1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Kernel memory management. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include "opt_vm.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/asan.h> 75 #include <sys/domainset.h> 76 #include <sys/eventhandler.h> 77 #include <sys/kernel.h> 78 #include <sys/lock.h> 79 #include <sys/malloc.h> 80 #include <sys/proc.h> 81 #include <sys/rwlock.h> 82 #include <sys/sysctl.h> 83 #include <sys/vmem.h> 84 #include <sys/vmmeter.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_domainset.h> 89 #include <vm/vm_kern.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_pagequeue.h> 96 #include <vm/vm_phys.h> 97 #include <vm/vm_radix.h> 98 #include <vm/vm_extern.h> 99 #include <vm/uma.h> 100 101 struct vm_map kernel_map_store; 102 struct vm_map exec_map_store; 103 struct vm_map pipe_map_store; 104 105 const void *zero_region; 106 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 107 108 /* NB: Used by kernel debuggers. */ 109 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS; 110 111 u_int exec_map_entry_size; 112 u_int exec_map_entries; 113 114 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, 115 SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address"); 116 117 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD, 118 #if defined(__arm__) 119 &vm_max_kernel_address, 0, 120 #else 121 SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS, 122 #endif 123 "Max kernel address"); 124 125 #if VM_NRESERVLEVEL > 0 126 #define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT) 127 #else 128 /* On non-superpage architectures we want large import sizes. */ 129 #define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT) 130 #endif 131 #define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT) 132 #define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128) 133 134 extern void uma_startup2(void); 135 136 /* 137 * kva_alloc: 138 * 139 * Allocate a virtual address range with no underlying object and 140 * no initial mapping to physical memory. Any mapping from this 141 * range to physical memory must be explicitly created prior to 142 * its use, typically with pmap_qenter(). Any attempt to create 143 * a mapping on demand through vm_fault() will result in a panic. 144 */ 145 vm_offset_t 146 kva_alloc(vm_size_t size) 147 { 148 vm_offset_t addr; 149 150 size = round_page(size); 151 if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr)) 152 return (0); 153 154 return (addr); 155 } 156 157 /* 158 * kva_free: 159 * 160 * Release a region of kernel virtual memory allocated 161 * with kva_alloc, and return the physical pages 162 * associated with that region. 163 * 164 * This routine may not block on kernel maps. 165 */ 166 void 167 kva_free(vm_offset_t addr, vm_size_t size) 168 { 169 170 size = round_page(size); 171 vmem_free(kernel_arena, addr, size); 172 } 173 174 static vm_page_t 175 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain, 176 int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high, 177 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) 178 { 179 vm_page_t m; 180 int tries; 181 bool wait, reclaim; 182 183 VM_OBJECT_ASSERT_WLOCKED(object); 184 185 /* Disallow an invalid combination of flags. */ 186 MPASS((pflags & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) != 187 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)); 188 189 wait = (pflags & VM_ALLOC_WAITOK) != 0; 190 reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0; 191 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 192 pflags |= VM_ALLOC_NOWAIT; 193 for (tries = wait ? 3 : 1;; tries--) { 194 m = vm_page_alloc_contig_domain(object, pindex, domain, pflags, 195 npages, low, high, alignment, boundary, memattr); 196 if (m != NULL || tries == 0 || !reclaim) 197 break; 198 199 VM_OBJECT_WUNLOCK(object); 200 if (!vm_page_reclaim_contig_domain(domain, pflags, npages, 201 low, high, alignment, boundary) && wait) 202 vm_wait_domain(domain); 203 VM_OBJECT_WLOCK(object); 204 } 205 return (m); 206 } 207 208 /* 209 * Allocates a region from the kernel address map and physical pages 210 * within the specified address range to the kernel object. Creates a 211 * wired mapping from this region to these pages, and returns the 212 * region's starting virtual address. The allocated pages are not 213 * necessarily physically contiguous. If M_ZERO is specified through the 214 * given flags, then the pages are zeroed before they are mapped. 