xref: /freebsd/sys/vm/vm_kern.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_extern.h>
84 
85 vm_map_t kernel_map=0;
86 vm_map_t kmem_map=0;
87 vm_map_t exec_map=0;
88 vm_map_t pipe_map;
89 vm_map_t buffer_map=0;
90 
91 /*
92  *	kmem_alloc_nofault:
93  *
94  *	Allocate a virtual address range with no underlying object and
95  *	no initial mapping to physical memory.  Any mapping from this
96  *	range to physical memory must be explicitly created prior to
97  *	its use, typically with pmap_qenter().  Any attempt to create
98  *	a mapping on demand through vm_fault() will result in a panic.
99  */
100 vm_offset_t
101 kmem_alloc_nofault(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	size = round_page(size);
109 	addr = vm_map_min(map);
110 	result = vm_map_find(map, NULL, 0,
111 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
112 	if (result != KERN_SUCCESS) {
113 		return (0);
114 	}
115 	return (addr);
116 }
117 
118 /*
119  *	Allocate wired-down memory in the kernel's address map
120  *	or a submap.
121  */
122 vm_offset_t
123 kmem_alloc(map, size)
124 	vm_map_t map;
125 	vm_size_t size;
126 {
127 	vm_offset_t addr;
128 	vm_offset_t offset;
129 	vm_offset_t i;
130 
131 	size = round_page(size);
132 
133 	/*
134 	 * Use the kernel object for wired-down kernel pages. Assume that no
135 	 * region of the kernel object is referenced more than once.
136 	 */
137 
138 	/*
139 	 * Locate sufficient space in the map.  This will give us the final
140 	 * virtual address for the new memory, and thus will tell us the
141 	 * offset within the kernel map.
142 	 */
143 	vm_map_lock(map);
144 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
145 		vm_map_unlock(map);
146 		return (0);
147 	}
148 	offset = addr - VM_MIN_KERNEL_ADDRESS;
149 	vm_object_reference(kernel_object);
150 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
151 		VM_PROT_ALL, VM_PROT_ALL, 0);
152 	vm_map_unlock(map);
153 
154 	/*
155 	 * Guarantee that there are pages already in this object before
156 	 * calling vm_map_wire.  This is to prevent the following
157 	 * scenario:
158 	 *
159 	 * 1) Threads have swapped out, so that there is a pager for the
160 	 * kernel_object. 2) The kmsg zone is empty, and so we are
161 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
162 	 * there is no page, but there is a pager, so we call
163 	 * pager_data_request.  But the kmsg zone is empty, so we must
164 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
165 	 * we get the data back from the pager, it will be (very stale)
166 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
167 	 *
168 	 * We're intentionally not activating the pages we allocate to prevent a
169 	 * race with page-out.  vm_map_wire will wire the pages.
170 	 */
171 	VM_OBJECT_LOCK(kernel_object);
172 	for (i = 0; i < size; i += PAGE_SIZE) {
173 		vm_page_t mem;
174 
175 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
176 		    VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
177 		mem->valid = VM_PAGE_BITS_ALL;
178 		vm_page_lock_queues();
179 		vm_page_unmanage(mem);
180 		vm_page_unlock_queues();
181 	}
182 	VM_OBJECT_UNLOCK(kernel_object);
183 
184 	/*
185 	 * And finally, mark the data as non-pageable.
186 	 */
187 	(void) vm_map_wire(map, addr, addr + size,
188 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
189 
190 	return (addr);
191 }
192 
193 /*
194  *	kmem_free:
195  *
196  *	Release a region of kernel virtual memory allocated
197  *	with kmem_alloc, and return the physical pages
198  *	associated with that region.
199  *
200  *	This routine may not block on kernel maps.
201  */
202 void
203 kmem_free(map, addr, size)
204 	vm_map_t map;
205 	vm_offset_t addr;
206 	vm_size_t size;
207 {
208 
209 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
210 }
211 
212 /*
213  *	kmem_suballoc:
214  *
215  *	Allocates a map to manage a subrange
216  *	of the kernel virtual address space.
