1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/malloc.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t buffer_map=0; 92 vm_map_t mb_map=0; 93 int mb_map_full=0; 94 95 /* 96 * kmem_alloc_pageable: 97 * 98 * Allocate pageable memory to the kernel's address map. 99 * "map" must be kernel_map or a submap of kernel_map. 100 */ 101 102 vm_offset_t 103 kmem_alloc_pageable(map, size) 104 vm_map_t map; 105 vm_size_t size; 106 { 107 vm_offset_t addr; 108 int result; 109 110 size = round_page(size); 111 addr = vm_map_min(map); 112 result = vm_map_find(map, NULL, (vm_offset_t) 0, 113 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 114 if (result != KERN_SUCCESS) { 115 return (0); 116 } 117 return (addr); 118 } 119 120 /* 121 * kmem_alloc_nofault: 122 * 123 * Same as kmem_alloc_pageable, except that it create a nofault entry. 124 */ 125 126 vm_offset_t 127 kmem_alloc_nofault(map, size) 128 vm_map_t map; 129 vm_size_t size; 130 { 131 vm_offset_t addr; 132 int result; 133 134 size = round_page(size); 135 addr = vm_map_min(map); 136 result = vm_map_find(map, NULL, (vm_offset_t) 0, 137 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 138 if (result != KERN_SUCCESS) { 139 return (0); 140 } 141 return (addr); 142 } 143 144 /* 145 * Allocate wired-down memory in the kernel's address map 146 * or a submap. 147 */ 148 vm_offset_t 149 kmem_alloc(map, size) 150 vm_map_t map; 151 vm_size_t size; 152 { 153 vm_offset_t addr; 154 vm_offset_t offset; 155 vm_offset_t i; 156 157 mtx_assert(&Giant, MA_OWNED); 158 size = round_page(size); 159 160 /* 161 * Use the kernel object for wired-down kernel pages. Assume that no 162 * region of the kernel object is referenced more than once. 163 */ 164 165 /* 166 * Locate sufficient space in the map. This will give us the final 167 * virtual address for the new memory, and thus will tell us the 168 * offset within the kernel map. 169 */ 170 vm_map_lock(map); 171 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 172 vm_map_unlock(map); 173 return (0); 174 } 175 offset = addr - VM_MIN_KERNEL_ADDRESS; 176 vm_object_reference(kernel_object); 177 vm_map_insert(map, kernel_object, offset, addr, addr + size, 178 VM_PROT_ALL, VM_PROT_ALL, 0); 179 vm_map_unlock(map); 180 181 /* 182 * Guarantee that there are pages already in this object before 183 * calling vm_map_pageable. This is to prevent the following 184 * scenario: 185 * 186 * 1) Threads have swapped out, so that there is a pager for the 187 * kernel_object. 2) The kmsg zone is empty, and so we are 188 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 189 * there is no page, but there is a pager, so we call 190 * pager_data_request. But the kmsg zone is empty, so we must 191 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 192 * we get the data back from the pager, it will be (very stale) 193 * non-zero data. kmem_alloc is defined to return zero-filled memory. 194 * 195 * We're intentionally not activating the pages we allocate to prevent a 196 * race with page-out. vm_map_pageable will wire the pages. 197 */ 198 199 for (i = 0; i < size; i += PAGE_SIZE) { 200 vm_page_t mem; 201 202 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 203 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 204 if ((mem->flags & PG_ZERO) == 0) 205 vm_page_zero_fill(mem); 206 mem->valid = VM_PAGE_BITS_ALL; 207 vm_page_flag_clear(mem, PG_ZERO); 208 vm_page_wakeup(mem); 209 } 210 211 /* 212 * And finally, mark the data as non-pageable. 213 */ 214 215 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 216 217 return (addr); 218 } 219 220 /* 221 * kmem_free: 222 * 223 * Release a region of kernel virtual memory allocated 224 * with kmem_alloc, and return the physical pages 225 * associated with that region. 