1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_page.h> 82 #include <vm/vm_pageout.h> 83 #include <vm/vm_extern.h> 84 85 vm_map_t kernel_map=0; 86 vm_map_t kmem_map=0; 87 vm_map_t exec_map=0; 88 vm_map_t pipe_map; 89 vm_map_t buffer_map=0; 90 91 /* 92 * kmem_alloc_nofault: 93 * 94 * Allocate a virtual address range with no underlying object and 95 * no initial mapping to physical memory. Any mapping from this 96 * range to physical memory must be explicitly created prior to 97 * its use, typically with pmap_qenter(). Any attempt to create 98 * a mapping on demand through vm_fault() will result in a panic. 99 */ 100 vm_offset_t 101 kmem_alloc_nofault(map, size) 102 vm_map_t map; 103 vm_size_t size; 104 { 105 vm_offset_t addr; 106 int result; 107 108 size = round_page(size); 109 addr = vm_map_min(map); 110 result = vm_map_find(map, NULL, 0, 111 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 112 if (result != KERN_SUCCESS) { 113 return (0); 114 } 115 return (addr); 116 } 117 118 /* 119 * Allocate wired-down memory in the kernel's address map 120 * or a submap. 121 */ 122 vm_offset_t 123 kmem_alloc(map, size) 124 vm_map_t map; 125 vm_size_t size; 126 { 127 vm_offset_t addr; 128 vm_offset_t offset; 129 vm_offset_t i; 130 131 size = round_page(size); 132 133 /* 134 * Use the kernel object for wired-down kernel pages. Assume that no 135 * region of the kernel object is referenced more than once. 136 */ 137 138 /* 139 * Locate sufficient space in the map. This will give us the final 140 * virtual address for the new memory, and thus will tell us the 141 * offset within the kernel map. 142 */ 143 vm_map_lock(map); 144 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 145 vm_map_unlock(map); 146 return (0); 147 } 148 offset = addr - VM_MIN_KERNEL_ADDRESS; 149 vm_object_reference(kernel_object); 150 vm_map_insert(map, kernel_object, offset, addr, addr + size, 151 VM_PROT_ALL, VM_PROT_ALL, 0); 152 vm_map_unlock(map); 153 154 /* 155 * Guarantee that there are pages already in this object before 156 * calling vm_map_wire. This is to prevent the following 157 * scenario: 158 * 159 * 1) Threads have swapped out, so that there is a pager for the 160 * kernel_object. 2) The kmsg zone is empty, and so we are 161 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 162 * there is no page, but there is a pager, so we call 163 * pager_data_request. But the kmsg zone is empty, so we must 164 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 165 * we get the data back from the pager, it will be (very stale) 166 * non-zero data. kmem_alloc is defined to return zero-filled memory. 167 * 168 * We're intentionally not activating the pages we allocate to prevent a 169 * race with page-out. vm_map_wire will wire the pages. 170 */ 171 VM_OBJECT_LOCK(kernel_object); 172 for (i = 0; i < size; i += PAGE_SIZE) { 173 vm_page_t mem; 174 175 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 176 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 177 mem->valid = VM_PAGE_BITS_ALL; 178 vm_page_lock_queues(); 179 vm_page_unmanage(mem); 180 vm_page_unlock_queues(); 181 } 182 VM_OBJECT_UNLOCK(kernel_object); 183 184 /* 185 * And finally, mark the data as non-pageable. 186 */ 187 (void) vm_map_wire(map, addr, addr + size, 188 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 189 190 return (addr); 191 } 192 193 /* 194 * kmem_free: 195 * 196 * Release a region of kernel virtual memory allocated 197 * with kmem_alloc, and return the physical pages 198 * associated with that region. 199 * 200 * This routine may not block on kernel maps. 201 */ 202 void 203 kmem_free(map, addr, size) 204 vm_map_t map; 205 vm_offset_t addr; 206 vm_size_t size; 207 { 208 209 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 210 } 211 212 /* 213 * kmem_suballoc: 214 * 215 * Allocates a map to manage a subrange 216 * of the kernel virtual address space. 