1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 203 #ifdef INVARIANTS 204 vmspace_zdtor, 205 #else 206 NULL, 207 #endif 208 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 } 210 211 static void 212 vmspace_zfini(void *mem, int size) 213 { 214 struct vmspace *vm; 215 216 vm = (struct vmspace *)mem; 217 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 218 } 219 220 static int 221 vmspace_zinit(void *mem, int size, int flags) 222 { 223 struct vmspace *vm; 224 225 vm = (struct vmspace *)mem; 226 227 vm->vm_map.pmap = NULL; 228 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 229 PMAP_LOCK_INIT(vmspace_pmap(vm)); 230 return (0); 231 } 232 233 static void 234 vm_map_zfini(void *mem, int size) 235 { 236 vm_map_t map; 237 238 map = (vm_map_t)mem; 239 mtx_destroy(&map->system_mtx); 240 sx_destroy(&map->lock); 241 } 242 243 static int 244 vm_map_zinit(void *mem, int size, int flags) 245 { 246 vm_map_t map; 247 248 map = (vm_map_t)mem; 249 memset(map, 0, sizeof(*map)); 250 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 251 sx_init(&map->lock, "vm map (user)"); 252 return (0); 253 } 254 255 #ifdef INVARIANTS 256 static void 257 vmspace_zdtor(void *mem, int size, void *arg) 258 { 259 struct vmspace *vm; 260 261 vm = (struct vmspace *)mem; 262 263 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 264 } 265 static void 266 vm_map_zdtor(void *mem, int size, void *arg) 267 { 268 vm_map_t map; 269 270 map = (vm_map_t)mem; 271 KASSERT(map->nentries == 0, 272 ("map %p nentries == %d on free.", 273 map, map->nentries)); 274 KASSERT(map->size == 0, 275 ("map %p size == %lu on free.", 276 map, (unsigned long)map->size)); 277 } 278 #endif /* INVARIANTS */ 279 280 /* 281 * Allocate a vmspace structure, including a vm_map and pmap, 282 * and initialize those structures. The refcnt is set to 1. 283 */ 284 struct vmspace * 285 vmspace_alloc(min, max) 286 vm_offset_t min, max; 287 { 288 struct vmspace *vm; 289 290 vm = uma_zalloc(vmspace_zone, M_WAITOK); 291 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 292 uma_zfree(vmspace_zone, vm); 293 return (NULL); 294 } 295 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 296 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 297 vm->vm_refcnt = 1; 298 vm->vm_shm = NULL; 299 vm->vm_swrss = 0; 300 vm->vm_tsize = 0; 301 vm->vm_dsize = 0; 302 vm->vm_ssize = 0; 303 vm->vm_taddr = 0; 304 vm->vm_daddr = 0; 305 vm->vm_maxsaddr = 0; 306 return (vm); 307 } 308 309 static void 310 vmspace_container_reset(struct proc *p) 311 { 312 313 #ifdef RACCT 314 PROC_LOCK(p); 315 racct_set(p, RACCT_DATA, 0); 316 racct_set(p, RACCT_STACK, 0); 317 racct_set(p, RACCT_RSS, 0); 318 racct_set(p, RACCT_MEMLOCK, 0); 319 racct_set(p, RACCT_VMEM, 0); 320 PROC_UNLOCK(p); 321 #endif 322 } 323 324 static inline void 325 vmspace_dofree(struct vmspace *vm) 326 { 327 328 CTR1(KTR_VM, "vmspace_free: %p", vm); 329 330 /* 331 * Make sure any SysV shm is freed, it might not have been in 332 * exit1(). 333 */ 334 shmexit(vm); 335 336 /* 337 * Lock the map, to wait out all other references to it. 338 * Delete all of the mappings and pages they hold, then call 339 * the pmap module to reclaim anything left. 340 */ 341 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 342 vm->vm_map.max_offset); 343 344 pmap_release(vmspace_pmap(vm)); 345 vm->vm_map.pmap = NULL; 346 uma_zfree(vmspace_zone, vm); 347 } 348 349 void 350 vmspace_free(struct vmspace *vm) 351 { 352 353 if (vm->vm_refcnt == 0) 354 panic("vmspace_free: attempt to free already freed vmspace"); 355 356 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 357 vmspace_dofree(vm); 358 } 359 360 void 361 vmspace_exitfree(struct proc *p) 362 { 363 struct vmspace *vm; 364 365 PROC_VMSPACE_LOCK(p); 366 vm = p->p_vmspace; 367 p->p_vmspace = NULL; 368 PROC_VMSPACE_UNLOCK(p); 369 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 370 vmspace_free(vm); 371 } 372 373 void 374 vmspace_exit(struct thread *td) 375 { 376 int refcnt; 377 struct vmspace *vm; 378 struct proc *p; 379 380 /* 381 * Release user portion of address space. 382 * This releases references to vnodes, 383 * which could cause I/O if the file has been unlinked. 384 * Need to do this early enough that we can still sleep. 385 * 386 * The last exiting process to reach this point releases as 387 * much of the environment as it can. vmspace_dofree() is the 388 * slower fallback in case another process had a temporary 389 * reference to the vmspace. 390 */ 391 392 p = td->td_proc; 393 vm = p->p_vmspace; 394 atomic_add_int(&vmspace0.vm_refcnt, 1); 395 do { 396 refcnt = vm->vm_refcnt; 397 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 398 /* Switch now since other proc might free vmspace */ 399 PROC_VMSPACE_LOCK(p); 400 p->p_vmspace = &vmspace0; 401 PROC_VMSPACE_UNLOCK(p); 402 pmap_activate(td); 403 } 404 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 405 if (refcnt == 1) { 406 if (p->p_vmspace != vm) { 407 /* vmspace not yet freed, switch back */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = vm; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 } 413 pmap_remove_pages(vmspace_pmap(vm)); 414 /* Switch now since this proc will free vmspace */ 415 PROC_VMSPACE_LOCK(p); 416 p->p_vmspace = &vmspace0; 417 PROC_VMSPACE_UNLOCK(p); 418 pmap_activate(td); 419 vmspace_dofree(vm); 420 } 421 vmspace_container_reset(p); 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 do { 439 refcnt = vm->vm_refcnt; 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 void 455 _vm_map_lock(vm_map_t map, const char *file, int line) 456 { 457 458 if (map->system_map) 459 mtx_lock_flags_(&map->system_mtx, 0, file, line); 460 else 461 sx_xlock_(&map->lock, file, line); 462 map->timestamp++; 463 } 464 465 static void 466 vm_map_process_deferred(void) 467 { 468 struct thread *td; 469 vm_map_entry_t entry, next; 470 vm_object_t object; 471 472 td = curthread; 473 entry = td->td_map_def_user; 474 td->td_map_def_user = NULL; 475 while (entry != NULL) { 476 next = entry->next; 477 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 478 /* 479 * Decrement the object's writemappings and 480 * possibly the vnode's v_writecount. 481 */ 482 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 483 ("Submap with writecount")); 484 object = entry->object.vm_object; 485 KASSERT(object != NULL, ("No object for writecount")); 486 vnode_pager_release_writecount(object, entry->start, 487 entry->end); 488 } 489 vm_map_entry_deallocate(entry, FALSE); 490 entry = next; 491 } 492 } 493 494 void 495 _vm_map_unlock(vm_map_t map, const char *file, int line) 496 { 497 498 if (map->system_map) 499 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 500 else { 501 sx_xunlock_(&map->lock, file, line); 502 vm_map_process_deferred(); 503 } 504 } 505 506 void 507 _vm_map_lock_read(vm_map_t map, const char *file, int line) 508 { 509 510 if (map->system_map) 511 mtx_lock_flags_(&map->system_mtx, 0, file, line); 512 else 513 sx_slock_(&map->lock, file, line); 514 } 515 516 void 517 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 518 { 519 520 if (map->system_map) 521 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 522 else { 523 sx_sunlock_(&map->lock, file, line); 524 vm_map_process_deferred(); 525 } 526 } 527 528 int 529 _vm_map_trylock(vm_map_t map, const char *file, int line) 530 { 531 int error; 532 533 error = map->system_map ? 534 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 535 !sx_try_xlock_(&map->lock, file, line); 536 if (error == 0) 537 map->timestamp++; 538 return (error == 0); 539 } 540 541 int 542 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 543 { 544 int error; 545 546 error = map->system_map ? 547 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 548 !sx_try_slock_(&map->lock, file, line); 549 return (error == 0); 550 } 551 552 /* 553 * _vm_map_lock_upgrade: [ internal use only ] 554 * 555 * Tries to upgrade a read (shared) lock on the specified map to a write 556 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 557 * non-zero value if the upgrade fails. If the upgrade fails, the map is 558 * returned without a read or write lock held. 559 * 560 * Requires that the map be read locked. 561 */ 562 int 563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 564 { 565 unsigned int last_timestamp; 566 567 if (map->system_map) { 568 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 569 } else { 570 if (!sx_try_upgrade_(&map->lock, file, line)) { 571 last_timestamp = map->timestamp; 572 sx_sunlock_(&map->lock, file, line); 573 vm_map_process_deferred(); 574 /* 575 * If the map's timestamp does not change while the 576 * map is unlocked, then the upgrade succeeds. 577 */ 578 sx_xlock_(&map->lock, file, line); 579 if (last_timestamp != map->timestamp) { 580 sx_xunlock_(&map->lock, file, line); 581 return (1); 582 } 583 } 584 } 585 map->timestamp++; 586 return (0); 587 } 588 589 void 590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 591 { 592 593 if (map->system_map) { 594 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 595 } else 596 sx_downgrade_(&map->lock, file, line); 597 } 598 599 /* 600 * vm_map_locked: 601 * 602 * Returns a non-zero value if the caller holds a write (exclusive) lock 603 * on the specified map and the value "0" otherwise. 604 */ 605 int 606 vm_map_locked(vm_map_t map) 607 { 608 609 if (map->system_map) 610 return (mtx_owned(&map->system_mtx)); 611 else 612 return (sx_xlocked(&map->lock)); 613 } 614 615 #ifdef INVARIANTS 616 static void 617 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 618 { 619 620 if (map->system_map) 621 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 622 else 623 sx_assert_(&map->lock, SA_XLOCKED, file, line); 624 } 625 626 #define VM_MAP_ASSERT_LOCKED(map) \ 627 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 628 #else 629 #define VM_MAP_ASSERT_LOCKED(map) 630 #endif 631 632 /* 633 * _vm_map_unlock_and_wait: 634 * 635 * Atomically releases the lock on the specified map and puts the calling 636 * thread to sleep. The calling thread will remain asleep until either 637 * vm_map_wakeup() is performed on the map or the specified timeout is 638 * exceeded. 639 * 640 * WARNING! This function does not perform deferred deallocations of 641 * objects and map entries. Therefore, the calling thread is expected to 642 * reacquire the map lock after reawakening and later perform an ordinary 643 * unlock operation, such as vm_map_unlock(), before completing its 644 * operation on the map. 645 */ 646 int 647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 648 { 649 650 mtx_lock(&map_sleep_mtx); 651 if (map->system_map) 652 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 653 else 654 sx_xunlock_(&map->lock, file, line); 655 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 656 timo)); 657 } 658 659 /* 660 * vm_map_wakeup: 661 * 662 * Awaken any threads that have slept on the map using 663 * vm_map_unlock_and_wait(). 664 */ 665 void 666 vm_map_wakeup(vm_map_t map) 667 { 668 669 /* 670 * Acquire and release map_sleep_mtx to prevent a wakeup() 671 * from being performed (and lost) between the map unlock 672 * and the msleep() in _vm_map_unlock_and_wait(). 673 */ 674 mtx_lock(&map_sleep_mtx); 675 mtx_unlock(&map_sleep_mtx); 676 wakeup(&map->root); 677 } 678 679 void 680 vm_map_busy(vm_map_t map) 681 { 682 683 VM_MAP_ASSERT_LOCKED(map); 684 map->busy++; 685 } 686 687 void 688 vm_map_unbusy(vm_map_t map) 689 { 690 691 VM_MAP_ASSERT_LOCKED(map); 692 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 693 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 694 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 695 wakeup(&map->busy); 696 } 697 } 698 699 void 700 vm_map_wait_busy(vm_map_t map) 701 { 702 703 VM_MAP_ASSERT_LOCKED(map); 704 while (map->busy) { 705 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 706 if (map->system_map) 707 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 708 else 709 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 710 } 711 map->timestamp++; 712 } 713 714 long 715 vmspace_resident_count(struct vmspace *vmspace) 716 { 717 return pmap_resident_count(vmspace_pmap(vmspace)); 718 } 719 720 /* 721 * vm_map_create: 722 * 723 * Creates and returns a new empty VM map with 724 * the given physical map structure, and having 725 * the given lower and upper address bounds. 726 */ 727 vm_map_t 728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 729 { 730 vm_map_t result; 731 732 result = uma_zalloc(mapzone, M_WAITOK); 733 CTR1(KTR_VM, "vm_map_create: %p", result); 734 _vm_map_init(result, pmap, min, max); 735 return (result); 736 } 737 738 /* 739 * Initialize an existing vm_map structure 740 * such as that in the vmspace structure. 741 */ 742 static void 743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 744 { 745 746 map->header.next = map->header.prev = &map->header; 747 map->needs_wakeup = FALSE; 748 map->system_map = 0; 749 map->pmap = pmap; 750 map->min_offset = min; 751 map->max_offset = max; 752 map->flags = 0; 753 map->root = NULL; 754 map->timestamp = 0; 755 map->busy = 0; 756 } 757 758 void 759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 760 { 761 762 _vm_map_init(map, pmap, min, max); 763 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 764 sx_init(&map->lock, "user map"); 765 } 766 767 /* 768 * vm_map_entry_dispose: [ internal use only ] 769 * 770 * Inverse of vm_map_entry_create. 771 */ 772 static void 773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 774 { 775 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 776 } 777 778 /* 779 * vm_map_entry_create: [ internal use only ] 780 * 781 * Allocates a VM map entry for insertion. 782 * No entry fields are filled in. 783 */ 784 static vm_map_entry_t 785 vm_map_entry_create(vm_map_t map) 786 { 787 vm_map_entry_t new_entry; 788 789 if (map->system_map) 790 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 791 else 792 new_entry = uma_zalloc(mapentzone, M_WAITOK); 793 if (new_entry == NULL) 794 panic("vm_map_entry_create: kernel resources exhausted"); 795 return (new_entry); 796 } 797 798 /* 799 * vm_map_entry_set_behavior: 800 * 801 * Set the expected access behavior, either normal, random, or 802 * sequential. 803 */ 804 static inline void 805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 806 { 807 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 808 (behavior & MAP_ENTRY_BEHAV_MASK); 809 } 810 811 /* 812 * vm_map_entry_set_max_free: 813 * 814 * Set the max_free field in a vm_map_entry. 