1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 const void *zero_region; 95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 96 97 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, 98 NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address"); 99 100 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD, 101 #ifdef __sparc64__ 102 &vm_max_kernel_address, 0, 103 #else 104 NULL, VM_MAX_KERNEL_ADDRESS, 105 #endif 106 "Max kernel address"); 107 108 /* 109 * kmem_alloc_nofault: 110 * 111 * Allocate a virtual address range with no underlying object and 112 * no initial mapping to physical memory. Any mapping from this 113 * range to physical memory must be explicitly created prior to 114 * its use, typically with pmap_qenter(). Any attempt to create 115 * a mapping on demand through vm_fault() will result in a panic. 116 */ 117 vm_offset_t 118 kmem_alloc_nofault(map, size) 119 vm_map_t map; 120 vm_size_t size; 121 { 122 vm_offset_t addr; 123 int result; 124 125 size = round_page(size); 126 addr = vm_map_min(map); 127 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 128 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 129 if (result != KERN_SUCCESS) { 130 return (0); 131 } 132 return (addr); 133 } 134 135 /* 136 * kmem_alloc_nofault_space: 137 * 138 * Allocate a virtual address range with no underlying object and 139 * no initial mapping to physical memory within the specified 140 * address space. Any mapping from this range to physical memory 141 * must be explicitly created prior to its use, typically with 142 * pmap_qenter(). Any attempt to create a mapping on demand 143 * through vm_fault() will result in a panic. 144 */ 145 vm_offset_t 146 kmem_alloc_nofault_space(map, size, find_space) 147 vm_map_t map; 148 vm_size_t size; 149 int find_space; 150 { 151 vm_offset_t addr; 152 int result; 153 154 size = round_page(size); 155 addr = vm_map_min(map); 156 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 157 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 158 if (result != KERN_SUCCESS) { 159 return (0); 160 } 161 return (addr); 162 } 163 164 /* 165 * Allocate wired-down memory in the kernel's address map 166 * or a submap. 167 */ 168 vm_offset_t 169 kmem_alloc(map, size) 170 vm_map_t map; 171 vm_size_t size; 172 { 173 vm_offset_t addr; 174 vm_offset_t offset; 175 176 size = round_page(size); 177 178 /* 179 * Use the kernel object for wired-down kernel pages. Assume that no 180 * region of the kernel object is referenced more than once. 181 */ 182 183 /* 184 * Locate sufficient space in the map. This will give us the final 185 * virtual address for the new memory, and thus will tell us the 186 * offset within the kernel map. 187 */ 188 vm_map_lock(map); 189 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 190 vm_map_unlock(map); 191 return (0); 192 } 193 offset = addr - VM_MIN_KERNEL_ADDRESS; 194 vm_object_reference(kernel_object); 195 vm_map_insert(map, kernel_object, offset, addr, addr + size, 196 VM_PROT_ALL, VM_PROT_ALL, 0); 197 vm_map_unlock(map); 198 199 /* 200 * And finally, mark the data as non-pageable. 201 */ 202 (void) vm_map_wire(map, addr, addr + size, 203 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 204 205 return (addr); 206 } 207 208 /* 209 * Allocates a region from the kernel address map and physical pages 210 * within the specified address range to the kernel object. Creates a 211 * wired mapping from this region to these pages, and returns the 212 * region's starting virtual address. The allocated pages are not 213 * necessarily physically contiguous. If M_ZERO is specified through the 214 * given flags, then the pages are zeroed before they are mapped. 215 */ 216 vm_offset_t 217 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 218 vm_paddr_t high, vm_memattr_t memattr) 219 { 220 vm_object_t object = kernel_object; 221 vm_offset_t addr; 222 vm_ooffset_t end_offset, offset; 223 vm_page_t m; 224 int pflags, tries; 225 226 size = round_page(size); 227 vm_map_lock(map); 228 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 229 vm_map_unlock(map); 230 return (0); 231 } 232 offset = addr - VM_MIN_KERNEL_ADDRESS; 233 vm_object_reference(object); 234 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 235 VM_PROT_ALL, 0); 236 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 237 VM_OBJECT_LOCK(object); 238 end_offset = offset + size; 239 for (; offset < end_offset; offset += PAGE_SIZE) { 240 tries = 0; 241 retry: 242 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1, 243 low, high, PAGE_SIZE, 0, memattr); 244 if (m == NULL) { 245 VM_OBJECT_UNLOCK(object); 246 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 247 vm_map_unlock(map); 248 vm_pageout_grow_cache(tries, low, high); 249 vm_map_lock(map); 250 VM_OBJECT_LOCK(object); 251 tries++; 252 goto retry; 253 } 254 255 /* 256 * Since the pages that were allocated by any previous 257 * iterations of this loop are not busy, they can be 258 * freed by vm_object_page_remove(), which is called 259 * by vm_map_delete(). 