xref: /freebsd/sys/vm/vm_map.c (revision 009ea47eb2d21856af4529aaaca32cd67748daea)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
203 #ifdef INVARIANTS
204 	    vmspace_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 }
210 
211 static void
212 vmspace_zfini(void *mem, int size)
213 {
214 	struct vmspace *vm;
215 
216 	vm = (struct vmspace *)mem;
217 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
218 }
219 
220 static int
221 vmspace_zinit(void *mem, int size, int flags)
222 {
223 	struct vmspace *vm;
224 
225 	vm = (struct vmspace *)mem;
226 
227 	vm->vm_map.pmap = NULL;
228 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
229 	PMAP_LOCK_INIT(vmspace_pmap(vm));
230 	return (0);
231 }
232 
233 static void
234 vm_map_zfini(void *mem, int size)
235 {
236 	vm_map_t map;
237 
238 	map = (vm_map_t)mem;
239 	mtx_destroy(&map->system_mtx);
240 	sx_destroy(&map->lock);
241 }
242 
243 static int
244 vm_map_zinit(void *mem, int size, int flags)
245 {
246 	vm_map_t map;
247 
248 	map = (vm_map_t)mem;
249 	memset(map, 0, sizeof(*map));
250 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
251 	sx_init(&map->lock, "vm map (user)");
252 	return (0);
253 }
254 
255 #ifdef INVARIANTS
256 static void
257 vmspace_zdtor(void *mem, int size, void *arg)
258 {
259 	struct vmspace *vm;
260 
261 	vm = (struct vmspace *)mem;
262 
263 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
264 }
265 static void
266 vm_map_zdtor(void *mem, int size, void *arg)
267 {
268 	vm_map_t map;
269 
270 	map = (vm_map_t)mem;
271 	KASSERT(map->nentries == 0,
272 	    ("map %p nentries == %d on free.",
273 	    map, map->nentries));
274 	KASSERT(map->size == 0,
275 	    ("map %p size == %lu on free.",
276 	    map, (unsigned long)map->size));
277 }
278 #endif	/* INVARIANTS */
279 
280 /*
281  * Allocate a vmspace structure, including a vm_map and pmap,
282  * and initialize those structures.  The refcnt is set to 1.
283  */
284 struct vmspace *
285 vmspace_alloc(min, max)
286 	vm_offset_t min, max;
287 {
288 	struct vmspace *vm;
289 
290 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
291 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
292 		uma_zfree(vmspace_zone, vm);
293 		return (NULL);
294 	}
295 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
296 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
297 	vm->vm_refcnt = 1;
298 	vm->vm_shm = NULL;
299 	vm->vm_swrss = 0;
300 	vm->vm_tsize = 0;
301 	vm->vm_dsize = 0;
302 	vm->vm_ssize = 0;
303 	vm->vm_taddr = 0;
304 	vm->vm_daddr = 0;
305 	vm->vm_maxsaddr = 0;
306 	return (vm);
307 }
308 
309 static void
310 vmspace_container_reset(struct proc *p)
311 {
312 
313 #ifdef RACCT
314 	PROC_LOCK(p);
315 	racct_set(p, RACCT_DATA, 0);
316 	racct_set(p, RACCT_STACK, 0);
317 	racct_set(p, RACCT_RSS, 0);
318 	racct_set(p, RACCT_MEMLOCK, 0);
319 	racct_set(p, RACCT_VMEM, 0);
320 	PROC_UNLOCK(p);
321 #endif
322 }
323 
324 static inline void
325 vmspace_dofree(struct vmspace *vm)
326 {
327 
328 	CTR1(KTR_VM, "vmspace_free: %p", vm);
329 
330 	/*
331 	 * Make sure any SysV shm is freed, it might not have been in
332 	 * exit1().
333 	 */
334 	shmexit(vm);
335 
336 	/*
337 	 * Lock the map, to wait out all other references to it.
338 	 * Delete all of the mappings and pages they hold, then call
339 	 * the pmap module to reclaim anything left.
340 	 */
341 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
342 	    vm->vm_map.max_offset);
343 
344 	pmap_release(vmspace_pmap(vm));
345 	vm->vm_map.pmap = NULL;
346 	uma_zfree(vmspace_zone, vm);
347 }
348 
349 void
350 vmspace_free(struct vmspace *vm)
351 {
352 
353 	if (vm->vm_refcnt == 0)
354 		panic("vmspace_free: attempt to free already freed vmspace");
355 
356 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
357 		vmspace_dofree(vm);
358 }
359 
360 void
361 vmspace_exitfree(struct proc *p)
362 {
363 	struct vmspace *vm;
364 
365 	PROC_VMSPACE_LOCK(p);
366 	vm = p->p_vmspace;
367 	p->p_vmspace = NULL;
368 	PROC_VMSPACE_UNLOCK(p);
369 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
370 	vmspace_free(vm);
371 }
372 
373 void
374 vmspace_exit(struct thread *td)
375 {
376 	int refcnt;
377 	struct vmspace *vm;
378 	struct proc *p;
379 
380 	/*
381 	 * Release user portion of address space.
382 	 * This releases references to vnodes,
383 	 * which could cause I/O if the file has been unlinked.
384 	 * Need to do this early enough that we can still sleep.
385 	 *
386 	 * The last exiting process to reach this point releases as
387 	 * much of the environment as it can. vmspace_dofree() is the
388 	 * slower fallback in case another process had a temporary
389 	 * reference to the vmspace.
390 	 */
391 
392 	p = td->td_proc;
393 	vm = p->p_vmspace;
394 	atomic_add_int(&vmspace0.vm_refcnt, 1);
395 	do {
396 		refcnt = vm->vm_refcnt;
397 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
398 			/* Switch now since other proc might free vmspace */
399 			PROC_VMSPACE_LOCK(p);
400 			p->p_vmspace = &vmspace0;
401 			PROC_VMSPACE_UNLOCK(p);
402 			pmap_activate(td);
403 		}
404 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
405 	if (refcnt == 1) {
406 		if (p->p_vmspace != vm) {
407 			/* vmspace not yet freed, switch back */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = vm;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 		pmap_remove_pages(vmspace_pmap(vm));
414 		/* Switch now since this proc will free vmspace */
415 		PROC_VMSPACE_LOCK(p);
416 		p->p_vmspace = &vmspace0;
417 		PROC_VMSPACE_UNLOCK(p);
418 		pmap_activate(td);
419 		vmspace_dofree(vm);
420 	}
421 	vmspace_container_reset(p);
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	do {
439 		refcnt = vm->vm_refcnt;
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 void
455 _vm_map_lock(vm_map_t map, const char *file, int line)
456 {
457 
458 	if (map->system_map)
459 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
460 	else
461 		sx_xlock_(&map->lock, file, line);
462 	map->timestamp++;
463 }
464 
465 static void
466 vm_map_process_deferred(void)
467 {
468 	struct thread *td;
469 	vm_map_entry_t entry, next;
470 	vm_object_t object;
471 
472 	td = curthread;
473 	entry = td->td_map_def_user;
474 	td->td_map_def_user = NULL;
475 	while (entry != NULL) {
476 		next = entry->next;
477 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
478 			/*
479 			 * Decrement the object's writemappings and
480 			 * possibly the vnode's v_writecount.
481 			 */
482 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
483 			    ("Submap with writecount"));
484 			object = entry->object.vm_object;
485 			KASSERT(object != NULL, ("No object for writecount"));
486 			vnode_pager_release_writecount(object, entry->start,
487 			    entry->end);
488 		}
489 		vm_map_entry_deallocate(entry, FALSE);
490 		entry = next;
491 	}
492 }
493 
494 void
495 _vm_map_unlock(vm_map_t map, const char *file, int line)
496 {
497 
498 	if (map->system_map)
499 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
500 	else {
501 		sx_xunlock_(&map->lock, file, line);
502 		vm_map_process_deferred();
503 	}
504 }
505 
506 void
507 _vm_map_lock_read(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_slock_(&map->lock, file, line);
514 }
515 
516 void
517 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
518 {
519 
520 	if (map->system_map)
521 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
522 	else {
523 		sx_sunlock_(&map->lock, file, line);
524 		vm_map_process_deferred();
525 	}
526 }
527 
528 int
529 _vm_map_trylock(vm_map_t map, const char *file, int line)
530 {
531 	int error;
532 
533 	error = map->system_map ?
534 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
535 	    !sx_try_xlock_(&map->lock, file, line);
536 	if (error == 0)
537 		map->timestamp++;
538 	return (error == 0);
539 }
540 
541 int
542 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
543 {
544 	int error;
545 
546 	error = map->system_map ?
547 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
548 	    !sx_try_slock_(&map->lock, file, line);
549 	return (error == 0);
550 }
551 
552 /*
553  *	_vm_map_lock_upgrade:	[ internal use only ]
554  *
555  *	Tries to upgrade a read (shared) lock on the specified map to a write
556  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
557  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
558  *	returned without a read or write lock held.
559  *
560  *	Requires that the map be read locked.
561  */
562 int
563 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
564 {
565 	unsigned int last_timestamp;
566 
567 	if (map->system_map) {
568 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
569 	} else {
570 		if (!sx_try_upgrade_(&map->lock, file, line)) {
571 			last_timestamp = map->timestamp;
572 			sx_sunlock_(&map->lock, file, line);
573 			vm_map_process_deferred();
574 			/*
575 			 * If the map's timestamp does not change while the
576 			 * map is unlocked, then the upgrade succeeds.
577 			 */
578 			sx_xlock_(&map->lock, file, line);
579 			if (last_timestamp != map->timestamp) {
580 				sx_xunlock_(&map->lock, file, line);
581 				return (1);
582 			}
583 		}
584 	}
585 	map->timestamp++;
586 	return (0);
587 }
588 
589 void
590 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
591 {
592 
593 	if (map->system_map) {
594 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
595 	} else
596 		sx_downgrade_(&map->lock, file, line);
597 }
598 
599 /*
600  *	vm_map_locked:
601  *
602  *	Returns a non-zero value if the caller holds a write (exclusive) lock
603  *	on the specified map and the value "0" otherwise.
604  */
605 int
606 vm_map_locked(vm_map_t map)
607 {
608 
609 	if (map->system_map)
610 		return (mtx_owned(&map->system_mtx));
611 	else
612 		return (sx_xlocked(&map->lock));
613 }
614 
615 #ifdef INVARIANTS
616 static void
617 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
618 {
619 
620 	if (map->system_map)
621 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
622 	else
623 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
624 }
625 
626 #define	VM_MAP_ASSERT_LOCKED(map) \
627     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
628 #else
629 #define	VM_MAP_ASSERT_LOCKED(map)
630 #endif
631 
632 /*
633  *	_vm_map_unlock_and_wait:
634  *
635  *	Atomically releases the lock on the specified map and puts the calling
636  *	thread to sleep.  The calling thread will remain asleep until either
637  *	vm_map_wakeup() is performed on the map or the specified timeout is
638  *	exceeded.
639  *
640  *	WARNING!  This function does not perform deferred deallocations of
641  *	objects and map	entries.  Therefore, the calling thread is expected to
642  *	reacquire the map lock after reawakening and later perform an ordinary
643  *	unlock operation, such as vm_map_unlock(), before completing its
644  *	operation on the map.
645  */
646 int
647 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
648 {
649 
650 	mtx_lock(&map_sleep_mtx);
651 	if (map->system_map)
652 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
653 	else
654 		sx_xunlock_(&map->lock, file, line);
655 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
656 	    timo));
657 }
658 
659 /*
660  *	vm_map_wakeup:
661  *
662  *	Awaken any threads that have slept on the map using
663  *	vm_map_unlock_and_wait().
664  */
665 void
666 vm_map_wakeup(vm_map_t map)
667 {
668 
669 	/*
670 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
671 	 * from being performed (and lost) between the map unlock
672 	 * and the msleep() in _vm_map_unlock_and_wait().
673 	 */
674 	mtx_lock(&map_sleep_mtx);
675 	mtx_unlock(&map_sleep_mtx);
676 	wakeup(&map->root);
677 }
678 
679 void
680 vm_map_busy(vm_map_t map)
681 {
682 
683 	VM_MAP_ASSERT_LOCKED(map);
684 	map->busy++;
685 }
686 
687 void
688 vm_map_unbusy(vm_map_t map)
689 {
690 
691 	VM_MAP_ASSERT_LOCKED(map);
692 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
693 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
694 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
695 		wakeup(&map->busy);
696 	}
697 }
698 
699 void
700 vm_map_wait_busy(vm_map_t map)
701 {
702 
703 	VM_MAP_ASSERT_LOCKED(map);
704 	while (map->busy) {
705 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
706 		if (map->system_map)
707 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
708 		else
709 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
710 	}
711 	map->timestamp++;
712 }
713 
714 long
715 vmspace_resident_count(struct vmspace *vmspace)
716 {
717 	return pmap_resident_count(vmspace_pmap(vmspace));
718 }
719 
720 /*
721  *	vm_map_create:
722  *
723  *	Creates and returns a new empty VM map with
724  *	the given physical map structure, and having
725  *	the given lower and upper address bounds.
726  */
727 vm_map_t
728 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
729 {
730 	vm_map_t result;
731 
732 	result = uma_zalloc(mapzone, M_WAITOK);
733 	CTR1(KTR_VM, "vm_map_create: %p", result);
734 	_vm_map_init(result, pmap, min, max);
735 	return (result);
736 }
737 
738 /*
739  * Initialize an existing vm_map structure
740  * such as that in the vmspace structure.
741  */
742 static void
743 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
744 {
745 
746 	map->header.next = map->header.prev = &map->header;
747 	map->needs_wakeup = FALSE;
748 	map->system_map = 0;
749 	map->pmap = pmap;
750 	map->min_offset = min;
751 	map->max_offset = max;
752 	map->flags = 0;
753 	map->root = NULL;
754 	map->timestamp = 0;
755 	map->busy = 0;
756 }
757 
758 void
759 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
760 {
761 
762 	_vm_map_init(map, pmap, min, max);
763 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
764 	sx_init(&map->lock, "user map");
765 }
766 
767 /*
768  *	vm_map_entry_dispose:	[ internal use only ]
769  *
770  *	Inverse of vm_map_entry_create.
771  */
772 static void
773 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
774 {
775 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
776 }
777 
778 /*
779  *	vm_map_entry_create:	[ internal use only ]
780  *
781  *	Allocates a VM map entry for insertion.
782  *	No entry fields are filled in.
783  */
784 static vm_map_entry_t
785 vm_map_entry_create(vm_map_t map)
786 {
787 	vm_map_entry_t new_entry;
788 
789 	if (map->system_map)
790 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
791 	else
792 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
793 	if (new_entry == NULL)
794 		panic("vm_map_entry_create: kernel resources exhausted");
795 	return (new_entry);
796 }
797 
798 /*
799  *	vm_map_entry_set_behavior:
800  *
801  *	Set the expected access behavior, either normal, random, or
802  *	sequential.
803  */
804 static inline void
805 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
806 {
807 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
808 	    (behavior & MAP_ENTRY_BEHAV_MASK);
809 }
810 
811 /*
812  *	vm_map_entry_set_max_free:
813  *
814  *	Set the max_free field in a vm_map_entry.
815  */
816 static inline void
817 vm_map_entry_set_max_free(vm_map_entry_t entry)
818 {
819 
820 	entry->max_free = entry->adj_free;
821 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
822 		entry->max_free = entry->left->max_free;
823 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
824 		entry->max_free = entry->right->max_free;
825 }
826 
827 /*
828  *	vm_map_entry_splay:
829  *
830  *	The Sleator and Tarjan top-down splay algorithm with the
831  *	following variation.  Max_free must be computed bottom-up, so
832  *	on the downward pass, maintain the left and right spines in
833  *	reverse order.  Then, make a second pass up each side to fix
834  *	the pointers and compute max_free.  The time bound is O(log n)
835  *	amortized.
