, it has been fixed up. 3738 */ 3739 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3740 *object = entry->object.vm_object; 3741 3742 *out_prot = prot; 3743 return (KERN_SUCCESS); 3744 } 3745 3746 /* 3747 * vm_map_lookup_locked: 3748 * 3749 * Lookup the faulting address. A version of vm_map_lookup that returns 3750 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3751 */ 3752 int 3753 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3754 vm_offset_t vaddr, 3755 vm_prot_t fault_typea, 3756 vm_map_entry_t *out_entry, /* OUT */ 3757 vm_object_t *object, /* OUT */ 3758 vm_pindex_t *pindex, /* OUT */ 3759 vm_prot_t *out_prot, /* OUT */ 3760 boolean_t *wired) /* OUT */ 3761 { 3762 vm_map_entry_t entry; 3763 vm_map_t map = *var_map; 3764 vm_prot_t prot; 3765 vm_prot_t fault_type = fault_typea; 3766 3767 /* 3768 * Lookup the faulting address. 3769 */ 3770 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3771 return (KERN_INVALID_ADDRESS); 3772 3773 entry = *out_entry; 3774 3775 /* 3776 * Fail if the entry refers to a submap. 3777 */ 3778 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3779 return (KERN_FAILURE); 3780 3781 /* 3782 * Check whether this task is allowed to have this page. 3783 */ 3784 prot = entry->protection; 3785 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3786 if ((fault_type & prot) != fault_type) 3787 return (KERN_PROTECTION_FAILURE); 3788 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3789 (entry->eflags & MAP_ENTRY_COW) && 3790 (fault_type & VM_PROT_WRITE)) 3791 return (KERN_PROTECTION_FAILURE); 3792 3793 /* 3794 * If this page is not pageable, we have to get it for all possible 3795 * accesses. 3796 */ 3797 *wired = (entry->wired_count != 0); 3798 if (*wired) 3799 fault_type = entry->protection; 3800 3801 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3802 /* 3803 * Fail if the entry was copy-on-write for a write fault. 3804 */ 3805 if (fault_type & VM_PROT_WRITE) 3806 return (KERN_FAILURE); 3807 /* 3808 * We're attempting to read a copy-on-write page -- 3809 * don't allow writes. 3810 */ 3811 prot &= ~VM_PROT_WRITE; 3812 } 3813 3814 /* 3815 * Fail if an object should be created. 3816 */ 3817 if (entry->object.vm_object == NULL && !map->system_map) 3818 return (KERN_FAILURE); 3819 3820 /* 3821 * Return the object/offset from this entry. If the entry was 3822 * copy-on-write or empty, it has been fixed up. 3823 */ 3824 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3825 *object = entry->object.vm_object; 3826 3827 *out_prot = prot; 3828 return (KERN_SUCCESS); 3829 } 3830 3831 /* 3832 * vm_map_lookup_done: 3833 * 3834 * Releases locks acquired by a vm_map_lookup 3835 * (according to the handle returned by that lookup). 3836 */ 3837 void 3838 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3839 { 3840 /* 3841 * Unlock the main-level map 3842 */ 3843 vm_map_unlock_read(map); 3844 } 3845 3846 #include "opt_ddb.h" 3847 #ifdef DDB 3848 #include <sys/kernel.h> 3849 3850 #include <ddb/ddb.h> 3851 3852 /* 3853 * vm_map_print: [ debug ] 3854 */ 3855 DB_SHOW_COMMAND(map, vm_map_print) 3856 { 3857 static int nlines; 3858 /* XXX convert args. */ 3859 vm_map_t map = (vm_map_t)addr; 3860 boolean_t full = have_addr; 3861 3862 vm_map_entry_t entry; 3863 3864 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3865 (void *)map, 3866 (void *)map->pmap, map->nentries, map->timestamp); 3867 nlines++; 3868 3869 if (!full && db_indent) 3870 return; 3871 3872 db_indent += 2; 3873 for (entry = map->header.next; entry != &map->header; 3874 entry = entry->next) { 3875 db_iprintf("map entry %p: start=%p, end=%p\n", 3876 (void *)entry, (void *)entry->start, (void *)entry->end); 3877 nlines++; 3878 { 3879 static char *inheritance_name[4] = 3880 {"share", "copy", "none", "donate_copy"}; 3881 3882 db_iprintf(" prot=%x/%x/%s", 3883 entry->protection, 3884 entry->max_protection, 3885 inheritance_name[(int)(unsigned char)entry->inheritance]); 3886 if (entry->wired_count != 0) 3887 db_printf(", wired"); 3888 } 3889 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3890 db_printf(", share=%p, offset=0x%jx\n", 3891 (void *)entry->object.sub_map, 3892 (uintmax_t)entry->offset); 3893 nlines++; 3894 if ((entry->prev == &map->header) || 3895 (entry->prev->object.sub_map != 3896 entry->object.sub_map)) { 3897 db_indent += 2; 3898 vm_map_print((db_expr_t)(intptr_t) 3899 entry->object.sub_map, 3900 full, 0, (char *)0); 3901 db_indent -= 2; 3902 } 3903 } else { 3904 if (entry->cred != NULL) 3905 db_printf(", ruid %d", entry->cred->cr_ruid); 3906 db_printf(", object=%p, offset=0x%jx", 3907 (void *)entry->object.vm_object, 3908 (uintmax_t)entry->offset); 3909 if (entry->object.vm_object && entry->object.vm_object->cred) 3910 db_printf(", obj ruid %d charge %jx", 3911 entry->object.vm_object->cred->cr_ruid, 3912 (uintmax_t)entry->object.vm_object->charge); 3913 if (entry->eflags & MAP_ENTRY_COW) 3914 db_printf(", copy (%s)", 3915 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3916 db_printf("\n"); 3917 nlines++; 3918 3919 if ((entry->prev == &map->header) || 3920 (entry->prev->object.vm_object != 3921 entry->object.vm_object)) { 3922 db_indent += 2; 3923 vm_object_print((db_expr_t)(intptr_t) 3924 entry->object.vm_object, 3925 full, 0, (char *)0); 3926 nlines += 4; 3927 db_indent -= 2; 3928 } 3929 } 3930 } 3931 db_indent -= 2; 3932 if (db_indent == 0) 3933 nlines = 0; 3934 } 3935 3936 3937 DB_SHOW_COMMAND(procvm, procvm) 3938 { 3939 struct proc *p; 3940 3941 if (have_addr) { 3942 p = (struct proc *) addr; 3943 } else { 3944 p = curproc; 3945 } 3946 3947 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3948 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3949 (void *)vmspace_pmap(p->p_vmspace)); 3950 3951 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3952 } 3953 3954 #endif /* DDB */ 3955