815 */ 816 static inline void 817 vm_map_entry_set_max_free(vm_map_entry_t entry) 818 { 819 820 entry->max_free = entry->adj_free; 821 if (entry->left != NULL && entry->left->max_free > entry->max_free) 822 entry->max_free = entry->left->max_free; 823 if (entry->right != NULL && entry->right->max_free > entry->max_free) 824 entry->max_free = entry->right->max_free; 825 } 826 827 /* 828 * vm_map_entry_splay: 829 * 830 * The Sleator and Tarjan top-down splay algorithm with the 831 * following variation. Max_free must be computed bottom-up, so 832 * on the downward pass, maintain the left and right spines in 833 * reverse order. Then, make a second pass up each side to fix 834 * the pointers and compute max_free. The time bound is O(log n) 835 * amortized. 836 * 837 * The new root is the vm_map_entry containing "addr", or else an 838 * adjacent entry (lower or higher) if addr is not in the tree. 839 * 840 * The map must be locked, and leaves it so. 841 * 842 * Returns: the new root. 843 */ 844 static vm_map_entry_t 845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 846 { 847 vm_map_entry_t llist, rlist; 848 vm_map_entry_t ltree, rtree; 849 vm_map_entry_t y; 850 851 /* Special case of empty tree. */ 852 if (root == NULL) 853 return (root); 854 855 /* 856 * Pass One: Splay down the tree until we find addr or a NULL 857 * pointer where addr would go. llist and rlist are the two 858 * sides in reverse order (bottom-up), with llist linked by 859 * the right pointer and rlist linked by the left pointer in 860 * the vm_map_entry. Wait until Pass Two to set max_free on 861 * the two spines. 862 */ 863 llist = NULL; 864 rlist = NULL; 865 for (;;) { 866 /* root is never NULL in here. */ 867 if (addr < root->start) { 868 y = root->left; 869 if (y == NULL) 870 break; 871 if (addr < y->start && y->left != NULL) { 872 /* Rotate right and put y on rlist. */ 873 root->left = y->right; 874 y->right = root; 875 vm_map_entry_set_max_free(root); 876 root = y->left; 877 y->left = rlist; 878 rlist = y; 879 } else { 880 /* Put root on rlist. */ 881 root->left = rlist; 882 rlist = root; 883 root = y; 884 } 885 } else if (addr >= root->end) { 886 y = root->right; 887 if (y == NULL) 888 break; 889 if (addr >= y->end && y->right != NULL) { 890 /* Rotate left and put y on llist. */ 891 root->right = y->left; 892 y->left = root; 893 vm_map_entry_set_max_free(root); 894 root = y->right; 895 y->right = llist; 896 llist = y; 897 } else { 898 /* Put root on llist. */ 899 root->right = llist; 900 llist = root; 901 root = y; 902 } 903 } else 904 break; 905 } 906 907 /* 908 * Pass Two: Walk back up the two spines, flip the pointers 909 * and set max_free. The subtrees of the root go at the 910 * bottom of llist and rlist. 911 */ 912 ltree = root->left; 913 while (llist != NULL) { 914 y = llist->right; 915 llist->right = ltree; 916 vm_map_entry_set_max_free(llist); 917 ltree = llist; 918 llist = y; 919 } 920 rtree = root->right; 921 while (rlist != NULL) { 922 y = rlist->left; 923 rlist->left = rtree; 924 vm_map_entry_set_max_free(rlist); 925 rtree = rlist; 926 rlist = y; 927 } 928 929 /* 930 * Final assembly: add ltree and rtree as subtrees of root. 931 */ 932 root->left = ltree; 933 root->right = rtree; 934 vm_map_entry_set_max_free(root); 935 936 return (root); 937 } 938 939 /* 940 * vm_map_entry_{un,}link: 941 * 942 * Insert/remove entries from maps. 943 */ 944 static void 945 vm_map_entry_link(vm_map_t map, 946 vm_map_entry_t after_where, 947 vm_map_entry_t entry) 948 { 949 950 CTR4(KTR_VM, 951 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 952 map->nentries, entry, after_where); 953 VM_MAP_ASSERT_LOCKED(map); 954 map->nentries++; 955 entry->prev = after_where; 956 entry->next = after_where->next; 957 entry->next->prev = entry; 958 after_where->next = entry; 959 960 if (after_where != &map->header) { 961 if (after_where != map->root) 962 vm_map_entry_splay(after_where->start, map->root); 963 entry->right = after_where->right; 964 entry->left = after_where; 965 after_where->right = NULL; 966 after_where->adj_free = entry->start - after_where->end; 967 vm_map_entry_set_max_free(after_where); 968 } else { 969 entry->right = map->root; 970 entry->left = NULL; 971 } 972 entry->adj_free = (entry->next == &map->header ? map->max_offset : 973 entry->next->start) - entry->end; 974 vm_map_entry_set_max_free(entry); 975 map->root = entry; 976 } 977 978 static void 979 vm_map_entry_unlink(vm_map_t map, 980 vm_map_entry_t entry) 981 { 982 vm_map_entry_t next, prev, root; 983 984 VM_MAP_ASSERT_LOCKED(map); 985 if (entry != map->root) 986 vm_map_entry_splay(entry->start, map->root); 987 if (entry->left == NULL) 988 root = entry->right; 989 else { 990 root = vm_map_entry_splay(entry->start, entry->left); 991 root->right = entry->right; 992 root->adj_free = (entry->next == &map->header ? map->max_offset : 993 entry->next->start) - root->end; 994 vm_map_entry_set_max_free(root); 995 } 996 map->root = root; 997 998 prev = entry->prev; 999 next = entry->next; 1000 next->prev = prev; 1001 prev->next = next; 1002 map->nentries--; 1003 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1004 map->nentries, entry); 1005 } 1006 1007 /* 1008 * vm_map_entry_resize_free: 1009 * 1010 * Recompute the amount of free space following a vm_map_entry 1011 * and propagate that value up the tree. Call this function after 1012 * resizing a map entry in-place, that is, without a call to 1013 * vm_map_entry_link() or _unlink(). 1014 * 1015 * The map must be locked, and leaves it so. 1016 */ 1017 static void 1018 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1019 { 1020 1021 /* 1022 * Using splay trees without parent pointers, propagating 1023 * max_free up the tree is done by moving the entry to the 1024 * root and making the change there. 1025 */ 1026 if (entry != map->root) 1027 map->root = vm_map_entry_splay(entry->start, map->root); 1028 1029 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1030 entry->next->start) - entry->end; 1031 vm_map_entry_set_max_free(entry); 1032 } 1033 1034 /* 1035 * vm_map_lookup_entry: [ internal use only ] 1036 * 1037 * Finds the map entry containing (or 1038 * immediately preceding) the specified address 1039 * in the given map; the entry is returned 1040 * in the "entry" parameter. The boolean 1041 * result indicates whether the address is 1042 * actually contained in the map. 1043 */ 1044 boolean_t 1045 vm_map_lookup_entry( 1046 vm_map_t map, 1047 vm_offset_t address, 1048 vm_map_entry_t *entry) /* OUT */ 1049 { 1050 vm_map_entry_t cur; 1051 boolean_t locked; 1052 1053 /* 1054 * If the map is empty, then the map entry immediately preceding 1055 * "address" is the map's header. 1056 */ 1057 cur = map->root; 1058 if (cur == NULL) 1059 *entry = &map->header; 1060 else if (address >= cur->start && cur->end > address) { 1061 *entry = cur; 1062 return (TRUE); 1063 } else if ((locked = vm_map_locked(map)) || 1064 sx_try_upgrade(&map->lock)) { 1065 /* 1066 * Splay requires a write lock on the map. However, it only 1067 * restructures the binary search tree; it does not otherwise 1068 * change the map. Thus, the map's timestamp need not change 1069 * on a temporary upgrade. 1070 */ 1071 map->root = cur = vm_map_entry_splay(address, cur); 1072 if (!locked) 1073 sx_downgrade(&map->lock); 1074 1075 /* 1076 * If "address" is contained within a map entry, the new root 1077 * is that map entry. Otherwise, the new root is a map entry 1078 * immediately before or after "address". 1079 */ 1080 if (address >= cur->start) { 1081 *entry = cur; 1082 if (cur->end > address) 1083 return (TRUE); 1084 } else 1085 *entry = cur->prev; 1086 } else 1087 /* 1088 * Since the map is only locked for read access, perform a 1089 * standard binary search tree lookup for "address". 1090 */ 1091 for (;;) { 1092 if (address < cur->start) { 1093 if (cur->left == NULL) { 1094 *entry = cur->prev; 1095 break; 1096 } 1097 cur = cur->left; 1098 } else if (cur->end > address) { 1099 *entry = cur; 1100 return (TRUE); 1101 } else { 1102 if (cur->right == NULL) { 1103 *entry = cur; 1104 break; 1105 } 1106 cur = cur->right; 1107 } 1108 } 1109 return (FALSE); 1110 } 1111 1112 /* 1113 * vm_map_insert: 1114 * 1115 * Inserts the given whole VM object into the target 1116 * map at the specified address range. The object's 1117 * size should match that of the address range. 1118 * 1119 * Requires that the map be locked, and leaves it so. 1120 * 1121 * If object is non-NULL, ref count must be bumped by caller 1122 * prior to making call to account for the new entry. 1123 */ 1124 int 1125 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1126 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1127 int cow) 1128 { 1129 vm_map_entry_t new_entry; 1130 vm_map_entry_t prev_entry; 1131 vm_map_entry_t temp_entry; 1132 vm_eflags_t protoeflags; 1133 struct ucred *cred; 1134 vm_inherit_t inheritance; 1135 boolean_t charge_prev_obj; 1136 1137 VM_MAP_ASSERT_LOCKED(map); 1138 1139 /* 1140 * Check that the start and end points are not bogus. 1141 */ 1142 if ((start < map->min_offset) || (end > map->max_offset) || 1143 (start >= end)) 1144 return (KERN_INVALID_ADDRESS); 1145 1146 /* 1147 * Find the entry prior to the proposed starting address; if it's part 1148 * of an existing entry, this range is bogus. 1149 */ 1150 if (vm_map_lookup_entry(map, start, &temp_entry)) 1151 return (KERN_NO_SPACE); 1152 1153 prev_entry = temp_entry; 1154 1155 /* 1156 * Assert that the next entry doesn't overlap the end point. 1157 */ 1158 if ((prev_entry->next != &map->header) && 1159 (prev_entry->next->start < end)) 1160 return (KERN_NO_SPACE); 1161 1162 protoeflags = 0; 1163 charge_prev_obj = FALSE; 1164 1165 if (cow & MAP_COPY_ON_WRITE) 1166 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1167 1168 if (cow & MAP_NOFAULT) { 1169 protoeflags |= MAP_ENTRY_NOFAULT; 1170 1171 KASSERT(object == NULL, 1172 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1173 } 1174 if (cow & MAP_DISABLE_SYNCER) 1175 protoeflags |= MAP_ENTRY_NOSYNC; 1176 if (cow & MAP_DISABLE_COREDUMP) 1177 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1178 if (cow & MAP_VN_WRITECOUNT) 1179 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1180 if (cow & MAP_INHERIT_SHARE) 1181 inheritance = VM_INHERIT_SHARE; 1182 else 1183 inheritance = VM_INHERIT_DEFAULT; 1184 1185 cred = NULL; 1186 KASSERT((object != kmem_object && object != kernel_object) || 1187 ((object == kmem_object || object == kernel_object) && 1188 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1189 ("kmem or kernel object and cow")); 1190 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1191 goto charged; 1192 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1193 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1194 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1195 return (KERN_RESOURCE_SHORTAGE); 1196 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1197 object->cred == NULL, 1198 ("OVERCOMMIT: vm_map_insert o %p", object)); 1199 cred = curthread->td_ucred; 1200 crhold(cred); 1201 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1202 charge_prev_obj = TRUE; 1203 } 1204 1205 charged: 1206 /* Expand the kernel pmap, if necessary. */ 1207 if (map == kernel_map && end > kernel_vm_end) 1208 pmap_growkernel(end); 1209 if (object != NULL) { 1210 /* 1211 * OBJ_ONEMAPPING must be cleared unless this mapping 1212 * is trivially proven to be the only mapping for any 1213 * of the object's pages. (Object granularity 1214 * reference counting is insufficient to recognize 1215 * aliases with precision.) 1216 */ 1217 VM_OBJECT_WLOCK(object); 1218 if (object->ref_count > 1 || object->shadow_count != 0) 1219 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1220 VM_OBJECT_WUNLOCK(object); 1221 } 1222 else if ((prev_entry != &map->header) && 1223 (prev_entry->eflags == protoeflags) && 1224 (prev_entry->end == start) && 1225 (prev_entry->wired_count == 0) && 1226 (prev_entry->cred == cred || 1227 (prev_entry->object.vm_object != NULL && 1228 (prev_entry->object.vm_object->cred == cred))) && 1229 vm_object_coalesce(prev_entry->object.vm_object, 1230 prev_entry->offset, 1231 (vm_size_t)(prev_entry->end - prev_entry->start), 1232 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1233 /* 1234 * We were able to extend the object. Determine if we 1235 * can extend the previous map entry to include the 1236 * new range as well. 1237 */ 1238 if ((prev_entry->inheritance == inheritance) && 1239 (prev_entry->protection == prot) && 1240 (prev_entry->max_protection == max)) { 1241 map->size += (end - prev_entry->end); 1242 prev_entry->end = end; 1243 vm_map_entry_resize_free(map, prev_entry); 1244 vm_map_simplify_entry(map, prev_entry); 1245 if (cred != NULL) 1246 crfree(cred); 1247 return (KERN_SUCCESS); 1248 } 1249 1250 /* 1251 * If we can extend the object but cannot extend the 1252 * map entry, we have to create a new map entry. We 1253 * must bump the ref count on the extended object to 1254 * account for it. object may be NULL. 1255 */ 1256 object = prev_entry->object.vm_object; 1257 offset = prev_entry->offset + 1258 (prev_entry->end - prev_entry->start); 1259 vm_object_reference(object); 1260 if (cred != NULL && object != NULL && object->cred != NULL && 1261 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1262 /* Object already accounts for this uid. */ 1263 crfree(cred); 1264 cred = NULL; 1265 } 1266 } 1267 1268 /* 1269 * NOTE: if conditionals fail, object can be NULL here. This occurs 1270 * in things like the buffer map where we manage kva but do not manage 1271 * backing objects. 1272 */ 1273 1274 /* 1275 * Create a new entry 1276 */ 1277 new_entry = vm_map_entry_create(map); 1278 new_entry->start = start; 1279 new_entry->end = end; 1280 new_entry->cred = NULL; 1281 1282 new_entry->eflags = protoeflags; 1283 new_entry->object.vm_object = object; 1284 new_entry->offset = offset; 1285 new_entry->avail_ssize = 0; 1286 1287 new_entry->inheritance = inheritance; 1288 new_entry->protection = prot; 1289 new_entry->max_protection = max; 1290 new_entry->wired_count = 0; 1291 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1292 new_entry->next_read = OFF_TO_IDX(offset); 1293 1294 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1295 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1296 new_entry->cred = cred; 1297 1298 /* 1299 * Insert the new entry into the list 1300 */ 1301 vm_map_entry_link(map, prev_entry, new_entry); 1302 map->size += new_entry->end - new_entry->start; 1303 1304 /* 1305 * It may be possible to merge the new entry with the next and/or 1306 * previous entries. However, due to MAP_STACK_* being a hack, a 1307 * panic can result from merging such entries. 