1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> /* for ticks and hz */ 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/malloc.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_extern.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t clean_map=0; 92 vm_map_t buffer_map=0; 93 94 /* 95 * kmem_alloc_pageable: 96 * 97 * Allocate pageable memory to the kernel's address map. 98 * "map" must be kernel_map or a submap of kernel_map. 99 */ 100 vm_offset_t 101 kmem_alloc_pageable(map, size) 102 vm_map_t map; 103 vm_size_t size; 104 { 105 vm_offset_t addr; 106 int result; 107 108 size = round_page(size); 109 addr = vm_map_min(map); 110 result = vm_map_find(map, NULL, 0, 111 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 112 if (result != KERN_SUCCESS) { 113 return (0); 114 } 115 return (addr); 116 } 117 118 /* 119 * kmem_alloc_nofault: 120 * 121 * Same as kmem_alloc_pageable, except that it create a nofault entry. 122 */ 123 vm_offset_t 124 kmem_alloc_nofault(map, size) 125 vm_map_t map; 126 vm_size_t size; 127 { 128 vm_offset_t addr; 129 int result; 130 131 size = round_page(size); 132 addr = vm_map_min(map); 133 result = vm_map_find(map, NULL, 0, 134 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 135 if (result != KERN_SUCCESS) { 136 return (0); 137 } 138 return (addr); 139 } 140 141 /* 142 * Allocate wired-down memory in the kernel's address map 143 * or a submap. 144 */ 145 vm_offset_t 146 kmem_alloc(map, size) 147 vm_map_t map; 148 vm_size_t size; 149 { 150 vm_offset_t addr; 151 vm_offset_t offset; 152 vm_offset_t i; 153 154 GIANT_REQUIRED; 155 156 size = round_page(size); 157 158 /* 159 * Use the kernel object for wired-down kernel pages. Assume that no 160 * region of the kernel object is referenced more than once. 161 */ 162 163 /* 164 * Locate sufficient space in the map. This will give us the final 165 * virtual address for the new memory, and thus will tell us the 166 * offset within the kernel map. 167 */ 168 vm_map_lock(map); 169 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 170 vm_map_unlock(map); 171 return (0); 172 } 173 offset = addr - VM_MIN_KERNEL_ADDRESS; 174 vm_object_reference(kernel_object); 175 vm_map_insert(map, kernel_object, offset, addr, addr + size, 176 VM_PROT_ALL, VM_PROT_ALL, 0); 177 vm_map_unlock(map); 178 179 /* 180 * Guarantee that there are pages already in this object before 181 * calling vm_map_pageable. This is to prevent the following 182 * scenario: 183 * 184 * 1) Threads have swapped out, so that there is a pager for the 185 * kernel_object. 2) The kmsg zone is empty, and so we are 186 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 187 * there is no page, but there is a pager, so we call 188 * pager_data_request. But the kmsg zone is empty, so we must 189 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 190 * we get the data back from the pager, it will be (very stale) 191 * non-zero data. kmem_alloc is defined to return zero-filled memory. 192 * 193 * We're intentionally not activating the pages we allocate to prevent a 194 * race with page-out. vm_map_pageable will wire the pages. 195 */ 196 for (i = 0; i < size; i += PAGE_SIZE) { 197 vm_page_t mem; 198 199 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 200 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 201 if ((mem->flags & PG_ZERO) == 0) 202 vm_page_zero_fill(mem); 203 mem->valid = VM_PAGE_BITS_ALL; 204 vm_page_flag_clear(mem, PG_ZERO); 205 vm_page_wakeup(mem); 206 } 207 208 /* 209 * And finally, mark the data as non-pageable. 210 */ 211 (void) vm_map_wire(map, addr, addr + size, FALSE); 212 213 return (addr); 214 } 215 216 /* 217 * kmem_free: 218 * 219 * Release a region of kernel virtual memory allocated 220 * with kmem_alloc, and return the physical pages 221 * associated with that region. 222 * 223 * This routine may not block on kernel maps. 224 */ 225 void 226 kmem_free(map, addr, size) 227 vm_map_t map; 228 vm_offset_t addr; 229 vm_size_t size; 230 { 231 232 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 233 } 234 235 /* 236 * kmem_suballoc: 237 * 238 * Allocates a map to manage a subrange 239 * of the kernel virtual address space. 