215 */ 216 static vm_offset_t 217 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, 218 vm_paddr_t high, vm_memattr_t memattr) 219 { 220 vmem_t *vmem; 221 vm_object_t object; 222 vm_offset_t addr, i, offset; 223 vm_page_t m; 224 vm_size_t asize; 225 int pflags; 226 vm_prot_t prot; 227 228 object = kernel_object; 229 asize = round_page(size); 230 vmem = vm_dom[domain].vmd_kernel_arena; 231 if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr)) 232 return (0); 233 offset = addr - VM_MIN_KERNEL_ADDRESS; 234 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 235 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW; 236 VM_OBJECT_WLOCK(object); 237 for (i = 0; i < asize; i += PAGE_SIZE) { 238 m = kmem_alloc_contig_pages(object, atop(offset + i), 239 domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr); 240 if (m == NULL) { 241 VM_OBJECT_WUNLOCK(object); 242 kmem_unback(object, addr, i); 243 vmem_free(vmem, addr, asize); 244 return (0); 245 } 246 KASSERT(vm_page_domain(m) == domain, 247 ("kmem_alloc_attr_domain: Domain mismatch %d != %d", 248 vm_page_domain(m), domain)); 249 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 250 pmap_zero_page(m); 251 vm_page_valid(m); 252 pmap_enter(kernel_pmap, addr + i, m, prot, 253 prot | PMAP_ENTER_WIRED, 0); 254 } 255 VM_OBJECT_WUNLOCK(object); 256 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE); 257 return (addr); 258 } 259 260 vm_offset_t 261 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, 262 vm_memattr_t memattr) 263 { 264 265 return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low, 266 high, memattr)); 267 } 268 269 vm_offset_t 270 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags, 271 vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr) 272 { 273 struct vm_domainset_iter di; 274 vm_offset_t addr; 275 int domain; 276 277 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 278 do { 279 addr = kmem_alloc_attr_domain(domain, size, flags, low, high, 280 memattr); 281 if (addr != 0) 282 break; 283 } while (vm_domainset_iter_policy(&di, &domain) == 0); 284 285 return (addr); 286 } 287 288 /* 289 * Allocates a region from the kernel address map and physically 290 * contiguous pages within the specified address range to the kernel 291 * object. Creates a wired mapping from this region to these pages, and 292 * returns the region's starting virtual address. If M_ZERO is specified 293 * through the given flags, then the pages are zeroed before they are 294 * mapped. 295 */ 296 static vm_offset_t 297 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low, 298 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 299 vm_memattr_t memattr) 300 { 301 vmem_t *vmem; 302 vm_object_t object; 303 vm_offset_t addr, offset, tmp; 304 vm_page_t end_m, m; 305 vm_size_t asize; 306 u_long npages; 307 int pflags; 308 309 object = kernel_object; 310 asize = round_page(size); 311 vmem = vm_dom[domain].vmd_kernel_arena; 312 if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr)) 313 return (0); 314 offset = addr - VM_MIN_KERNEL_ADDRESS; 315 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 316 npages = atop(asize); 317 VM_OBJECT_WLOCK(object); 318 m = kmem_alloc_contig_pages(object, atop(offset), domain, 319 pflags, npages, low, high, alignment, boundary, memattr); 320 if (m == NULL) { 321 VM_OBJECT_WUNLOCK(object); 322 vmem_free(vmem, addr, asize); 323 return (0); 324 } 325 KASSERT(vm_page_domain(m) == domain, 326 ("kmem_alloc_contig_domain: Domain mismatch %d != %d", 327 vm_page_domain(m), domain)); 328 end_m = m + npages; 329 tmp = addr; 330 for (; m < end_m; m++) { 331 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 332 pmap_zero_page(m); 333 vm_page_valid(m); 334 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW, 335 VM_PROT_RW | PMAP_ENTER_WIRED, 0); 336 tmp += PAGE_SIZE; 337 } 338 VM_OBJECT_WUNLOCK(object); 339 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE); 340 return (addr); 341 } 342 343 vm_offset_t 344 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high, 345 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) 346 { 347 348 return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low, 349 