1308 */ 1309 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1310 vm_map_simplify_entry(map, new_entry); 1311 1312 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1313 vm_map_pmap_enter(map, start, prot, 1314 object, OFF_TO_IDX(offset), end - start, 1315 cow & MAP_PREFAULT_PARTIAL); 1316 } 1317 1318 return (KERN_SUCCESS); 1319 } 1320 1321 /* 1322 * vm_map_findspace: 1323 * 1324 * Find the first fit (lowest VM address) for "length" free bytes 1325 * beginning at address >= start in the given map. 1326 * 1327 * In a vm_map_entry, "adj_free" is the amount of free space 1328 * adjacent (higher address) to this entry, and "max_free" is the 1329 * maximum amount of contiguous free space in its subtree. This 1330 * allows finding a free region in one path down the tree, so 1331 * O(log n) amortized with splay trees. 1332 * 1333 * The map must be locked, and leaves it so. 1334 * 1335 * Returns: 0 on success, and starting address in *addr, 1336 * 1 if insufficient space. 1337 */ 1338 int 1339 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1340 vm_offset_t *addr) /* OUT */ 1341 { 1342 vm_map_entry_t entry; 1343 vm_offset_t st; 1344 1345 /* 1346 * Request must fit within min/max VM address and must avoid 1347 * address wrap. 1348 */ 1349 if (start < map->min_offset) 1350 start = map->min_offset; 1351 if (start + length > map->max_offset || start + length < start) 1352 return (1); 1353 1354 /* Empty tree means wide open address space. */ 1355 if (map->root == NULL) { 1356 *addr = start; 1357 return (0); 1358 } 1359 1360 /* 1361 * After splay, if start comes before root node, then there 1362 * must be a gap from start to the root. 1363 */ 1364 map->root = vm_map_entry_splay(start, map->root); 1365 if (start + length <= map->root->start) { 1366 *addr = start; 1367 return (0); 1368 } 1369 1370 /* 1371 * Root is the last node that might begin its gap before 1372 * start, and this is the last comparison where address 1373 * wrap might be a problem. 1374 */ 1375 st = (start > map->root->end) ? start : map->root->end; 1376 if (length <= map->root->end + map->root->adj_free - st) { 1377 *addr = st; 1378 return (0); 1379 } 1380 1381 /* With max_free, can immediately tell if no solution. */ 1382 entry = map->root->right; 1383 if (entry == NULL || length > entry->max_free) 1384 return (1); 1385 1386 /* 1387 * Search the right subtree in the order: left subtree, root, 1388 * right subtree (first fit). The previous splay implies that 1389 * all regions in the right subtree have addresses > start. 1390 */ 1391 while (entry != NULL) { 1392 if (entry->left != NULL && entry->left->max_free >= length) 1393 entry = entry->left; 1394 else if (entry->adj_free >= length) { 1395 *addr = entry->end; 1396 return (0); 1397 } else 1398 entry = entry->right; 1399 } 1400 1401 /* Can't get here, so panic if we do. */ 1402 panic("vm_map_findspace: max_free corrupt"); 1403 } 1404 1405 int 1406 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1407 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1408 vm_prot_t max, int cow) 1409 { 1410 vm_offset_t end; 1411 int result; 1412 1413 end = start + length; 1414 vm_map_lock(map); 1415 VM_MAP_RANGE_CHECK(map, start, end); 1416 (void) vm_map_delete(map, start, end); 1417 result = vm_map_insert(map, object, offset, start, end, prot, 1418 max, cow); 1419 vm_map_unlock(map); 1420 return (result); 1421 } 1422 1423 /* 1424 * vm_map_find finds an unallocated region in the target address 1425 * map with the given length. The search is defined to be 1426 * first-fit from the specified address; the region found is 1427 * returned in the same parameter. 1428 * 1429 * If object is non-NULL, ref count must be bumped by caller 1430 * prior to making call to account for the new entry. 1431 */ 1432 int 1433 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1434 vm_offset_t *addr, /* IN/OUT */ 1435 vm_size_t length, vm_offset_t max_addr, int find_space, 1436 vm_prot_t prot, vm_prot_t max, int cow) 1437 { 1438 vm_offset_t alignment, initial_addr, start; 1439 int result; 1440 1441 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1442 (object->flags & OBJ_COLORED) == 0)) 1443 find_space = VMFS_ANY_SPACE; 1444 if (find_space >> 8 != 0) { 1445 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1446 alignment = (vm_offset_t)1 << (find_space >> 8); 1447 } else 1448 alignment = 0; 1449 initial_addr = *addr; 1450 again: 1451 start = initial_addr; 1452 vm_map_lock(map); 1453 do { 1454 if (find_space != VMFS_NO_SPACE) { 1455 if (vm_map_findspace(map, start, length, addr) || 1456 (max_addr != 0 && *addr + length > max_addr)) { 1457 vm_map_unlock(map); 1458 if (find_space == VMFS_OPTIMAL_SPACE) { 1459 find_space = VMFS_ANY_SPACE; 1460 goto again; 1461 } 1462 return (KERN_NO_SPACE); 1463 } 1464 switch (find_space) { 1465 case VMFS_SUPER_SPACE: 1466 case VMFS_OPTIMAL_SPACE: 1467 pmap_align_superpage(object, offset, addr, 1468 length); 1469 break; 1470 case VMFS_ANY_SPACE: 1471 break; 1472 default: 1473 if ((*addr & (alignment - 1)) != 0) { 1474 *addr &= ~(alignment - 1); 1475 *addr += alignment; 1476 } 1477 break; 1478 } 1479 1480 start = *addr; 1481 } 1482 result = vm_map_insert(map, object, offset, start, start + 1483 length, prot, max, cow); 1484 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1485 find_space != VMFS_ANY_SPACE); 1486 vm_map_unlock(map); 1487 return (result); 1488 } 1489 1490 /* 1491 * vm_map_simplify_entry: 1492 * 1493 * Simplify the given map entry by merging with either neighbor. This 1494 * routine also has the ability to merge with both neighbors. 1495 * 1496 * The map must be locked. 1497 * 1498 * This routine guarentees that the passed entry remains valid (though 1499 * possibly extended). When merging, this routine may delete one or 1500 * both neighbors. 1501 */ 1502 void 1503 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1504 { 1505 vm_map_entry_t next, prev; 1506 vm_size_t prevsize, esize; 1507 1508 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1509 return; 1510 1511 prev = entry->prev; 1512 if (prev != &map->header) { 1513 prevsize = prev->end - prev->start; 1514 if ( (prev->end == entry->start) && 1515 (prev->object.vm_object == entry->object.vm_object) && 1516 (!prev->object.vm_object || 1517 (prev->offset + prevsize == entry->offset)) && 1518 (prev->eflags == entry->eflags) && 1519 (prev->protection == entry->protection) && 1520 (prev->max_protection == entry->max_protection) && 1521 (prev->inheritance == entry->inheritance) && 1522 (prev->wired_count == entry->wired_count) && 1523 (prev->cred == entry->cred)) { 1524 vm_map_entry_unlink(map, prev); 1525 entry->start = prev->start; 1526 entry->offset = prev->offset; 1527 if (entry->prev != &map->header) 1528 vm_map_entry_resize_free(map, entry->prev); 1529 1530 /* 1531 * If the backing object is a vnode object, 1532 * vm_object_deallocate() calls vrele(). 1533 * However, vrele() does not lock the vnode 1534 * because the vnode has additional 1535 * references. Thus, the map lock can be kept 1536 * without causing a lock-order reversal with 1537 * the vnode lock. 1538 * 1539 * Since we count the number of virtual page 1540 * mappings in object->un_pager.vnp.writemappings, 1541 * the writemappings value should not be adjusted 1542 * when the entry is disposed of. 1543 */ 1544 if (prev->object.vm_object) 1545 vm_object_deallocate(prev->object.vm_object); 1546 if (prev->cred != NULL) 1547 crfree(prev->cred); 1548 vm_map_entry_dispose(map, prev); 1549 } 1550 } 1551 1552 next = entry->next; 1553 if (next != &map->header) { 1554 esize = entry->end - entry->start; 1555 if ((entry->end == next->start) && 1556 (next->object.vm_object == entry->object.vm_object) && 1557 (!entry->object.vm_object || 1558 (entry->offset + esize == next->offset)) && 1559 (next->eflags == entry->eflags) && 1560 (next->protection == entry->protection) && 1561 (next->max_protection == entry->max_protection) && 1562 (next->inheritance == entry->inheritance) && 1563 (next->wired_count == entry->wired_count) && 1564 (next->cred == entry->cred)) { 1565 vm_map_entry_unlink(map, next); 1566 entry->end = next->end; 1567 vm_map_entry_resize_free(map, entry); 1568 1569 /* 1570 * See comment above. 1571 */ 1572 if (next->object.vm_object) 1573 vm_object_deallocate(next->object.vm_object); 1574 if (next->cred != NULL) 1575 crfree(next->cred); 1576 vm_map_entry_dispose(map, next); 1577 } 1578 } 1579 } 1580 /* 1581 * vm_map_clip_start: [ internal use only ] 1582 * 1583 * Asserts that the given entry begins at or after 1584 * the specified address; if necessary, 1585 * it splits the entry into two. 1586 */ 1587 #define vm_map_clip_start(map, entry, startaddr) \ 1588 { \ 1589 if (startaddr > entry->start) \ 1590 _vm_map_clip_start(map, entry, startaddr); \ 1591 } 1592 1593 /* 1594 * This routine is called only when it is known that 1595 * the entry must be split. 1596 */ 1597 static void 1598 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1599 { 1600 vm_map_entry_t new_entry; 1601 1602 VM_MAP_ASSERT_LOCKED(map); 1603 1604 /* 1605 * Split off the front portion -- note that we must insert the new 1606 * entry BEFORE this one, so that this entry has the specified 1607 * starting address. 1608 */ 1609 vm_map_simplify_entry(map, entry); 1610 1611 /* 1612 * If there is no object backing this entry, we might as well create 1613 * one now. If we defer it, an object can get created after the map 1614 * is clipped, and individual objects will be created for the split-up 1615 * map. This is a bit of a hack, but is also about the best place to 1616 * put this improvement. 1617 */ 1618 if (entry->object.vm_object == NULL && !map->system_map) { 1619 vm_object_t object; 1620 object = vm_object_allocate(OBJT_DEFAULT, 1621 atop(entry->end - entry->start)); 1622 entry->object.vm_object = object; 1623 entry->offset = 0; 1624 if (entry->cred != NULL) { 1625 object->cred = entry->cred; 1626 object->charge = entry->end - entry->start; 1627 entry->cred = NULL; 1628 } 1629 } else if (entry->object.vm_object != NULL && 1630 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1631 entry->cred != NULL) { 1632 VM_OBJECT_WLOCK(entry->object.vm_object); 1633 KASSERT(entry->object.vm_object->cred == NULL, 1634 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1635 entry->object.vm_object->cred = entry->cred; 1636 entry->object.vm_object->charge = entry->end - entry->start; 1637 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1638 entry->cred = NULL; 1639 } 1640 1641 new_entry = vm_map_entry_create(map); 1642 *new_entry = *entry; 1643 1644 new_entry->end = start; 1645 entry->offset += (start - entry->start); 1646 entry->start = start; 1647 if (new_entry->cred != NULL) 1648 crhold(entry->cred); 1649 1650 vm_map_entry_link(map, entry->prev, new_entry); 1651 1652 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1653 vm_object_reference(new_entry->object.vm_object); 1654 /* 1655 * The object->un_pager.vnp.writemappings for the 1656 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1657 * kept as is here. The virtual pages are 1658 * re-distributed among the clipped entries, so the sum is 1659 * left the same. 1660 */ 1661 } 1662 } 1663 1664 /* 1665 * vm_map_clip_end: [ internal use only ] 1666 * 1667 * Asserts that the given entry ends at or before 1668 * the specified address; if necessary, 1669 * it splits the entry into two. 1670 */ 1671 #define vm_map_clip_end(map, entry, endaddr) \ 1672 { \ 1673 if ((endaddr) < (entry->end)) \ 1674 _vm_map_clip_end((map), (entry), (endaddr)); \ 1675 } 1676 1677 /* 1678 * This routine is called only when it is known that 1679 * the entry must be split. 1680 */ 1681 static void 1682 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1683 { 1684 vm_map_entry_t new_entry; 1685 1686 VM_MAP_ASSERT_LOCKED(map); 1687 1688 /* 1689 * If there is no object backing this entry, we might as well create 1690 * one now. If we defer it, an object can get created after the map 1691 * is clipped, and individual objects will be created for the split-up 1692 * map. This is a bit of a hack, but is also about the best place to 1693 * put this improvement. 1694 */ 1695 if (entry->object.vm_object == NULL && !map->system_map) { 1696 vm_object_t object; 1697 object = vm_object_allocate(OBJT_DEFAULT, 1698 atop(entry->end - entry->start)); 1699 entry->object.vm_object = object; 1700 entry->offset = 0; 1701 if (entry->cred != NULL) { 1702 object->cred = entry->cred; 1703 object->charge = entry->end - entry->start; 1704 entry->cred = NULL; 1705 } 1706 } else if (entry->object.vm_object != NULL && 1707 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1708 entry->cred != NULL) { 1709 VM_OBJECT_WLOCK(entry->object.vm_object); 1710 KASSERT(entry->object.vm_object->cred == NULL, 1711 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1712 entry->object.vm_object->cred = entry->cred; 1713 entry->object.vm_object->charge = entry->end - entry->start; 1714 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1715 entry->cred = NULL; 1716 } 1717 1718 /* 1719 * Create a new entry and insert it AFTER the specified entry 1720 */ 1721 new_entry = vm_map_entry_create(map); 1722 *new_entry = *entry; 1723 1724 new_entry->start = entry->end = end; 1725 new_entry->offset += (end - entry->start); 1726 if (new_entry->cred != NULL) 1727 crhold(entry->cred); 1728 1729 vm_map_entry_link(map, entry, new_entry); 1730 1731 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1732 vm_object_reference(new_entry->object.vm_object); 1733 } 1734 } 1735 1736 /* 1737 * vm_map_submap: [ kernel use only ] 1738 * 1739 * Mark the given range as handled by a subordinate map. 1740 * 1741 * This range must have been created with vm_map_find, 1742 * and no other operations may have been performed on this 1743 * range prior to calling vm_map_submap. 