836  *
837  *	The new root is the vm_map_entry containing "addr", or else an
838  *	adjacent entry (lower or higher) if addr is not in the tree.
839  *
840  *	The map must be locked, and leaves it so.
841  *
842  *	Returns: the new root.
843  */
844 static vm_map_entry_t
845 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
846 {
847 	vm_map_entry_t llist, rlist;
848 	vm_map_entry_t ltree, rtree;
849 	vm_map_entry_t y;
850 
851 	/* Special case of empty tree. */
852 	if (root == NULL)
853 		return (root);
854 
855 	/*
856 	 * Pass One: Splay down the tree until we find addr or a NULL
857 	 * pointer where addr would go.  llist and rlist are the two
858 	 * sides in reverse order (bottom-up), with llist linked by
859 	 * the right pointer and rlist linked by the left pointer in
860 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
861 	 * the two spines.
862 	 */
863 	llist = NULL;
864 	rlist = NULL;
865 	for (;;) {
866 		/* root is never NULL in here. */
867 		if (addr < root->start) {
868 			y = root->left;
869 			if (y == NULL)
870 				break;
871 			if (addr < y->start && y->left != NULL) {
872 				/* Rotate right and put y on rlist. */
873 				root->left = y->right;
874 				y->right = root;
875 				vm_map_entry_set_max_free(root);
876 				root = y->left;
877 				y->left = rlist;
878 				rlist = y;
879 			} else {
880 				/* Put root on rlist. */
881 				root->left = rlist;
882 				rlist = root;
883 				root = y;
884 			}
885 		} else if (addr >= root->end) {
886 			y = root->right;
887 			if (y == NULL)
888 				break;
889 			if (addr >= y->end && y->right != NULL) {
890 				/* Rotate left and put y on llist. */
891 				root->right = y->left;
892 				y->left = root;
893 				vm_map_entry_set_max_free(root);
894 				root = y->right;
895 				y->right = llist;
896 				llist = y;
897 			} else {
898 				/* Put root on llist. */
899 				root->right = llist;
900 				llist = root;
901 				root = y;
902 			}
903 		} else
904 			break;
905 	}
906 
907 	/*
908 	 * Pass Two: Walk back up the two spines, flip the pointers
909 	 * and set max_free.  The subtrees of the root go at the
910 	 * bottom of llist and rlist.
911 	 */
912 	ltree = root->left;
913 	while (llist != NULL) {
914 		y = llist->right;
915 		llist->right = ltree;
916 		vm_map_entry_set_max_free(llist);
917 		ltree = llist;
918 		llist = y;
919 	}
920 	rtree = root->right;
921 	while (rlist != NULL) {
922 		y = rlist->left;
923 		rlist->left = rtree;
924 		vm_map_entry_set_max_free(rlist);
925 		rtree = rlist;
926 		rlist = y;
927 	}
928 
929 	/*
930 	 * Final assembly: add ltree and rtree as subtrees of root.
931 	 */
932 	root->left = ltree;
933 	root->right = rtree;
934 	vm_map_entry_set_max_free(root);
935 
936 	return (root);
937 }
938 
939 /*
940  *	vm_map_entry_{un,}link:
941  *
942  *	Insert/remove entries from maps.
943  */
944 static void
945 vm_map_entry_link(vm_map_t map,
946 		  vm_map_entry_t after_where,
947 		  vm_map_entry_t entry)
948 {
949 
950 	CTR4(KTR_VM,
951 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
952 	    map->nentries, entry, after_where);
953 	VM_MAP_ASSERT_LOCKED(map);
954 	map->nentries++;
955 	entry->prev = after_where;
956 	entry->next = after_where->next;
957 	entry->next->prev = entry;
958 	after_where->next = entry;
959 
960 	if (after_where != &map->header) {
961 		if (after_where != map->root)
962 			vm_map_entry_splay(after_where->start, map->root);
963 		entry->right = after_where->right;
964 		entry->left = after_where;
965 		after_where->right = NULL;
966 		after_where->adj_free = entry->start - after_where->end;
967 		vm_map_entry_set_max_free(after_where);
968 	} else {
969 		entry->right = map->root;
970 		entry->left = NULL;
971 	}
972 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
973 	    entry->next->start) - entry->end;
974 	vm_map_entry_set_max_free(entry);
975 	map->root = entry;
976 }
977 
978 static void
979 vm_map_entry_unlink(vm_map_t map,
980 		    vm_map_entry_t entry)
981 {
982 	vm_map_entry_t next, prev, root;
983 
984 	VM_MAP_ASSERT_LOCKED(map);
985 	if (entry != map->root)
986 		vm_map_entry_splay(entry->start, map->root);
987 	if (entry->left == NULL)
988 		root = entry->right;
989 	else {
990 		root = vm_map_entry_splay(entry->start, entry->left);
991 		root->right = entry->right;
992 		root->adj_free = (entry->next == &map->header ? map->max_offset :
993 		    entry->next->start) - root->end;
994 		vm_map_entry_set_max_free(root);
995 	}
996 	map->root = root;
997 
998 	prev = entry->prev;
999 	next = entry->next;
1000 	next->prev = prev;
1001 	prev->next = next;
1002 	map->nentries--;
1003 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1004 	    map->nentries, entry);
1005 }
1006 
1007 /*
1008  *	vm_map_entry_resize_free:
1009  *
1010  *	Recompute the amount of free space following a vm_map_entry
1011  *	and propagate that value up the tree.  Call this function after
1012  *	resizing a map entry in-place, that is, without a call to
1013  *	vm_map_entry_link() or _unlink().
1014  *
1015  *	The map must be locked, and leaves it so.
1016  */
1017 static void
1018 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1019 {
1020 
1021 	/*
1022 	 * Using splay trees without parent pointers, propagating
1023 	 * max_free up the tree is done by moving the entry to the
1024 	 * root and making the change there.
1025 	 */
1026 	if (entry != map->root)
1027 		map->root = vm_map_entry_splay(entry->start, map->root);
1028 
1029 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1030 	    entry->next->start) - entry->end;
1031 	vm_map_entry_set_max_free(entry);
1032 }
1033 
1034 /*
1035  *	vm_map_lookup_entry:	[ internal use only ]
1036  *
1037  *	Finds the map entry containing (or
1038  *	immediately preceding) the specified address
1039  *	in the given map; the entry is returned
1040  *	in the "entry" parameter.  The boolean
1041  *	result indicates whether the address is
1042  *	actually contained in the map.
1043  */
1044 boolean_t
1045 vm_map_lookup_entry(
1046 	vm_map_t map,
1047 	vm_offset_t address,
1048 	vm_map_entry_t *entry)	/* OUT */
1049 {
1050 	vm_map_entry_t cur;
1051 	boolean_t locked;
1052 
1053 	/*
1054 	 * If the map is empty, then the map entry immediately preceding
1055 	 * "address" is the map's header.
1056 	 */
1057 	cur = map->root;
1058 	if (cur == NULL)
1059 		*entry = &map->header;
1060 	else if (address >= cur->start && cur->end > address) {
1061 		*entry = cur;
1062 		return (TRUE);
1063 	} else if ((locked = vm_map_locked(map)) ||
1064 	    sx_try_upgrade(&map->lock)) {
1065 		/*
1066 		 * Splay requires a write lock on the map.  However, it only
1067 		 * restructures the binary search tree; it does not otherwise
1068 		 * change the map.  Thus, the map's timestamp need not change
1069 		 * on a temporary upgrade.
1070 		 */
1071 		map->root = cur = vm_map_entry_splay(address, cur);
1072 		if (!locked)
1073 			sx_downgrade(&map->lock);
1074 
1075 		/*
1076 		 * If "address" is contained within a map entry, the new root
1077 		 * is that map entry.  Otherwise, the new root is a map entry
1078 		 * immediately before or after "address".
1079 		 */
1080 		if (address >= cur->start) {
1081 			*entry = cur;
1082 			if (cur->end > address)
1083 				return (TRUE);
1084 		} else
1085 			*entry = cur->prev;
1086 	} else
1087 		/*
1088 		 * Since the map is only locked for read access, perform a
1089 		 * standard binary search tree lookup for "address".
1090 		 */
1091 		for (;;) {
1092 			if (address < cur->start) {
1093 				if (cur->left == NULL) {
1094 					*entry = cur->prev;
1095 					break;
1096 				}
1097 				cur = cur->left;
1098 			} else if (cur->end > address) {
1099 				*entry = cur;
1100 				return (TRUE);
1101 			} else {
1102 				if (cur->right == NULL) {
1103 					*entry = cur;
1104 					break;
1105 				}
1106 				cur = cur->right;
1107 			}
1108 		}
1109 	return (FALSE);
1110 }
1111 
1112 /*
1113  *	vm_map_insert:
1114  *
1115  *	Inserts the given whole VM object into the target
1116  *	map at the specified address range.  The object's
1117  *	size should match that of the address range.
1118  *
1119  *	Requires that the map be locked, and leaves it so.
1120  *
1121  *	If object is non-NULL, ref count must be bumped by caller
1122  *	prior to making call to account for the new entry.
1123  */
1124 int
1125 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1126 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1127 	      int cow)
1128 {
1129 	vm_map_entry_t new_entry;
1130 	vm_map_entry_t prev_entry;
1131 	vm_map_entry_t temp_entry;
1132 	vm_eflags_t protoeflags;
1133 	struct ucred *cred;
1134 	vm_inherit_t inheritance;
1135 	boolean_t charge_prev_obj;
1136 
1137 	VM_MAP_ASSERT_LOCKED(map);
1138 
1139 	/*
1140 	 * Check that the start and end points are not bogus.
1141 	 */
1142 	if ((start < map->min_offset) || (end > map->max_offset) ||
1143 	    (start >= end))
1144 		return (KERN_INVALID_ADDRESS);
1145 
1146 	/*
1147 	 * Find the entry prior to the proposed starting address; if it's part
1148 	 * of an existing entry, this range is bogus.
1149 	 */
1150 	if (vm_map_lookup_entry(map, start, &temp_entry))
1151 		return (KERN_NO_SPACE);
1152 
1153 	prev_entry = temp_entry;
1154 
1155 	/*
1156 	 * Assert that the next entry doesn't overlap the end point.
1157 	 */
1158 	if ((prev_entry->next != &map->header) &&
1159 	    (prev_entry->next->start < end))
1160 		return (KERN_NO_SPACE);
1161 
1162 	protoeflags = 0;
1163 	charge_prev_obj = FALSE;
1164 
1165 	if (cow & MAP_COPY_ON_WRITE)
1166 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1167 
1168 	if (cow & MAP_NOFAULT) {
1169 		protoeflags |= MAP_ENTRY_NOFAULT;
1170 
1171 		KASSERT(object == NULL,
1172 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1173 	}
1174 	if (cow & MAP_DISABLE_SYNCER)
1175 		protoeflags |= MAP_ENTRY_NOSYNC;
1176 	if (cow & MAP_DISABLE_COREDUMP)
1177 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1178 	if (cow & MAP_VN_WRITECOUNT)
1179 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1180 	if (cow & MAP_INHERIT_SHARE)
1181 		inheritance = VM_INHERIT_SHARE;
1182 	else
1183 		inheritance = VM_INHERIT_DEFAULT;
1184 
1185 	cred = NULL;
1186 	KASSERT((object != kmem_object && object != kernel_object) ||
1187 	    ((object == kmem_object || object == kernel_object) &&
1188 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1189 	    ("kmem or kernel object and cow"));
1190 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1191 		goto charged;
1192 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1193 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1194 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1195 			return (KERN_RESOURCE_SHORTAGE);
1196 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1197 		    object->cred == NULL,
1198 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1199 		cred = curthread->td_ucred;
1200 		crhold(cred);
1201 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1202 			charge_prev_obj = TRUE;
1203 	}
1204 
1205 charged:
1206 	/* Expand the kernel pmap, if necessary. */
1207 	if (map == kernel_map && end > kernel_vm_end)
1208 		pmap_growkernel(end);
1209 	if (object != NULL) {
1210 		/*
1211 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1212 		 * is trivially proven to be the only mapping for any
1213 		 * of the object's pages.  (Object granularity
1214 		 * reference counting is insufficient to recognize
1215 		 * aliases with precision.)
1216 		 */
1217 		VM_OBJECT_WLOCK(object);
1218 		if (object->ref_count > 1 || object->shadow_count != 0)
1219 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1220 		VM_OBJECT_WUNLOCK(object);
1221 	}
1222 	else if ((prev_entry != &map->header) &&
1223 		 (prev_entry->eflags == protoeflags) &&
1224 		 (prev_entry->end == start) &&
1225 		 (prev_entry->wired_count == 0) &&
1226 		 (prev_entry->cred == cred ||
1227 		  (prev_entry->object.vm_object != NULL &&
1228 		   (prev_entry->object.vm_object->cred == cred))) &&
1229 		   vm_object_coalesce(prev_entry->object.vm_object,
1230 		       prev_entry->offset,
1231 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1232 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1233 		/*
1234 		 * We were able to extend the object.  Determine if we
1235 		 * can extend the previous map entry to include the
1236 		 * new range as well.
1237 		 */
1238 		if ((prev_entry->inheritance == inheritance) &&
1239 		    (prev_entry->protection == prot) &&
1240 		    (prev_entry->max_protection == max)) {
1241 			map->size += (end - prev_entry->end);
1242 			prev_entry->end = end;
1243 			vm_map_entry_resize_free(map, prev_entry);
1244 			vm_map_simplify_entry(map, prev_entry);
1245 			if (cred != NULL)
1246 				crfree(cred);
1247 			return (KERN_SUCCESS);
1248 		}
1249 
1250 		/*
1251 		 * If we can extend the object but cannot extend the
1252 		 * map entry, we have to create a new map entry.  We
1253 		 * must bump the ref count on the extended object to
1254 		 * account for it.  object may be NULL.
1255 		 */
1256 		object = prev_entry->object.vm_object;
1257 		offset = prev_entry->offset +
1258 			(prev_entry->end - prev_entry->start);
1259 		vm_object_reference(object);
1260 		if (cred != NULL && object != NULL && object->cred != NULL &&
1261 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1262 			/* Object already accounts for this uid. */
1263 			crfree(cred);
1264 			cred = NULL;
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1270 	 * in things like the buffer map where we manage kva but do not manage
1271 	 * backing objects.
1272 	 */
1273 
1274 	/*
1275 	 * Create a new entry
1276 	 */
1277 	new_entry = vm_map_entry_create(map);
1278 	new_entry->start = start;
1279 	new_entry->end = end;
1280 	new_entry->cred = NULL;
1281 
1282 	new_entry->eflags = protoeflags;
1283 	new_entry->object.vm_object = object;
1284 	new_entry->offset = offset;
1285 	new_entry->avail_ssize = 0;
1286 
1287 	new_entry->inheritance = inheritance;
1288 	new_entry->protection = prot;
1289 	new_entry->max_protection = max;
1290 	new_entry->wired_count = 0;
1291 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1292 	new_entry->next_read = OFF_TO_IDX(offset);
1293 
1294 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1295 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1296 	new_entry->cred = cred;
1297 
1298 	/*
1299 	 * Insert the new entry into the list
1300 	 */
1301 	vm_map_entry_link(map, prev_entry, new_entry);
1302 	map->size += new_entry->end - new_entry->start;
1303 
1304 	/*
1305 	 * It may be possible to merge the new entry with the next and/or
1306 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1307 	 * panic can result from merging such entries.
1308 	 */
1309 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1310 		vm_map_simplify_entry(map, new_entry);
1311 
1312 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1313 		vm_map_pmap_enter(map, start, prot,
1314 				    object, OFF_TO_IDX(offset), end - start,
1315 				    cow & MAP_PREFAULT_PARTIAL);
1316 	}
1317 
1318 	return (KERN_SUCCESS);
1319 }
1320 
1321 /*
1322  *	vm_map_findspace:
1323  *
1324  *	Find the first fit (lowest VM address) for "length" free bytes
1325  *	beginning at address >= start in the given map.