226 * 227 * This routine may not block on kernel maps. 228 */ 229 void 230 kmem_free(map, addr, size) 231 vm_map_t map; 232 vm_offset_t addr; 233 vm_size_t size; 234 { 235 236 mtx_assert(&Giant, MA_OWNED); 237 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 238 } 239 240 /* 241 * kmem_suballoc: 242 * 243 * Allocates a map to manage a subrange 244 * of the kernel virtual address space. 245 * 246 * Arguments are as follows: 247 * 248 * parent Map to take range from 249 * min, max Returned endpoints of map 250 * size Size of range to find 251 */ 252 vm_map_t 253 kmem_suballoc(parent, min, max, size) 254 vm_map_t parent; 255 vm_offset_t *min, *max; 256 vm_size_t size; 257 { 258 int ret; 259 vm_map_t result; 260 261 size = round_page(size); 262 263 *min = (vm_offset_t) vm_map_min(parent); 264 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 265 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 266 if (ret != KERN_SUCCESS) { 267 printf("kmem_suballoc: bad status return of %d.\n", ret); 268 panic("kmem_suballoc"); 269 } 270 *max = *min + size; 271 pmap_reference(vm_map_pmap(parent)); 272 result = vm_map_create(vm_map_pmap(parent), *min, *max); 273 if (result == NULL) 274 panic("kmem_suballoc: cannot create submap"); 275 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 276 panic("kmem_suballoc: unable to change range to submap"); 277 return (result); 278 } 279 280 /* 281 * kmem_malloc: 282 * 283 * Allocate wired-down memory in the kernel's address map for the higher 284 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 285 * kmem_alloc() because we may need to allocate memory at interrupt 286 * level where we cannot block (canwait == FALSE). 287 * 288 * This routine has its own private kernel submap (kmem_map) and object 289 * (kmem_object). This, combined with the fact that only malloc uses 290 * this routine, ensures that we will never block in map or object waits. 291 * 292 * Note that this still only works in a uni-processor environment and 293 * when called at splhigh(). 294 * 295 * We don't worry about expanding the map (adding entries) since entries 296 * for wired maps are statically allocated. 297 * 298 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 299 * I have not verified that it actually does not block. 300 */ 301 vm_offset_t 302 kmem_malloc(map, size, flags) 303 vm_map_t map; 304 vm_size_t size; 305 int flags; 306 { 307 vm_offset_t offset, i; 308 vm_map_entry_t entry; 309 vm_offset_t addr; 310 vm_page_t m; 311 312 if (map != kmem_map && map != mb_map) 313 panic("kmem_malloc: map != {kmem,mb}_map"); 314 315 size = round_page(size); 316 addr = vm_map_min(map); 317 318 /* 319 * Locate sufficient space in the map. This will give us the final 320 * virtual address for the new memory, and thus will tell us the 321 * offset within the kernel map. 322 */ 323 vm_map_lock(map); 324 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 325 vm_map_unlock(map); 326 if (map == mb_map) { 327 mb_map_full = TRUE; 328 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n"); 329 return (0); 330 } 331 if ((flags & M_NOWAIT) == 0) 332 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 333 (long)size, (long)map->size); 334 return (0); 335 } 336 offset = addr - VM_MIN_KERNEL_ADDRESS; 337 vm_object_reference(kmem_object); 338 vm_map_insert(map, kmem_object, offset, addr, addr + size, 339 VM_PROT_ALL, VM_PROT_ALL, 0); 340 341 for (i = 0; i < size; i += PAGE_SIZE) { 342 /* 343 * Note: if M_NOWAIT specified alone, allocate from 344 * interrupt-safe queues only (just the free list). If 345 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 346 * allocate from the cache. Neither of the latter two 347 * flags may be specified from an interrupt since interrupts 348 * are not allowed to mess with the cache queue. 