1744 * 1745 * Only a limited number of operations can be performed 1746 * within this rage after calling vm_map_submap: 1747 * vm_fault 1748 * [Don't try vm_map_copy!] 1749 * 1750 * To remove a submapping, one must first remove the 1751 * range from the superior map, and then destroy the 1752 * submap (if desired). [Better yet, don't try it.] 1753 */ 1754 int 1755 vm_map_submap( 1756 vm_map_t map, 1757 vm_offset_t start, 1758 vm_offset_t end, 1759 vm_map_t submap) 1760 { 1761 vm_map_entry_t entry; 1762 int result = KERN_INVALID_ARGUMENT; 1763 1764 vm_map_lock(map); 1765 1766 VM_MAP_RANGE_CHECK(map, start, end); 1767 1768 if (vm_map_lookup_entry(map, start, &entry)) { 1769 vm_map_clip_start(map, entry, start); 1770 } else 1771 entry = entry->next; 1772 1773 vm_map_clip_end(map, entry, end); 1774 1775 if ((entry->start == start) && (entry->end == end) && 1776 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1777 (entry->object.vm_object == NULL)) { 1778 entry->object.sub_map = submap; 1779 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1780 result = KERN_SUCCESS; 1781 } 1782 vm_map_unlock(map); 1783 1784 return (result); 1785 } 1786 1787 /* 1788 * The maximum number of pages to map 1789 */ 1790 #define MAX_INIT_PT 96 1791 1792 /* 1793 * vm_map_pmap_enter: 1794 * 1795 * Preload read-only mappings for the specified object's resident pages 1796 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1797 * the resident pages within the address range [addr, addr + ulmin(size, 1798 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1799 * the specified address range are mapped. This eliminates many soft 1800 * faults on process startup and immediately after an mmap(2). Because 1801 * these are speculative mappings, cached pages are not reactivated and 1802 * mapped. 1803 */ 1804 void 1805 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1806 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1807 { 1808 vm_offset_t start; 1809 vm_page_t p, p_start; 1810 vm_pindex_t psize, tmpidx; 1811 1812 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1813 return; 1814 VM_OBJECT_RLOCK(object); 1815 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1816 VM_OBJECT_RUNLOCK(object); 1817 VM_OBJECT_WLOCK(object); 1818 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1819 pmap_object_init_pt(map->pmap, addr, object, pindex, 1820 size); 1821 VM_OBJECT_WUNLOCK(object); 1822 return; 1823 } 1824 VM_OBJECT_LOCK_DOWNGRADE(object); 1825 } 1826 1827 psize = atop(size); 1828 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1829 psize = MAX_INIT_PT; 1830 if (psize + pindex > object->size) { 1831 if (object->size < pindex) { 1832 VM_OBJECT_RUNLOCK(object); 1833 return; 1834 } 1835 psize = object->size - pindex; 1836 } 1837 1838 start = 0; 1839 p_start = NULL; 1840 1841 p = vm_page_find_least(object, pindex); 1842 /* 1843 * Assert: the variable p is either (1) the page with the 1844 * least pindex greater than or equal to the parameter pindex 1845 * or (2) NULL. 1846 */ 1847 for (; 1848 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1849 p = TAILQ_NEXT(p, listq)) { 1850 /* 1851 * don't allow an madvise to blow away our really 1852 * free pages allocating pv entries. 1853 */ 1854 if ((flags & MAP_PREFAULT_MADVISE) && 1855 cnt.v_free_count < cnt.v_free_reserved) { 1856 psize = tmpidx; 1857 break; 1858 } 1859 if (p->valid == VM_PAGE_BITS_ALL) { 1860 if (p_start == NULL) { 1861 start = addr + ptoa(tmpidx); 1862 p_start = p; 1863 } 1864 } else if (p_start != NULL) { 1865 pmap_enter_object(map->pmap, start, addr + 1866 ptoa(tmpidx), p_start, prot); 1867 p_start = NULL; 1868 } 1869 } 1870 if (p_start != NULL) 1871 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1872 p_start, prot); 1873 VM_OBJECT_RUNLOCK(object); 1874 } 1875 1876 /* 1877 * vm_map_protect: 1878 * 1879 * Sets the protection of the specified address 1880 * region in the target map. If "set_max" is 1881 * specified, the maximum protection is to be set; 1882 * otherwise, only the current protection is affected. 1883 */ 1884 int 1885 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1886 vm_prot_t new_prot, boolean_t set_max) 1887 { 1888 vm_map_entry_t current, entry; 1889 vm_object_t obj; 1890 struct ucred *cred; 1891 vm_prot_t old_prot; 1892 1893 vm_map_lock(map); 1894 1895 VM_MAP_RANGE_CHECK(map, start, end); 1896 1897 if (vm_map_lookup_entry(map, start, &entry)) { 1898 vm_map_clip_start(map, entry, start); 1899 } else { 1900 entry = entry->next; 1901 } 1902 1903 /* 1904 * Make a first pass to check for protection violations. 1905 */ 1906 current = entry; 1907 while ((current != &map->header) && (current->start < end)) { 1908 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1909 vm_map_unlock(map); 1910 return (KERN_INVALID_ARGUMENT); 1911 } 1912 if ((new_prot & current->max_protection) != new_prot) { 1913 vm_map_unlock(map); 1914 return (KERN_PROTECTION_FAILURE); 1915 } 1916 current = current->next; 1917 } 1918 1919 1920 /* 1921 * Do an accounting pass for private read-only mappings that 1922 * now will do cow due to allowed write (e.g. debugger sets 1923 * breakpoint on text segment) 1924 */ 1925 for (current = entry; (current != &map->header) && 1926 (current->start < end); current = current->next) { 1927 1928 vm_map_clip_end(map, current, end); 1929 1930 if (set_max || 1931 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1932 ENTRY_CHARGED(current)) { 1933 continue; 1934 } 1935 1936 cred = curthread->td_ucred; 1937 obj = current->object.vm_object; 1938 1939 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1940 if (!swap_reserve(current->end - current->start)) { 1941 vm_map_unlock(map); 1942 return (KERN_RESOURCE_SHORTAGE); 1943 } 1944 crhold(cred); 1945 current->cred = cred; 1946 continue; 1947 } 1948 1949 VM_OBJECT_WLOCK(obj); 1950 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1951 VM_OBJECT_WUNLOCK(obj); 1952 continue; 1953 } 1954 1955 /* 1956 * Charge for the whole object allocation now, since 1957 * we cannot distinguish between non-charged and 1958 * charged clipped mapping of the same object later. 1959 */ 1960 KASSERT(obj->charge == 0, 1961 ("vm_map_protect: object %p overcharged\n", obj)); 1962 if (!swap_reserve(ptoa(obj->size))) { 1963 VM_OBJECT_WUNLOCK(obj); 1964 vm_map_unlock(map); 1965 return (KERN_RESOURCE_SHORTAGE); 1966 } 1967 1968 crhold(cred); 1969 obj->cred = cred; 1970 obj->charge = ptoa(obj->size); 1971 VM_OBJECT_WUNLOCK(obj); 1972 } 1973 1974 /* 1975 * Go back and fix up protections. [Note that clipping is not 1976 * necessary the second time.] 1977 */ 1978 current = entry; 1979 while ((current != &map->header) && (current->start < end)) { 1980 old_prot = current->protection; 1981 1982 if (set_max) 1983 current->protection = 1984 (current->max_protection = new_prot) & 1985 old_prot; 1986 else 1987 current->protection = new_prot; 1988 1989 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1990 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1991 (current->protection & VM_PROT_WRITE) != 0 && 1992 (old_prot & VM_PROT_WRITE) == 0) { 1993 vm_fault_copy_entry(map, map, current, current, NULL); 1994 } 1995 1996 /* 1997 * When restricting access, update the physical map. Worry 1998 * about copy-on-write here. 1999 */ 2000 if ((old_prot & ~current->protection) != 0) { 2001 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2002 VM_PROT_ALL) 2003 pmap_protect(map->pmap, current->start, 2004 current->end, 2005 current->protection & MASK(current)); 2006 #undef MASK 2007 } 2008 vm_map_simplify_entry(map, current); 2009 current = current->next; 2010 } 2011 vm_map_unlock(map); 2012 return (KERN_SUCCESS); 2013 } 2014 2015 /* 2016 * vm_map_madvise: 2017 * 2018 * This routine traverses a processes map handling the madvise 2019 * system call. Advisories are classified as either those effecting 2020 * the vm_map_entry structure, or those effecting the underlying 2021 * objects. 2022 */ 2023 int 2024 vm_map_madvise( 2025 vm_map_t map, 2026 vm_offset_t start, 2027 vm_offset_t end, 2028 int behav) 2029 { 2030 vm_map_entry_t current, entry; 2031 int modify_map = 0; 2032 2033 /* 2034 * Some madvise calls directly modify the vm_map_entry, in which case 2035 * we need to use an exclusive lock on the map and we need to perform 2036 * various clipping operations. Otherwise we only need a read-lock 2037 * on the map. 2038 */ 2039 switch(behav) { 2040 case MADV_NORMAL: 2041 case MADV_SEQUENTIAL: 2042 case MADV_RANDOM: 2043 case MADV_NOSYNC: 2044 case MADV_AUTOSYNC: 2045 case MADV_NOCORE: 2046 case MADV_CORE: 2047 modify_map = 1; 2048 vm_map_lock(map); 2049 break; 2050 case MADV_WILLNEED: 2051 case MADV_DONTNEED: 2052 case MADV_FREE: 2053 vm_map_lock_read(map); 2054 break; 2055 default: 2056 return (KERN_INVALID_ARGUMENT); 2057 } 2058 2059 /* 2060 * Locate starting entry and clip if necessary. 2061 */ 2062 VM_MAP_RANGE_CHECK(map, start, end); 2063 2064 if (vm_map_lookup_entry(map, start, &entry)) { 2065 if (modify_map) 2066 vm_map_clip_start(map, entry, start); 2067 } else { 2068 entry = entry->next; 2069 } 2070 2071 if (modify_map) { 2072 /* 2073 * madvise behaviors that are implemented in the vm_map_entry. 2074 * 2075 * We clip the vm_map_entry so that behavioral changes are 2076 * limited to the specified address range. 2077 */ 2078 for (current = entry; 2079 (current != &map->header) && (current->start < end); 2080 current = current->next 2081 ) { 2082 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2083 continue; 2084 2085 vm_map_clip_end(map, current, end); 2086 2087 switch (behav) { 2088 case MADV_NORMAL: 2089 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2090 break; 2091 case MADV_SEQUENTIAL: 2092 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2093 break; 2094 case MADV_RANDOM: 2095 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2096 break; 2097 case MADV_NOSYNC: 2098 current->eflags |= MAP_ENTRY_NOSYNC; 2099 break; 2100 case MADV_AUTOSYNC: 2101 current->eflags &= ~MAP_ENTRY_NOSYNC; 2102 break; 2103 case MADV_NOCORE: 2104 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2105 break; 2106 case MADV_CORE: 2107 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2108 break; 2109 default: 2110 break; 2111 } 2112 vm_map_simplify_entry(map, current); 2113 } 2114 vm_map_unlock(map); 2115 } else { 2116 vm_pindex_t pstart, pend; 2117 2118 /* 2119 * madvise behaviors that are implemented in the underlying 2120 * vm_object. 2121 * 2122 * Since we don't clip the vm_map_entry, we have to clip 2123 * the vm_object pindex and count. 2124 */ 2125 for (current = entry; 2126 (current != &map->header) && (current->start < end); 2127 current = current->next 2128 ) { 2129 vm_offset_t useEnd, useStart; 2130 2131 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2132 continue; 2133 2134 pstart = OFF_TO_IDX(current->offset); 2135 pend = pstart + atop(current->end - current->start); 2136 useStart = current->start; 2137 useEnd = current->end; 2138 2139 if (current->start < start) { 2140 pstart += atop(start - current->start); 2141 useStart = start; 2142 } 2143 if (current->end > end) { 2144 pend -= atop(current->end - end); 2145 useEnd = end; 2146 } 2147 2148 if (pstart >= pend) 2149 continue; 2150 2151 /* 2152 * Perform the pmap_advise() before clearing 2153 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2154 * concurrent pmap operation, such as pmap_remove(), 2155 * could clear a reference in the pmap and set 2156 * PGA_REFERENCED on the page before the pmap_advise() 2157 * had completed. Consequently, the page would appear 2158 * referenced based upon an old reference that 2159 * occurred before this pmap_advise() ran. 2160 */ 2161 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2162 pmap_advise(map->pmap, useStart, useEnd, 2163 behav); 2164 2165 vm_object_madvise(current->object.vm_object, pstart, 2166 pend, behav); 2167 if (behav == MADV_WILLNEED) { 2168 vm_map_pmap_enter(map, 2169 useStart, 2170 current->protection, 2171 current->object.vm_object, 2172 pstart, 2173 ptoa(pend - pstart), 2174 MAP_PREFAULT_MADVISE 2175 ); 2176 } 2177 } 2178 vm_map_unlock_read(map); 2179 } 2180 return (0); 2181 } 2182 2183 2184 /* 2185 * vm_map_inherit: 2186 * 2187 * Sets the inheritance of the specified address 2188 * range in the target map. Inheritance 2189 * affects how the map will be shared with 2190 * child maps at the time of vmspace_fork. 2191 */ 2192 int 2193 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2194 vm_inherit_t new_inheritance) 2195 { 2196 vm_map_entry_t entry; 2197 vm_map_entry_t temp_entry; 2198 2199 switch (new_inheritance) { 2200 case VM_INHERIT_NONE: 2201 case VM_INHERIT_COPY: 2202 case VM_INHERIT_SHARE: 2203 break; 2204 default: 2205 return (KERN_INVALID_ARGUMENT); 2206 } 2207 vm_map_lock(map); 2208 VM_MAP_RANGE_CHECK(map, start, end); 2209 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2210 entry = temp_entry; 2211 vm_map_clip_start(map, entry, start); 2212 } else 2213 entry = temp_entry->next; 2214 while ((entry != &map->header) && (entry->start < end)) { 2215 vm_map_clip_end(map, entry, end); 2216 entry->inheritance = new_inheritance; 2217 vm_map_simplify_entry(map, entry); 2218 entry = entry->next; 2219 } 2220 vm_map_unlock(map); 2221 return (KERN_SUCCESS); 2222 } 2223 2224 /* 2225 * vm_map_unwire: 2226 * 2227 * Implements both kernel and user unwiring. 2228 */ 2229 int 2230 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2231 int flags) 2232 { 2233 vm_map_entry_t entry, first_entry, tmp_entry; 2234 vm_offset_t saved_start; 2235 unsigned int last_timestamp; 2236 int rv; 2237 boolean_t need_wakeup, result, user_unwire; 2238 2239 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2240 vm_map_lock(map); 2241 VM_MAP_RANGE_CHECK(map, start, end); 2242 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2243 if (flags & VM_MAP_WIRE_HOLESOK) 2244 first_entry = first_entry->next; 2245 else { 2246 vm_map_unlock(map); 2247 return (KERN_INVALID_ADDRESS); 2248 } 2249 } 2250 last_timestamp = map->timestamp; 2251 entry = first_entry; 2252 while (entry != &map->header && entry->start < end) { 2253 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2254 /* 2255 * We have not yet clipped the entry. 2256 */ 2257 saved_start = (start >= entry->start) ? start : 2258 entry->start; 2259 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2260 if (vm_map_unlock_and_wait(map, 0)) { 2261 /* 2262 * Allow interruption of user unwiring? 2263 */ 2264 } 2265 vm_map_lock(map); 2266 if (last_timestamp+1 != map->timestamp) { 2267 /* 2268 * Look again for the entry because the map was 2269 * modified while it was unlocked. 2270 * Specifically, the entry may have been 2271 * clipped, merged, or deleted. 