1326  *
1327  *	In a vm_map_entry, "adj_free" is the amount of free space
1328  *	adjacent (higher address) to this entry, and "max_free" is the
1329  *	maximum amount of contiguous free space in its subtree.  This
1330  *	allows finding a free region in one path down the tree, so
1331  *	O(log n) amortized with splay trees.
1332  *
1333  *	The map must be locked, and leaves it so.
1334  *
1335  *	Returns: 0 on success, and starting address in *addr,
1336  *		 1 if insufficient space.
1337  */
1338 int
1339 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1340     vm_offset_t *addr)	/* OUT */
1341 {
1342 	vm_map_entry_t entry;
1343 	vm_offset_t st;
1344 
1345 	/*
1346 	 * Request must fit within min/max VM address and must avoid
1347 	 * address wrap.
1348 	 */
1349 	if (start < map->min_offset)
1350 		start = map->min_offset;
1351 	if (start + length > map->max_offset || start + length < start)
1352 		return (1);
1353 
1354 	/* Empty tree means wide open address space. */
1355 	if (map->root == NULL) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * After splay, if start comes before root node, then there
1362 	 * must be a gap from start to the root.
1363 	 */
1364 	map->root = vm_map_entry_splay(start, map->root);
1365 	if (start + length <= map->root->start) {
1366 		*addr = start;
1367 		return (0);
1368 	}
1369 
1370 	/*
1371 	 * Root is the last node that might begin its gap before
1372 	 * start, and this is the last comparison where address
1373 	 * wrap might be a problem.
1374 	 */
1375 	st = (start > map->root->end) ? start : map->root->end;
1376 	if (length <= map->root->end + map->root->adj_free - st) {
1377 		*addr = st;
1378 		return (0);
1379 	}
1380 
1381 	/* With max_free, can immediately tell if no solution. */
1382 	entry = map->root->right;
1383 	if (entry == NULL || length > entry->max_free)
1384 		return (1);
1385 
1386 	/*
1387 	 * Search the right subtree in the order: left subtree, root,
1388 	 * right subtree (first fit).  The previous splay implies that
1389 	 * all regions in the right subtree have addresses > start.
1390 	 */
1391 	while (entry != NULL) {
1392 		if (entry->left != NULL && entry->left->max_free >= length)
1393 			entry = entry->left;
1394 		else if (entry->adj_free >= length) {
1395 			*addr = entry->end;
1396 			return (0);
1397 		} else
1398 			entry = entry->right;
1399 	}
1400 
1401 	/* Can't get here, so panic if we do. */
1402 	panic("vm_map_findspace: max_free corrupt");
1403 }
1404 
1405 int
1406 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1407     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1408     vm_prot_t max, int cow)
1409 {
1410 	vm_offset_t end;
1411 	int result;
1412 
1413 	end = start + length;
1414 	vm_map_lock(map);
1415 	VM_MAP_RANGE_CHECK(map, start, end);
1416 	(void) vm_map_delete(map, start, end);
1417 	result = vm_map_insert(map, object, offset, start, end, prot,
1418 	    max, cow);
1419 	vm_map_unlock(map);
1420 	return (result);
1421 }
1422 
1423 /*
1424  *	vm_map_find finds an unallocated region in the target address
1425  *	map with the given length.  The search is defined to be
1426  *	first-fit from the specified address; the region found is
1427  *	returned in the same parameter.
1428  *
1429  *	If object is non-NULL, ref count must be bumped by caller
1430  *	prior to making call to account for the new entry.
1431  */
1432 int
1433 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1434 	    vm_offset_t *addr,	/* IN/OUT */
1435 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1436 	    vm_prot_t prot, vm_prot_t max, int cow)
1437 {
1438 	vm_offset_t alignment, initial_addr, start;
1439 	int result;
1440 
1441 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1442 	    (object->flags & OBJ_COLORED) == 0))
1443 		find_space = VMFS_ANY_SPACE;
1444 	if (find_space >> 8 != 0) {
1445 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1446 		alignment = (vm_offset_t)1 << (find_space >> 8);
1447 	} else
1448 		alignment = 0;
1449 	initial_addr = *addr;
1450 again:
1451 	start = initial_addr;
1452 	vm_map_lock(map);
1453 	do {
1454 		if (find_space != VMFS_NO_SPACE) {
1455 			if (vm_map_findspace(map, start, length, addr) ||
1456 			    (max_addr != 0 && *addr + length > max_addr)) {
1457 				vm_map_unlock(map);
1458 				if (find_space == VMFS_OPTIMAL_SPACE) {
1459 					find_space = VMFS_ANY_SPACE;
1460 					goto again;
1461 				}
1462 				return (KERN_NO_SPACE);
1463 			}
1464 			switch (find_space) {
1465 			case VMFS_SUPER_SPACE:
1466 			case VMFS_OPTIMAL_SPACE:
1467 				pmap_align_superpage(object, offset, addr,
1468 				    length);
1469 				break;
1470 			case VMFS_ANY_SPACE:
1471 				break;
1472 			default:
1473 				if ((*addr & (alignment - 1)) != 0) {
1474 					*addr &= ~(alignment - 1);
1475 					*addr += alignment;
1476 				}
1477 				break;
1478 			}
1479 
1480 			start = *addr;
1481 		}
1482 		result = vm_map_insert(map, object, offset, start, start +
1483 		    length, prot, max, cow);
1484 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1485 	    find_space != VMFS_ANY_SPACE);
1486 	vm_map_unlock(map);
1487 	return (result);
1488 }
1489 
1490 /*
1491  *	vm_map_simplify_entry:
1492  *
1493  *	Simplify the given map entry by merging with either neighbor.  This
1494  *	routine also has the ability to merge with both neighbors.
1495  *
1496  *	The map must be locked.
1497  *
1498  *	This routine guarentees that the passed entry remains valid (though
1499  *	possibly extended).  When merging, this routine may delete one or
1500  *	both neighbors.
1501  */
1502 void
1503 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1504 {
1505 	vm_map_entry_t next, prev;
1506 	vm_size_t prevsize, esize;
1507 
1508 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1509 		return;
1510 
1511 	prev = entry->prev;
1512 	if (prev != &map->header) {
1513 		prevsize = prev->end - prev->start;
1514 		if ( (prev->end == entry->start) &&
1515 		     (prev->object.vm_object == entry->object.vm_object) &&
1516 		     (!prev->object.vm_object ||
1517 			(prev->offset + prevsize == entry->offset)) &&
1518 		     (prev->eflags == entry->eflags) &&
1519 		     (prev->protection == entry->protection) &&
1520 		     (prev->max_protection == entry->max_protection) &&
1521 		     (prev->inheritance == entry->inheritance) &&
1522 		     (prev->wired_count == entry->wired_count) &&
1523 		     (prev->cred == entry->cred)) {
1524 			vm_map_entry_unlink(map, prev);
1525 			entry->start = prev->start;
1526 			entry->offset = prev->offset;
1527 			if (entry->prev != &map->header)
1528 				vm_map_entry_resize_free(map, entry->prev);
1529 
1530 			/*
1531 			 * If the backing object is a vnode object,
1532 			 * vm_object_deallocate() calls vrele().
1533 			 * However, vrele() does not lock the vnode
1534 			 * because the vnode has additional
1535 			 * references.  Thus, the map lock can be kept
1536 			 * without causing a lock-order reversal with
1537 			 * the vnode lock.
1538 			 *
1539 			 * Since we count the number of virtual page
1540 			 * mappings in object->un_pager.vnp.writemappings,
1541 			 * the writemappings value should not be adjusted
1542 			 * when the entry is disposed of.
1543 			 */
1544 			if (prev->object.vm_object)
1545 				vm_object_deallocate(prev->object.vm_object);
1546 			if (prev->cred != NULL)
1547 				crfree(prev->cred);
1548 			vm_map_entry_dispose(map, prev);
1549 		}
1550 	}
1551 
1552 	next = entry->next;
1553 	if (next != &map->header) {
1554 		esize = entry->end - entry->start;
1555 		if ((entry->end == next->start) &&
1556 		    (next->object.vm_object == entry->object.vm_object) &&
1557 		     (!entry->object.vm_object ||
1558 			(entry->offset + esize == next->offset)) &&
1559 		    (next->eflags == entry->eflags) &&
1560 		    (next->protection == entry->protection) &&
1561 		    (next->max_protection == entry->max_protection) &&
1562 		    (next->inheritance == entry->inheritance) &&
1563 		    (next->wired_count == entry->wired_count) &&
1564 		    (next->cred == entry->cred)) {
1565 			vm_map_entry_unlink(map, next);
1566 			entry->end = next->end;
1567 			vm_map_entry_resize_free(map, entry);
1568 
1569 			/*
1570 			 * See comment above.
1571 			 */
1572 			if (next->object.vm_object)
1573 				vm_object_deallocate(next->object.vm_object);
1574 			if (next->cred != NULL)
1575 				crfree(next->cred);
1576 			vm_map_entry_dispose(map, next);
1577 		}
1578 	}
1579 }
1580 /*
1581  *	vm_map_clip_start:	[ internal use only ]
1582  *
1583  *	Asserts that the given entry begins at or after
1584  *	the specified address; if necessary,
1585  *	it splits the entry into two.
1586  */
1587 #define vm_map_clip_start(map, entry, startaddr) \
1588 { \
1589 	if (startaddr > entry->start) \
1590 		_vm_map_clip_start(map, entry, startaddr); \
1591 }
1592 
1593 /*
1594  *	This routine is called only when it is known that
1595  *	the entry must be split.
1596  */
1597 static void
1598 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1599 {
1600 	vm_map_entry_t new_entry;
1601 
1602 	VM_MAP_ASSERT_LOCKED(map);
1603 
1604 	/*
1605 	 * Split off the front portion -- note that we must insert the new
1606 	 * entry BEFORE this one, so that this entry has the specified
1607 	 * starting address.
1608 	 */
1609 	vm_map_simplify_entry(map, entry);
1610 
1611 	/*
1612 	 * If there is no object backing this entry, we might as well create
1613 	 * one now.  If we defer it, an object can get created after the map
1614 	 * is clipped, and individual objects will be created for the split-up
1615 	 * map.  This is a bit of a hack, but is also about the best place to
1616 	 * put this improvement.
1617 	 */
1618 	if (entry->object.vm_object == NULL && !map->system_map) {
1619 		vm_object_t object;
1620 		object = vm_object_allocate(OBJT_DEFAULT,
1621 				atop(entry->end - entry->start));
1622 		entry->object.vm_object = object;
1623 		entry->offset = 0;
1624 		if (entry->cred != NULL) {
1625 			object->cred = entry->cred;
1626 			object->charge = entry->end - entry->start;
1627 			entry->cred = NULL;
1628 		}
1629 	} else if (entry->object.vm_object != NULL &&
1630 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1631 		   entry->cred != NULL) {
1632 		VM_OBJECT_WLOCK(entry->object.vm_object);
1633 		KASSERT(entry->object.vm_object->cred == NULL,
1634 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1635 		entry->object.vm_object->cred = entry->cred;
1636 		entry->object.vm_object->charge = entry->end - entry->start;
1637 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1638 		entry->cred = NULL;
1639 	}
1640 
1641 	new_entry = vm_map_entry_create(map);
1642 	*new_entry = *entry;
1643 
1644 	new_entry->end = start;
1645 	entry->offset += (start - entry->start);
1646 	entry->start = start;
1647 	if (new_entry->cred != NULL)
1648 		crhold(entry->cred);
1649 
1650 	vm_map_entry_link(map, entry->prev, new_entry);
1651 
1652 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1653 		vm_object_reference(new_entry->object.vm_object);
1654 		/*
1655 		 * The object->un_pager.vnp.writemappings for the
1656 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1657 		 * kept as is here.  The virtual pages are
1658 		 * re-distributed among the clipped entries, so the sum is
1659 		 * left the same.
1660 		 */
1661 	}
1662 }
1663 
1664 /*
1665  *	vm_map_clip_end:	[ internal use only ]
1666  *
1667  *	Asserts that the given entry ends at or before
1668  *	the specified address; if necessary,
1669  *	it splits the entry into two.
1670  */
1671 #define vm_map_clip_end(map, entry, endaddr) \
1672 { \
1673 	if ((endaddr) < (entry->end)) \
1674 		_vm_map_clip_end((map), (entry), (endaddr)); \
1675 }
1676 
1677 /*
1678  *	This routine is called only when it is known that
1679  *	the entry must be split.
1680  */
1681 static void
1682 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1683 {
1684 	vm_map_entry_t new_entry;
1685 
1686 	VM_MAP_ASSERT_LOCKED(map);
1687 
1688 	/*
1689 	 * If there is no object backing this entry, we might as well create
1690 	 * one now.  If we defer it, an object can get created after the map
1691 	 * is clipped, and individual objects will be created for the split-up
1692 	 * map.  This is a bit of a hack, but is also about the best place to
1693 	 * put this improvement.
1694 	 */
1695 	if (entry->object.vm_object == NULL && !map->system_map) {
1696 		vm_object_t object;
1697 		object = vm_object_allocate(OBJT_DEFAULT,
1698 				atop(entry->end - entry->start));
1699 		entry->object.vm_object = object;
1700 		entry->offset = 0;
1701 		if (entry->cred != NULL) {
1702 			object->cred = entry->cred;
1703 			object->charge = entry->end - entry->start;
1704 			entry->cred = NULL;
1705 		}
1706 	} else if (entry->object.vm_object != NULL &&
1707 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1708 		   entry->cred != NULL) {
1709 		VM_OBJECT_WLOCK(entry->object.vm_object);
1710 		KASSERT(entry->object.vm_object->cred == NULL,
1711 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1712 		entry->object.vm_object->cred = entry->cred;
1713 		entry->object.vm_object->charge = entry->end - entry->start;
1714 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1715 		entry->cred = NULL;
1716 	}
1717 
1718 	/*
1719 	 * Create a new entry and insert it AFTER the specified entry
1720 	 */
1721 	new_entry = vm_map_entry_create(map);
1722 	*new_entry = *entry;
1723 
1724 	new_entry->start = entry->end = end;
1725 	new_entry->offset += (end - entry->start);
1726 	if (new_entry->cred != NULL)
1727 		crhold(entry->cred);
1728 
1729 	vm_map_entry_link(map, entry, new_entry);
1730 
1731 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1732 		vm_object_reference(new_entry->object.vm_object);
1733 	}
1734 }
1735 
1736 /*
1737  *	vm_map_submap:		[ kernel use only ]
1738  *
1739  *	Mark the given range as handled by a subordinate map.
1740  *
1741  *	This range must have been created with vm_map_find,
1742  *	and no other operations may have been performed on this
1743  *	range prior to calling vm_map_submap.
1744  *
1745  *	Only a limited number of operations can be performed
1746  *	within this rage after calling vm_map_submap:
1747  *		vm_fault
1748  *	[Don't try vm_map_copy!]
1749  *
1750  *	To remove a submapping, one must first remove the
1751  *	range from the superior map, and then destroy the
1752  *	submap (if desired).  [Better yet, don't try it.]
1753  */
1754 int
1755 vm_map_submap(
1756 	vm_map_t map,
1757 	vm_offset_t start,
1758 	vm_offset_t end,
1759 	vm_map_t submap)
1760 {
1761 	vm_map_entry_t entry;
1762 	int result = KERN_INVALID_ARGUMENT;
1763 
1764 	vm_map_lock(map);
1765 
1766 	VM_MAP_RANGE_CHECK(map, start, end);
1767 
1768 	if (vm_map_lookup_entry(map, start, &entry)) {
1769 		vm_map_clip_start(map, entry, start);
1770 	} else
1771 		entry = entry->next;
1772 
1773 	vm_map_clip_end(map, entry, end);
1774 
1775 	if ((entry->start == start) && (entry->end == end) &&
1776 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1777 	    (entry->object.vm_object == NULL)) {
1778 		entry->object.sub_map = submap;
1779 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1780 		result = KERN_SUCCESS;
1781 	}
1782 	vm_map_unlock(map);
1783 
1784 	return (result);
1785 }
1786 
1787 /*
1788  * The maximum number of pages to map
1789  */
1790 #define	MAX_INIT_PT	96
1791 
1792 /*
1793  *	vm_map_pmap_enter:
1794  *
1795  *	Preload read-only mappings for the specified object's resident pages
1796  *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1797  *	the resident pages within the address range [addr, addr + ulmin(size,
1798  *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1799  *	the specified address range are mapped.  This eliminates many soft
1800  *	faults on process startup and immediately after an mmap(2).  Because
1801  *	these are speculative mappings, cached pages are not reactivated and
1802  *	mapped.