240 * 241 * Arguments are as follows: 242 * 243 * parent Map to take range from 244 * min, max Returned endpoints of map 245 * size Size of range to find 246 */ 247 vm_map_t 248 kmem_suballoc(parent, min, max, size) 249 vm_map_t parent; 250 vm_offset_t *min, *max; 251 vm_size_t size; 252 { 253 int ret; 254 vm_map_t result; 255 256 GIANT_REQUIRED; 257 258 size = round_page(size); 259 260 *min = (vm_offset_t) vm_map_min(parent); 261 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 262 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 263 if (ret != KERN_SUCCESS) { 264 printf("kmem_suballoc: bad status return of %d.\n", ret); 265 panic("kmem_suballoc"); 266 } 267 *max = *min + size; 268 result = vm_map_create(vm_map_pmap(parent), *min, *max); 269 if (result == NULL) 270 panic("kmem_suballoc: cannot create submap"); 271 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 272 panic("kmem_suballoc: unable to change range to submap"); 273 return (result); 274 } 275 276 /* 277 * kmem_malloc: 278 * 279 * Allocate wired-down memory in the kernel's address map for the higher 280 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 281 * kmem_alloc() because we may need to allocate memory at interrupt 282 * level where we cannot block (canwait == FALSE). 283 * 284 * This routine has its own private kernel submap (kmem_map) and object 285 * (kmem_object). This, combined with the fact that only malloc uses 286 * this routine, ensures that we will never block in map or object waits. 287 * 288 * Note that this still only works in a uni-processor environment and 289 * when called at splhigh(). 290 * 291 * We don't worry about expanding the map (adding entries) since entries 292 * for wired maps are statically allocated. 293 * 294 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 295 * I have not verified that it actually does not block. 296 * 297 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 298 * which we never free. 299 */ 300 vm_offset_t 301 kmem_malloc(map, size, flags) 302 vm_map_t map; 303 vm_size_t size; 304 int flags; 305 { 306 vm_offset_t offset, i; 307 vm_map_entry_t entry; 308 vm_offset_t addr; 309 vm_page_t m; 310 int pflags; 311 312 GIANT_REQUIRED; 313 314 size = round_page(size); 315 addr = vm_map_min(map); 316 317 /* 318 * Locate sufficient space in the map. This will give us the final 319 * virtual address for the new memory, and thus will tell us the 320 * offset within the kernel map. 321 */ 322 vm_map_lock(map); 323 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 324 vm_map_unlock(map); 325 if (map != kmem_map) { 326 static int last_report; /* when we did it (in ticks) */ 327 if (ticks < last_report || 328 (ticks - last_report) >= hz) { 329 last_report = ticks; 330 printf("Out of mbuf address space!\n"); 331 printf("Consider increasing NMBCLUSTERS\n"); 332 } 333 goto bad; 334 } 335 if ((flags & M_NOWAIT) == 0) 336 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 337 (long)size, (long)map->size); 338 goto bad; 339 } 340 offset = addr - VM_MIN_KERNEL_ADDRESS; 341 vm_object_reference(kmem_object); 342 vm_map_insert(map, kmem_object, offset, addr, addr + size, 343 VM_PROT_ALL, VM_PROT_ALL, 0); 344 345 /* 346 * Note: if M_NOWAIT specified alone, allocate from 347 * interrupt-safe queues only (just the free list). If 348 * M_USE_RESERVE is also specified, we can also 349 * allocate from the cache. Neither of the latter two 350 * flags may be specified from an interrupt since interrupts 351 * are not allowed to mess with the cache queue. 352 */ 353 354 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 355 pflags = VM_ALLOC_INTERRUPT; 356 else 357 pflags = VM_ALLOC_SYSTEM; 358 359 if (flags & M_ZERO) 360 pflags |= VM_ALLOC_ZERO; 361 362 363 for (i = 0; i < size; i += PAGE_SIZE) { 364 retry: 365 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 366 367 /* 368 * Ran out of space, free everything up and return. Don't need 369 * to lock page queues here as we know that the pages we got 370 * aren't on any queues. 