2272 */ 2273 if (!vm_map_lookup_entry(map, saved_start, 2274 &tmp_entry)) { 2275 if (flags & VM_MAP_WIRE_HOLESOK) 2276 tmp_entry = tmp_entry->next; 2277 else { 2278 if (saved_start == start) { 2279 /* 2280 * First_entry has been deleted. 2281 */ 2282 vm_map_unlock(map); 2283 return (KERN_INVALID_ADDRESS); 2284 } 2285 end = saved_start; 2286 rv = KERN_INVALID_ADDRESS; 2287 goto done; 2288 } 2289 } 2290 if (entry == first_entry) 2291 first_entry = tmp_entry; 2292 else 2293 first_entry = NULL; 2294 entry = tmp_entry; 2295 } 2296 last_timestamp = map->timestamp; 2297 continue; 2298 } 2299 vm_map_clip_start(map, entry, start); 2300 vm_map_clip_end(map, entry, end); 2301 /* 2302 * Mark the entry in case the map lock is released. (See 2303 * above.) 2304 */ 2305 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2306 entry->wiring_thread = curthread; 2307 /* 2308 * Check the map for holes in the specified region. 2309 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2310 */ 2311 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2312 (entry->end < end && (entry->next == &map->header || 2313 entry->next->start > entry->end))) { 2314 end = entry->end; 2315 rv = KERN_INVALID_ADDRESS; 2316 goto done; 2317 } 2318 /* 2319 * If system unwiring, require that the entry is system wired. 2320 */ 2321 if (!user_unwire && 2322 vm_map_entry_system_wired_count(entry) == 0) { 2323 end = entry->end; 2324 rv = KERN_INVALID_ARGUMENT; 2325 goto done; 2326 } 2327 entry = entry->next; 2328 } 2329 rv = KERN_SUCCESS; 2330 done: 2331 need_wakeup = FALSE; 2332 if (first_entry == NULL) { 2333 result = vm_map_lookup_entry(map, start, &first_entry); 2334 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2335 first_entry = first_entry->next; 2336 else 2337 KASSERT(result, ("vm_map_unwire: lookup failed")); 2338 } 2339 for (entry = first_entry; entry != &map->header && entry->start < end; 2340 entry = entry->next) { 2341 /* 2342 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2343 * space in the unwired region could have been mapped 2344 * while the map lock was dropped for draining 2345 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2346 * could be simultaneously wiring this new mapping 2347 * entry. Detect these cases and skip any entries 2348 * marked as in transition by us. 2349 */ 2350 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2351 entry->wiring_thread != curthread) { 2352 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2353 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2354 continue; 2355 } 2356 2357 if (rv == KERN_SUCCESS && (!user_unwire || 2358 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2359 if (user_unwire) 2360 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2361 entry->wired_count--; 2362 if (entry->wired_count == 0) { 2363 /* 2364 * Retain the map lock. 2365 */ 2366 vm_fault_unwire(map, entry->start, entry->end, 2367 entry->object.vm_object != NULL && 2368 (entry->object.vm_object->flags & 2369 OBJ_FICTITIOUS) != 0); 2370 } 2371 } 2372 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2373 ("vm_map_unwire: in-transition flag missing")); 2374 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2375 entry->wiring_thread = NULL; 2376 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2377 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2378 need_wakeup = TRUE; 2379 } 2380 vm_map_simplify_entry(map, entry); 2381 } 2382 vm_map_unlock(map); 2383 if (need_wakeup) 2384 vm_map_wakeup(map); 2385 return (rv); 2386 } 2387 2388 /* 2389 * vm_map_wire: 2390 * 2391 * Implements both kernel and user wiring. 2392 */ 2393 int 2394 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2395 int flags) 2396 { 2397 vm_map_entry_t entry, first_entry, tmp_entry; 2398 vm_offset_t saved_end, saved_start; 2399 unsigned int last_timestamp; 2400 int rv; 2401 boolean_t fictitious, need_wakeup, result, user_wire; 2402 vm_prot_t prot; 2403 2404 prot = 0; 2405 if (flags & VM_MAP_WIRE_WRITE) 2406 prot |= VM_PROT_WRITE; 2407 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2408 vm_map_lock(map); 2409 VM_MAP_RANGE_CHECK(map, start, end); 2410 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2411 if (flags & VM_MAP_WIRE_HOLESOK) 2412 first_entry = first_entry->next; 2413 else { 2414 vm_map_unlock(map); 2415 return (KERN_INVALID_ADDRESS); 2416 } 2417 } 2418 last_timestamp = map->timestamp; 2419 entry = first_entry; 2420 while (entry != &map->header && entry->start < end) { 2421 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2422 /* 2423 * We have not yet clipped the entry. 2424 */ 2425 saved_start = (start >= entry->start) ? start : 2426 entry->start; 2427 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2428 if (vm_map_unlock_and_wait(map, 0)) { 2429 /* 2430 * Allow interruption of user wiring? 2431 */ 2432 } 2433 vm_map_lock(map); 2434 if (last_timestamp + 1 != map->timestamp) { 2435 /* 2436 * Look again for the entry because the map was 2437 * modified while it was unlocked. 2438 * Specifically, the entry may have been 2439 * clipped, merged, or deleted. 2440 */ 2441 if (!vm_map_lookup_entry(map, saved_start, 2442 &tmp_entry)) { 2443 if (flags & VM_MAP_WIRE_HOLESOK) 2444 tmp_entry = tmp_entry->next; 2445 else { 2446 if (saved_start == start) { 2447 /* 2448 * first_entry has been deleted. 2449 */ 2450 vm_map_unlock(map); 2451 return (KERN_INVALID_ADDRESS); 2452 } 2453 end = saved_start; 2454 rv = KERN_INVALID_ADDRESS; 2455 goto done; 2456 } 2457 } 2458 if (entry == first_entry) 2459 first_entry = tmp_entry; 2460 else 2461 first_entry = NULL; 2462 entry = tmp_entry; 2463 } 2464 last_timestamp = map->timestamp; 2465 continue; 2466 } 2467 vm_map_clip_start(map, entry, start); 2468 vm_map_clip_end(map, entry, end); 2469 /* 2470 * Mark the entry in case the map lock is released. (See 2471 * above.) 2472 */ 2473 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2474 entry->wiring_thread = curthread; 2475 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2476 || (entry->protection & prot) != prot) { 2477 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2478 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2479 end = entry->end; 2480 rv = KERN_INVALID_ADDRESS; 2481 goto done; 2482 } 2483 goto next_entry; 2484 } 2485 if (entry->wired_count == 0) { 2486 entry->wired_count++; 2487 saved_start = entry->start; 2488 saved_end = entry->end; 2489 fictitious = entry->object.vm_object != NULL && 2490 (entry->object.vm_object->flags & 2491 OBJ_FICTITIOUS) != 0; 2492 /* 2493 * Release the map lock, relying on the in-transition 2494 * mark. Mark the map busy for fork. 2495 */ 2496 vm_map_busy(map); 2497 vm_map_unlock(map); 2498 rv = vm_fault_wire(map, saved_start, saved_end, 2499 fictitious); 2500 vm_map_lock(map); 2501 vm_map_unbusy(map); 2502 if (last_timestamp + 1 != map->timestamp) { 2503 /* 2504 * Look again for the entry because the map was 2505 * modified while it was unlocked. The entry 2506 * may have been clipped, but NOT merged or 2507 * deleted. 2508 */ 2509 result = vm_map_lookup_entry(map, saved_start, 2510 &tmp_entry); 2511 KASSERT(result, ("vm_map_wire: lookup failed")); 2512 if (entry == first_entry) 2513 first_entry = tmp_entry; 2514 else 2515 first_entry = NULL; 2516 entry = tmp_entry; 2517 while (entry->end < saved_end) { 2518 if (rv != KERN_SUCCESS) { 2519 KASSERT(entry->wired_count == 1, 2520 ("vm_map_wire: bad count")); 2521 entry->wired_count = -1; 2522 } 2523 entry = entry->next; 2524 } 2525 } 2526 last_timestamp = map->timestamp; 2527 if (rv != KERN_SUCCESS) { 2528 KASSERT(entry->wired_count == 1, 2529 ("vm_map_wire: bad count")); 2530 /* 2531 * Assign an out-of-range value to represent 2532 * the failure to wire this entry. 2533 */ 2534 entry->wired_count = -1; 2535 end = entry->end; 2536 goto done; 2537 } 2538 } else if (!user_wire || 2539 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2540 entry->wired_count++; 2541 } 2542 /* 2543 * Check the map for holes in the specified region. 2544 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2545 */ 2546 next_entry: 2547 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2548 (entry->end < end && (entry->next == &map->header || 2549 entry->next->start > entry->end))) { 2550 end = entry->end; 2551 rv = KERN_INVALID_ADDRESS; 2552 goto done; 2553 } 2554 entry = entry->next; 2555 } 2556 rv = KERN_SUCCESS; 2557 done: 2558 need_wakeup = FALSE; 2559 if (first_entry == NULL) { 2560 result = vm_map_lookup_entry(map, start, &first_entry); 2561 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2562 first_entry = first_entry->next; 2563 else 2564 KASSERT(result, ("vm_map_wire: lookup failed")); 2565 } 2566 for (entry = first_entry; entry != &map->header && entry->start < end; 2567 entry = entry->next) { 2568 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2569 goto next_entry_done; 2570 2571 /* 2572 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2573 * space in the unwired region could have been mapped 2574 * while the map lock was dropped for faulting in the 2575 * pages or draining MAP_ENTRY_IN_TRANSITION. 2576 * Moreover, another thread could be simultaneously 2577 * wiring this new mapping entry. Detect these cases 2578 * and skip any entries marked as in transition by us. 2579 */ 2580 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2581 entry->wiring_thread != curthread) { 2582 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2583 ("vm_map_wire: !HOLESOK and new/changed entry")); 2584 continue; 2585 } 2586 2587 if (rv == KERN_SUCCESS) { 2588 if (user_wire) 2589 entry->eflags |= MAP_ENTRY_USER_WIRED; 2590 } else if (entry->wired_count == -1) { 2591 /* 2592 * Wiring failed on this entry. Thus, unwiring is 2593 * unnecessary. 2594 */ 2595 entry->wired_count = 0; 2596 } else { 2597 if (!user_wire || 2598 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2599 entry->wired_count--; 2600 if (entry->wired_count == 0) { 2601 /* 2602 * Retain the map lock. 2603 */ 2604 vm_fault_unwire(map, entry->start, entry->end, 2605 entry->object.vm_object != NULL && 2606 (entry->object.vm_object->flags & 2607 OBJ_FICTITIOUS) != 0); 2608 } 2609 } 2610 next_entry_done: 2611 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2612 ("vm_map_wire: in-transition flag missing %p", entry)); 2613 KASSERT(entry->wiring_thread == curthread, 2614 ("vm_map_wire: alien wire %p", entry)); 2615 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2616 MAP_ENTRY_WIRE_SKIPPED); 2617 entry->wiring_thread = NULL; 2618 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2619 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2620 need_wakeup = TRUE; 2621 } 2622 vm_map_simplify_entry(map, entry); 2623 } 2624 vm_map_unlock(map); 2625 if (need_wakeup) 2626 vm_map_wakeup(map); 2627 return (rv); 2628 } 2629 2630 /* 2631 * vm_map_sync 2632 * 2633 * Push any dirty cached pages in the address range to their pager. 2634 * If syncio is TRUE, dirty pages are written synchronously. 2635 * If invalidate is TRUE, any cached pages are freed as well. 2636 * 2637 * If the size of the region from start to end is zero, we are 2638 * supposed to flush all modified pages within the region containing 2639 * start. Unfortunately, a region can be split or coalesced with 2640 * neighboring regions, making it difficult to determine what the 2641 * original region was. Therefore, we approximate this requirement by 2642 * flushing the current region containing start. 2643 * 2644 * Returns an error if any part of the specified range is not mapped. 2645 */ 2646 int 2647 vm_map_sync( 2648 vm_map_t map, 2649 vm_offset_t start, 2650 vm_offset_t end, 2651 boolean_t syncio, 2652 boolean_t invalidate) 2653 { 2654 vm_map_entry_t current; 2655 vm_map_entry_t entry; 2656 vm_size_t size; 2657 vm_object_t object; 2658 vm_ooffset_t offset; 2659 unsigned int last_timestamp; 2660 boolean_t failed; 2661 2662 vm_map_lock_read(map); 2663 VM_MAP_RANGE_CHECK(map, start, end); 2664 if (!vm_map_lookup_entry(map, start, &entry)) { 2665 vm_map_unlock_read(map); 2666 return (KERN_INVALID_ADDRESS); 2667 } else if (start == end) { 2668 start = entry->start; 2669 end = entry->end; 2670 } 2671 /* 2672 * Make a first pass to check for user-wired memory and holes. 2673 */ 2674 for (current = entry; current != &map->header && current->start < end; 2675 current = current->next) { 2676 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2677 vm_map_unlock_read(map); 2678 return (KERN_INVALID_ARGUMENT); 2679 } 2680 if (end > current->end && 2681 (current->next == &map->header || 2682 current->end != current->next->start)) { 2683 vm_map_unlock_read(map); 2684 return (KERN_INVALID_ADDRESS); 2685 } 2686 } 2687 2688 if (invalidate) 2689 pmap_remove(map->pmap, start, end); 2690 failed = FALSE; 2691 2692 /* 2693 * Make a second pass, cleaning/uncaching pages from the indicated 2694 * objects as we go. 2695 */ 2696 for (current = entry; current != &map->header && current->start < end;) { 2697 offset = current->offset + (start - current->start); 2698 size = (end <= current->end ? end : current->end) - start; 2699 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2700 vm_map_t smap; 2701 vm_map_entry_t tentry; 2702 vm_size_t tsize; 2703 2704 smap = current->object.sub_map; 2705 vm_map_lock_read(smap); 2706 (void) vm_map_lookup_entry(smap, offset, &tentry); 2707 tsize = tentry->end - offset; 2708 if (tsize < size) 2709 size = tsize; 2710 object = tentry->object.vm_object; 2711 offset = tentry->offset + (offset - tentry->start); 2712 vm_map_unlock_read(smap); 2713 } else { 2714 object = current->object.vm_object; 2715 } 2716 vm_object_reference(object); 2717 last_timestamp = map->timestamp; 2718 vm_map_unlock_read(map); 2719 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2720 failed = TRUE; 2721 start += size; 2722 vm_object_deallocate(object); 2723 vm_map_lock_read(map); 2724 if (last_timestamp == map->timestamp || 2725 !vm_map_lookup_entry(map, start, ¤t)) 2726 current = current->next; 2727 } 2728 2729 vm_map_unlock_read(map); 2730 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2731 } 2732 2733 /* 2734 * vm_map_entry_unwire: [ internal use only ] 2735 * 2736 * Make the region specified by this entry pageable. 2737 * 2738 * The map in question should be locked. 2739 * [This is the reason for this routine's existence.] 