1803  */
1804 void
1805 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1806     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1807 {
1808 	vm_offset_t start;
1809 	vm_page_t p, p_start;
1810 	vm_pindex_t psize, tmpidx;
1811 
1812 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1813 		return;
1814 	VM_OBJECT_RLOCK(object);
1815 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1816 		VM_OBJECT_RUNLOCK(object);
1817 		VM_OBJECT_WLOCK(object);
1818 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1819 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1820 			    size);
1821 			VM_OBJECT_WUNLOCK(object);
1822 			return;
1823 		}
1824 		VM_OBJECT_LOCK_DOWNGRADE(object);
1825 	}
1826 
1827 	psize = atop(size);
1828 	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1829 		psize = MAX_INIT_PT;
1830 	if (psize + pindex > object->size) {
1831 		if (object->size < pindex) {
1832 			VM_OBJECT_RUNLOCK(object);
1833 			return;
1834 		}
1835 		psize = object->size - pindex;
1836 	}
1837 
1838 	start = 0;
1839 	p_start = NULL;
1840 
1841 	p = vm_page_find_least(object, pindex);
1842 	/*
1843 	 * Assert: the variable p is either (1) the page with the
1844 	 * least pindex greater than or equal to the parameter pindex
1845 	 * or (2) NULL.
1846 	 */
1847 	for (;
1848 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1849 	     p = TAILQ_NEXT(p, listq)) {
1850 		/*
1851 		 * don't allow an madvise to blow away our really
1852 		 * free pages allocating pv entries.
1853 		 */
1854 		if ((flags & MAP_PREFAULT_MADVISE) &&
1855 		    cnt.v_free_count < cnt.v_free_reserved) {
1856 			psize = tmpidx;
1857 			break;
1858 		}
1859 		if (p->valid == VM_PAGE_BITS_ALL) {
1860 			if (p_start == NULL) {
1861 				start = addr + ptoa(tmpidx);
1862 				p_start = p;
1863 			}
1864 		} else if (p_start != NULL) {
1865 			pmap_enter_object(map->pmap, start, addr +
1866 			    ptoa(tmpidx), p_start, prot);
1867 			p_start = NULL;
1868 		}
1869 	}
1870 	if (p_start != NULL)
1871 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1872 		    p_start, prot);
1873 	VM_OBJECT_RUNLOCK(object);
1874 }
1875 
1876 /*
1877  *	vm_map_protect:
1878  *
1879  *	Sets the protection of the specified address
1880  *	region in the target map.  If "set_max" is
1881  *	specified, the maximum protection is to be set;
1882  *	otherwise, only the current protection is affected.
1883  */
1884 int
1885 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1886 	       vm_prot_t new_prot, boolean_t set_max)
1887 {
1888 	vm_map_entry_t current, entry;
1889 	vm_object_t obj;
1890 	struct ucred *cred;
1891 	vm_prot_t old_prot;
1892 
1893 	vm_map_lock(map);
1894 
1895 	VM_MAP_RANGE_CHECK(map, start, end);
1896 
1897 	if (vm_map_lookup_entry(map, start, &entry)) {
1898 		vm_map_clip_start(map, entry, start);
1899 	} else {
1900 		entry = entry->next;
1901 	}
1902 
1903 	/*
1904 	 * Make a first pass to check for protection violations.
1905 	 */
1906 	current = entry;
1907 	while ((current != &map->header) && (current->start < end)) {
1908 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1909 			vm_map_unlock(map);
1910 			return (KERN_INVALID_ARGUMENT);
1911 		}
1912 		if ((new_prot & current->max_protection) != new_prot) {
1913 			vm_map_unlock(map);
1914 			return (KERN_PROTECTION_FAILURE);
1915 		}
1916 		current = current->next;
1917 	}
1918 
1919 
1920 	/*
1921 	 * Do an accounting pass for private read-only mappings that
1922 	 * now will do cow due to allowed write (e.g. debugger sets
1923 	 * breakpoint on text segment)
1924 	 */
1925 	for (current = entry; (current != &map->header) &&
1926 	     (current->start < end); current = current->next) {
1927 
1928 		vm_map_clip_end(map, current, end);
1929 
1930 		if (set_max ||
1931 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1932 		    ENTRY_CHARGED(current)) {
1933 			continue;
1934 		}
1935 
1936 		cred = curthread->td_ucred;
1937 		obj = current->object.vm_object;
1938 
1939 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1940 			if (!swap_reserve(current->end - current->start)) {
1941 				vm_map_unlock(map);
1942 				return (KERN_RESOURCE_SHORTAGE);
1943 			}
1944 			crhold(cred);
1945 			current->cred = cred;
1946 			continue;
1947 		}
1948 
1949 		VM_OBJECT_WLOCK(obj);
1950 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1951 			VM_OBJECT_WUNLOCK(obj);
1952 			continue;
1953 		}
1954 
1955 		/*
1956 		 * Charge for the whole object allocation now, since
1957 		 * we cannot distinguish between non-charged and
1958 		 * charged clipped mapping of the same object later.
1959 		 */
1960 		KASSERT(obj->charge == 0,
1961 		    ("vm_map_protect: object %p overcharged\n", obj));
1962 		if (!swap_reserve(ptoa(obj->size))) {
1963 			VM_OBJECT_WUNLOCK(obj);
1964 			vm_map_unlock(map);
1965 			return (KERN_RESOURCE_SHORTAGE);
1966 		}
1967 
1968 		crhold(cred);
1969 		obj->cred = cred;
1970 		obj->charge = ptoa(obj->size);
1971 		VM_OBJECT_WUNLOCK(obj);
1972 	}
1973 
1974 	/*
1975 	 * Go back and fix up protections. [Note that clipping is not
1976 	 * necessary the second time.]
1977 	 */
1978 	current = entry;
1979 	while ((current != &map->header) && (current->start < end)) {
1980 		old_prot = current->protection;
1981 
1982 		if (set_max)
1983 			current->protection =
1984 			    (current->max_protection = new_prot) &
1985 			    old_prot;
1986 		else
1987 			current->protection = new_prot;
1988 
1989 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1990 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1991 		    (current->protection & VM_PROT_WRITE) != 0 &&
1992 		    (old_prot & VM_PROT_WRITE) == 0) {
1993 			vm_fault_copy_entry(map, map, current, current, NULL);
1994 		}
1995 
1996 		/*
1997 		 * When restricting access, update the physical map.  Worry
1998 		 * about copy-on-write here.
1999 		 */
2000 		if ((old_prot & ~current->protection) != 0) {
2001 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2002 							VM_PROT_ALL)
2003 			pmap_protect(map->pmap, current->start,
2004 			    current->end,
2005 			    current->protection & MASK(current));
2006 #undef	MASK
2007 		}
2008 		vm_map_simplify_entry(map, current);
2009 		current = current->next;
2010 	}
2011 	vm_map_unlock(map);
2012 	return (KERN_SUCCESS);
2013 }
2014 
2015 /*
2016  *	vm_map_madvise:
2017  *
2018  *	This routine traverses a processes map handling the madvise
2019  *	system call.  Advisories are classified as either those effecting
2020  *	the vm_map_entry structure, or those effecting the underlying
2021  *	objects.
2022  */
2023 int
2024 vm_map_madvise(
2025 	vm_map_t map,
2026 	vm_offset_t start,
2027 	vm_offset_t end,
2028 	int behav)
2029 {
2030 	vm_map_entry_t current, entry;
2031 	int modify_map = 0;
2032 
2033 	/*
2034 	 * Some madvise calls directly modify the vm_map_entry, in which case
2035 	 * we need to use an exclusive lock on the map and we need to perform
2036 	 * various clipping operations.  Otherwise we only need a read-lock
2037 	 * on the map.
2038 	 */
2039 	switch(behav) {
2040 	case MADV_NORMAL:
2041 	case MADV_SEQUENTIAL:
2042 	case MADV_RANDOM:
2043 	case MADV_NOSYNC:
2044 	case MADV_AUTOSYNC:
2045 	case MADV_NOCORE:
2046 	case MADV_CORE:
2047 		modify_map = 1;
2048 		vm_map_lock(map);
2049 		break;
2050 	case MADV_WILLNEED:
2051 	case MADV_DONTNEED:
2052 	case MADV_FREE:
2053 		vm_map_lock_read(map);
2054 		break;
2055 	default:
2056 		return (KERN_INVALID_ARGUMENT);
2057 	}
2058 
2059 	/*
2060 	 * Locate starting entry and clip if necessary.
2061 	 */
2062 	VM_MAP_RANGE_CHECK(map, start, end);
2063 
2064 	if (vm_map_lookup_entry(map, start, &entry)) {
2065 		if (modify_map)
2066 			vm_map_clip_start(map, entry, start);
2067 	} else {
2068 		entry = entry->next;
2069 	}
2070 
2071 	if (modify_map) {
2072 		/*
2073 		 * madvise behaviors that are implemented in the vm_map_entry.
2074 		 *
2075 		 * We clip the vm_map_entry so that behavioral changes are
2076 		 * limited to the specified address range.
2077 		 */
2078 		for (current = entry;
2079 		     (current != &map->header) && (current->start < end);
2080 		     current = current->next
2081 		) {
2082 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2083 				continue;
2084 
2085 			vm_map_clip_end(map, current, end);
2086 
2087 			switch (behav) {
2088 			case MADV_NORMAL:
2089 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2090 				break;
2091 			case MADV_SEQUENTIAL:
2092 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2093 				break;
2094 			case MADV_RANDOM:
2095 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2096 				break;
2097 			case MADV_NOSYNC:
2098 				current->eflags |= MAP_ENTRY_NOSYNC;
2099 				break;
2100 			case MADV_AUTOSYNC:
2101 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2102 				break;
2103 			case MADV_NOCORE:
2104 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2105 				break;
2106 			case MADV_CORE:
2107 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2108 				break;
2109 			default:
2110 				break;
2111 			}
2112 			vm_map_simplify_entry(map, current);
2113 		}
2114 		vm_map_unlock(map);
2115 	} else {
2116 		vm_pindex_t pstart, pend;
2117 
2118 		/*
2119 		 * madvise behaviors that are implemented in the underlying
2120 		 * vm_object.
2121 		 *
2122 		 * Since we don't clip the vm_map_entry, we have to clip
2123 		 * the vm_object pindex and count.
2124 		 */
2125 		for (current = entry;
2126 		     (current != &map->header) && (current->start < end);
2127 		     current = current->next
2128 		) {
2129 			vm_offset_t useEnd, useStart;
2130 
2131 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2132 				continue;
2133 
2134 			pstart = OFF_TO_IDX(current->offset);
2135 			pend = pstart + atop(current->end - current->start);
2136 			useStart = current->start;
2137 			useEnd = current->end;
2138 
2139 			if (current->start < start) {
2140 				pstart += atop(start - current->start);
2141 				useStart = start;
2142 			}
2143 			if (current->end > end) {
2144 				pend -= atop(current->end - end);
2145 				useEnd = end;
2146 			}
2147 
2148 			if (pstart >= pend)
2149 				continue;
2150 
2151 			/*
2152 			 * Perform the pmap_advise() before clearing
2153 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2154 			 * concurrent pmap operation, such as pmap_remove(),
2155 			 * could clear a reference in the pmap and set
2156 			 * PGA_REFERENCED on the page before the pmap_advise()
2157 			 * had completed.  Consequently, the page would appear
2158 			 * referenced based upon an old reference that
2159 			 * occurred before this pmap_advise() ran.
2160 			 */
2161 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2162 				pmap_advise(map->pmap, useStart, useEnd,
2163 				    behav);
2164 
2165 			vm_object_madvise(current->object.vm_object, pstart,
2166 			    pend, behav);
2167 			if (behav == MADV_WILLNEED) {
2168 				vm_map_pmap_enter(map,
2169 				    useStart,
2170 				    current->protection,
2171 				    current->object.vm_object,
2172 				    pstart,
2173 				    ptoa(pend - pstart),
2174 				    MAP_PREFAULT_MADVISE
2175 				);
2176 			}
2177 		}
2178 		vm_map_unlock_read(map);
2179 	}
2180 	return (0);
2181 }
2182 
2183 
2184 /*
2185  *	vm_map_inherit:
2186  *
2187  *	Sets the inheritance of the specified address
2188  *	range in the target map.  Inheritance
2189  *	affects how the map will be shared with
2190  *	child maps at the time of vmspace_fork.
2191  */
2192 int
2193 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2194 	       vm_inherit_t new_inheritance)
2195 {
2196 	vm_map_entry_t entry;
2197 	vm_map_entry_t temp_entry;
2198 
2199 	switch (new_inheritance) {
2200 	case VM_INHERIT_NONE:
2201 	case VM_INHERIT_COPY:
2202 	case VM_INHERIT_SHARE:
2203 		break;
2204 	default:
2205 		return (KERN_INVALID_ARGUMENT);
2206 	}
2207 	vm_map_lock(map);
2208 	VM_MAP_RANGE_CHECK(map, start, end);
2209 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2210 		entry = temp_entry;
2211 		vm_map_clip_start(map, entry, start);
2212 	} else
2213 		entry = temp_entry->next;
2214 	while ((entry != &map->header) && (entry->start < end)) {
2215 		vm_map_clip_end(map, entry, end);
2216 		entry->inheritance = new_inheritance;
2217 		vm_map_simplify_entry(map, entry);
2218 		entry = entry->next;
2219 	}
2220 	vm_map_unlock(map);
2221 	return (KERN_SUCCESS);
2222 }
2223 
2224 /*
2225  *	vm_map_unwire:
2226  *
2227  *	Implements both kernel and user unwiring.
2228  */
2229 int
2230 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2231     int flags)
2232 {
2233 	vm_map_entry_t entry, first_entry, tmp_entry;
2234 	vm_offset_t saved_start;
2235 	unsigned int last_timestamp;
2236 	int rv;
2237 	boolean_t need_wakeup, result, user_unwire;
2238 
2239 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2240 	vm_map_lock(map);
2241 	VM_MAP_RANGE_CHECK(map, start, end);
2242 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2243 		if (flags & VM_MAP_WIRE_HOLESOK)
2244 			first_entry = first_entry->next;
2245 		else {
2246 			vm_map_unlock(map);
2247 			return (KERN_INVALID_ADDRESS);
2248 		}
2249 	}
2250 	last_timestamp = map->timestamp;
2251 	entry = first_entry;
2252 	while (entry != &map->header && entry->start < end) {
2253 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2254 			/*
2255 			 * We have not yet clipped the entry.
2256 			 */
2257 			saved_start = (start >= entry->start) ? start :
2258 			    entry->start;
2259 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2260 			if (vm_map_unlock_and_wait(map, 0)) {
2261 				/*
2262 				 * Allow interruption of user unwiring?
2263 				 */
2264 			}
2265 			vm_map_lock(map);
2266 			if (last_timestamp+1 != map->timestamp) {
2267 				/*
2268 				 * Look again for the entry because the map was
2269 				 * modified while it was unlocked.
2270 				 * Specifically, the entry may have been
2271 				 * clipped, merged, or deleted.