217  *
218  *	Arguments are as follows:
219  *
220  *	parent		Map to take range from
221  *	min, max	Returned endpoints of map
222  *	size		Size of range to find
223  */
224 vm_map_t
225 kmem_suballoc(parent, min, max, size)
226 	vm_map_t parent;
227 	vm_offset_t *min, *max;
228 	vm_size_t size;
229 {
230 	int ret;
231 	vm_map_t result;
232 
233 	size = round_page(size);
234 
235 	*min = (vm_offset_t) vm_map_min(parent);
236 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
237 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
238 	if (ret != KERN_SUCCESS) {
239 		printf("kmem_suballoc: bad status return of %d.\n", ret);
240 		panic("kmem_suballoc");
241 	}
242 	*max = *min + size;
243 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
244 	if (result == NULL)
245 		panic("kmem_suballoc: cannot create submap");
246 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
247 		panic("kmem_suballoc: unable to change range to submap");
248 	return (result);
249 }
250 
251 /*
252  *	kmem_malloc:
253  *
254  * 	Allocate wired-down memory in the kernel's address map for the higher
255  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
256  * 	kmem_alloc() because we may need to allocate memory at interrupt
257  * 	level where we cannot block (canwait == FALSE).
258  *
259  * 	This routine has its own private kernel submap (kmem_map) and object
260  * 	(kmem_object).  This, combined with the fact that only malloc uses
261  * 	this routine, ensures that we will never block in map or object waits.
262  *
263  * 	Note that this still only works in a uni-processor environment and
264  * 	when called at splhigh().
265  *
266  * 	We don't worry about expanding the map (adding entries) since entries
267  * 	for wired maps are statically allocated.
268  *
269  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
270  *	I have not verified that it actually does not block.
271  *
272  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
273  *	which we never free.
274  */
275 vm_offset_t
276 kmem_malloc(map, size, flags)
277 	vm_map_t map;
278 	vm_size_t size;
279 	int flags;
280 {
281 	vm_offset_t offset, i;
282 	vm_map_entry_t entry;
283 	vm_offset_t addr;
284 	vm_page_t m;
285 	int pflags;
286 
287 	size = round_page(size);
288 	addr = vm_map_min(map);
289 
290 	/*
291 	 * Locate sufficient space in the map.  This will give us the final
292 	 * virtual address for the new memory, and thus will tell us the
293 	 * offset within the kernel map.
294 	 */
295 	vm_map_lock(map);
296 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
297 		vm_map_unlock(map);
298 		if ((flags & M_NOWAIT) == 0)
299 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
300 				(long)size, (long)map->size);
301 		return (0);
302 	}
303 	offset = addr - VM_MIN_KERNEL_ADDRESS;
304 	vm_object_reference(kmem_object);
305 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
306 		VM_PROT_ALL, VM_PROT_ALL, 0);
307 
308 	/*
309 	 * Note: if M_NOWAIT specified alone, allocate from
310 	 * interrupt-safe queues only (just the free list).  If
311 	 * M_USE_RESERVE is also specified, we can also
312 	 * allocate from the cache.  Neither of the latter two
313 	 * flags may be specified from an interrupt since interrupts
314 	 * are not allowed to mess with the cache queue.
315 	 */
316 
317 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
318 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
319 	else
320 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
321 
322 	if (flags & M_ZERO)
323 		pflags |= VM_ALLOC_ZERO;
324 
325 	VM_OBJECT_LOCK(kmem_object);
326 	for (i = 0; i < size; i += PAGE_SIZE) {
327 retry:
328 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
329 
330 		/*
331 		 * Ran out of space, free everything up and return. Don't need
332 		 * to lock page queues here as we know that the pages we got
333 		 * aren't on any queues.
334 		 */
335 		if (m == NULL) {
336 			if ((flags & M_NOWAIT) == 0) {
337 				VM_OBJECT_UNLOCK(kmem_object);
338 				vm_map_unlock(map);
339 				VM_WAIT;
340 				vm_map_lock(map);
341 				VM_OBJECT_LOCK(kmem_object);
342 				goto retry;
343 			}
344 			/*
345 			 * Free the pages before removing the map entry.
346 			 * They are already marked busy.  Calling
347 			 * vm_map_delete before the pages has been freed or
348 			 * unbusied will cause a deadlock.