2740 */ 2741 static void 2742 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2743 { 2744 vm_fault_unwire(map, entry->start, entry->end, 2745 entry->object.vm_object != NULL && 2746 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2747 entry->wired_count = 0; 2748 } 2749 2750 static void 2751 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2752 { 2753 2754 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2755 vm_object_deallocate(entry->object.vm_object); 2756 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2757 } 2758 2759 /* 2760 * vm_map_entry_delete: [ internal use only ] 2761 * 2762 * Deallocate the given entry from the target map. 2763 */ 2764 static void 2765 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2766 { 2767 vm_object_t object; 2768 vm_pindex_t offidxstart, offidxend, count, size1; 2769 vm_ooffset_t size; 2770 2771 vm_map_entry_unlink(map, entry); 2772 object = entry->object.vm_object; 2773 size = entry->end - entry->start; 2774 map->size -= size; 2775 2776 if (entry->cred != NULL) { 2777 swap_release_by_cred(size, entry->cred); 2778 crfree(entry->cred); 2779 } 2780 2781 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2782 (object != NULL)) { 2783 KASSERT(entry->cred == NULL || object->cred == NULL || 2784 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2785 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2786 count = OFF_TO_IDX(size); 2787 offidxstart = OFF_TO_IDX(entry->offset); 2788 offidxend = offidxstart + count; 2789 VM_OBJECT_WLOCK(object); 2790 if (object->ref_count != 1 && 2791 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2792 object == kernel_object || object == kmem_object)) { 2793 vm_object_collapse(object); 2794 2795 /* 2796 * The option OBJPR_NOTMAPPED can be passed here 2797 * because vm_map_delete() already performed 2798 * pmap_remove() on the only mapping to this range 2799 * of pages. 2800 */ 2801 vm_object_page_remove(object, offidxstart, offidxend, 2802 OBJPR_NOTMAPPED); 2803 if (object->type == OBJT_SWAP) 2804 swap_pager_freespace(object, offidxstart, count); 2805 if (offidxend >= object->size && 2806 offidxstart < object->size) { 2807 size1 = object->size; 2808 object->size = offidxstart; 2809 if (object->cred != NULL) { 2810 size1 -= object->size; 2811 KASSERT(object->charge >= ptoa(size1), 2812 ("vm_map_entry_delete: object->charge < 0")); 2813 swap_release_by_cred(ptoa(size1), object->cred); 2814 object->charge -= ptoa(size1); 2815 } 2816 } 2817 } 2818 VM_OBJECT_WUNLOCK(object); 2819 } else 2820 entry->object.vm_object = NULL; 2821 if (map->system_map) 2822 vm_map_entry_deallocate(entry, TRUE); 2823 else { 2824 entry->next = curthread->td_map_def_user; 2825 curthread->td_map_def_user = entry; 2826 } 2827 } 2828 2829 /* 2830 * vm_map_delete: [ internal use only ] 2831 * 2832 * Deallocates the given address range from the target 2833 * map. 2834 */ 2835 int 2836 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2837 { 2838 vm_map_entry_t entry; 2839 vm_map_entry_t first_entry; 2840 2841 VM_MAP_ASSERT_LOCKED(map); 2842 2843 /* 2844 * Find the start of the region, and clip it 2845 */ 2846 if (!vm_map_lookup_entry(map, start, &first_entry)) 2847 entry = first_entry->next; 2848 else { 2849 entry = first_entry; 2850 vm_map_clip_start(map, entry, start); 2851 } 2852 2853 /* 2854 * Step through all entries in this region 2855 */ 2856 while ((entry != &map->header) && (entry->start < end)) { 2857 vm_map_entry_t next; 2858 2859 /* 2860 * Wait for wiring or unwiring of an entry to complete. 2861 * Also wait for any system wirings to disappear on 2862 * user maps. 2863 */ 2864 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2865 (vm_map_pmap(map) != kernel_pmap && 2866 vm_map_entry_system_wired_count(entry) != 0)) { 2867 unsigned int last_timestamp; 2868 vm_offset_t saved_start; 2869 vm_map_entry_t tmp_entry; 2870 2871 saved_start = entry->start; 2872 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2873 last_timestamp = map->timestamp; 2874 (void) vm_map_unlock_and_wait(map, 0); 2875 vm_map_lock(map); 2876 if (last_timestamp + 1 != map->timestamp) { 2877 /* 2878 * Look again for the entry because the map was 2879 * modified while it was unlocked. 2880 * Specifically, the entry may have been 2881 * clipped, merged, or deleted. 2882 */ 2883 if (!vm_map_lookup_entry(map, saved_start, 2884 &tmp_entry)) 2885 entry = tmp_entry->next; 2886 else { 2887 entry = tmp_entry; 2888 vm_map_clip_start(map, entry, 2889 saved_start); 2890 } 2891 } 2892 continue; 2893 } 2894 vm_map_clip_end(map, entry, end); 2895 2896 next = entry->next; 2897 2898 /* 2899 * Unwire before removing addresses from the pmap; otherwise, 2900 * unwiring will put the entries back in the pmap. 2901 */ 2902 if (entry->wired_count != 0) { 2903 vm_map_entry_unwire(map, entry); 2904 } 2905 2906 pmap_remove(map->pmap, entry->start, entry->end); 2907 2908 /* 2909 * Delete the entry only after removing all pmap 2910 * entries pointing to its pages. (Otherwise, its 2911 * page frames may be reallocated, and any modify bits 2912 * will be set in the wrong object!) 2913 */ 2914 vm_map_entry_delete(map, entry); 2915 entry = next; 2916 } 2917 return (KERN_SUCCESS); 2918 } 2919 2920 /* 2921 * vm_map_remove: 2922 * 2923 * Remove the given address range from the target map. 2924 * This is the exported form of vm_map_delete. 2925 */ 2926 int 2927 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2928 { 2929 int result; 2930 2931 vm_map_lock(map); 2932 VM_MAP_RANGE_CHECK(map, start, end); 2933 result = vm_map_delete(map, start, end); 2934 vm_map_unlock(map); 2935 return (result); 2936 } 2937 2938 /* 2939 * vm_map_check_protection: 2940 * 2941 * Assert that the target map allows the specified privilege on the 2942 * entire address region given. The entire region must be allocated. 2943 * 2944 * WARNING! This code does not and should not check whether the 2945 * contents of the region is accessible. For example a smaller file 2946 * might be mapped into a larger address space. 2947 * 2948 * NOTE! This code is also called by munmap(). 2949 * 2950 * The map must be locked. A read lock is sufficient. 2951 */ 2952 boolean_t 2953 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2954 vm_prot_t protection) 2955 { 2956 vm_map_entry_t entry; 2957 vm_map_entry_t tmp_entry; 2958 2959 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2960 return (FALSE); 2961 entry = tmp_entry; 2962 2963 while (start < end) { 2964 if (entry == &map->header) 2965 return (FALSE); 2966 /* 2967 * No holes allowed! 2968 */ 2969 if (start < entry->start) 2970 return (FALSE); 2971 /* 2972 * Check protection associated with entry. 2973 */ 2974 if ((entry->protection & protection) != protection) 2975 return (FALSE); 2976 /* go to next entry */ 2977 start = entry->end; 2978 entry = entry->next; 2979 } 2980 return (TRUE); 2981 } 2982 2983 /* 2984 * vm_map_copy_entry: 2985 * 2986 * Copies the contents of the source entry to the destination 2987 * entry. The entries *must* be aligned properly. 2988 */ 2989 static void 2990 vm_map_copy_entry( 2991 vm_map_t src_map, 2992 vm_map_t dst_map, 2993 vm_map_entry_t src_entry, 2994 vm_map_entry_t dst_entry, 2995 vm_ooffset_t *fork_charge) 2996 { 2997 vm_object_t src_object; 2998 vm_map_entry_t fake_entry; 2999 vm_offset_t size; 3000 struct ucred *cred; 3001 int charged; 3002 3003 VM_MAP_ASSERT_LOCKED(dst_map); 3004 3005 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3006 return; 3007 3008 if (src_entry->wired_count == 0) { 3009 3010 /* 3011 * If the source entry is marked needs_copy, it is already 3012 * write-protected. 3013 */ 3014 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3015 pmap_protect(src_map->pmap, 3016 src_entry->start, 3017 src_entry->end, 3018 src_entry->protection & ~VM_PROT_WRITE); 3019 } 3020 3021 /* 3022 * Make a copy of the object. 3023 */ 3024 size = src_entry->end - src_entry->start; 3025 if ((src_object = src_entry->object.vm_object) != NULL) { 3026 VM_OBJECT_WLOCK(src_object); 3027 charged = ENTRY_CHARGED(src_entry); 3028 if ((src_object->handle == NULL) && 3029 (src_object->type == OBJT_DEFAULT || 3030 src_object->type == OBJT_SWAP)) { 3031 vm_object_collapse(src_object); 3032 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3033 vm_object_split(src_entry); 3034 src_object = src_entry->object.vm_object; 3035 } 3036 } 3037 vm_object_reference_locked(src_object); 3038 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3039 if (src_entry->cred != NULL && 3040 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3041 KASSERT(src_object->cred == NULL, 3042 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3043 src_object)); 3044 src_object->cred = src_entry->cred; 3045 src_object->charge = size; 3046 } 3047 VM_OBJECT_WUNLOCK(src_object); 3048 dst_entry->object.vm_object = src_object; 3049 if (charged) { 3050 cred = curthread->td_ucred; 3051 crhold(cred); 3052 dst_entry->cred = cred; 3053 *fork_charge += size; 3054 if (!(src_entry->eflags & 3055 MAP_ENTRY_NEEDS_COPY)) { 3056 crhold(cred); 3057 src_entry->cred = cred; 3058 *fork_charge += size; 3059 } 3060 } 3061 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3062 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3063 dst_entry->offset = src_entry->offset; 3064 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3065 /* 3066 * MAP_ENTRY_VN_WRITECNT cannot 3067 * indicate write reference from 3068 * src_entry, since the entry is 3069 * marked as needs copy. Allocate a 3070 * fake entry that is used to 3071 * decrement object->un_pager.vnp.writecount 3072 * at the appropriate time. Attach 3073 * fake_entry to the deferred list. 3074 */ 3075 fake_entry = vm_map_entry_create(dst_map); 3076 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3077 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3078 vm_object_reference(src_object); 3079 fake_entry->object.vm_object = src_object; 3080 fake_entry->start = src_entry->start; 3081 fake_entry->end = src_entry->end; 3082 fake_entry->next = curthread->td_map_def_user; 3083 curthread->td_map_def_user = fake_entry; 3084 } 3085 } else { 3086 dst_entry->object.vm_object = NULL; 3087 dst_entry->offset = 0; 3088 if (src_entry->cred != NULL) { 3089 dst_entry->cred = curthread->td_ucred; 3090 crhold(dst_entry->cred); 3091 *fork_charge += size; 3092 } 3093 } 3094 3095 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3096 dst_entry->end - dst_entry->start, src_entry->start); 3097 } else { 3098 /* 3099 * Of course, wired down pages can't be set copy-on-write. 3100 * Cause wired pages to be copied into the new map by 3101 * simulating faults (the new pages are pageable) 3102 */ 3103 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3104 fork_charge); 3105 } 3106 } 3107 3108 /* 3109 * vmspace_map_entry_forked: 3110 * Update the newly-forked vmspace each time a map entry is inherited 3111 * or copied. The values for vm_dsize and vm_tsize are approximate 3112 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3113 */ 3114 static void 3115 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3116 vm_map_entry_t entry) 3117 { 3118 vm_size_t entrysize; 3119 vm_offset_t newend; 3120 3121 entrysize = entry->end - entry->start; 3122 vm2->vm_map.size += entrysize; 3123 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3124 vm2->vm_ssize += btoc(entrysize); 3125 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3126 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3127 newend = MIN(entry->end, 3128 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3129 vm2->vm_dsize += btoc(newend - entry->start); 3130 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3131 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3132 newend = MIN(entry->end, 3133 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3134 vm2->vm_tsize += btoc(newend - entry->start); 3135 } 3136 } 3137 3138 /* 3139 * vmspace_fork: 3140 * Create a new process vmspace structure and vm_map 3141 * based on those of an existing process. The new map 3142 * is based on the old map, according to the inheritance 3143 * values on the regions in that map. 3144 * 3145 * XXX It might be worth coalescing the entries added to the new vmspace. 3146 * 3147 * The source map must not be locked. 3148 */ 3149 struct vmspace * 3150 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3151 { 3152 struct vmspace *vm2; 3153 vm_map_t new_map, old_map; 3154 vm_map_entry_t new_entry, old_entry; 3155 vm_object_t object; 3156 int locked; 3157 3158 old_map = &vm1->vm_map; 3159 /* Copy immutable fields of vm1 to vm2. */ 3160 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3161 if (vm2 == NULL) 3162 return (NULL); 3163 vm2->vm_taddr = vm1->vm_taddr; 3164 vm2->vm_daddr = vm1->vm_daddr; 3165 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3166 vm_map_lock(old_map); 3167 if (old_map->busy) 3168 vm_map_wait_busy(old_map); 3169 new_map = &vm2->vm_map; 3170 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3171 KASSERT(locked, ("vmspace_fork: lock failed")); 3172 3173 old_entry = old_map->header.next; 3174 3175 while (old_entry != &old_map->header) { 3176 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3177 panic("vm_map_fork: encountered a submap"); 3178 3179 switch (old_entry->inheritance) { 3180 case VM_INHERIT_NONE: 3181 break; 3182 3183 case VM_INHERIT_SHARE: 3184 /* 3185 * Clone the entry, creating the shared object if necessary. 3186 */ 3187 object = old_entry->object.vm_object; 3188 if (object == NULL) { 3189 object = vm_object_allocate(OBJT_DEFAULT, 3190 atop(old_entry->end - old_entry->start)); 3191 old_entry->object.vm_object = object; 3192 old_entry->offset = 0; 3193 if (old_entry->cred != NULL) { 3194 object->cred = old_entry->cred; 3195 object->charge = old_entry->end - 3196 old_entry->start; 3197 old_entry->cred = NULL; 3198 } 3199 } 3200 3201 /* 3202 * Add the reference before calling vm_object_shadow 3203 * to insure that a shadow object is created. 3204 */ 3205 vm_object_reference(object); 3206 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3207 vm_object_shadow(&old_entry->object.vm_object, 3208 &old_entry->offset, 3209 old_entry->end - old_entry->start); 3210 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3211 /* Transfer the second reference too. */ 3212 vm_object_reference( 3213 old_entry->object.vm_object); 3214 3215 /* 3216 * As in vm_map_simplify_entry(), the 3217 * vnode lock will not be acquired in 3218 * this call to vm_object_deallocate(). 