2272 				 */
2273 				if (!vm_map_lookup_entry(map, saved_start,
2274 				    &tmp_entry)) {
2275 					if (flags & VM_MAP_WIRE_HOLESOK)
2276 						tmp_entry = tmp_entry->next;
2277 					else {
2278 						if (saved_start == start) {
2279 							/*
2280 							 * First_entry has been deleted.
2281 							 */
2282 							vm_map_unlock(map);
2283 							return (KERN_INVALID_ADDRESS);
2284 						}
2285 						end = saved_start;
2286 						rv = KERN_INVALID_ADDRESS;
2287 						goto done;
2288 					}
2289 				}
2290 				if (entry == first_entry)
2291 					first_entry = tmp_entry;
2292 				else
2293 					first_entry = NULL;
2294 				entry = tmp_entry;
2295 			}
2296 			last_timestamp = map->timestamp;
2297 			continue;
2298 		}
2299 		vm_map_clip_start(map, entry, start);
2300 		vm_map_clip_end(map, entry, end);
2301 		/*
2302 		 * Mark the entry in case the map lock is released.  (See
2303 		 * above.)
2304 		 */
2305 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2306 		entry->wiring_thread = curthread;
2307 		/*
2308 		 * Check the map for holes in the specified region.
2309 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2310 		 */
2311 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2312 		    (entry->end < end && (entry->next == &map->header ||
2313 		    entry->next->start > entry->end))) {
2314 			end = entry->end;
2315 			rv = KERN_INVALID_ADDRESS;
2316 			goto done;
2317 		}
2318 		/*
2319 		 * If system unwiring, require that the entry is system wired.
2320 		 */
2321 		if (!user_unwire &&
2322 		    vm_map_entry_system_wired_count(entry) == 0) {
2323 			end = entry->end;
2324 			rv = KERN_INVALID_ARGUMENT;
2325 			goto done;
2326 		}
2327 		entry = entry->next;
2328 	}
2329 	rv = KERN_SUCCESS;
2330 done:
2331 	need_wakeup = FALSE;
2332 	if (first_entry == NULL) {
2333 		result = vm_map_lookup_entry(map, start, &first_entry);
2334 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2335 			first_entry = first_entry->next;
2336 		else
2337 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2338 	}
2339 	for (entry = first_entry; entry != &map->header && entry->start < end;
2340 	    entry = entry->next) {
2341 		/*
2342 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2343 		 * space in the unwired region could have been mapped
2344 		 * while the map lock was dropped for draining
2345 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2346 		 * could be simultaneously wiring this new mapping
2347 		 * entry.  Detect these cases and skip any entries
2348 		 * marked as in transition by us.
2349 		 */
2350 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2351 		    entry->wiring_thread != curthread) {
2352 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2353 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2354 			continue;
2355 		}
2356 
2357 		if (rv == KERN_SUCCESS && (!user_unwire ||
2358 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2359 			if (user_unwire)
2360 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2361 			entry->wired_count--;
2362 			if (entry->wired_count == 0) {
2363 				/*
2364 				 * Retain the map lock.
2365 				 */
2366 				vm_fault_unwire(map, entry->start, entry->end,
2367 				    entry->object.vm_object != NULL &&
2368 				    (entry->object.vm_object->flags &
2369 				    OBJ_FICTITIOUS) != 0);
2370 			}
2371 		}
2372 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2373 		    ("vm_map_unwire: in-transition flag missing"));
2374 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2375 		entry->wiring_thread = NULL;
2376 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2377 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2378 			need_wakeup = TRUE;
2379 		}
2380 		vm_map_simplify_entry(map, entry);
2381 	}
2382 	vm_map_unlock(map);
2383 	if (need_wakeup)
2384 		vm_map_wakeup(map);
2385 	return (rv);
2386 }
2387 
2388 /*
2389  *	vm_map_wire:
2390  *
2391  *	Implements both kernel and user wiring.
2392  */
2393 int
2394 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2395     int flags)
2396 {
2397 	vm_map_entry_t entry, first_entry, tmp_entry;
2398 	vm_offset_t saved_end, saved_start;
2399 	unsigned int last_timestamp;
2400 	int rv;
2401 	boolean_t fictitious, need_wakeup, result, user_wire;
2402 	vm_prot_t prot;
2403 
2404 	prot = 0;
2405 	if (flags & VM_MAP_WIRE_WRITE)
2406 		prot |= VM_PROT_WRITE;
2407 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2408 	vm_map_lock(map);
2409 	VM_MAP_RANGE_CHECK(map, start, end);
2410 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2411 		if (flags & VM_MAP_WIRE_HOLESOK)
2412 			first_entry = first_entry->next;
2413 		else {
2414 			vm_map_unlock(map);
2415 			return (KERN_INVALID_ADDRESS);
2416 		}
2417 	}
2418 	last_timestamp = map->timestamp;
2419 	entry = first_entry;
2420 	while (entry != &map->header && entry->start < end) {
2421 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2422 			/*
2423 			 * We have not yet clipped the entry.
2424 			 */
2425 			saved_start = (start >= entry->start) ? start :
2426 			    entry->start;
2427 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2428 			if (vm_map_unlock_and_wait(map, 0)) {
2429 				/*
2430 				 * Allow interruption of user wiring?
2431 				 */
2432 			}
2433 			vm_map_lock(map);
2434 			if (last_timestamp + 1 != map->timestamp) {
2435 				/*
2436 				 * Look again for the entry because the map was
2437 				 * modified while it was unlocked.
2438 				 * Specifically, the entry may have been
2439 				 * clipped, merged, or deleted.
2440 				 */
2441 				if (!vm_map_lookup_entry(map, saved_start,
2442 				    &tmp_entry)) {
2443 					if (flags & VM_MAP_WIRE_HOLESOK)
2444 						tmp_entry = tmp_entry->next;
2445 					else {
2446 						if (saved_start == start) {
2447 							/*
2448 							 * first_entry has been deleted.
2449 							 */
2450 							vm_map_unlock(map);
2451 							return (KERN_INVALID_ADDRESS);
2452 						}
2453 						end = saved_start;
2454 						rv = KERN_INVALID_ADDRESS;
2455 						goto done;
2456 					}
2457 				}
2458 				if (entry == first_entry)
2459 					first_entry = tmp_entry;
2460 				else
2461 					first_entry = NULL;
2462 				entry = tmp_entry;
2463 			}
2464 			last_timestamp = map->timestamp;
2465 			continue;
2466 		}
2467 		vm_map_clip_start(map, entry, start);
2468 		vm_map_clip_end(map, entry, end);
2469 		/*
2470 		 * Mark the entry in case the map lock is released.  (See
2471 		 * above.)
2472 		 */
2473 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2474 		entry->wiring_thread = curthread;
2475 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2476 		    || (entry->protection & prot) != prot) {
2477 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2478 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2479 				end = entry->end;
2480 				rv = KERN_INVALID_ADDRESS;
2481 				goto done;
2482 			}
2483 			goto next_entry;
2484 		}
2485 		if (entry->wired_count == 0) {
2486 			entry->wired_count++;
2487 			saved_start = entry->start;
2488 			saved_end = entry->end;
2489 			fictitious = entry->object.vm_object != NULL &&
2490 			    (entry->object.vm_object->flags &
2491 			    OBJ_FICTITIOUS) != 0;
2492 			/*
2493 			 * Release the map lock, relying on the in-transition
2494 			 * mark.  Mark the map busy for fork.
2495 			 */
2496 			vm_map_busy(map);
2497 			vm_map_unlock(map);
2498 			rv = vm_fault_wire(map, saved_start, saved_end,
2499 			    fictitious);
2500 			vm_map_lock(map);
2501 			vm_map_unbusy(map);
2502 			if (last_timestamp + 1 != map->timestamp) {
2503 				/*
2504 				 * Look again for the entry because the map was
2505 				 * modified while it was unlocked.  The entry
2506 				 * may have been clipped, but NOT merged or
2507 				 * deleted.
2508 				 */
2509 				result = vm_map_lookup_entry(map, saved_start,
2510 				    &tmp_entry);
2511 				KASSERT(result, ("vm_map_wire: lookup failed"));
2512 				if (entry == first_entry)
2513 					first_entry = tmp_entry;
2514 				else
2515 					first_entry = NULL;
2516 				entry = tmp_entry;
2517 				while (entry->end < saved_end) {
2518 					if (rv != KERN_SUCCESS) {
2519 						KASSERT(entry->wired_count == 1,
2520 						    ("vm_map_wire: bad count"));
2521 						entry->wired_count = -1;
2522 					}
2523 					entry = entry->next;
2524 				}
2525 			}
2526 			last_timestamp = map->timestamp;
2527 			if (rv != KERN_SUCCESS) {
2528 				KASSERT(entry->wired_count == 1,
2529 				    ("vm_map_wire: bad count"));
2530 				/*
2531 				 * Assign an out-of-range value to represent
2532 				 * the failure to wire this entry.
2533 				 */
2534 				entry->wired_count = -1;
2535 				end = entry->end;
2536 				goto done;
2537 			}
2538 		} else if (!user_wire ||
2539 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2540 			entry->wired_count++;
2541 		}
2542 		/*
2543 		 * Check the map for holes in the specified region.
2544 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2545 		 */
2546 	next_entry:
2547 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2548 		    (entry->end < end && (entry->next == &map->header ||
2549 		    entry->next->start > entry->end))) {
2550 			end = entry->end;
2551 			rv = KERN_INVALID_ADDRESS;
2552 			goto done;
2553 		}
2554 		entry = entry->next;
2555 	}
2556 	rv = KERN_SUCCESS;
2557 done:
2558 	need_wakeup = FALSE;
2559 	if (first_entry == NULL) {
2560 		result = vm_map_lookup_entry(map, start, &first_entry);
2561 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2562 			first_entry = first_entry->next;
2563 		else
2564 			KASSERT(result, ("vm_map_wire: lookup failed"));
2565 	}
2566 	for (entry = first_entry; entry != &map->header && entry->start < end;
2567 	    entry = entry->next) {
2568 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2569 			goto next_entry_done;
2570 
2571 		/*
2572 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2573 		 * space in the unwired region could have been mapped
2574 		 * while the map lock was dropped for faulting in the
2575 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2576 		 * Moreover, another thread could be simultaneously
2577 		 * wiring this new mapping entry.  Detect these cases
2578 		 * and skip any entries marked as in transition by us.
2579 		 */
2580 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2581 		    entry->wiring_thread != curthread) {
2582 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2583 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2584 			continue;
2585 		}
2586 
2587 		if (rv == KERN_SUCCESS) {
2588 			if (user_wire)
2589 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2590 		} else if (entry->wired_count == -1) {
2591 			/*
2592 			 * Wiring failed on this entry.  Thus, unwiring is
2593 			 * unnecessary.
2594 			 */
2595 			entry->wired_count = 0;
2596 		} else {
2597 			if (!user_wire ||
2598 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2599 				entry->wired_count--;
2600 			if (entry->wired_count == 0) {
2601 				/*
2602 				 * Retain the map lock.
2603 				 */
2604 				vm_fault_unwire(map, entry->start, entry->end,
2605 				    entry->object.vm_object != NULL &&
2606 				    (entry->object.vm_object->flags &
2607 				    OBJ_FICTITIOUS) != 0);
2608 			}
2609 		}
2610 	next_entry_done:
2611 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2612 		    ("vm_map_wire: in-transition flag missing %p", entry));
2613 		KASSERT(entry->wiring_thread == curthread,
2614 		    ("vm_map_wire: alien wire %p", entry));
2615 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2616 		    MAP_ENTRY_WIRE_SKIPPED);
2617 		entry->wiring_thread = NULL;
2618 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2619 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2620 			need_wakeup = TRUE;
2621 		}
2622 		vm_map_simplify_entry(map, entry);
2623 	}
2624 	vm_map_unlock(map);
2625 	if (need_wakeup)
2626 		vm_map_wakeup(map);
2627 	return (rv);
2628 }
2629 
2630 /*
2631  * vm_map_sync
2632  *
2633  * Push any dirty cached pages in the address range to their pager.
2634  * If syncio is TRUE, dirty pages are written synchronously.
2635  * If invalidate is TRUE, any cached pages are freed as well.
2636  *
2637  * If the size of the region from start to end is zero, we are
2638  * supposed to flush all modified pages within the region containing
2639  * start.  Unfortunately, a region can be split or coalesced with
2640  * neighboring regions, making it difficult to determine what the
2641  * original region was.  Therefore, we approximate this requirement by
2642  * flushing the current region containing start.
2643  *
2644  * Returns an error if any part of the specified range is not mapped.
2645  */
2646 int
2647 vm_map_sync(
2648 	vm_map_t map,
2649 	vm_offset_t start,
2650 	vm_offset_t end,
2651 	boolean_t syncio,
2652 	boolean_t invalidate)
2653 {
2654 	vm_map_entry_t current;
2655 	vm_map_entry_t entry;
2656 	vm_size_t size;
2657 	vm_object_t object;
2658 	vm_ooffset_t offset;
2659 	unsigned int last_timestamp;
2660 	boolean_t failed;
2661 
2662 	vm_map_lock_read(map);
2663 	VM_MAP_RANGE_CHECK(map, start, end);
2664 	if (!vm_map_lookup_entry(map, start, &entry)) {
2665 		vm_map_unlock_read(map);
2666 		return (KERN_INVALID_ADDRESS);
2667 	} else if (start == end) {
2668 		start = entry->start;
2669 		end = entry->end;
2670 	}
2671 	/*
2672 	 * Make a first pass to check for user-wired memory and holes.
2673 	 */
2674 	for (current = entry; current != &map->header && current->start < end;
2675 	    current = current->next) {
2676 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2677 			vm_map_unlock_read(map);
2678 			return (KERN_INVALID_ARGUMENT);
2679 		}
2680 		if (end > current->end &&
2681 		    (current->next == &map->header ||
2682 			current->end != current->next->start)) {
2683 			vm_map_unlock_read(map);
2684 			return (KERN_INVALID_ADDRESS);
2685 		}
2686 	}
2687 
2688 	if (invalidate)
2689 		pmap_remove(map->pmap, start, end);
2690 	failed = FALSE;
2691 
2692 	/*
2693 	 * Make a second pass, cleaning/uncaching pages from the indicated
2694 	 * objects as we go.
2695 	 */
2696 	for (current = entry; current != &map->header && current->start < end;) {
2697 		offset = current->offset + (start - current->start);
2698 		size = (end <= current->end ? end : current->end) - start;
2699 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2700 			vm_map_t smap;
2701 			vm_map_entry_t tentry;
2702 			vm_size_t tsize;
2703 
2704 			smap = current->object.sub_map;
2705 			vm_map_lock_read(smap);
2706 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2707 			tsize = tentry->end - offset;
2708 			if (tsize < size)
2709 				size = tsize;
2710 			object = tentry->object.vm_object;
2711 			offset = tentry->offset + (offset - tentry->start);
2712 			vm_map_unlock_read(smap);
2713 		} else {
2714 			object = current->object.vm_object;
2715 		}
2716 		vm_object_reference(object);
2717 		last_timestamp = map->timestamp;
2718 		vm_map_unlock_read(map);
2719 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2720 			failed = TRUE;
2721 		start += size;
2722 		vm_object_deallocate(object);
2723 		vm_map_lock_read(map);
2724 		if (last_timestamp == map->timestamp ||
2725 		    !vm_map_lookup_entry(map, start, &current))
2726 			current = current->next;
2727 	}
2728 
2729 	vm_map_unlock_read(map);
2730 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2731 }
2732 
2733 /*
2734  *	vm_map_entry_unwire:	[ internal use only ]
2735  *
2736  *	Make the region specified by this entry pageable.
2737  *
2738  *	The map in question should be locked.
2739  *	[This is the reason for this routine's existence.]