217 * 218 * Arguments are as follows: 219 * 220 * parent Map to take range from 221 * min, max Returned endpoints of map 222 * size Size of range to find 223 */ 224 vm_map_t 225 kmem_suballoc(parent, min, max, size) 226 vm_map_t parent; 227 vm_offset_t *min, *max; 228 vm_size_t size; 229 { 230 int ret; 231 vm_map_t result; 232 233 size = round_page(size); 234 235 *min = (vm_offset_t) vm_map_min(parent); 236 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 237 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 238 if (ret != KERN_SUCCESS) { 239 printf("kmem_suballoc: bad status return of %d.\n", ret); 240 panic("kmem_suballoc"); 241 } 242 *max = *min + size; 243 result = vm_map_create(vm_map_pmap(parent), *min, *max); 244 if (result == NULL) 245 panic("kmem_suballoc: cannot create submap"); 246 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 247 panic("kmem_suballoc: unable to change range to submap"); 248 return (result); 249 } 250 251 /* 252 * kmem_malloc: 253 * 254 * Allocate wired-down memory in the kernel's address map for the higher 255 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 256 * kmem_alloc() because we may need to allocate memory at interrupt 257 * level where we cannot block (canwait == FALSE). 258 * 259 * This routine has its own private kernel submap (kmem_map) and object 260 * (kmem_object). This, combined with the fact that only malloc uses 261 * this routine, ensures that we will never block in map or object waits. 262 * 263 * Note that this still only works in a uni-processor environment and 264 * when called at splhigh(). 265 * 266 * We don't worry about expanding the map (adding entries) since entries 267 * for wired maps are statically allocated. 268 * 269 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 270 * I have not verified that it actually does not block. 271 * 272 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 273 * which we never free. 274 */ 275 vm_offset_t 276 kmem_malloc(map, size, flags) 277 vm_map_t map; 278 vm_size_t size; 279 int flags; 280 { 281 vm_offset_t offset, i; 282 vm_map_entry_t entry; 283 vm_offset_t addr; 284 vm_page_t m; 285 int pflags; 286 287 size = round_page(size); 288 addr = vm_map_min(map); 289 290 /* 291 * Locate sufficient space in the map. This will give us the final 292 * virtual address for the new memory, and thus will tell us the 293 * offset within the kernel map. 294 */ 295 vm_map_lock(map); 296 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 297 vm_map_unlock(map); 298 if ((flags & M_NOWAIT) == 0) 299 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 300 (long)size, (long)map->size); 301 return (0); 302 } 303 offset = addr - VM_MIN_KERNEL_ADDRESS; 304 vm_object_reference(kmem_object); 305 vm_map_insert(map, kmem_object, offset, addr, addr + size, 306 VM_PROT_ALL, VM_PROT_ALL, 0); 307 308 /* 309 * Note: if M_NOWAIT specified alone, allocate from 310 * interrupt-safe queues only (just the free list). If 311 * M_USE_RESERVE is also specified, we can also 312 * allocate from the cache. Neither of the latter two 313 * flags may be specified from an interrupt since interrupts 314 * are not allowed to mess with the cache queue. 315 */ 316 317 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 318 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 319 else 320 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 321 322 if (flags & M_ZERO) 323 pflags |= VM_ALLOC_ZERO; 324 325 VM_OBJECT_LOCK(kmem_object); 326 for (i = 0; i < size; i += PAGE_SIZE) { 327 retry: 328 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 329 330 /* 331 * Ran out of space, free everything up and return. Don't need 332 * to lock page queues here as we know that the pages we got 333 * aren't on any queues. 334 */ 335 if (m == NULL) { 336 if ((flags & M_NOWAIT) == 0) { 337 VM_OBJECT_UNLOCK(kmem_object); 338 vm_map_unlock(map); 339 VM_WAIT; 340 vm_map_lock(map); 341 VM_OBJECT_LOCK(kmem_object); 342 goto retry; 343 } 344 /* 345 * Free the pages before removing the map entry. 346 * They are already marked busy. Calling 347 * vm_map_delete before the pages has been freed or 348 * unbusied will cause a deadlock. 