high, alignment, boundary, memattr)); 350 } 351 352 vm_offset_t 353 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags, 354 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 355 vm_memattr_t memattr) 356 { 357 struct vm_domainset_iter di; 358 vm_offset_t addr; 359 int domain; 360 361 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 362 do { 363 addr = kmem_alloc_contig_domain(domain, size, flags, low, high, 364 alignment, boundary, memattr); 365 if (addr != 0) 366 break; 367 } while (vm_domainset_iter_policy(&di, &domain) == 0); 368 369 return (addr); 370 } 371 372 /* 373 * kmem_subinit: 374 * 375 * Initializes a map to manage a subrange 376 * of the kernel virtual address space. 377 * 378 * Arguments are as follows: 379 * 380 * parent Map to take range from 381 * min, max Returned endpoints of map 382 * size Size of range to find 383 * superpage_align Request that min is superpage aligned 384 */ 385 void 386 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 387 vm_size_t size, bool superpage_align) 388 { 389 int ret; 390 391 size = round_page(size); 392 393 *min = vm_map_min(parent); 394 ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ? 395 VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 396 MAP_ACC_NO_CHARGE); 397 if (ret != KERN_SUCCESS) 398 panic("kmem_subinit: bad status return of %d", ret); 399 *max = *min + size; 400 vm_map_init(map, vm_map_pmap(parent), *min, *max); 401 if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS) 402 panic("kmem_subinit: unable to change range to submap"); 403 } 404 405 /* 406 * kmem_malloc_domain: 407 * 408 * Allocate wired-down pages in the kernel's address space. 409 */ 410 static vm_offset_t 411 kmem_malloc_domain(int domain, vm_size_t size, int flags) 412 { 413 vmem_t *arena; 414 vm_offset_t addr; 415 vm_size_t asize; 416 int rv; 417 418 if (__predict_true((flags & M_EXEC) == 0)) 419 arena = vm_dom[domain].vmd_kernel_arena; 420 else 421 arena = vm_dom[domain].vmd_kernel_rwx_arena; 422 asize = round_page(size); 423 if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr)) 424 return (0); 425 426 rv = kmem_back_domain(domain, kernel_object, addr, asize, flags); 427 if (rv != KERN_SUCCESS) { 428 vmem_free(arena, addr, asize); 429 return (0); 430 } 431 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE); 432 return (addr); 433 } 434 435 vm_offset_t 436 kmem_malloc(vm_size_t size, int flags) 437 { 438 439 return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags)); 440 } 441 442 vm_offset_t 443 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags) 444 { 445 struct vm_domainset_iter di; 446 vm_offset_t addr; 447 int domain; 448 449 vm_domainset_iter_policy_init(&di, ds, &domain, &flags); 450 do { 451 addr = kmem_malloc_domain(domain, size, flags); 452 if (addr != 0) 453 break; 454 } while (vm_domainset_iter_policy(&di, &domain) == 0); 455 456 return (addr); 457 } 458 459 /* 460 * kmem_back_domain: 461 * 462 * Allocate physical pages from the specified domain for the specified 463 * virtual address range. 464 */ 465 int 466 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr, 467 vm_size_t size, int flags) 468 { 469 vm_offset_t offset, i; 470 vm_page_t m, mpred; 471 vm_prot_t prot; 472 int pflags; 473 474 KASSERT(object == kernel_object, 475 ("kmem_back_domain: only supports kernel object.")); 476 477 offset = addr - VM_MIN_KERNEL_ADDRESS; 478 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 479 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL); 480 if (flags & M_WAITOK) 481 pflags |= VM_ALLOC_WAITFAIL; 482 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW; 483 484 i = 0; 485 VM_OBJECT_WLOCK(object); 486 retry: 487 mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i)); 488 for (; i < size; i += PAGE_SIZE, mpred = m) { 489 m = vm_page_alloc_domain_after(object, atop(offset + i), 490 domain, pflags, mpred); 491 492 /* 493 * Ran out of space, free everything up and return. Don't need 494 * to lock page queues here as we know that the pages we got 495 * aren't on any queues. 