2740  */
2741 static void
2742 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2743 {
2744 	vm_fault_unwire(map, entry->start, entry->end,
2745 	    entry->object.vm_object != NULL &&
2746 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2747 	entry->wired_count = 0;
2748 }
2749 
2750 static void
2751 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2752 {
2753 
2754 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2755 		vm_object_deallocate(entry->object.vm_object);
2756 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2757 }
2758 
2759 /*
2760  *	vm_map_entry_delete:	[ internal use only ]
2761  *
2762  *	Deallocate the given entry from the target map.
2763  */
2764 static void
2765 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2766 {
2767 	vm_object_t object;
2768 	vm_pindex_t offidxstart, offidxend, count, size1;
2769 	vm_ooffset_t size;
2770 
2771 	vm_map_entry_unlink(map, entry);
2772 	object = entry->object.vm_object;
2773 	size = entry->end - entry->start;
2774 	map->size -= size;
2775 
2776 	if (entry->cred != NULL) {
2777 		swap_release_by_cred(size, entry->cred);
2778 		crfree(entry->cred);
2779 	}
2780 
2781 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2782 	    (object != NULL)) {
2783 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2784 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2785 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2786 		count = OFF_TO_IDX(size);
2787 		offidxstart = OFF_TO_IDX(entry->offset);
2788 		offidxend = offidxstart + count;
2789 		VM_OBJECT_WLOCK(object);
2790 		if (object->ref_count != 1 &&
2791 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2792 		    object == kernel_object || object == kmem_object)) {
2793 			vm_object_collapse(object);
2794 
2795 			/*
2796 			 * The option OBJPR_NOTMAPPED can be passed here
2797 			 * because vm_map_delete() already performed
2798 			 * pmap_remove() on the only mapping to this range
2799 			 * of pages.
2800 			 */
2801 			vm_object_page_remove(object, offidxstart, offidxend,
2802 			    OBJPR_NOTMAPPED);
2803 			if (object->type == OBJT_SWAP)
2804 				swap_pager_freespace(object, offidxstart, count);
2805 			if (offidxend >= object->size &&
2806 			    offidxstart < object->size) {
2807 				size1 = object->size;
2808 				object->size = offidxstart;
2809 				if (object->cred != NULL) {
2810 					size1 -= object->size;
2811 					KASSERT(object->charge >= ptoa(size1),
2812 					    ("vm_map_entry_delete: object->charge < 0"));
2813 					swap_release_by_cred(ptoa(size1), object->cred);
2814 					object->charge -= ptoa(size1);
2815 				}
2816 			}
2817 		}
2818 		VM_OBJECT_WUNLOCK(object);
2819 	} else
2820 		entry->object.vm_object = NULL;
2821 	if (map->system_map)
2822 		vm_map_entry_deallocate(entry, TRUE);
2823 	else {
2824 		entry->next = curthread->td_map_def_user;
2825 		curthread->td_map_def_user = entry;
2826 	}
2827 }
2828 
2829 /*
2830  *	vm_map_delete:	[ internal use only ]
2831  *
2832  *	Deallocates the given address range from the target
2833  *	map.
2834  */
2835 int
2836 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2837 {
2838 	vm_map_entry_t entry;
2839 	vm_map_entry_t first_entry;
2840 
2841 	VM_MAP_ASSERT_LOCKED(map);
2842 
2843 	/*
2844 	 * Find the start of the region, and clip it
2845 	 */
2846 	if (!vm_map_lookup_entry(map, start, &first_entry))
2847 		entry = first_entry->next;
2848 	else {
2849 		entry = first_entry;
2850 		vm_map_clip_start(map, entry, start);
2851 	}
2852 
2853 	/*
2854 	 * Step through all entries in this region
2855 	 */
2856 	while ((entry != &map->header) && (entry->start < end)) {
2857 		vm_map_entry_t next;
2858 
2859 		/*
2860 		 * Wait for wiring or unwiring of an entry to complete.
2861 		 * Also wait for any system wirings to disappear on
2862 		 * user maps.
2863 		 */
2864 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2865 		    (vm_map_pmap(map) != kernel_pmap &&
2866 		    vm_map_entry_system_wired_count(entry) != 0)) {
2867 			unsigned int last_timestamp;
2868 			vm_offset_t saved_start;
2869 			vm_map_entry_t tmp_entry;
2870 
2871 			saved_start = entry->start;
2872 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2873 			last_timestamp = map->timestamp;
2874 			(void) vm_map_unlock_and_wait(map, 0);
2875 			vm_map_lock(map);
2876 			if (last_timestamp + 1 != map->timestamp) {
2877 				/*
2878 				 * Look again for the entry because the map was
2879 				 * modified while it was unlocked.
2880 				 * Specifically, the entry may have been
2881 				 * clipped, merged, or deleted.
2882 				 */
2883 				if (!vm_map_lookup_entry(map, saved_start,
2884 							 &tmp_entry))
2885 					entry = tmp_entry->next;
2886 				else {
2887 					entry = tmp_entry;
2888 					vm_map_clip_start(map, entry,
2889 							  saved_start);
2890 				}
2891 			}
2892 			continue;
2893 		}
2894 		vm_map_clip_end(map, entry, end);
2895 
2896 		next = entry->next;
2897 
2898 		/*
2899 		 * Unwire before removing addresses from the pmap; otherwise,
2900 		 * unwiring will put the entries back in the pmap.
2901 		 */
2902 		if (entry->wired_count != 0) {
2903 			vm_map_entry_unwire(map, entry);
2904 		}
2905 
2906 		pmap_remove(map->pmap, entry->start, entry->end);
2907 
2908 		/*
2909 		 * Delete the entry only after removing all pmap
2910 		 * entries pointing to its pages.  (Otherwise, its
2911 		 * page frames may be reallocated, and any modify bits
2912 		 * will be set in the wrong object!)
2913 		 */
2914 		vm_map_entry_delete(map, entry);
2915 		entry = next;
2916 	}
2917 	return (KERN_SUCCESS);
2918 }
2919 
2920 /*
2921  *	vm_map_remove:
2922  *
2923  *	Remove the given address range from the target map.
2924  *	This is the exported form of vm_map_delete.
2925  */
2926 int
2927 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2928 {
2929 	int result;
2930 
2931 	vm_map_lock(map);
2932 	VM_MAP_RANGE_CHECK(map, start, end);
2933 	result = vm_map_delete(map, start, end);
2934 	vm_map_unlock(map);
2935 	return (result);
2936 }
2937 
2938 /*
2939  *	vm_map_check_protection:
2940  *
2941  *	Assert that the target map allows the specified privilege on the
2942  *	entire address region given.  The entire region must be allocated.
2943  *
2944  *	WARNING!  This code does not and should not check whether the
2945  *	contents of the region is accessible.  For example a smaller file
2946  *	might be mapped into a larger address space.
2947  *
2948  *	NOTE!  This code is also called by munmap().
2949  *
2950  *	The map must be locked.  A read lock is sufficient.
2951  */
2952 boolean_t
2953 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2954 			vm_prot_t protection)
2955 {
2956 	vm_map_entry_t entry;
2957 	vm_map_entry_t tmp_entry;
2958 
2959 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2960 		return (FALSE);
2961 	entry = tmp_entry;
2962 
2963 	while (start < end) {
2964 		if (entry == &map->header)
2965 			return (FALSE);
2966 		/*
2967 		 * No holes allowed!
2968 		 */
2969 		if (start < entry->start)
2970 			return (FALSE);
2971 		/*
2972 		 * Check protection associated with entry.
2973 		 */
2974 		if ((entry->protection & protection) != protection)
2975 			return (FALSE);
2976 		/* go to next entry */
2977 		start = entry->end;
2978 		entry = entry->next;
2979 	}
2980 	return (TRUE);
2981 }
2982 
2983 /*
2984  *	vm_map_copy_entry:
2985  *
2986  *	Copies the contents of the source entry to the destination
2987  *	entry.  The entries *must* be aligned properly.
2988  */
2989 static void
2990 vm_map_copy_entry(
2991 	vm_map_t src_map,
2992 	vm_map_t dst_map,
2993 	vm_map_entry_t src_entry,
2994 	vm_map_entry_t dst_entry,
2995 	vm_ooffset_t *fork_charge)
2996 {
2997 	vm_object_t src_object;
2998 	vm_map_entry_t fake_entry;
2999 	vm_offset_t size;
3000 	struct ucred *cred;
3001 	int charged;
3002 
3003 	VM_MAP_ASSERT_LOCKED(dst_map);
3004 
3005 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3006 		return;
3007 
3008 	if (src_entry->wired_count == 0) {
3009 
3010 		/*
3011 		 * If the source entry is marked needs_copy, it is already
3012 		 * write-protected.
3013 		 */
3014 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3015 			pmap_protect(src_map->pmap,
3016 			    src_entry->start,
3017 			    src_entry->end,
3018 			    src_entry->protection & ~VM_PROT_WRITE);
3019 		}
3020 
3021 		/*
3022 		 * Make a copy of the object.
3023 		 */
3024 		size = src_entry->end - src_entry->start;
3025 		if ((src_object = src_entry->object.vm_object) != NULL) {
3026 			VM_OBJECT_WLOCK(src_object);
3027 			charged = ENTRY_CHARGED(src_entry);
3028 			if ((src_object->handle == NULL) &&
3029 				(src_object->type == OBJT_DEFAULT ||
3030 				 src_object->type == OBJT_SWAP)) {
3031 				vm_object_collapse(src_object);
3032 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3033 					vm_object_split(src_entry);
3034 					src_object = src_entry->object.vm_object;
3035 				}
3036 			}
3037 			vm_object_reference_locked(src_object);
3038 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3039 			if (src_entry->cred != NULL &&
3040 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3041 				KASSERT(src_object->cred == NULL,
3042 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3043 				     src_object));
3044 				src_object->cred = src_entry->cred;
3045 				src_object->charge = size;
3046 			}
3047 			VM_OBJECT_WUNLOCK(src_object);
3048 			dst_entry->object.vm_object = src_object;
3049 			if (charged) {
3050 				cred = curthread->td_ucred;
3051 				crhold(cred);
3052 				dst_entry->cred = cred;
3053 				*fork_charge += size;
3054 				if (!(src_entry->eflags &
3055 				      MAP_ENTRY_NEEDS_COPY)) {
3056 					crhold(cred);
3057 					src_entry->cred = cred;
3058 					*fork_charge += size;
3059 				}
3060 			}
3061 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3062 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3063 			dst_entry->offset = src_entry->offset;
3064 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3065 				/*
3066 				 * MAP_ENTRY_VN_WRITECNT cannot
3067 				 * indicate write reference from
3068 				 * src_entry, since the entry is
3069 				 * marked as needs copy.  Allocate a
3070 				 * fake entry that is used to
3071 				 * decrement object->un_pager.vnp.writecount
3072 				 * at the appropriate time.  Attach
3073 				 * fake_entry to the deferred list.
3074 				 */
3075 				fake_entry = vm_map_entry_create(dst_map);
3076 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3077 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3078 				vm_object_reference(src_object);
3079 				fake_entry->object.vm_object = src_object;
3080 				fake_entry->start = src_entry->start;
3081 				fake_entry->end = src_entry->end;
3082 				fake_entry->next = curthread->td_map_def_user;
3083 				curthread->td_map_def_user = fake_entry;
3084 			}
3085 		} else {
3086 			dst_entry->object.vm_object = NULL;
3087 			dst_entry->offset = 0;
3088 			if (src_entry->cred != NULL) {
3089 				dst_entry->cred = curthread->td_ucred;
3090 				crhold(dst_entry->cred);
3091 				*fork_charge += size;
3092 			}
3093 		}
3094 
3095 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3096 		    dst_entry->end - dst_entry->start, src_entry->start);
3097 	} else {
3098 		/*
3099 		 * Of course, wired down pages can't be set copy-on-write.
3100 		 * Cause wired pages to be copied into the new map by
3101 		 * simulating faults (the new pages are pageable)
3102 		 */
3103 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3104 		    fork_charge);
3105 	}
3106 }
3107 
3108 /*
3109  * vmspace_map_entry_forked:
3110  * Update the newly-forked vmspace each time a map entry is inherited
3111  * or copied.  The values for vm_dsize and vm_tsize are approximate
3112  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3113  */
3114 static void
3115 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3116     vm_map_entry_t entry)
3117 {
3118 	vm_size_t entrysize;
3119 	vm_offset_t newend;
3120 
3121 	entrysize = entry->end - entry->start;
3122 	vm2->vm_map.size += entrysize;
3123 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3124 		vm2->vm_ssize += btoc(entrysize);
3125 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3126 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3127 		newend = MIN(entry->end,
3128 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3129 		vm2->vm_dsize += btoc(newend - entry->start);
3130 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3131 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3132 		newend = MIN(entry->end,
3133 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3134 		vm2->vm_tsize += btoc(newend - entry->start);
3135 	}
3136 }
3137 
3138 /*
3139  * vmspace_fork:
3140  * Create a new process vmspace structure and vm_map
3141  * based on those of an existing process.  The new map
3142  * is based on the old map, according to the inheritance
3143  * values on the regions in that map.
3144  *
3145  * XXX It might be worth coalescing the entries added to the new vmspace.
3146  *
3147  * The source map must not be locked.
3148  */
3149 struct vmspace *
3150 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3151 {
3152 	struct vmspace *vm2;
3153 	vm_map_t new_map, old_map;
3154 	vm_map_entry_t new_entry, old_entry;
3155 	vm_object_t object;
3156 	int locked;
3157 
3158 	old_map = &vm1->vm_map;
3159 	/* Copy immutable fields of vm1 to vm2. */
3160 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3161 	if (vm2 == NULL)
3162 		return (NULL);
3163 	vm2->vm_taddr = vm1->vm_taddr;
3164 	vm2->vm_daddr = vm1->vm_daddr;
3165 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3166 	vm_map_lock(old_map);
3167 	if (old_map->busy)
3168 		vm_map_wait_busy(old_map);
3169 	new_map = &vm2->vm_map;
3170 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3171 	KASSERT(locked, ("vmspace_fork: lock failed"));
3172 
3173 	old_entry = old_map->header.next;
3174 
3175 	while (old_entry != &old_map->header) {
3176 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3177 			panic("vm_map_fork: encountered a submap");
3178 
3179 		switch (old_entry->inheritance) {
3180 		case VM_INHERIT_NONE:
3181 			break;
3182 
3183 		case VM_INHERIT_SHARE:
3184 			/*
3185 			 * Clone the entry, creating the shared object if necessary.
3186 			 */
3187 			object = old_entry->object.vm_object;
3188 			if (object == NULL) {
3189 				object = vm_object_allocate(OBJT_DEFAULT,
3190 					atop(old_entry->end - old_entry->start));
3191 				old_entry->object.vm_object = object;
3192 				old_entry->offset = 0;
3193 				if (old_entry->cred != NULL) {
3194 					object->cred = old_entry->cred;
3195 					object->charge = old_entry->end -
3196 					    old_entry->start;
3197 					old_entry->cred = NULL;
3198 				}
3199 			}
3200 
3201 			/*
3202 			 * Add the reference before calling vm_object_shadow
3203 			 * to insure that a shadow object is created.
3204 			 */
3205 			vm_object_reference(object);
3206 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3207 				vm_object_shadow(&old_entry->object.vm_object,
3208 				    &old_entry->offset,
3209 				    old_entry->end - old_entry->start);
3210 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3211 				/* Transfer the second reference too. */
3212 				vm_object_reference(
3213 				    old_entry->object.vm_object);
3214 
3215 				/*
3216 				 * As in vm_map_simplify_entry(), the
3217 				 * vnode lock will not be acquired in
3218 				 * this call to vm_object_deallocate().
3219 				 */
3220 				vm_object_deallocate(object);
3221 				object = old_entry->object.vm_object;
3222 			}
3223 			VM_OBJECT_WLOCK(object);
3224 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3225 			if (old_entry->cred != NULL) {
3226 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3227 				object->cred = old_entry->cred;
3228 				object->charge = old_entry->end - old_entry->start;
3229 				old_entry->cred = NULL;
3230 			}
3231 
3232 			/*
3233 			 * Assert the correct state of the vnode
3234 			 * v_writecount while the object is locked, to
3235 			 * not relock it later for the assertion
3236 			 * correctness.