260 */ 261 vm_map_delete(map, addr, addr + size); 262 vm_map_unlock(map); 263 return (0); 264 } 265 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 266 pmap_zero_page(m); 267 m->valid = VM_PAGE_BITS_ALL; 268 } 269 VM_OBJECT_UNLOCK(object); 270 vm_map_unlock(map); 271 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 272 VM_MAP_WIRE_NOHOLES); 273 return (addr); 274 } 275 276 /* 277 * Allocates a region from the kernel address map and physically 278 * contiguous pages within the specified address range to the kernel 279 * object. Creates a wired mapping from this region to these pages, and 280 * returns the region's starting virtual address. If M_ZERO is specified 281 * through the given flags, then the pages are zeroed before they are 282 * mapped. 283 */ 284 vm_offset_t 285 kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 286 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 287 vm_memattr_t memattr) 288 { 289 vm_object_t object = kernel_object; 290 vm_offset_t addr; 291 vm_ooffset_t offset; 292 vm_page_t end_m, m; 293 int pflags, tries; 294 295 size = round_page(size); 296 vm_map_lock(map); 297 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 298 vm_map_unlock(map); 299 return (0); 300 } 301 offset = addr - VM_MIN_KERNEL_ADDRESS; 302 vm_object_reference(object); 303 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 304 VM_PROT_ALL, 0); 305 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 306 VM_OBJECT_LOCK(object); 307 tries = 0; 308 retry: 309 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 310 atop(size), low, high, alignment, boundary, memattr); 311 if (m == NULL) { 312 VM_OBJECT_UNLOCK(object); 313 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 314 vm_map_unlock(map); 315 vm_pageout_grow_cache(tries, low, high); 316 vm_map_lock(map); 317 VM_OBJECT_LOCK(object); 318 tries++; 319 goto retry; 320 } 321 vm_map_delete(map, addr, addr + size); 322 vm_map_unlock(map); 323 return (0); 324 } 325 end_m = m + atop(size); 326 for (; m < end_m; m++) { 327 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 328 pmap_zero_page(m); 329 m->valid = VM_PAGE_BITS_ALL; 330 } 331 VM_OBJECT_UNLOCK(object); 332 vm_map_unlock(map); 333 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 334 VM_MAP_WIRE_NOHOLES); 335 return (addr); 336 } 337 338 /* 339 * kmem_free: 340 * 341 * Release a region of kernel virtual memory allocated 342 * with kmem_alloc, and return the physical pages 343 * associated with that region. 344 * 345 * This routine may not block on kernel maps. 346 */ 347 void 348 kmem_free(map, addr, size) 349 vm_map_t map; 350 vm_offset_t addr; 351 vm_size_t size; 352 { 353 354 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 355 } 356 357 /* 358 * kmem_suballoc: 359 * 360 * Allocates a map to manage a subrange 361 * of the kernel virtual address space. 362 * 363 * Arguments are as follows: 364 * 365 * parent Map to take range from 366 * min, max Returned endpoints of map 367 * size Size of range to find 368 * superpage_align Request that min is superpage aligned 369 */ 370 vm_map_t 371 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 372 vm_size_t size, boolean_t superpage_align) 373 { 374 int ret; 375 vm_map_t result; 376 377 size = round_page(size); 378 379 *min = vm_map_min(parent); 380 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 381 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 382 MAP_ACC_NO_CHARGE); 383 if (ret != KERN_SUCCESS) 384 panic("kmem_suballoc: bad status return of %d", ret); 385 *max = *min + size; 386 result = vm_map_create(vm_map_pmap(parent), *min, *max); 387 if (result == NULL) 388 panic("kmem_suballoc: cannot create submap"); 389 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 390 panic("kmem_suballoc: unable to change range to submap"); 391 return (result); 392 } 393 394 /* 395 * kmem_malloc: 396 * 397 * Allocate wired-down memory in the kernel's address map for the higher 398 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 399 * kmem_alloc() because we may need to allocate memory at interrupt 400 * level where we cannot block (canwait == FALSE). 