496 */ 497 if (m == NULL) { 498 if ((flags & M_NOWAIT) == 0) 499 goto retry; 500 VM_OBJECT_WUNLOCK(object); 501 kmem_unback(object, addr, i); 502 return (KERN_NO_SPACE); 503 } 504 KASSERT(vm_page_domain(m) == domain, 505 ("kmem_back_domain: Domain mismatch %d != %d", 506 vm_page_domain(m), domain)); 507 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 508 pmap_zero_page(m); 509 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 510 ("kmem_malloc: page %p is managed", m)); 511 vm_page_valid(m); 512 pmap_enter(kernel_pmap, addr + i, m, prot, 513 prot | PMAP_ENTER_WIRED, 0); 514 if (__predict_false((prot & VM_PROT_EXECUTE) != 0)) 515 m->oflags |= VPO_KMEM_EXEC; 516 } 517 VM_OBJECT_WUNLOCK(object); 518 519 return (KERN_SUCCESS); 520 } 521 522 /* 523 * kmem_back: 524 * 525 * Allocate physical pages for the specified virtual address range. 526 */ 527 int 528 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags) 529 { 530 vm_offset_t end, next, start; 531 int domain, rv; 532 533 KASSERT(object == kernel_object, 534 ("kmem_back: only supports kernel object.")); 535 536 for (start = addr, end = addr + size; addr < end; addr = next) { 537 /* 538 * We must ensure that pages backing a given large virtual page 539 * all come from the same physical domain. 540 */ 541 if (vm_ndomains > 1) { 542 domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains; 543 while (VM_DOMAIN_EMPTY(domain)) 544 domain++; 545 next = roundup2(addr + 1, KVA_QUANTUM); 546 if (next > end || next < start) 547 next = end; 548 } else { 549 domain = 0; 550 next = end; 551 } 552 rv = kmem_back_domain(domain, object, addr, next - addr, flags); 553 if (rv != KERN_SUCCESS) { 554 kmem_unback(object, start, addr - start); 555 break; 556 } 557 } 558 return (rv); 559 } 560 561 /* 562 * kmem_unback: 563 * 564 * Unmap and free the physical pages underlying the specified virtual 565 * address range. 566 * 567 * A physical page must exist within the specified object at each index 568 * that is being unmapped. 569 */ 570 static struct vmem * 571 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size) 572 { 573 struct vmem *arena; 574 vm_page_t m, next; 575 vm_offset_t end, offset; 576 int domain; 577 578 KASSERT(object == kernel_object, 579 ("kmem_unback: only supports kernel object.")); 580 581 if (size == 0) 582 return (NULL); 583 pmap_remove(kernel_pmap, addr, addr + size); 584 offset = addr - VM_MIN_KERNEL_ADDRESS; 585 end = offset + size; 586 VM_OBJECT_WLOCK(object); 587 m = vm_page_lookup(object, atop(offset)); 588 domain = vm_page_domain(m); 589 if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0)) 590 arena = vm_dom[domain].vmd_kernel_arena; 591 else 592 arena = vm_dom[domain].vmd_kernel_rwx_arena; 593 for (; offset < end; offset += PAGE_SIZE, m = next) { 594 next = vm_page_next(m); 595 vm_page_xbusy_claim(m); 596 vm_page_unwire_noq(m); 597 vm_page_free(m); 598 } 599 VM_OBJECT_WUNLOCK(object); 600 601 return (arena); 602 } 603 604 void 605 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size) 606 { 607 608 (void)_kmem_unback(object, addr, size); 609 } 610 611 /* 612 * kmem_free: 613 * 614 * Free memory allocated with kmem_malloc. The size must match the 615 * original allocation. 616 */ 617 void 618 kmem_free(vm_offset_t addr, vm_size_t size) 619 { 620 struct vmem *arena; 621 622 size = round_page(size); 623 kasan_mark((void *)addr, size, size, 0); 624 arena = _kmem_unback(kernel_object, addr, size); 625 if (arena != NULL) 626 vmem_free(arena, addr, size); 627 } 628 629 /* 630 * kmap_alloc_wait: 631 * 632 * Allocates pageable memory from a sub-map of the kernel. If the submap 633 * has no room, the caller sleeps waiting for more memory in the submap. 634 * 635 * This routine may block. 636 */ 637 vm_offset_t 638 kmap_alloc_wait(vm_map_t map, vm_size_t size) 639 { 640 vm_offset_t addr; 641 642 size = round_page(size); 643 if (!swap_reserve(size)) 644 return (0); 645 646 for (;;) { 647 /* 648 * To make this work for more than one map, use the map's lock 649 * to lock out sleepers/wakers. 650 */ 651 vm_map_lock(map); 652 addr = vm_map_findspace(map, vm_map_min(map), size); 653 if (addr + size <= vm_map_max(map)) 654 break; 655 /* no space now; see if we can ever get space */ 656 if (vm_map_max(map) - vm_map_min(map) < size) { 657 vm_map_unlock(map); 658 swap_release(size); 659 return (0); 660 } 661 map->needs_wakeup = TRUE; 662 vm_map_unlock_and_wait(map, 0); 663 } 664 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW, 665 MAP_ACC_CHARGED); 666 vm_map_unlock(map); 667 return (addr); 668 } 669 670 /* 671 * kmap_free_wakeup: 672 * 673 * Returns memory to a submap of the kernel, and wakes up any processes 674 * waiting for memory in that map. 675 */ 676 void 677 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size) 678 { 679 680 vm_map_lock(map); 681 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 682 if (map->needs_wakeup) { 683 map->needs_wakeup = FALSE; 684 vm_map_wakeup(map); 685 } 686 vm_map_unlock(map); 687 } 688 689 void 690 kmem_init_zero_region(void) 691 { 692 vm_offset_t addr, i; 693 vm_page_t m; 694 695 /* 696 * Map a single physical page of zeros to a larger virtual range. 