3237 			 */
3238 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3239 			    object->type == OBJT_VNODE) {
3240 				KASSERT(((struct vnode *)object->handle)->
3241 				    v_writecount > 0,
3242 				    ("vmspace_fork: v_writecount %p", object));
3243 				KASSERT(object->un_pager.vnp.writemappings > 0,
3244 				    ("vmspace_fork: vnp.writecount %p",
3245 				    object));
3246 			}
3247 			VM_OBJECT_WUNLOCK(object);
3248 
3249 			/*
3250 			 * Clone the entry, referencing the shared object.
3251 			 */
3252 			new_entry = vm_map_entry_create(new_map);
3253 			*new_entry = *old_entry;
3254 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3255 			    MAP_ENTRY_IN_TRANSITION);
3256 			new_entry->wiring_thread = NULL;
3257 			new_entry->wired_count = 0;
3258 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3259 				vnode_pager_update_writecount(object,
3260 				    new_entry->start, new_entry->end);
3261 			}
3262 
3263 			/*
3264 			 * Insert the entry into the new map -- we know we're
3265 			 * inserting at the end of the new map.
3266 			 */
3267 			vm_map_entry_link(new_map, new_map->header.prev,
3268 			    new_entry);
3269 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3270 
3271 			/*
3272 			 * Update the physical map
3273 			 */
3274 			pmap_copy(new_map->pmap, old_map->pmap,
3275 			    new_entry->start,
3276 			    (old_entry->end - old_entry->start),
3277 			    old_entry->start);
3278 			break;
3279 
3280 		case VM_INHERIT_COPY:
3281 			/*
3282 			 * Clone the entry and link into the map.
3283 			 */
3284 			new_entry = vm_map_entry_create(new_map);
3285 			*new_entry = *old_entry;
3286 			/*
3287 			 * Copied entry is COW over the old object.
3288 			 */
3289 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3290 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3291 			new_entry->wiring_thread = NULL;
3292 			new_entry->wired_count = 0;
3293 			new_entry->object.vm_object = NULL;
3294 			new_entry->cred = NULL;
3295 			vm_map_entry_link(new_map, new_map->header.prev,
3296 			    new_entry);
3297 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3298 			vm_map_copy_entry(old_map, new_map, old_entry,
3299 			    new_entry, fork_charge);
3300 			break;
3301 		}
3302 		old_entry = old_entry->next;
3303 	}
3304 	/*
3305 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3306 	 * map entries, which cannot be done until both old_map and
3307 	 * new_map locks are released.
3308 	 */
3309 	sx_xunlock(&old_map->lock);
3310 	sx_xunlock(&new_map->lock);
3311 	vm_map_process_deferred();
3312 
3313 	return (vm2);
3314 }
3315 
3316 int
3317 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3318     vm_prot_t prot, vm_prot_t max, int cow)
3319 {
3320 	vm_map_entry_t new_entry, prev_entry;
3321 	vm_offset_t bot, top;
3322 	vm_size_t growsize, init_ssize;
3323 	int orient, rv;
3324 	rlim_t lmemlim, vmemlim;
3325 
3326 	/*
3327 	 * The stack orientation is piggybacked with the cow argument.
3328 	 * Extract it into orient and mask the cow argument so that we
3329 	 * don't pass it around further.
3330 	 * NOTE: We explicitly allow bi-directional stacks.
3331 	 */
3332 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3333 	cow &= ~orient;
3334 	KASSERT(orient != 0, ("No stack grow direction"));
3335 
3336 	if (addrbos < vm_map_min(map) ||
3337 	    addrbos > vm_map_max(map) ||
3338 	    addrbos + max_ssize < addrbos)
3339 		return (KERN_NO_SPACE);
3340 
3341 	growsize = sgrowsiz;
3342 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3343 
3344 	PROC_LOCK(curproc);
3345 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3346 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3347 	PROC_UNLOCK(curproc);
3348 
3349 	vm_map_lock(map);
3350 
3351 	/* If addr is already mapped, no go */
3352 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3353 		vm_map_unlock(map);
3354 		return (KERN_NO_SPACE);
3355 	}
3356 
3357 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3358 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3359 			vm_map_unlock(map);
3360 			return (KERN_NO_SPACE);
3361 		}
3362 	}
3363 
3364 	/* If we would blow our VMEM resource limit, no go */
3365 	if (map->size + init_ssize > vmemlim) {
3366 		vm_map_unlock(map);
3367 		return (KERN_NO_SPACE);
3368 	}
3369 
3370 	/*
3371 	 * If we can't accomodate max_ssize in the current mapping, no go.
3372 	 * However, we need to be aware that subsequent user mappings might
3373 	 * map into the space we have reserved for stack, and currently this
3374 	 * space is not protected.
3375 	 *
3376 	 * Hopefully we will at least detect this condition when we try to
3377 	 * grow the stack.
3378 	 */
3379 	if ((prev_entry->next != &map->header) &&
3380 	    (prev_entry->next->start < addrbos + max_ssize)) {
3381 		vm_map_unlock(map);
3382 		return (KERN_NO_SPACE);
3383 	}
3384 
3385 	/*
3386 	 * We initially map a stack of only init_ssize.  We will grow as
3387 	 * needed later.  Depending on the orientation of the stack (i.e.
3388 	 * the grow direction) we either map at the top of the range, the
3389 	 * bottom of the range or in the middle.
3390 	 *
3391 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3392 	 * and cow to be 0.  Possibly we should eliminate these as input
3393 	 * parameters, and just pass these values here in the insert call.
3394 	 */
3395 	if (orient == MAP_STACK_GROWS_DOWN)
3396 		bot = addrbos + max_ssize - init_ssize;
3397 	else if (orient == MAP_STACK_GROWS_UP)
3398 		bot = addrbos;
3399 	else
3400 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3401 	top = bot + init_ssize;
3402 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3403 
3404 	/* Now set the avail_ssize amount. */
3405 	if (rv == KERN_SUCCESS) {
3406 		if (prev_entry != &map->header)
3407 			vm_map_clip_end(map, prev_entry, bot);
3408 		new_entry = prev_entry->next;
3409 		if (new_entry->end != top || new_entry->start != bot)
3410 			panic("Bad entry start/end for new stack entry");
3411 
3412 		new_entry->avail_ssize = max_ssize - init_ssize;
3413 		if (orient & MAP_STACK_GROWS_DOWN)
3414 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3415 		if (orient & MAP_STACK_GROWS_UP)
3416 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3417 	}
3418 
3419 	vm_map_unlock(map);
3420 	return (rv);
3421 }
3422 
3423 static int stack_guard_page = 0;
3424 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3425 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3426     &stack_guard_page, 0,
3427     "Insert stack guard page ahead of the growable segments.");
3428 
3429 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3430  * desired address is already mapped, or if we successfully grow
3431  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3432  * stack range (this is strange, but preserves compatibility with
3433  * the grow function in vm_machdep.c).
3434  */
3435 int
3436 vm_map_growstack(struct proc *p, vm_offset_t addr)
3437 {
3438 	vm_map_entry_t next_entry, prev_entry;
3439 	vm_map_entry_t new_entry, stack_entry;
3440 	struct vmspace *vm = p->p_vmspace;
3441 	vm_map_t map = &vm->vm_map;
3442 	vm_offset_t end;
3443 	vm_size_t growsize;
3444 	size_t grow_amount, max_grow;
3445 	rlim_t lmemlim, stacklim, vmemlim;
3446 	int is_procstack, rv;
3447 	struct ucred *cred;
3448 #ifdef notyet
3449 	uint64_t limit;
3450 #endif
3451 #ifdef RACCT
3452 	int error;
3453 #endif
3454 
3455 Retry:
3456 	PROC_LOCK(p);
3457 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3458 	stacklim = lim_cur(p, RLIMIT_STACK);
3459 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3460 	PROC_UNLOCK(p);
3461 
3462 	vm_map_lock_read(map);
3463 
3464 	/* If addr is already in the entry range, no need to grow.*/
3465 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3466 		vm_map_unlock_read(map);
3467 		return (KERN_SUCCESS);
3468 	}
3469 
3470 	next_entry = prev_entry->next;
3471 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3472 		/*
3473 		 * This entry does not grow upwards. Since the address lies
3474 		 * beyond this entry, the next entry (if one exists) has to
3475 		 * be a downward growable entry. The entry list header is
3476 		 * never a growable entry, so it suffices to check the flags.
3477 		 */
3478 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3479 			vm_map_unlock_read(map);
3480 			return (KERN_SUCCESS);
3481 		}
3482 		stack_entry = next_entry;
3483 	} else {
3484 		/*
3485 		 * This entry grows upward. If the next entry does not at
3486 		 * least grow downwards, this is the entry we need to grow.
3487 		 * otherwise we have two possible choices and we have to
3488 		 * select one.
3489 		 */
3490 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3491 			/*
3492 			 * We have two choices; grow the entry closest to
3493 			 * the address to minimize the amount of growth.
3494 			 */
3495 			if (addr - prev_entry->end <= next_entry->start - addr)
3496 				stack_entry = prev_entry;
3497 			else
3498 				stack_entry = next_entry;
3499 		} else
3500 			stack_entry = prev_entry;
3501 	}
3502 
3503 	if (stack_entry == next_entry) {
3504 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3505 		KASSERT(addr < stack_entry->start, ("foo"));
3506 		end = (prev_entry != &map->header) ? prev_entry->end :
3507 		    stack_entry->start - stack_entry->avail_ssize;
3508 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3509 		max_grow = stack_entry->start - end;
3510 	} else {
3511 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3512 		KASSERT(addr >= stack_entry->end, ("foo"));
3513 		end = (next_entry != &map->header) ? next_entry->start :
3514 		    stack_entry->end + stack_entry->avail_ssize;
3515 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3516 		max_grow = end - stack_entry->end;
3517 	}
3518 
3519 	if (grow_amount > stack_entry->avail_ssize) {
3520 		vm_map_unlock_read(map);
3521 		return (KERN_NO_SPACE);
3522 	}
3523 
3524 	/*
3525 	 * If there is no longer enough space between the entries nogo, and
3526 	 * adjust the available space.  Note: this  should only happen if the
3527 	 * user has mapped into the stack area after the stack was created,
3528 	 * and is probably an error.
3529 	 *
3530 	 * This also effectively destroys any guard page the user might have
3531 	 * intended by limiting the stack size.
3532 	 */
3533 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3534 		if (vm_map_lock_upgrade(map))
3535 			goto Retry;
3536 
3537 		stack_entry->avail_ssize = max_grow;
3538 
3539 		vm_map_unlock(map);
3540 		return (KERN_NO_SPACE);
3541 	}
3542 
3543 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3544 
3545 	/*
3546 	 * If this is the main process stack, see if we're over the stack
3547 	 * limit.
3548 	 */
3549 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3550 		vm_map_unlock_read(map);
3551 		return (KERN_NO_SPACE);
3552 	}
3553 #ifdef RACCT
3554 	PROC_LOCK(p);
3555 	if (is_procstack &&
3556 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3557 		PROC_UNLOCK(p);
3558 		vm_map_unlock_read(map);
3559 		return (KERN_NO_SPACE);
3560 	}
3561 	PROC_UNLOCK(p);
3562 #endif
3563 
3564 	/* Round up the grow amount modulo sgrowsiz */
3565 	growsize = sgrowsiz;
3566 	grow_amount = roundup(grow_amount, growsize);
3567 	if (grow_amount > stack_entry->avail_ssize)
3568 		grow_amount = stack_entry->avail_ssize;
3569 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3570 		grow_amount = trunc_page((vm_size_t)stacklim) -
3571 		    ctob(vm->vm_ssize);
3572 	}
3573 #ifdef notyet
3574 	PROC_LOCK(p);
3575 	limit = racct_get_available(p, RACCT_STACK);
3576 	PROC_UNLOCK(p);
3577 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3578 		grow_amount = limit - ctob(vm->vm_ssize);
3579 #endif
3580 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3581 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3582 			vm_map_unlock_read(map);
3583 			rv = KERN_NO_SPACE;
3584 			goto out;
3585 		}
3586 #ifdef RACCT
3587 		PROC_LOCK(p);
3588 		if (racct_set(p, RACCT_MEMLOCK,
3589 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3590 			PROC_UNLOCK(p);
3591 			vm_map_unlock_read(map);
3592 			rv = KERN_NO_SPACE;
3593 			goto out;
3594 		}
3595 		PROC_UNLOCK(p);
3596 #endif
3597 	}
3598 	/* If we would blow our VMEM resource limit, no go */
3599 	if (map->size + grow_amount > vmemlim) {
3600 		vm_map_unlock_read(map);
3601 		rv = KERN_NO_SPACE;
3602 		goto out;
3603 	}
3604 #ifdef RACCT
3605 	PROC_LOCK(p);
3606 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3607 		PROC_UNLOCK(p);
3608 		vm_map_unlock_read(map);
3609 		rv = KERN_NO_SPACE;
3610 		goto out;
3611 	}
3612 	PROC_UNLOCK(p);
3613 #endif
3614 
3615 	if (vm_map_lock_upgrade(map))
3616 		goto Retry;
3617 
3618 	if (stack_entry == next_entry) {
3619 		/*
3620 		 * Growing downward.
3621 		 */
3622 		/* Get the preliminary new entry start value */
3623 		addr = stack_entry->start - grow_amount;
3624 
3625 		/*
3626 		 * If this puts us into the previous entry, cut back our
3627 		 * growth to the available space. Also, see the note above.
3628 		 */
3629 		if (addr < end) {
3630 			stack_entry->avail_ssize = max_grow;
3631 			addr = end;
3632 			if (stack_guard_page)
3633 				addr += PAGE_SIZE;
3634 		}
3635 
3636 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3637 		    next_entry->protection, next_entry->max_protection, 0);
3638 
3639 		/* Adjust the available stack space by the amount we grew. */
3640 		if (rv == KERN_SUCCESS) {
3641 			if (prev_entry != &map->header)
3642 				vm_map_clip_end(map, prev_entry, addr);
3643 			new_entry = prev_entry->next;
3644 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3645 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3646 			KASSERT(new_entry->start == addr, ("foo"));
3647 			grow_amount = new_entry->end - new_entry->start;
3648 			new_entry->avail_ssize = stack_entry->avail_ssize -
3649 			    grow_amount;
3650 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3651 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3652 		}
3653 	} else {
3654 		/*
3655 		 * Growing upward.
3656 		 */
3657 		addr = stack_entry->end + grow_amount;
3658 
3659 		/*
3660 		 * If this puts us into the next entry, cut back our growth
3661 		 * to the available space. Also, see the note above.