401 * 402 * This routine has its own private kernel submap (kmem_map) and object 403 * (kmem_object). This, combined with the fact that only malloc uses 404 * this routine, ensures that we will never block in map or object waits. 405 * 406 * We don't worry about expanding the map (adding entries) since entries 407 * for wired maps are statically allocated. 408 * 409 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 410 * which we never free. 411 */ 412 vm_offset_t 413 kmem_malloc(map, size, flags) 414 vm_map_t map; 415 vm_size_t size; 416 int flags; 417 { 418 vm_offset_t addr; 419 int i, rv; 420 421 size = round_page(size); 422 addr = vm_map_min(map); 423 424 /* 425 * Locate sufficient space in the map. This will give us the final 426 * virtual address for the new memory, and thus will tell us the 427 * offset within the kernel map. 428 */ 429 vm_map_lock(map); 430 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 431 vm_map_unlock(map); 432 if ((flags & M_NOWAIT) == 0) { 433 for (i = 0; i < 8; i++) { 434 EVENTHANDLER_INVOKE(vm_lowmem, 0); 435 uma_reclaim(); 436 vm_map_lock(map); 437 if (vm_map_findspace(map, vm_map_min(map), 438 size, &addr) == 0) { 439 break; 440 } 441 vm_map_unlock(map); 442 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 443 } 444 if (i == 8) { 445 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 446 (long)size, (long)map->size); 447 } 448 } else { 449 return (0); 450 } 451 } 452 453 rv = kmem_back(map, addr, size, flags); 454 vm_map_unlock(map); 455 return (rv == KERN_SUCCESS ? addr : 0); 456 } 457 458 /* 459 * kmem_back: 460 * 461 * Allocate physical pages for the specified virtual address range. 462 */ 463 int 464 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 465 { 466 vm_offset_t offset, i; 467 vm_map_entry_t entry; 468 vm_page_t m; 469 int pflags; 470 boolean_t found; 471 472 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 473 offset = addr - VM_MIN_KERNEL_ADDRESS; 474 vm_object_reference(kmem_object); 475 vm_map_insert(map, kmem_object, offset, addr, addr + size, 476 VM_PROT_ALL, VM_PROT_ALL, 0); 477 478 /* 479 * Assert: vm_map_insert() will never be able to extend the 480 * previous entry so vm_map_lookup_entry() will find a new 481 * entry exactly corresponding to this address range and it 482 * will have wired_count == 0. 483 */ 484 found = vm_map_lookup_entry(map, addr, &entry); 485 KASSERT(found && entry->start == addr && entry->end == addr + size && 486 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 487 == 0, ("kmem_back: entry not found or misaligned")); 488 489 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 490 491 VM_OBJECT_LOCK(kmem_object); 492 for (i = 0; i < size; i += PAGE_SIZE) { 493 retry: 494 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 495 496 /* 497 * Ran out of space, free everything up and return. Don't need 498 * to lock page queues here as we know that the pages we got 499 * aren't on any queues. 500 */ 501 if (m == NULL) { 502 if ((flags & M_NOWAIT) == 0) { 503 VM_OBJECT_UNLOCK(kmem_object); 504 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 505 vm_map_unlock(map); 506 VM_WAIT; 507 vm_map_lock(map); 508 KASSERT( 509 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 510 MAP_ENTRY_IN_TRANSITION, 511 ("kmem_back: volatile entry")); 512 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 513 VM_OBJECT_LOCK(kmem_object); 514 goto retry; 515 } 516 /* 517 * Free the pages before removing the map entry. 518 * They are already marked busy. Calling 519 * vm_map_delete before the pages has been freed or 520 * unbusied will cause a deadlock. 521 */ 522 while (i != 0) { 523 i -= PAGE_SIZE; 524 m = vm_page_lookup(kmem_object, 525 OFF_TO_IDX(offset + i)); 526 vm_page_unwire(m, 0); 527 vm_page_free(m); 528 } 529 VM_OBJECT_UNLOCK(kmem_object); 530 vm_map_delete(map, addr, addr + size); 531 return (KERN_NO_SPACE); 532 } 533 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 534 pmap_zero_page(m); 535 m->valid = VM_PAGE_BITS_ALL; 536 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 537 ("kmem_malloc: page %p is managed", m)); 538 } 539 VM_OBJECT_UNLOCK(kmem_object); 540 541 /* 542 * Mark map entry as non-pageable. Repeat the assert. 