xref: /freebsd/sys/vm/vm_kern.c (revision c11e094d96120a2e0e726ed9705ae0ec08db49b6)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>		/* for ticks and hz */
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_extern.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t clean_map=0;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	GIANT_REQUIRED;
109 
110 	size = round_page(size);
111 	addr = vm_map_min(map);
112 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	kmem_alloc_nofault:
122  *
123  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124  */
125 vm_offset_t
126 kmem_alloc_nofault(map, size)
127 	vm_map_t map;
128 	vm_size_t size;
129 {
130 	vm_offset_t addr;
131 	int result;
132 
133 	GIANT_REQUIRED;
134 
135 	size = round_page(size);
136 	addr = vm_map_min(map);
137 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
138 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
139 	if (result != KERN_SUCCESS) {
140 		return (0);
141 	}
142 	return (addr);
143 }
144 
145 /*
146  *	Allocate wired-down memory in the kernel's address map
147  *	or a submap.
148  */
149 vm_offset_t
150 kmem_alloc(map, size)
151 	vm_map_t map;
152 	vm_size_t size;
153 {
154 	vm_offset_t addr;
155 	vm_offset_t offset;
156 	vm_offset_t i;
157 
158 	GIANT_REQUIRED;
159 
160 	size = round_page(size);
161 
162 	/*
163 	 * Use the kernel object for wired-down kernel pages. Assume that no
164 	 * region of the kernel object is referenced more than once.
165 	 */
166 
167 	/*
168 	 * Locate sufficient space in the map.  This will give us the final
169 	 * virtual address for the new memory, and thus will tell us the
170 	 * offset within the kernel map.
171 	 */
172 	vm_map_lock(map);
173 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
174 		vm_map_unlock(map);
175 		return (0);
176 	}
177 	offset = addr - VM_MIN_KERNEL_ADDRESS;
178 	vm_object_reference(kernel_object);
179 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
180 		VM_PROT_ALL, VM_PROT_ALL, 0);
181 	vm_map_unlock(map);
182 
183 	/*
184 	 * Guarantee that there are pages already in this object before
185 	 * calling vm_map_pageable.  This is to prevent the following
186 	 * scenario:
187 	 *
188 	 * 1) Threads have swapped out, so that there is a pager for the
189 	 * kernel_object. 2) The kmsg zone is empty, and so we are
190 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
191 	 * there is no page, but there is a pager, so we call
192 	 * pager_data_request.  But the kmsg zone is empty, so we must
193 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
194 	 * we get the data back from the pager, it will be (very stale)
195 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
196 	 *
197 	 * We're intentionally not activating the pages we allocate to prevent a
198 	 * race with page-out.  vm_map_pageable will wire the pages.
199 	 */
200 	for (i = 0; i < size; i += PAGE_SIZE) {
201 		vm_page_t mem;
202 
203 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205 		if ((mem->flags & PG_ZERO) == 0)
206 			vm_page_zero_fill(mem);
207 		mem->valid = VM_PAGE_BITS_ALL;
208 		vm_page_flag_clear(mem, PG_ZERO);
209 		vm_page_wakeup(mem);
210 	}
211 
212 	/*
213 	 * And finally, mark the data as non-pageable.
214 	 */
215 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
216 
217 	return (addr);
218 }
219 
220 /*
221  *	kmem_free:
222  *
223  *	Release a region of kernel virtual memory allocated
224  *	with kmem_alloc, and return the physical pages
225  *	associated with that region.
226  *
227  *	This routine may not block on kernel maps.
228  */
229 void
230 kmem_free(map, addr, size)
231 	vm_map_t map;
232 	vm_offset_t addr;
233 	vm_size_t size;
234 {
235 	GIANT_REQUIRED;
236 
237 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
238 }
239 
240 /*
241  *	kmem_suballoc:
242  *
243  *	Allocates a map to manage a subrange
244  *	of the kernel virtual address space.