349 */ 350 retry: 351 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 352 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 353 VM_ALLOC_INTERRUPT : 354 VM_ALLOC_SYSTEM); 355 356 /* 357 * Ran out of space, free everything up and return. Don't need 358 * to lock page queues here as we know that the pages we got 359 * aren't on any queues. 360 */ 361 if (m == NULL) { 362 if ((flags & M_NOWAIT) == 0) { 363 vm_map_unlock(map); 364 VM_WAIT; 365 vm_map_lock(map); 366 goto retry; 367 } 368 vm_map_delete(map, addr, addr + size); 369 vm_map_unlock(map); 370 if (flags & M_ASLEEP) { 371 VM_AWAIT; 372 } 373 return (0); 374 } 375 vm_page_flag_clear(m, PG_ZERO); 376 m->valid = VM_PAGE_BITS_ALL; 377 } 378 379 /* 380 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 381 * be able to extend the previous entry so there will be a new entry 382 * exactly corresponding to this address range and it will have 383 * wired_count == 0. 384 */ 385 if (!vm_map_lookup_entry(map, addr, &entry) || 386 entry->start != addr || entry->end != addr + size || 387 entry->wired_count != 0) 388 panic("kmem_malloc: entry not found or misaligned"); 389 entry->wired_count = 1; 390 391 vm_map_simplify_entry(map, entry); 392 393 /* 394 * Loop thru pages, entering them in the pmap. (We cannot add them to 395 * the wired count without wrapping the vm_page_queue_lock in 396 * splimp...) 397 */ 398 for (i = 0; i < size; i += PAGE_SIZE) { 399 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 400 vm_page_wire(m); 401 vm_page_wakeup(m); 402 /* 403 * Because this is kernel_pmap, this call will not block. 404 */ 405 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 406 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 407 } 408 vm_map_unlock(map); 409 410 return (addr); 411 } 412 413 /* 414 * kmem_alloc_wait: 415 * 416 * Allocates pageable memory from a sub-map of the kernel. If the submap 417 * has no room, the caller sleeps waiting for more memory in the submap. 418 * 419 * This routine may block. 420 */ 421 422 vm_offset_t 423 kmem_alloc_wait(map, size) 424 vm_map_t map; 425 vm_size_t size; 426 { 427 vm_offset_t addr; 428 429 size = round_page(size); 430 431 for (;;) { 432 /* 433 * To make this work for more than one map, use the map's lock 434 * to lock out sleepers/wakers. 435 */ 436 vm_map_lock(map); 437 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 438 break; 439 /* no space now; see if we can ever get space */ 440 if (vm_map_max(map) - vm_map_min(map) < size) { 441 vm_map_unlock(map); 442 return (0); 443 } 444 vm_map_unlock(map); 445 tsleep(map, PVM, "kmaw", 0); 446 } 447 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 448 vm_map_unlock(map); 449 return (addr); 450 } 451 452 /* 453 * kmem_free_wakeup: 454 * 455 * Returns memory to a submap of the kernel, and wakes up any processes 456 * waiting for memory in that map. 457 */ 458 void 459 kmem_free_wakeup(map, addr, size) 460 vm_map_t map; 461 vm_offset_t addr; 462 vm_size_t size; 463 { 464 vm_map_lock(map); 465 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 466 wakeup(map); 467 vm_map_unlock(map); 468 } 469 470 /* 471 * kmem_init: 472 * 473 * Create the kernel map; insert a mapping covering kernel text, 474 * data, bss, and all space allocated thus far (`boostrap' data). The 475 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 476 * `start' as allocated, and the range between `start' and `end' as free. 477 */ 478 479 void 480 kmem_init(start, end) 481 vm_offset_t start, end; 482 { 483 vm_map_t m; 484 485 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 486 vm_map_lock(m); 487 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 488 kernel_map = m; 489 kernel_map->system_map = 1; 490 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 491 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 492 /* ... and ending with the completion of the above `insert' */ 493 vm_map_unlock(m); 494 } 495