349 			 */
350 			while (i != 0) {
351 				i -= PAGE_SIZE;
352 				m = vm_page_lookup(kmem_object,
353 						   OFF_TO_IDX(offset + i));
354 				vm_page_lock_queues();
355 				vm_page_unwire(m, 0);
356 				vm_page_free(m);
357 				vm_page_unlock_queues();
358 			}
359 			VM_OBJECT_UNLOCK(kmem_object);
360 			vm_map_delete(map, addr, addr + size);
361 			vm_map_unlock(map);
362 			return (0);
363 		}
364 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
365 			pmap_zero_page(m);
366 		m->valid = VM_PAGE_BITS_ALL;
367 		vm_page_lock_queues();
368 		vm_page_unmanage(m);
369 		vm_page_unlock_queues();
370 	}
371 	VM_OBJECT_UNLOCK(kmem_object);
372 
373 	/*
374 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
375 	 * be able to extend the previous entry so there will be a new entry
376 	 * exactly corresponding to this address range and it will have
377 	 * wired_count == 0.
378 	 */
379 	if (!vm_map_lookup_entry(map, addr, &entry) ||
380 	    entry->start != addr || entry->end != addr + size ||
381 	    entry->wired_count != 0)
382 		panic("kmem_malloc: entry not found or misaligned");
383 	entry->wired_count = 1;
384 
385 	/*
386 	 * At this point, the kmem_object must be unlocked because
387 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
388 	 * locks the kmem_object.
389 	 */
390 	vm_map_simplify_entry(map, entry);
391 
392 	/*
393 	 * Loop thru pages, entering them in the pmap.
394 	 */
395 	VM_OBJECT_LOCK(kmem_object);
396 	for (i = 0; i < size; i += PAGE_SIZE) {
397 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
398 		/*
399 		 * Because this is kernel_pmap, this call will not block.
400 		 */
401 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
402 		vm_page_wakeup(m);
403 	}
404 	VM_OBJECT_UNLOCK(kmem_object);
405 	vm_map_unlock(map);
406 
407 	return (addr);
408 }
409 
410 /*
411  *	kmem_alloc_wait:
412  *
413  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
414  *	has no room, the caller sleeps waiting for more memory in the submap.
415  *
416  *	This routine may block.
417  */
418 vm_offset_t
419 kmem_alloc_wait(map, size)
420 	vm_map_t map;
421 	vm_size_t size;
422 {
423 	vm_offset_t addr;
424 
425 	size = round_page(size);
426 
427 	for (;;) {
428 		/*
429 		 * To make this work for more than one map, use the map's lock
430 		 * to lock out sleepers/wakers.
431 		 */
432 		vm_map_lock(map);
433 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
434 			break;
435 		/* no space now; see if we can ever get space */
436 		if (vm_map_max(map) - vm_map_min(map) < size) {
437 			vm_map_unlock(map);
438 			return (0);
439 		}
440 		map->needs_wakeup = TRUE;
441 		vm_map_unlock_and_wait(map, FALSE);
442 	}
443 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
444 	vm_map_unlock(map);
445 	return (addr);
446 }
447 
448 /*
449  *	kmem_free_wakeup:
450  *
451  *	Returns memory to a submap of the kernel, and wakes up any processes
452  *	waiting for memory in that map.
453  */
454 void
455 kmem_free_wakeup(map, addr, size)
456 	vm_map_t map;
457 	vm_offset_t addr;
458 	vm_size_t size;
459 {
460 
461 	vm_map_lock(map);
462 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
463 	if (map->needs_wakeup) {
464 		map->needs_wakeup = FALSE;
465 		vm_map_wakeup(map);
466 	}
467 	vm_map_unlock(map);
468 }
469 
470 /*
471  * 	kmem_init:
472  *
473  *	Create the kernel map; insert a mapping covering kernel text,
474  *	data, bss, and all space allocated thus far (`boostrap' data).  The
475  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
476  *	`start' as allocated, and the range between `start' and `end' as free.
477  */
478 void
479 kmem_init(start, end)
480 	vm_offset_t start, end;
481 {
482 	vm_map_t m;
483 
484 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
485 	m->system_map = 1;
486 	vm_map_lock(m);
487 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
488 	kernel_map = m;
489 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
490 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
491 	/* ... and ending with the completion of the above `insert' */
492 	vm_map_unlock(m);
493 }
494