245  *
246  *	Arguments are as follows:
247  *
248  *	parent		Map to take range from
249  *	min, max	Returned endpoints of map
250  *	size		Size of range to find
251  */
252 vm_map_t
253 kmem_suballoc(parent, min, max, size)
254 	vm_map_t parent;
255 	vm_offset_t *min, *max;
256 	vm_size_t size;
257 {
258 	int ret;
259 	vm_map_t result;
260 
261 	GIANT_REQUIRED;
262 
263 	size = round_page(size);
264 
265 	*min = (vm_offset_t) vm_map_min(parent);
266 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
267 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
268 	if (ret != KERN_SUCCESS) {
269 		printf("kmem_suballoc: bad status return of %d.\n", ret);
270 		panic("kmem_suballoc");
271 	}
272 	*max = *min + size;
273 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
274 	if (result == NULL)
275 		panic("kmem_suballoc: cannot create submap");
276 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
277 		panic("kmem_suballoc: unable to change range to submap");
278 	return (result);
279 }
280 
281 /*
282  *	kmem_malloc:
283  *
284  * 	Allocate wired-down memory in the kernel's address map for the higher
285  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
286  * 	kmem_alloc() because we may need to allocate memory at interrupt
287  * 	level where we cannot block (canwait == FALSE).
288  *
289  * 	This routine has its own private kernel submap (kmem_map) and object
290  * 	(kmem_object).  This, combined with the fact that only malloc uses
291  * 	this routine, ensures that we will never block in map or object waits.
292  *
293  * 	Note that this still only works in a uni-processor environment and
294  * 	when called at splhigh().
295  *
296  * 	We don't worry about expanding the map (adding entries) since entries
297  * 	for wired maps are statically allocated.
298  *
299  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
300  *	I have not verified that it actually does not block.
301  *
302  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
303  *	which we never free.
304  */
305 vm_offset_t
306 kmem_malloc(map, size, flags)
307 	vm_map_t map;
308 	vm_size_t size;
309 	int flags;
310 {
311 	vm_offset_t offset, i;
312 	vm_map_entry_t entry;
313 	vm_offset_t addr;
314 	vm_page_t m;
315 
316 	GIANT_REQUIRED;
317 
318 	size = round_page(size);
319 	addr = vm_map_min(map);
320 
321 	/*
322 	 * Locate sufficient space in the map.  This will give us the final
323 	 * virtual address for the new memory, and thus will tell us the
324 	 * offset within the kernel map.
325 	 */
326 	vm_map_lock(map);
327 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
328 		vm_map_unlock(map);
329 		if (map != kmem_map) {
330 			static int last_report; /* when we did it (in ticks) */
331 			if (ticks < last_report ||
332 			    (ticks - last_report) >= hz) {
333 				last_report = ticks;
334 				printf("Out of mbuf address space!\n");
335 				printf("Consider increasing NMBCLUSTERS\n");
336 			}
337 			goto bad;
338 		}
339 		if ((flags & M_NOWAIT) == 0)
340 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
341 				(long)size, (long)map->size);
342 		goto bad;
343 	}
344 	offset = addr - VM_MIN_KERNEL_ADDRESS;
345 	vm_object_reference(kmem_object);
346 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
347 		VM_PROT_ALL, VM_PROT_ALL, 0);
348 
349 	for (i = 0; i < size; i += PAGE_SIZE) {
350 		/*
351 		 * Note: if M_NOWAIT specified alone, allocate from
352 		 * interrupt-safe queues only (just the free list).  If
353 		 * M_USE_RESERVE is also specified, we can also
354 		 * allocate from the cache.  Neither of the latter two
355 		 * flags may be specified from an interrupt since interrupts
356 		 * are not allowed to mess with the cache queue.
357 		 */
358 retry:
359 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
360 		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
361 			VM_ALLOC_INTERRUPT :
362 			VM_ALLOC_SYSTEM);
363 
364 		/*
365 		 * Ran out of space, free everything up and return. Don't need
366 		 * to lock page queues here as we know that the pages we got
367 		 * aren't on any queues.
368 		 */
369 		if (m == NULL) {
370 			if ((flags & M_NOWAIT) == 0) {
371 				vm_map_unlock(map);
372 				VM_WAIT;
373 				vm_map_lock(map);
374 				goto retry;
375 			}
376 			/*
377 			 * Free the pages before removing the map entry.