697 * This requires less looping in places that want large amounts of 698 * zeros, while not using much more physical resources. 699 */ 700 addr = kva_alloc(ZERO_REGION_SIZE); 701 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 702 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 703 if ((m->flags & PG_ZERO) == 0) 704 pmap_zero_page(m); 705 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 706 pmap_qenter(addr + i, &m, 1); 707 pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ); 708 709 zero_region = (const void *)addr; 710 } 711 712 /* 713 * Import KVA from the kernel map into the kernel arena. 714 */ 715 static int 716 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp) 717 { 718 vm_offset_t addr; 719 int result; 720 721 KASSERT((size % KVA_QUANTUM) == 0, 722 ("kva_import: Size %jd is not a multiple of %d", 723 (intmax_t)size, (int)KVA_QUANTUM)); 724 addr = vm_map_min(kernel_map); 725 result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0, 726 VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 727 if (result != KERN_SUCCESS) 728 return (ENOMEM); 729 730 *addrp = addr; 731 732 return (0); 733 } 734 735 /* 736 * Import KVA from a parent arena into a per-domain arena. Imports must be 737 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size. 738 */ 739 static int 740 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp) 741 { 742 743 KASSERT((size % KVA_QUANTUM) == 0, 744 ("kva_import_domain: Size %jd is not a multiple of %d", 745 (intmax_t)size, (int)KVA_QUANTUM)); 746 return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN, 747 VMEM_ADDR_MAX, flags, addrp)); 748 } 749 750 /* 751 * kmem_init: 752 * 753 * Create the kernel map; insert a mapping covering kernel text, 754 * data, bss, and all space allocated thus far (`boostrap' data). The 755 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 756 * `start' as allocated, and the range between `start' and `end' as free. 757 * Create the kernel vmem arena and its per-domain children. 758 */ 759 void 760 kmem_init(vm_offset_t start, vm_offset_t end) 761 { 762 vm_size_t quantum; 763 int domain; 764 765 vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 766 kernel_map->system_map = 1; 767 vm_map_lock(kernel_map); 768 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 769 (void)vm_map_insert(kernel_map, NULL, 0, 770 #ifdef __amd64__ 771 KERNBASE, 772 #else 773 VM_MIN_KERNEL_ADDRESS, 774 #endif 775 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 776 /* ... and ending with the completion of the above `insert' */ 777 778 #ifdef __amd64__ 779 /* 780 * Mark KVA used for the page array as allocated. Other platforms 781 * that handle vm_page_array allocation can simply adjust virtual_avail 782 * instead. 783 */ 784 (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array, 785 (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size * 786 sizeof(struct vm_page)), 787 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 788 #endif 789 vm_map_unlock(kernel_map); 790 791 /* 792 * Use a large import quantum on NUMA systems. This helps minimize 793 * interleaving of superpages, reducing internal fragmentation within 794 * the per-domain arenas. 795 */ 796 if (vm_ndomains > 1 && PMAP_HAS_DMAP) 797 quantum = KVA_NUMA_IMPORT_QUANTUM; 798 else 799 quantum = KVA_QUANTUM; 800 801 /* 802 * Initialize the kernel_arena. This can grow on demand. 803 */ 804 vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0); 805 vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum); 806 807 for (domain = 0; domain < vm_ndomains; domain++) { 808 /* 809 * Initialize the per-domain arenas. These are used to color 810 * the KVA space in a way that ensures that virtual large pages 811 * are backed by memory from the same physical domain, 812 * maximizing the potential for superpage promotion. 