349 */ 350 while (i != 0) { 351 i -= PAGE_SIZE; 352 m = vm_page_lookup(kmem_object, 353 OFF_TO_IDX(offset + i)); 354 vm_page_lock_queues(); 355 vm_page_unwire(m, 0); 356 vm_page_free(m); 357 vm_page_unlock_queues(); 358 } 359 VM_OBJECT_UNLOCK(kmem_object); 360 vm_map_delete(map, addr, addr + size); 361 vm_map_unlock(map); 362 return (0); 363 } 364 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 365 pmap_zero_page(m); 366 m->valid = VM_PAGE_BITS_ALL; 367 vm_page_lock_queues(); 368 vm_page_unmanage(m); 369 vm_page_unlock_queues(); 370 } 371 VM_OBJECT_UNLOCK(kmem_object); 372 373 /* 374 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 375 * be able to extend the previous entry so there will be a new entry 376 * exactly corresponding to this address range and it will have 377 * wired_count == 0. 378 */ 379 if (!vm_map_lookup_entry(map, addr, &entry) || 380 entry->start != addr || entry->end != addr + size || 381 entry->wired_count != 0) 382 panic("kmem_malloc: entry not found or misaligned"); 383 entry->wired_count = 1; 384 385 /* 386 * At this point, the kmem_object must be unlocked because 387 * vm_map_simplify_entry() calls vm_object_deallocate(), which 388 * locks the kmem_object. 389 */ 390 vm_map_simplify_entry(map, entry); 391 392 /* 393 * Loop thru pages, entering them in the pmap. (We cannot add them to 394 * the wired count without wrapping the vm_page_queue_lock in 395 * splimp...) 396 */ 397 VM_OBJECT_LOCK(kmem_object); 398 for (i = 0; i < size; i += PAGE_SIZE) { 399 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 400 /* 401 * Because this is kernel_pmap, this call will not block. 402 */ 403 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 404 vm_page_lock_queues(); 405 vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED); 406 vm_page_wakeup(m); 407 vm_page_unlock_queues(); 408 } 409 VM_OBJECT_UNLOCK(kmem_object); 410 vm_map_unlock(map); 411 412 return (addr); 413 } 414 415 /* 416 * kmem_alloc_wait: 417 * 418 * Allocates pageable memory from a sub-map of the kernel. If the submap 419 * has no room, the caller sleeps waiting for more memory in the submap. 420 * 421 * This routine may block. 422 */ 423 vm_offset_t 424 kmem_alloc_wait(map, size) 425 vm_map_t map; 426 vm_size_t size; 427 { 428 vm_offset_t addr; 429 430 size = round_page(size); 431 432 for (;;) { 433 /* 434 * To make this work for more than one map, use the map's lock 435 * to lock out sleepers/wakers. 436 */ 437 vm_map_lock(map); 438 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 439 break; 440 /* no space now; see if we can ever get space */ 441 if (vm_map_max(map) - vm_map_min(map) < size) { 442 vm_map_unlock(map); 443 return (0); 444 } 445 map->needs_wakeup = TRUE; 446 vm_map_unlock_and_wait(map, FALSE); 447 } 448 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 449 vm_map_unlock(map); 450 return (addr); 451 } 452 453 /* 454 * kmem_free_wakeup: 455 * 456 * Returns memory to a submap of the kernel, and wakes up any processes 457 * waiting for memory in that map. 458 */ 459 void 460 kmem_free_wakeup(map, addr, size) 461 vm_map_t map; 462 vm_offset_t addr; 463 vm_size_t size; 464 { 465 466 vm_map_lock(map); 467 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 468 if (map->needs_wakeup) { 469 map->needs_wakeup = FALSE; 470 vm_map_wakeup(map); 471 } 472 vm_map_unlock(map); 473 } 474 475 /* 476 * kmem_init: 477 * 478 * Create the kernel map; insert a mapping covering kernel text, 479 * data, bss, and all space allocated thus far (`boostrap' data). The 480 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 481 * `start' as allocated, and the range between `start' and `end' as free. 482 */ 483 void 484 kmem_init(start, end) 485 vm_offset_t start, end; 486 { 487 vm_map_t m; 488 489 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 490 m->system_map = 1; 491 vm_map_lock(m); 492 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 493 kernel_map = m; 494 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 495 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 496 /* ... and ending with the completion of the above `insert' */ 497 vm_map_unlock(m); 498 } 499