543 */ 544 KASSERT(entry->start == addr && entry->end == addr + size && 545 entry->wired_count == 0, 546 ("kmem_back: entry not found or misaligned after allocation")); 547 entry->wired_count = 1; 548 549 /* 550 * At this point, the kmem_object must be unlocked because 551 * vm_map_simplify_entry() calls vm_object_deallocate(), which 552 * locks the kmem_object. 553 */ 554 vm_map_simplify_entry(map, entry); 555 556 /* 557 * Loop thru pages, entering them in the pmap. 558 */ 559 VM_OBJECT_LOCK(kmem_object); 560 for (i = 0; i < size; i += PAGE_SIZE) { 561 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 562 /* 563 * Because this is kernel_pmap, this call will not block. 564 */ 565 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 566 TRUE); 567 vm_page_wakeup(m); 568 } 569 VM_OBJECT_UNLOCK(kmem_object); 570 571 return (KERN_SUCCESS); 572 } 573 574 /* 575 * kmem_alloc_wait: 576 * 577 * Allocates pageable memory from a sub-map of the kernel. If the submap 578 * has no room, the caller sleeps waiting for more memory in the submap. 579 * 580 * This routine may block. 581 */ 582 vm_offset_t 583 kmem_alloc_wait(map, size) 584 vm_map_t map; 585 vm_size_t size; 586 { 587 vm_offset_t addr; 588 589 size = round_page(size); 590 if (!swap_reserve(size)) 591 return (0); 592 593 for (;;) { 594 /* 595 * To make this work for more than one map, use the map's lock 596 * to lock out sleepers/wakers. 597 */ 598 vm_map_lock(map); 599 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 600 break; 601 /* no space now; see if we can ever get space */ 602 if (vm_map_max(map) - vm_map_min(map) < size) { 603 vm_map_unlock(map); 604 swap_release(size); 605 return (0); 606 } 607 map->needs_wakeup = TRUE; 608 vm_map_unlock_and_wait(map, 0); 609 } 610 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 611 VM_PROT_ALL, MAP_ACC_CHARGED); 612 vm_map_unlock(map); 613 return (addr); 614 } 615 616 /* 617 * kmem_free_wakeup: 618 * 619 * Returns memory to a submap of the kernel, and wakes up any processes 620 * waiting for memory in that map. 621 */ 622 void 623 kmem_free_wakeup(map, addr, size) 624 vm_map_t map; 625 vm_offset_t addr; 626 vm_size_t size; 627 { 628 629 vm_map_lock(map); 630 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 631 if (map->needs_wakeup) { 632 map->needs_wakeup = FALSE; 633 vm_map_wakeup(map); 634 } 635 vm_map_unlock(map); 636 } 637 638 static void 639 kmem_init_zero_region(void) 640 { 641 vm_offset_t addr, i; 642 vm_page_t m; 643 int error; 644 645 /* 646 * Map a single physical page of zeros to a larger virtual range. 647 * This requires less looping in places that want large amounts of 648 * zeros, while not using much more physical resources. 649 */ 650 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 651 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 652 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 653 if ((m->flags & PG_ZERO) == 0) 654 pmap_zero_page(m); 655 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 656 pmap_qenter(addr + i, &m, 1); 657 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 658 VM_PROT_READ, TRUE); 659 KASSERT(error == 0, ("error=%d", error)); 660 661 zero_region = (const void *)addr; 662 } 663 664 /* 665 * kmem_init: 666 * 667 * Create the kernel map; insert a mapping covering kernel text, 668 * data, bss, and all space allocated thus far (`boostrap' data). The 669 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 670 * `start' as allocated, and the range between `start' and `end' as free. 671 */ 672 void 673 kmem_init(start, end) 674 vm_offset_t start, end; 675 { 676 vm_map_t m; 677 678 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 679 m->system_map = 1; 680 vm_map_lock(m); 681 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 682 kernel_map = m; 683 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 684 #ifdef __amd64__ 685 KERNBASE, 686 #else 687 VM_MIN_KERNEL_ADDRESS, 688 #endif 689 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 690 /* ... and ending with the completion of the above `insert' */ 691 vm_map_unlock(m); 692 693 kmem_init_zero_region(); 694 } 695 696 #ifdef DIAGNOSTIC 697 /* 698 * Allow userspace to directly trigger the VM drain routine for testing 699 * purposes. 700 */ 701 static int 702 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 703 { 704 int error, i; 705 706 i = 0; 707 error = sysctl_handle_int(oidp, &i, 0, req); 708 if (error) 709 return (error); 710 if (i) 711 EVENTHANDLER_INVOKE(vm_lowmem, 0); 712 return (0); 713 } 714 715 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 716 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 717 #endif 718