813 */ 814 vm_dom[domain].vmd_kernel_arena = vmem_create( 815 "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK); 816 vmem_set_import(vm_dom[domain].vmd_kernel_arena, 817 kva_import_domain, NULL, kernel_arena, quantum); 818 819 /* 820 * In architectures with superpages, maintain separate arenas 821 * for allocations with permissions that differ from the 822 * "standard" read/write permissions used for kernel memory, 823 * so as not to inhibit superpage promotion. 824 * 825 * Use the base import quantum since this arena is rarely used. 826 */ 827 #if VM_NRESERVLEVEL > 0 828 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create( 829 "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK); 830 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena, 831 kva_import_domain, (vmem_release_t *)vmem_xfree, 832 kernel_arena, KVA_QUANTUM); 833 #else 834 vm_dom[domain].vmd_kernel_rwx_arena = 835 vm_dom[domain].vmd_kernel_arena; 836 #endif 837 } 838 839 /* 840 * This must be the very first call so that the virtual address 841 * space used for early allocations is properly marked used in 842 * the map. 843 */ 844 uma_startup2(); 845 } 846 847 /* 848 * kmem_bootstrap_free: 849 * 850 * Free pages backing preloaded data (e.g., kernel modules) to the 851 * system. Currently only supported on platforms that create a 852 * vm_phys segment for preloaded data. 853 */ 854 void 855 kmem_bootstrap_free(vm_offset_t start, vm_size_t size) 856 { 857 #if defined(__i386__) || defined(__amd64__) 858 struct vm_domain *vmd; 859 vm_offset_t end, va; 860 vm_paddr_t pa; 861 vm_page_t m; 862 863 end = trunc_page(start + size); 864 start = round_page(start); 865 866 #ifdef __amd64__ 867 /* 868 * Preloaded files do not have execute permissions by default on amd64. 869 * Restore the default permissions to ensure that the direct map alias 870 * is updated. 871 */ 872 pmap_change_prot(start, end - start, VM_PROT_RW); 873 #endif 874 for (va = start; va < end; va += PAGE_SIZE) { 875 pa = pmap_kextract(va); 876 m = PHYS_TO_VM_PAGE(pa); 877 878 vmd = vm_pagequeue_domain(m); 879 vm_domain_free_lock(vmd); 880 vm_phys_free_pages(m, 0); 881 vm_domain_free_unlock(vmd); 882 883 vm_domain_freecnt_inc(vmd, 1); 884 vm_cnt.v_page_count++; 885 } 886 pmap_remove(kernel_pmap, start, end); 887 (void)vmem_add(kernel_arena, start, end - start, M_WAITOK); 888 #endif 889 } 890 891 /* 892 * Allow userspace to directly trigger the VM drain routine for testing 893 * purposes. 894 */ 895 static int 896 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 897 { 898 int error, i; 899 900 i = 0; 901 error = sysctl_handle_int(oidp, &i, 0, req); 902 if (error != 0) 903 return (error); 904 if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0) 905 return (EINVAL); 906 if (i != 0) 907 EVENTHANDLER_INVOKE(vm_lowmem, i); 908 return (0); 909 } 910 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, 911 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I", 912 "set to trigger vm_lowmem event with given flags"); 913 914 static int 915 debug_uma_reclaim(SYSCTL_HANDLER_ARGS) 916 { 917 int error, i; 918 919 i = 0; 920 error = sysctl_handle_int(oidp, &i, 0, req); 921 if (error != 0 || req->newptr == NULL) 922 return (error); 923 if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN && 924 i != UMA_RECLAIM_DRAIN_CPU) 925 return (EINVAL); 926 uma_reclaim(i); 927 return (0); 928 } 929 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim, 930 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I", 931 "set to generate request to reclaim uma caches"); 932 933 static int 934 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS) 935 { 936 int domain, error, request; 937 938 request = 0; 939 error = sysctl_handle_int(oidp, &request, 0, req); 940 if (error != 0 || req->newptr == NULL) 941 return (error); 942 943 domain = request >> 4; 944 request &= 0xf; 945 if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN && 946 request != UMA_RECLAIM_DRAIN_CPU) 947 return (EINVAL); 948 if (domain < 0 || domain >= vm_ndomains) 949 return (EINVAL); 950 uma_reclaim_domain(request, domain); 951 return (0); 952 } 953 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain, 954 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, 955 debug_uma_reclaim_domain, "I", 956 ""); 957