3219 */ 3220 vm_object_deallocate(object); 3221 object = old_entry->object.vm_object; 3222 } 3223 VM_OBJECT_WLOCK(object); 3224 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3225 if (old_entry->cred != NULL) { 3226 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3227 object->cred = old_entry->cred; 3228 object->charge = old_entry->end - old_entry->start; 3229 old_entry->cred = NULL; 3230 } 3231 3232 /* 3233 * Assert the correct state of the vnode 3234 * v_writecount while the object is locked, to 3235 * not relock it later for the assertion 3236 * correctness. 3237 */ 3238 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3239 object->type == OBJT_VNODE) { 3240 KASSERT(((struct vnode *)object->handle)-> 3241 v_writecount > 0, 3242 ("vmspace_fork: v_writecount %p", object)); 3243 KASSERT(object->un_pager.vnp.writemappings > 0, 3244 ("vmspace_fork: vnp.writecount %p", 3245 object)); 3246 } 3247 VM_OBJECT_WUNLOCK(object); 3248 3249 /* 3250 * Clone the entry, referencing the shared object. 3251 */ 3252 new_entry = vm_map_entry_create(new_map); 3253 *new_entry = *old_entry; 3254 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3255 MAP_ENTRY_IN_TRANSITION); 3256 new_entry->wiring_thread = NULL; 3257 new_entry->wired_count = 0; 3258 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3259 vnode_pager_update_writecount(object, 3260 new_entry->start, new_entry->end); 3261 } 3262 3263 /* 3264 * Insert the entry into the new map -- we know we're 3265 * inserting at the end of the new map. 3266 */ 3267 vm_map_entry_link(new_map, new_map->header.prev, 3268 new_entry); 3269 vmspace_map_entry_forked(vm1, vm2, new_entry); 3270 3271 /* 3272 * Update the physical map 3273 */ 3274 pmap_copy(new_map->pmap, old_map->pmap, 3275 new_entry->start, 3276 (old_entry->end - old_entry->start), 3277 old_entry->start); 3278 break; 3279 3280 case VM_INHERIT_COPY: 3281 /* 3282 * Clone the entry and link into the map. 3283 */ 3284 new_entry = vm_map_entry_create(new_map); 3285 *new_entry = *old_entry; 3286 /* 3287 * Copied entry is COW over the old object. 3288 */ 3289 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3290 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3291 new_entry->wiring_thread = NULL; 3292 new_entry->wired_count = 0; 3293 new_entry->object.vm_object = NULL; 3294 new_entry->cred = NULL; 3295 vm_map_entry_link(new_map, new_map->header.prev, 3296 new_entry); 3297 vmspace_map_entry_forked(vm1, vm2, new_entry); 3298 vm_map_copy_entry(old_map, new_map, old_entry, 3299 new_entry, fork_charge); 3300 break; 3301 } 3302 old_entry = old_entry->next; 3303 } 3304 /* 3305 * Use inlined vm_map_unlock() to postpone handling the deferred 3306 * map entries, which cannot be done until both old_map and 3307 * new_map locks are released. 3308 */ 3309 sx_xunlock(&old_map->lock); 3310 sx_xunlock(&new_map->lock); 3311 vm_map_process_deferred(); 3312 3313 return (vm2); 3314 } 3315 3316 int 3317 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3318 vm_prot_t prot, vm_prot_t max, int cow) 3319 { 3320 vm_map_entry_t new_entry, prev_entry; 3321 vm_offset_t bot, top; 3322 vm_size_t growsize, init_ssize; 3323 int orient, rv; 3324 rlim_t lmemlim, vmemlim; 3325 3326 /* 3327 * The stack orientation is piggybacked with the cow argument. 3328 * Extract it into orient and mask the cow argument so that we 3329 * don't pass it around further. 3330 * NOTE: We explicitly allow bi-directional stacks. 3331 */ 3332 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3333 cow &= ~orient; 3334 KASSERT(orient != 0, ("No stack grow direction")); 3335 3336 if (addrbos < vm_map_min(map) || 3337 addrbos > vm_map_max(map) || 3338 addrbos + max_ssize < addrbos) 3339 return (KERN_NO_SPACE); 3340 3341 growsize = sgrowsiz; 3342 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3343 3344 PROC_LOCK(curproc); 3345 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3346 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3347 PROC_UNLOCK(curproc); 3348 3349 vm_map_lock(map); 3350 3351 /* If addr is already mapped, no go */ 3352 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3353 vm_map_unlock(map); 3354 return (KERN_NO_SPACE); 3355 } 3356 3357 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3358 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3359 vm_map_unlock(map); 3360 return (KERN_NO_SPACE); 3361 } 3362 } 3363 3364 /* If we would blow our VMEM resource limit, no go */ 3365 if (map->size + init_ssize > vmemlim) { 3366 vm_map_unlock(map); 3367 return (KERN_NO_SPACE); 3368 } 3369 3370 /* 3371 * If we can't accomodate max_ssize in the current mapping, no go. 3372 * However, we need to be aware that subsequent user mappings might 3373 * map into the space we have reserved for stack, and currently this 3374 * space is not protected. 3375 * 3376 * Hopefully we will at least detect this condition when we try to 3377 * grow the stack. 3378 */ 3379 if ((prev_entry->next != &map->header) && 3380 (prev_entry->next->start < addrbos + max_ssize)) { 3381 vm_map_unlock(map); 3382 return (KERN_NO_SPACE); 3383 } 3384 3385 /* 3386 * We initially map a stack of only init_ssize. We will grow as 3387 * needed later. Depending on the orientation of the stack (i.e. 3388 * the grow direction) we either map at the top of the range, the 3389 * bottom of the range or in the middle. 3390 * 3391 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3392 * and cow to be 0. Possibly we should eliminate these as input 3393 * parameters, and just pass these values here in the insert call. 3394 */ 3395 if (orient == MAP_STACK_GROWS_DOWN) 3396 bot = addrbos + max_ssize - init_ssize; 3397 else if (orient == MAP_STACK_GROWS_UP) 3398 bot = addrbos; 3399 else 3400 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3401 top = bot + init_ssize; 3402 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3403 3404 /* Now set the avail_ssize amount. */ 3405 if (rv == KERN_SUCCESS) { 3406 if (prev_entry != &map->header) 3407 vm_map_clip_end(map, prev_entry, bot); 3408 new_entry = prev_entry->next; 3409 if (new_entry->end != top || new_entry->start != bot) 3410 panic("Bad entry start/end for new stack entry"); 3411 3412 new_entry->avail_ssize = max_ssize - init_ssize; 3413 if (orient & MAP_STACK_GROWS_DOWN) 3414 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3415 if (orient & MAP_STACK_GROWS_UP) 3416 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3417 } 3418 3419 vm_map_unlock(map); 3420 return (rv); 3421 } 3422 3423 static int stack_guard_page = 0; 3424 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3425 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3426 &stack_guard_page, 0, 3427 "Insert stack guard page ahead of the growable segments."); 3428 3429 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3430 * desired address is already mapped, or if we successfully grow 3431 * the stack. Also returns KERN_SUCCESS if addr is outside the 3432 * stack range (this is strange, but preserves compatibility with 3433 * the grow function in vm_machdep.c). 3434 */ 3435 int 3436 vm_map_growstack(struct proc *p, vm_offset_t addr) 3437 { 3438 vm_map_entry_t next_entry, prev_entry; 3439 vm_map_entry_t new_entry, stack_entry; 3440 struct vmspace *vm = p->p_vmspace; 3441 vm_map_t map = &vm->vm_map; 3442 vm_offset_t end; 3443 vm_size_t growsize; 3444 size_t grow_amount, max_grow; 3445 rlim_t lmemlim, stacklim, vmemlim; 3446 int is_procstack, rv; 3447 struct ucred *cred; 3448 #ifdef notyet 3449 uint64_t limit; 3450 #endif 3451 #ifdef RACCT 3452 int error; 3453 #endif 3454 3455 Retry: 3456 PROC_LOCK(p); 3457 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3458 stacklim = lim_cur(p, RLIMIT_STACK); 3459 vmemlim = lim_cur(p, RLIMIT_VMEM); 3460 PROC_UNLOCK(p); 3461 3462 vm_map_lock_read(map); 3463 3464 /* If addr is already in the entry range, no need to grow.*/ 3465 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3466 vm_map_unlock_read(map); 3467 return (KERN_SUCCESS); 3468 } 3469 3470 next_entry = prev_entry->next; 3471 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3472 /* 3473 * This entry does not grow upwards. Since the address lies 3474 * beyond this entry, the next entry (if one exists) has to 3475 * be a downward growable entry. The entry list header is 3476 * never a growable entry, so it suffices to check the flags. 3477 */ 3478 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3479 vm_map_unlock_read(map); 3480 return (KERN_SUCCESS); 3481 } 3482 stack_entry = next_entry; 3483 } else { 3484 /* 3485 * This entry grows upward. If the next entry does not at 3486 * least grow downwards, this is the entry we need to grow. 3487 * otherwise we have two possible choices and we have to 3488 * select one. 3489 */ 3490 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3491 /* 3492 * We have two choices; grow the entry closest to 3493 * the address to minimize the amount of growth. 3494 */ 3495 if (addr - prev_entry->end <= next_entry->start - addr) 3496 stack_entry = prev_entry; 3497 else 3498 stack_entry = next_entry; 3499 } else 3500 stack_entry = prev_entry; 3501 } 3502 3503 if (stack_entry == next_entry) { 3504 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3505 KASSERT(addr < stack_entry->start, ("foo")); 3506 end = (prev_entry != &map->header) ? prev_entry->end : 3507 stack_entry->start - stack_entry->avail_ssize; 3508 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3509 max_grow = stack_entry->start - end; 3510 } else { 3511 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3512 KASSERT(addr >= stack_entry->end, ("foo")); 3513 end = (next_entry != &map->header) ? next_entry->start : 3514 stack_entry->end + stack_entry->avail_ssize; 3515 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3516 max_grow = end - stack_entry->end; 3517 } 3518 3519 if (grow_amount > stack_entry->avail_ssize) { 3520 vm_map_unlock_read(map); 3521 return (KERN_NO_SPACE); 3522 } 3523 3524 /* 3525 * If there is no longer enough space between the entries nogo, and 3526 * adjust the available space. Note: this should only happen if the 3527 * user has mapped into the stack area after the stack was created, 3528 * and is probably an error. 3529 * 3530 * This also effectively destroys any guard page the user might have 3531 * intended by limiting the stack size. 3532 */ 3533 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3534 if (vm_map_lock_upgrade(map)) 3535 goto Retry; 3536 3537 stack_entry->avail_ssize = max_grow; 3538 3539 vm_map_unlock(map); 3540 return (KERN_NO_SPACE); 3541 } 3542 3543 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3544 3545 /* 3546 * If this is the main process stack, see if we're over the stack 3547 * limit. 3548 */ 3549 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3550 vm_map_unlock_read(map); 3551 return (KERN_NO_SPACE); 3552 } 3553 #ifdef RACCT 3554 PROC_LOCK(p); 3555 if (is_procstack && 3556 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3557 PROC_UNLOCK(p); 3558 vm_map_unlock_read(map); 3559 return (KERN_NO_SPACE); 3560 } 3561 PROC_UNLOCK(p); 3562 #endif 3563 3564 /* Round up the grow amount modulo sgrowsiz */ 3565 growsize = sgrowsiz; 3566 grow_amount = roundup(grow_amount, growsize); 3567 if (grow_amount > stack_entry->avail_ssize) 3568 grow_amount = stack_entry->avail_ssize; 3569 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3570 grow_amount = trunc_page((vm_size_t)stacklim) - 3571 ctob(vm->vm_ssize); 3572 } 3573 #ifdef notyet 3574 PROC_LOCK(p); 3575 limit = racct_get_available(p, RACCT_STACK); 3576 PROC_UNLOCK(p); 3577 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3578 grow_amount = limit - ctob(vm->vm_ssize); 3579 #endif 3580 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3581 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3582 vm_map_unlock_read(map); 3583 rv = KERN_NO_SPACE; 3584 goto out; 3585 } 3586 #ifdef RACCT 3587 PROC_LOCK(p); 3588 if (racct_set(p, RACCT_MEMLOCK, 3589 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3590 PROC_UNLOCK(p); 3591 vm_map_unlock_read(map); 3592 rv = KERN_NO_SPACE; 3593 goto out; 3594 } 3595 PROC_UNLOCK(p); 3596 #endif 3597 } 3598 /* If we would blow our VMEM resource limit, no go */ 3599 if (map->size + grow_amount > vmemlim) { 3600 vm_map_unlock_read(map); 3601 rv = KERN_NO_SPACE; 3602 goto out; 3603 } 3604 #ifdef RACCT 3605 PROC_LOCK(p); 3606 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3607 PROC_UNLOCK(p); 3608 vm_map_unlock_read(map); 3609 rv = KERN_NO_SPACE; 3610 goto out; 3611 } 3612 PROC_UNLOCK(p); 3613 #endif 3614 3615 if (vm_map_lock_upgrade(map)) 3616 goto Retry; 3617 3618 if (stack_entry == next_entry) { 3619 /* 3620 * Growing downward. 3621 */ 3622 /* Get the preliminary new entry start value */ 3623 addr = stack_entry->start - grow_amount; 3624 3625 /* 3626 * If this puts us into the previous entry, cut back our 3627 * growth to the available space. Also, see the note above. 3628 */ 3629 if (addr < end) { 3630 stack_entry->avail_ssize = max_grow; 3631 addr = end; 3632 if (stack_guard_page) 3633 addr += PAGE_SIZE; 3634 } 3635 3636 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3637 next_entry->protection, next_entry->max_protection, 0); 3638 3639 /* Adjust the available stack space by the amount we grew. */ 3640 if (rv == KERN_SUCCESS) { 3641 if (prev_entry != &map->header) 3642 vm_map_clip_end(map, prev_entry, addr); 3643 new_entry = prev_entry->next; 3644 KASSERT(new_entry == stack_entry->prev, ("foo")); 3645 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3646 KASSERT(new_entry->start == addr, ("foo")); 3647 grow_amount = new_entry->end - new_entry->start; 3648 new_entry->avail_ssize = stack_entry->avail_ssize - 3649 grow_amount; 3650 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3651 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3652 } 3653 } else { 3654 /* 3655 * Growing upward. 3656 */ 3657 addr = stack_entry->end + grow_amount; 3658 3659 /* 3660 * If this puts us into the next entry, cut back our growth 3661 * to the available space. Also, see the note above. 