371 */ 372 if (m == NULL) { 373 if ((flags & M_NOWAIT) == 0) { 374 vm_map_unlock(map); 375 VM_WAIT; 376 vm_map_lock(map); 377 goto retry; 378 } 379 /* 380 * Free the pages before removing the map entry. 381 * They are already marked busy. Calling 382 * vm_map_delete before the pages has been freed or 383 * unbusied will cause a deadlock. 384 */ 385 while (i != 0) { 386 i -= PAGE_SIZE; 387 m = vm_page_lookup(kmem_object, 388 OFF_TO_IDX(offset + i)); 389 vm_page_lock_queues(); 390 vm_page_free(m); 391 vm_page_unlock_queues(); 392 } 393 vm_map_delete(map, addr, addr + size); 394 vm_map_unlock(map); 395 goto bad; 396 } 397 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 398 vm_page_zero_fill(m); 399 vm_page_flag_clear(m, PG_ZERO); 400 m->valid = VM_PAGE_BITS_ALL; 401 } 402 403 /* 404 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 405 * be able to extend the previous entry so there will be a new entry 406 * exactly corresponding to this address range and it will have 407 * wired_count == 0. 408 */ 409 if (!vm_map_lookup_entry(map, addr, &entry) || 410 entry->start != addr || entry->end != addr + size || 411 entry->wired_count != 0) 412 panic("kmem_malloc: entry not found or misaligned"); 413 entry->wired_count = 1; 414 415 vm_map_simplify_entry(map, entry); 416 417 /* 418 * Loop thru pages, entering them in the pmap. (We cannot add them to 419 * the wired count without wrapping the vm_page_queue_lock in 420 * splimp...) 421 */ 422 for (i = 0; i < size; i += PAGE_SIZE) { 423 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 424 vm_page_lock_queues(); 425 vm_page_wire(m); 426 vm_page_wakeup(m); 427 vm_page_unlock_queues(); 428 /* 429 * Because this is kernel_pmap, this call will not block. 430 */ 431 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 432 vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED); 433 } 434 vm_map_unlock(map); 435 436 return (addr); 437 438 bad: 439 return (0); 440 } 441 442 /* 443 * kmem_alloc_wait: 444 * 445 * Allocates pageable memory from a sub-map of the kernel. If the submap 446 * has no room, the caller sleeps waiting for more memory in the submap. 447 * 448 * This routine may block. 449 */ 450 vm_offset_t 451 kmem_alloc_wait(map, size) 452 vm_map_t map; 453 vm_size_t size; 454 { 455 vm_offset_t addr; 456 457 size = round_page(size); 458 459 for (;;) { 460 /* 461 * To make this work for more than one map, use the map's lock 462 * to lock out sleepers/wakers. 463 */ 464 vm_map_lock(map); 465 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 466 break; 467 /* no space now; see if we can ever get space */ 468 if (vm_map_max(map) - vm_map_min(map) < size) { 469 vm_map_unlock(map); 470 return (0); 471 } 472 map->needs_wakeup = TRUE; 473 vm_map_unlock_and_wait(map, FALSE); 474 } 475 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 476 vm_map_unlock(map); 477 return (addr); 478 } 479 480 /* 481 * kmem_free_wakeup: 482 * 483 * Returns memory to a submap of the kernel, and wakes up any processes 484 * waiting for memory in that map. 485 */ 486 void 487 kmem_free_wakeup(map, addr, size) 488 vm_map_t map; 489 vm_offset_t addr; 490 vm_size_t size; 491 { 492 493 vm_map_lock(map); 494 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 495 if (map->needs_wakeup) { 496 map->needs_wakeup = FALSE; 497 vm_map_wakeup(map); 498 } 499 vm_map_unlock(map); 500 } 501 502 /* 503 * kmem_init: 504 * 505 * Create the kernel map; insert a mapping covering kernel text, 506 * data, bss, and all space allocated thus far (`boostrap' data). The 507 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 508 * `start' as allocated, and the range between `start' and `end' as free. 509 */ 510 void 511 kmem_init(start, end) 512 vm_offset_t start, end; 513 { 514 vm_map_t m; 515 516 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 517 vm_map_lock(m); 518 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 519 kernel_map = m; 520 kernel_map->system_map = 1; 521 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 522 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 523 /* ... and ending with the completion of the above `insert' */ 524 vm_map_unlock(m); 525 } 526