378 			 * They are already marked busy.  Calling
379 			 * vm_map_delete before the pages has been freed or
380 			 * unbusied will cause a deadlock.
381 			 */
382 			while (i != 0) {
383 				i -= PAGE_SIZE;
384 				m = vm_page_lookup(kmem_object,
385 						   OFF_TO_IDX(offset + i));
386 				vm_page_free(m);
387 			}
388 			vm_map_delete(map, addr, addr + size);
389 			vm_map_unlock(map);
390 			goto bad;
391 		}
392 		vm_page_flag_clear(m, PG_ZERO);
393 		m->valid = VM_PAGE_BITS_ALL;
394 	}
395 
396 	/*
397 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
398 	 * be able to extend the previous entry so there will be a new entry
399 	 * exactly corresponding to this address range and it will have
400 	 * wired_count == 0.
401 	 */
402 	if (!vm_map_lookup_entry(map, addr, &entry) ||
403 	    entry->start != addr || entry->end != addr + size ||
404 	    entry->wired_count != 0)
405 		panic("kmem_malloc: entry not found or misaligned");
406 	entry->wired_count = 1;
407 
408 	vm_map_simplify_entry(map, entry);
409 
410 	/*
411 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
412 	 * the wired count without wrapping the vm_page_queue_lock in
413 	 * splimp...)
414 	 */
415 	for (i = 0; i < size; i += PAGE_SIZE) {
416 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
417 		vm_page_wire(m);
418 		vm_page_wakeup(m);
419 		/*
420 		 * Because this is kernel_pmap, this call will not block.
421 		 */
422 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
423 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
424 	}
425 	vm_map_unlock(map);
426 
427 	return (addr);
428 
429 bad:
430 	return (0);
431 }
432 
433 /*
434  *	kmem_alloc_wait:
435  *
436  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
437  *	has no room, the caller sleeps waiting for more memory in the submap.
438  *
439  *	This routine may block.
440  */
441 vm_offset_t
442 kmem_alloc_wait(map, size)
443 	vm_map_t map;
444 	vm_size_t size;
445 {
446 	vm_offset_t addr;
447 
448 	GIANT_REQUIRED;
449 
450 	size = round_page(size);
451 
452 	for (;;) {
453 		/*
454 		 * To make this work for more than one map, use the map's lock
455 		 * to lock out sleepers/wakers.
456 		 */
457 		vm_map_lock(map);
458 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
459 			break;
460 		/* no space now; see if we can ever get space */
461 		if (vm_map_max(map) - vm_map_min(map) < size) {
462 			vm_map_unlock(map);
463 			return (0);
464 		}
465 		vm_map_unlock(map);
466 		tsleep(map, PVM, "kmaw", 0);
467 	}
468 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
469 	vm_map_unlock(map);
470 	return (addr);
471 }
472 
473 /*
474  *	kmem_free_wakeup:
475  *
476  *	Returns memory to a submap of the kernel, and wakes up any processes
477  *	waiting for memory in that map.
478  */
479 void
480 kmem_free_wakeup(map, addr, size)
481 	vm_map_t map;
482 	vm_offset_t addr;
483 	vm_size_t size;
484 {
485 	GIANT_REQUIRED;
486 
487 	vm_map_lock(map);
488 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
489 	wakeup(map);
490 	vm_map_unlock(map);
491 }
492 
493 /*
494  * 	kmem_init:
495  *
496  *	Create the kernel map; insert a mapping covering kernel text,
497  *	data, bss, and all space allocated thus far (`boostrap' data).  The
498  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
499  *	`start' as allocated, and the range between `start' and `end' as free.
500  */
501 void
502 kmem_init(start, end)
503 	vm_offset_t start, end;
504 {
505 	vm_map_t m;
506 
507 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
508 	vm_map_lock(m);
509 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
510 	kernel_map = m;
511 	kernel_map->system_map = 1;
512 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
513 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
514 	/* ... and ending with the completion of the above `insert' */
515 	vm_map_unlock(m);
516 }
517