3662 		 */
3663 		if (addr > end) {
3664 			stack_entry->avail_ssize = end - stack_entry->end;
3665 			addr = end;
3666 			if (stack_guard_page)
3667 				addr -= PAGE_SIZE;
3668 		}
3669 
3670 		grow_amount = addr - stack_entry->end;
3671 		cred = stack_entry->cred;
3672 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3673 			cred = stack_entry->object.vm_object->cred;
3674 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3675 			rv = KERN_NO_SPACE;
3676 		/* Grow the underlying object if applicable. */
3677 		else if (stack_entry->object.vm_object == NULL ||
3678 			 vm_object_coalesce(stack_entry->object.vm_object,
3679 			 stack_entry->offset,
3680 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3681 			 (vm_size_t)grow_amount, cred != NULL)) {
3682 			map->size += (addr - stack_entry->end);
3683 			/* Update the current entry. */
3684 			stack_entry->end = addr;
3685 			stack_entry->avail_ssize -= grow_amount;
3686 			vm_map_entry_resize_free(map, stack_entry);
3687 			rv = KERN_SUCCESS;
3688 
3689 			if (next_entry != &map->header)
3690 				vm_map_clip_start(map, next_entry, addr);
3691 		} else
3692 			rv = KERN_FAILURE;
3693 	}
3694 
3695 	if (rv == KERN_SUCCESS && is_procstack)
3696 		vm->vm_ssize += btoc(grow_amount);
3697 
3698 	vm_map_unlock(map);
3699 
3700 	/*
3701 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3702 	 */
3703 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3704 		vm_map_wire(map,
3705 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3706 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3707 		    (p->p_flag & P_SYSTEM)
3708 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3709 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3710 	}
3711 
3712 out:
3713 #ifdef RACCT
3714 	if (rv != KERN_SUCCESS) {
3715 		PROC_LOCK(p);
3716 		error = racct_set(p, RACCT_VMEM, map->size);
3717 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3718 		if (!old_mlock) {
3719 			error = racct_set(p, RACCT_MEMLOCK,
3720 			    ptoa(pmap_wired_count(map->pmap)));
3721 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3722 		}
3723 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3724 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3725 		PROC_UNLOCK(p);
3726 	}
3727 #endif
3728 
3729 	return (rv);
3730 }
3731 
3732 /*
3733  * Unshare the specified VM space for exec.  If other processes are
3734  * mapped to it, then create a new one.  The new vmspace is null.
3735  */
3736 int
3737 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3738 {
3739 	struct vmspace *oldvmspace = p->p_vmspace;
3740 	struct vmspace *newvmspace;
3741 
3742 	newvmspace = vmspace_alloc(minuser, maxuser);
3743 	if (newvmspace == NULL)
3744 		return (ENOMEM);
3745 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3746 	/*
3747 	 * This code is written like this for prototype purposes.  The
3748 	 * goal is to avoid running down the vmspace here, but let the
3749 	 * other process's that are still using the vmspace to finally
3750 	 * run it down.  Even though there is little or no chance of blocking
3751 	 * here, it is a good idea to keep this form for future mods.
3752 	 */
3753 	PROC_VMSPACE_LOCK(p);
3754 	p->p_vmspace = newvmspace;
3755 	PROC_VMSPACE_UNLOCK(p);
3756 	if (p == curthread->td_proc)
3757 		pmap_activate(curthread);
3758 	vmspace_free(oldvmspace);
3759 	return (0);
3760 }
3761 
3762 /*
3763  * Unshare the specified VM space for forcing COW.  This
3764  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3765  */
3766 int
3767 vmspace_unshare(struct proc *p)
3768 {
3769 	struct vmspace *oldvmspace = p->p_vmspace;
3770 	struct vmspace *newvmspace;
3771 	vm_ooffset_t fork_charge;
3772 
3773 	if (oldvmspace->vm_refcnt == 1)
3774 		return (0);
3775 	fork_charge = 0;
3776 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3777 	if (newvmspace == NULL)
3778 		return (ENOMEM);
3779 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3780 		vmspace_free(newvmspace);
3781 		return (ENOMEM);
3782 	}
3783 	PROC_VMSPACE_LOCK(p);
3784 	p->p_vmspace = newvmspace;
3785 	PROC_VMSPACE_UNLOCK(p);
3786 	if (p == curthread->td_proc)
3787 		pmap_activate(curthread);
3788 	vmspace_free(oldvmspace);
3789 	return (0);
3790 }
3791 
3792 /*
3793  *	vm_map_lookup:
3794  *
3795  *	Finds the VM object, offset, and
3796  *	protection for a given virtual address in the
3797  *	specified map, assuming a page fault of the
3798  *	type specified.
3799  *
3800  *	Leaves the map in question locked for read; return
3801  *	values are guaranteed until a vm_map_lookup_done
3802  *	call is performed.  Note that the map argument
3803  *	is in/out; the returned map must be used in
3804  *	the call to vm_map_lookup_done.
3805  *
3806  *	A handle (out_entry) is returned for use in
3807  *	vm_map_lookup_done, to make that fast.
3808  *
3809  *	If a lookup is requested with "write protection"
3810  *	specified, the map may be changed to perform virtual
3811  *	copying operations, although the data referenced will
3812  *	remain the same.
3813  */
3814 int
3815 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3816 	      vm_offset_t vaddr,
3817 	      vm_prot_t fault_typea,
3818 	      vm_map_entry_t *out_entry,	/* OUT */
3819 	      vm_object_t *object,		/* OUT */
3820 	      vm_pindex_t *pindex,		/* OUT */
3821 	      vm_prot_t *out_prot,		/* OUT */
3822 	      boolean_t *wired)			/* OUT */
3823 {
3824 	vm_map_entry_t entry;
3825 	vm_map_t map = *var_map;
3826 	vm_prot_t prot;
3827 	vm_prot_t fault_type = fault_typea;
3828 	vm_object_t eobject;
3829 	vm_size_t size;
3830 	struct ucred *cred;
3831 
3832 RetryLookup:;
3833 
3834 	vm_map_lock_read(map);
3835 
3836 	/*
3837 	 * Lookup the faulting address.
3838 	 */
3839 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3840 		vm_map_unlock_read(map);
3841 		return (KERN_INVALID_ADDRESS);
3842 	}
3843 
3844 	entry = *out_entry;
3845 
3846 	/*
3847 	 * Handle submaps.
3848 	 */
3849 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3850 		vm_map_t old_map = map;
3851 
3852 		*var_map = map = entry->object.sub_map;
3853 		vm_map_unlock_read(old_map);
3854 		goto RetryLookup;
3855 	}
3856 
3857 	/*
3858 	 * Check whether this task is allowed to have this page.
3859 	 */
3860 	prot = entry->protection;
3861 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3862 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3863 		vm_map_unlock_read(map);
3864 		return (KERN_PROTECTION_FAILURE);
3865 	}
3866 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3867 	    (entry->eflags & MAP_ENTRY_COW) &&
3868 	    (fault_type & VM_PROT_WRITE)) {
3869 		vm_map_unlock_read(map);
3870 		return (KERN_PROTECTION_FAILURE);
3871 	}
3872 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3873 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3874 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3875 		vm_map_unlock_read(map);
3876 		return (KERN_PROTECTION_FAILURE);
3877 	}
3878 
3879 	/*
3880 	 * If this page is not pageable, we have to get it for all possible
3881 	 * accesses.
3882 	 */
3883 	*wired = (entry->wired_count != 0);
3884 	if (*wired)
3885 		fault_type = entry->protection;
3886 	size = entry->end - entry->start;
3887 	/*
3888 	 * If the entry was copy-on-write, we either ...
3889 	 */
3890 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3891 		/*
3892 		 * If we want to write the page, we may as well handle that
3893 		 * now since we've got the map locked.
3894 		 *
3895 		 * If we don't need to write the page, we just demote the
3896 		 * permissions allowed.
3897 		 */
3898 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3899 		    (fault_typea & VM_PROT_COPY) != 0) {
3900 			/*
3901 			 * Make a new object, and place it in the object
3902 			 * chain.  Note that no new references have appeared
3903 			 * -- one just moved from the map to the new
3904 			 * object.
3905 			 */
3906 			if (vm_map_lock_upgrade(map))
3907 				goto RetryLookup;
3908 
3909 			if (entry->cred == NULL) {
3910 				/*
3911 				 * The debugger owner is charged for
3912 				 * the memory.
3913 				 */
3914 				cred = curthread->td_ucred;
3915 				crhold(cred);
3916 				if (!swap_reserve_by_cred(size, cred)) {
3917 					crfree(cred);
3918 					vm_map_unlock(map);
3919 					return (KERN_RESOURCE_SHORTAGE);
3920 				}
3921 				entry->cred = cred;
3922 			}
3923 			vm_object_shadow(&entry->object.vm_object,
3924 			    &entry->offset, size);
3925 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3926 			eobject = entry->object.vm_object;
3927 			if (eobject->cred != NULL) {
3928 				/*
3929 				 * The object was not shadowed.
3930 				 */
3931 				swap_release_by_cred(size, entry->cred);
3932 				crfree(entry->cred);
3933 				entry->cred = NULL;
3934 			} else if (entry->cred != NULL) {
3935 				VM_OBJECT_WLOCK(eobject);
3936 				eobject->cred = entry->cred;
3937 				eobject->charge = size;
3938 				VM_OBJECT_WUNLOCK(eobject);
3939 				entry->cred = NULL;
3940 			}
3941 
3942 			vm_map_lock_downgrade(map);
3943 		} else {
3944 			/*
3945 			 * We're attempting to read a copy-on-write page --
3946 			 * don't allow writes.
3947 			 */
3948 			prot &= ~VM_PROT_WRITE;
3949 		}
3950 	}
3951 
3952 	/*
3953 	 * Create an object if necessary.
3954 	 */
3955 	if (entry->object.vm_object == NULL &&
3956 	    !map->system_map) {
3957 		if (vm_map_lock_upgrade(map))
3958 			goto RetryLookup;
3959 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3960 		    atop(size));
3961 		entry->offset = 0;
3962 		if (entry->cred != NULL) {
3963 			VM_OBJECT_WLOCK(entry->object.vm_object);
3964 			entry->object.vm_object->cred = entry->cred;
3965 			entry->object.vm_object->charge = size;
3966 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3967 			entry->cred = NULL;
3968 		}
3969 		vm_map_lock_downgrade(map);
3970 	}
3971 
3972 	/*
3973 	 * Return the object/offset from this entry.  If the entry was
3974 	 * copy-on-write or empty, it has been fixed up.
3975 	 */
3976 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3977 	*object = entry->object.vm_object;
3978 
3979 	*out_prot = prot;
3980 	return (KERN_SUCCESS);
3981 }
3982 
3983 /*
3984  *	vm_map_lookup_locked:
3985  *
3986  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3987  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3988  */
3989 int
3990 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3991 		     vm_offset_t vaddr,
3992 		     vm_prot_t fault_typea,
3993 		     vm_map_entry_t *out_entry,	/* OUT */
3994 		     vm_object_t *object,	/* OUT */
3995 		     vm_pindex_t *pindex,	/* OUT */
3996 		     vm_prot_t *out_prot,	/* OUT */
3997 		     boolean_t *wired)		/* OUT */
3998 {
3999 	vm_map_entry_t entry;
4000 	vm_map_t map = *var_map;
4001 	vm_prot_t prot;
4002 	vm_prot_t fault_type = fault_typea;
4003 
4004 	/*
4005 	 * Lookup the faulting address.
4006 	 */
4007 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4008 		return (KERN_INVALID_ADDRESS);
4009 
4010 	entry = *out_entry;
4011 
4012 	/*
4013 	 * Fail if the entry refers to a submap.
4014 	 */
4015 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4016 		return (KERN_FAILURE);
4017 
4018 	/*
4019 	 * Check whether this task is allowed to have this page.
4020 	 */
4021 	prot = entry->protection;
4022 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4023 	if ((fault_type & prot) != fault_type)
4024 		return (KERN_PROTECTION_FAILURE);
4025 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4026 	    (entry->eflags & MAP_ENTRY_COW) &&
4027 	    (fault_type & VM_PROT_WRITE))
4028 		return (KERN_PROTECTION_FAILURE);
4029 
4030 	/*
4031 	 * If this page is not pageable, we have to get it for all possible
4032 	 * accesses.
4033 	 */
4034 	*wired = (entry->wired_count != 0);
4035 	if (*wired)
4036 		fault_type = entry->protection;
4037 
4038 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4039 		/*
4040 		 * Fail if the entry was copy-on-write for a write fault.
4041 		 */
4042 		if (fault_type & VM_PROT_WRITE)
4043 			return (KERN_FAILURE);
4044 		/*
4045 		 * We're attempting to read a copy-on-write page --
4046 		 * don't allow writes.
4047 		 */
4048 		prot &= ~VM_PROT_WRITE;
4049 	}
4050 
4051 	/*
4052 	 * Fail if an object should be created.
4053 	 */
4054 	if (entry->object.vm_object == NULL && !map->system_map)
4055 		return (KERN_FAILURE);
4056 
4057 	/*
4058 	 * Return the object/offset from this entry.  If the entry was
4059 	 * copy-on-write or empty, it has been fixed up.
4060 	 */
4061 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4062 	*object = entry->object.vm_object;
4063 
4064 	*out_prot = prot;
4065 	return (KERN_SUCCESS);
4066 }
4067 
4068 /*
4069  *	vm_map_lookup_done:
4070  *
4071  *	Releases locks acquired by a vm_map_lookup
4072  *	(according to the handle returned by that lookup).
4073  */
4074 void
4075 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4076 {
4077 	/*
4078 	 * Unlock the main-level map
4079 	 */
4080 	vm_map_unlock_read(map);
4081 }
4082 
4083 #include "opt_ddb.h"
4084 #ifdef DDB
4085 #include <sys/kernel.h>
4086 
4087 #include <ddb/ddb.h>
4088 
4089 static void
4090 vm_map_print(vm_map_t map)
4091 {
4092 	vm_map_entry_t entry;
4093 
4094 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4095 	    (void *)map,
4096 	    (void *)map->pmap, map->nentries, map->timestamp);
4097 
4098 	db_indent += 2;
4099 	for (entry = map->header.next; entry != &map->header;
4100 	    entry = entry->next) {
4101 		db_iprintf("map entry %p: start=%p, end=%p\n",
4102 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4103 		{
4104 			static char *inheritance_name[4] =
4105 			{"share", "copy", "none", "donate_copy"};
4106 
4107 			db_iprintf(" prot=%x/%x/%s",
4108 			    entry->protection,
4109 			    entry->max_protection,
4110 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4111 			if (entry->wired_count != 0)
4112 				db_printf(", wired");
4113 		}
4114 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4115 			db_printf(", share=%p, offset=0x%jx\n",
4116 			    (void *)entry->object.sub_map,
4117 			    (uintmax_t)entry->offset);
4118 			if ((entry->prev == &map->header) ||
4119 			    (entry->prev->object.sub_map !=
4120 				entry->object.sub_map)) {
4121 				db_indent += 2;
4122 				vm_map_print((vm_map_t)entry->object.sub_map);
4123 				db_indent -= 2;
4124 			}
4125 		} else {
4126 			if (entry->cred != NULL)
4127 				db_printf(", ruid %d", entry->cred->cr_ruid);
4128 			db_printf(", object=%p, offset=0x%jx",
4129 			    (void *)entry->object.vm_object,
4130 			    (uintmax_t)entry->offset);
4131 			if (entry->object.vm_object && entry->object.vm_object->cred)
4132 				db_printf(", obj ruid %d charge %jx",
4133 				    entry->object.vm_object->cred->cr_ruid,
4134 				    (uintmax_t)entry->object.vm_object->charge);
4135 			if (entry->eflags & MAP_ENTRY_COW)
4136 				db_printf(", copy (%s)",
4137 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4138 			db_printf("\n");
4139 
4140 			if ((entry->prev == &map->header) ||
4141 			    (entry->prev->object.vm_object !=
4142 				entry->object.vm_object)) {
4143 				db_indent += 2;
4144 				vm_object_print((db_expr_t)(intptr_t)
4145 						entry->object.vm_object,
4146 						1, 0, (char *)0);
4147 				db_indent -= 2;
4148 			}
4149 		}
4150 	}
4151 	db_indent -= 2;
4152 }
4153 
4154 DB_SHOW_COMMAND(map, map)
4155 {
4156 
4157 	if (!have_addr) {
4158 		db_printf("usage: show map <addr>\n");
4159 		return;
4160 	}
4161 	vm_map_print((vm_map_t)addr);
4162 }
4163 
4164 DB_SHOW_COMMAND(procvm, procvm)
4165 {
4166 	struct proc *p;
4167 
4168 	if (have_addr) {
4169 		p = (struct proc *) addr;
4170 	} else {
4171 		p = curproc;
4172 	}
4173 
4174 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4175 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4176 	    (void *)vmspace_pmap(p->p_vmspace));
4177 
4178 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4179 }
4180 
4181 #endif /* DDB */
4182