3662 */ 3663 if (addr > end) { 3664 stack_entry->avail_ssize = end - stack_entry->end; 3665 addr = end; 3666 if (stack_guard_page) 3667 addr -= PAGE_SIZE; 3668 } 3669 3670 grow_amount = addr - stack_entry->end; 3671 cred = stack_entry->cred; 3672 if (cred == NULL && stack_entry->object.vm_object != NULL) 3673 cred = stack_entry->object.vm_object->cred; 3674 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3675 rv = KERN_NO_SPACE; 3676 /* Grow the underlying object if applicable. */ 3677 else if (stack_entry->object.vm_object == NULL || 3678 vm_object_coalesce(stack_entry->object.vm_object, 3679 stack_entry->offset, 3680 (vm_size_t)(stack_entry->end - stack_entry->start), 3681 (vm_size_t)grow_amount, cred != NULL)) { 3682 map->size += (addr - stack_entry->end); 3683 /* Update the current entry. */ 3684 stack_entry->end = addr; 3685 stack_entry->avail_ssize -= grow_amount; 3686 vm_map_entry_resize_free(map, stack_entry); 3687 rv = KERN_SUCCESS; 3688 3689 if (next_entry != &map->header) 3690 vm_map_clip_start(map, next_entry, addr); 3691 } else 3692 rv = KERN_FAILURE; 3693 } 3694 3695 if (rv == KERN_SUCCESS && is_procstack) 3696 vm->vm_ssize += btoc(grow_amount); 3697 3698 vm_map_unlock(map); 3699 3700 /* 3701 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3702 */ 3703 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3704 vm_map_wire(map, 3705 (stack_entry == next_entry) ? addr : addr - grow_amount, 3706 (stack_entry == next_entry) ? stack_entry->start : addr, 3707 (p->p_flag & P_SYSTEM) 3708 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3709 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3710 } 3711 3712 out: 3713 #ifdef RACCT 3714 if (rv != KERN_SUCCESS) { 3715 PROC_LOCK(p); 3716 error = racct_set(p, RACCT_VMEM, map->size); 3717 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3718 if (!old_mlock) { 3719 error = racct_set(p, RACCT_MEMLOCK, 3720 ptoa(pmap_wired_count(map->pmap))); 3721 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3722 } 3723 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3724 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3725 PROC_UNLOCK(p); 3726 } 3727 #endif 3728 3729 return (rv); 3730 } 3731 3732 /* 3733 * Unshare the specified VM space for exec. If other processes are 3734 * mapped to it, then create a new one. The new vmspace is null. 3735 */ 3736 int 3737 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3738 { 3739 struct vmspace *oldvmspace = p->p_vmspace; 3740 struct vmspace *newvmspace; 3741 3742 newvmspace = vmspace_alloc(minuser, maxuser); 3743 if (newvmspace == NULL) 3744 return (ENOMEM); 3745 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3746 /* 3747 * This code is written like this for prototype purposes. The 3748 * goal is to avoid running down the vmspace here, but let the 3749 * other process's that are still using the vmspace to finally 3750 * run it down. Even though there is little or no chance of blocking 3751 * here, it is a good idea to keep this form for future mods. 3752 */ 3753 PROC_VMSPACE_LOCK(p); 3754 p->p_vmspace = newvmspace; 3755 PROC_VMSPACE_UNLOCK(p); 3756 if (p == curthread->td_proc) 3757 pmap_activate(curthread); 3758 vmspace_free(oldvmspace); 3759 return (0); 3760 } 3761 3762 /* 3763 * Unshare the specified VM space for forcing COW. This 3764 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3765 */ 3766 int 3767 vmspace_unshare(struct proc *p) 3768 { 3769 struct vmspace *oldvmspace = p->p_vmspace; 3770 struct vmspace *newvmspace; 3771 vm_ooffset_t fork_charge; 3772 3773 if (oldvmspace->vm_refcnt == 1) 3774 return (0); 3775 fork_charge = 0; 3776 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3777 if (newvmspace == NULL) 3778 return (ENOMEM); 3779 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3780 vmspace_free(newvmspace); 3781 return (ENOMEM); 3782 } 3783 PROC_VMSPACE_LOCK(p); 3784 p->p_vmspace = newvmspace; 3785 PROC_VMSPACE_UNLOCK(p); 3786 if (p == curthread->td_proc) 3787 pmap_activate(curthread); 3788 vmspace_free(oldvmspace); 3789 return (0); 3790 } 3791 3792 /* 3793 * vm_map_lookup: 3794 * 3795 * Finds the VM object, offset, and 3796 * protection for a given virtual address in the 3797 * specified map, assuming a page fault of the 3798 * type specified. 3799 * 3800 * Leaves the map in question locked for read; return 3801 * values are guaranteed until a vm_map_lookup_done 3802 * call is performed. Note that the map argument 3803 * is in/out; the returned map must be used in 3804 * the call to vm_map_lookup_done. 3805 * 3806 * A handle (out_entry) is returned for use in 3807 * vm_map_lookup_done, to make that fast. 3808 * 3809 * If a lookup is requested with "write protection" 3810 * specified, the map may be changed to perform virtual 3811 * copying operations, although the data referenced will 3812 * remain the same. 3813 */ 3814 int 3815 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3816 vm_offset_t vaddr, 3817 vm_prot_t fault_typea, 3818 vm_map_entry_t *out_entry, /* OUT */ 3819 vm_object_t *object, /* OUT */ 3820 vm_pindex_t *pindex, /* OUT */ 3821 vm_prot_t *out_prot, /* OUT */ 3822 boolean_t *wired) /* OUT */ 3823 { 3824 vm_map_entry_t entry; 3825 vm_map_t map = *var_map; 3826 vm_prot_t prot; 3827 vm_prot_t fault_type = fault_typea; 3828 vm_object_t eobject; 3829 vm_size_t size; 3830 struct ucred *cred; 3831 3832 RetryLookup:; 3833 3834 vm_map_lock_read(map); 3835 3836 /* 3837 * Lookup the faulting address. 3838 */ 3839 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3840 vm_map_unlock_read(map); 3841 return (KERN_INVALID_ADDRESS); 3842 } 3843 3844 entry = *out_entry; 3845 3846 /* 3847 * Handle submaps. 3848 */ 3849 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3850 vm_map_t old_map = map; 3851 3852 *var_map = map = entry->object.sub_map; 3853 vm_map_unlock_read(old_map); 3854 goto RetryLookup; 3855 } 3856 3857 /* 3858 * Check whether this task is allowed to have this page. 3859 */ 3860 prot = entry->protection; 3861 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3862 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3863 vm_map_unlock_read(map); 3864 return (KERN_PROTECTION_FAILURE); 3865 } 3866 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3867 (entry->eflags & MAP_ENTRY_COW) && 3868 (fault_type & VM_PROT_WRITE)) { 3869 vm_map_unlock_read(map); 3870 return (KERN_PROTECTION_FAILURE); 3871 } 3872 if ((fault_typea & VM_PROT_COPY) != 0 && 3873 (entry->max_protection & VM_PROT_WRITE) == 0 && 3874 (entry->eflags & MAP_ENTRY_COW) == 0) { 3875 vm_map_unlock_read(map); 3876 return (KERN_PROTECTION_FAILURE); 3877 } 3878 3879 /* 3880 * If this page is not pageable, we have to get it for all possible 3881 * accesses. 3882 */ 3883 *wired = (entry->wired_count != 0); 3884 if (*wired) 3885 fault_type = entry->protection; 3886 size = entry->end - entry->start; 3887 /* 3888 * If the entry was copy-on-write, we either ... 3889 */ 3890 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3891 /* 3892 * If we want to write the page, we may as well handle that 3893 * now since we've got the map locked. 3894 * 3895 * If we don't need to write the page, we just demote the 3896 * permissions allowed. 3897 */ 3898 if ((fault_type & VM_PROT_WRITE) != 0 || 3899 (fault_typea & VM_PROT_COPY) != 0) { 3900 /* 3901 * Make a new object, and place it in the object 3902 * chain. Note that no new references have appeared 3903 * -- one just moved from the map to the new 3904 * object. 3905 */ 3906 if (vm_map_lock_upgrade(map)) 3907 goto RetryLookup; 3908 3909 if (entry->cred == NULL) { 3910 /* 3911 * The debugger owner is charged for 3912 * the memory. 3913 */ 3914 cred = curthread->td_ucred; 3915 crhold(cred); 3916 if (!swap_reserve_by_cred(size, cred)) { 3917 crfree(cred); 3918 vm_map_unlock(map); 3919 return (KERN_RESOURCE_SHORTAGE); 3920 } 3921 entry->cred = cred; 3922 } 3923 vm_object_shadow(&entry->object.vm_object, 3924 &entry->offset, size); 3925 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3926 eobject = entry->object.vm_object; 3927 if (eobject->cred != NULL) { 3928 /* 3929 * The object was not shadowed. 3930 */ 3931 swap_release_by_cred(size, entry->cred); 3932 crfree(entry->cred); 3933 entry->cred = NULL; 3934 } else if (entry->cred != NULL) { 3935 VM_OBJECT_WLOCK(eobject); 3936 eobject->cred = entry->cred; 3937 eobject->charge = size; 3938 VM_OBJECT_WUNLOCK(eobject); 3939 entry->cred = NULL; 3940 } 3941 3942 vm_map_lock_downgrade(map); 3943 } else { 3944 /* 3945 * We're attempting to read a copy-on-write page -- 3946 * don't allow writes. 3947 */ 3948 prot &= ~VM_PROT_WRITE; 3949 } 3950 } 3951 3952 /* 3953 * Create an object if necessary. 3954 */ 3955 if (entry->object.vm_object == NULL && 3956 !map->system_map) { 3957 if (vm_map_lock_upgrade(map)) 3958 goto RetryLookup; 3959 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3960 atop(size)); 3961 entry->offset = 0; 3962 if (entry->cred != NULL) { 3963 VM_OBJECT_WLOCK(entry->object.vm_object); 3964 entry->object.vm_object->cred = entry->cred; 3965 entry->object.vm_object->charge = size; 3966 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3967 entry->cred = NULL; 3968 } 3969 vm_map_lock_downgrade(map); 3970 } 3971 3972 /* 3973 * Return the object/offset from this entry. If the entry was 3974 * copy-on-write or empty, it has been fixed up. 3975 */ 3976 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3977 *object = entry->object.vm_object; 3978 3979 *out_prot = prot; 3980 return (KERN_SUCCESS); 3981 } 3982 3983 /* 3984 * vm_map_lookup_locked: 3985 * 3986 * Lookup the faulting address. A version of vm_map_lookup that returns 3987 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3988 */ 3989 int 3990 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3991 vm_offset_t vaddr, 3992 vm_prot_t fault_typea, 3993 vm_map_entry_t *out_entry, /* OUT */ 3994 vm_object_t *object, /* OUT */ 3995 vm_pindex_t *pindex, /* OUT */ 3996 vm_prot_t *out_prot, /* OUT */ 3997 boolean_t *wired) /* OUT */ 3998 { 3999 vm_map_entry_t entry; 4000 vm_map_t map = *var_map; 4001 vm_prot_t prot; 4002 vm_prot_t fault_type = fault_typea; 4003 4004 /* 4005 * Lookup the faulting address. 4006 */ 4007 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4008 return (KERN_INVALID_ADDRESS); 4009 4010 entry = *out_entry; 4011 4012 /* 4013 * Fail if the entry refers to a submap. 4014 */ 4015 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4016 return (KERN_FAILURE); 4017 4018 /* 4019 * Check whether this task is allowed to have this page. 4020 */ 4021 prot = entry->protection; 4022 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4023 if ((fault_type & prot) != fault_type) 4024 return (KERN_PROTECTION_FAILURE); 4025 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4026 (entry->eflags & MAP_ENTRY_COW) && 4027 (fault_type & VM_PROT_WRITE)) 4028 return (KERN_PROTECTION_FAILURE); 4029 4030 /* 4031 * If this page is not pageable, we have to get it for all possible 4032 * accesses. 4033 */ 4034 *wired = (entry->wired_count != 0); 4035 if (*wired) 4036 fault_type = entry->protection; 4037 4038 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4039 /* 4040 * Fail if the entry was copy-on-write for a write fault. 4041 */ 4042 if (fault_type & VM_PROT_WRITE) 4043 return (KERN_FAILURE); 4044 /* 4045 * We're attempting to read a copy-on-write page -- 4046 * don't allow writes. 4047 */ 4048 prot &= ~VM_PROT_WRITE; 4049 } 4050 4051 /* 4052 * Fail if an object should be created. 4053 */ 4054 if (entry->object.vm_object == NULL && !map->system_map) 4055 return (KERN_FAILURE); 4056 4057 /* 4058 * Return the object/offset from this entry. If the entry was 4059 * copy-on-write or empty, it has been fixed up. 4060 */ 4061 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4062 *object = entry->object.vm_object; 4063 4064 *out_prot = prot; 4065 return (KERN_SUCCESS); 4066 } 4067 4068 /* 4069 * vm_map_lookup_done: 4070 * 4071 * Releases locks acquired by a vm_map_lookup 4072 * (according to the handle returned by that lookup). 4073 */ 4074 void 4075 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4076 { 4077 /* 4078 * Unlock the main-level map 4079 */ 4080 vm_map_unlock_read(map); 4081 } 4082 4083 #include "opt_ddb.h" 4084 #ifdef DDB 4085 #include <sys/kernel.h> 4086 4087 #include <ddb/ddb.h> 4088 4089 static void 4090 vm_map_print(vm_map_t map) 4091 { 4092 vm_map_entry_t entry; 4093 4094 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4095 (void *)map, 4096 (void *)map->pmap, map->nentries, map->timestamp); 4097 4098 db_indent += 2; 4099 for (entry = map->header.next; entry != &map->header; 4100 entry = entry->next) { 4101 db_iprintf("map entry %p: start=%p, end=%p\n", 4102 (void *)entry, (void *)entry->start, (void *)entry->end); 4103 { 4104 static char *inheritance_name[4] = 4105 {"share", "copy", "none", "donate_copy"}; 4106 4107 db_iprintf(" prot=%x/%x/%s", 4108 entry->protection, 4109 entry->max_protection, 4110 inheritance_name[(int)(unsigned char)entry->inheritance]); 4111 if (entry->wired_count != 0) 4112 db_printf(", wired"); 4113 } 4114 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4115 db_printf(", share=%p, offset=0x%jx\n", 4116 (void *)entry->object.sub_map, 4117 (uintmax_t)entry->offset); 4118 if ((entry->prev == &map->header) || 4119 (entry->prev->object.sub_map != 4120 entry->object.sub_map)) { 4121 db_indent += 2; 4122 vm_map_print((vm_map_t)entry->object.sub_map); 4123 db_indent -= 2; 4124 } 4125 } else { 4126 if (entry->cred != NULL) 4127 db_printf(", ruid %d", entry->cred->cr_ruid); 4128 db_printf(", object=%p, offset=0x%jx", 4129 (void *)entry->object.vm_object, 4130 (uintmax_t)entry->offset); 4131 if (entry->object.vm_object && entry->object.vm_object->cred) 4132 db_printf(", obj ruid %d charge %jx", 4133 entry->object.vm_object->cred->cr_ruid, 4134 (uintmax_t)entry->object.vm_object->charge); 4135 if (entry->eflags & MAP_ENTRY_COW) 4136 db_printf(", copy (%s)", 4137 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4138 db_printf("\n"); 4139 4140 if ((entry->prev == &map->header) || 4141 (entry->prev->object.vm_object != 4142 entry->object.vm_object)) { 4143 db_indent += 2; 4144 vm_object_print((db_expr_t)(intptr_t) 4145 entry->object.vm_object, 4146 1, 0, (char *)0); 4147 db_indent -= 2; 4148 } 4149 } 4150 } 4151 db_indent -= 2; 4152 } 4153 4154 DB_SHOW_COMMAND(map, map) 4155 { 4156 4157 if (!have_addr) { 4158 db_printf("usage: show map <addr>\n"); 4159 return; 4160 } 4161 vm_map_print((vm_map_t)addr); 4162 } 4163 4164 DB_SHOW_COMMAND(procvm, procvm) 4165 { 4166 struct proc *p; 4167 4168 if (have_addr) { 4169 p = (struct proc *) addr; 4170 } else { 4171 p = curproc; 4172 } 4173 4174 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4175 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4176 (void *)vmspace_pmap(p->p_vmspace)); 4177 4178 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4179 } 4180 4181 #endif /* DDB */ 4182