xref: /freebsd/sys/vm/vm_kern.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>		/* for ticks and hz */
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_extern.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t clean_map=0;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	size = round_page(size);
109 	addr = vm_map_min(map);
110 	result = vm_map_find(map, NULL, 0,
111 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
112 	if (result != KERN_SUCCESS) {
113 		return (0);
114 	}
115 	return (addr);
116 }
117 
118 /*
119  *	kmem_alloc_nofault:
120  *
121  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
122  */
123 vm_offset_t
124 kmem_alloc_nofault(map, size)
125 	vm_map_t map;
126 	vm_size_t size;
127 {
128 	vm_offset_t addr;
129 	int result;
130 
131 	size = round_page(size);
132 	addr = vm_map_min(map);
133 	result = vm_map_find(map, NULL, 0,
134 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
135 	if (result != KERN_SUCCESS) {
136 		return (0);
137 	}
138 	return (addr);
139 }
140 
141 /*
142  *	Allocate wired-down memory in the kernel's address map
143  *	or a submap.
144  */
145 vm_offset_t
146 kmem_alloc(map, size)
147 	vm_map_t map;
148 	vm_size_t size;
149 {
150 	vm_offset_t addr;
151 	vm_offset_t offset;
152 	vm_offset_t i;
153 
154 	GIANT_REQUIRED;
155 
156 	size = round_page(size);
157 
158 	/*
159 	 * Use the kernel object for wired-down kernel pages. Assume that no
160 	 * region of the kernel object is referenced more than once.
161 	 */
162 
163 	/*
164 	 * Locate sufficient space in the map.  This will give us the final
165 	 * virtual address for the new memory, and thus will tell us the
166 	 * offset within the kernel map.
167 	 */
168 	vm_map_lock(map);
169 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170 		vm_map_unlock(map);
171 		return (0);
172 	}
173 	offset = addr - VM_MIN_KERNEL_ADDRESS;
174 	vm_object_reference(kernel_object);
175 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176 		VM_PROT_ALL, VM_PROT_ALL, 0);
177 	vm_map_unlock(map);
178 
179 	/*
180 	 * Guarantee that there are pages already in this object before
181 	 * calling vm_map_pageable.  This is to prevent the following
182 	 * scenario:
183 	 *
184 	 * 1) Threads have swapped out, so that there is a pager for the
185 	 * kernel_object. 2) The kmsg zone is empty, and so we are
186 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187 	 * there is no page, but there is a pager, so we call
188 	 * pager_data_request.  But the kmsg zone is empty, so we must
189 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190 	 * we get the data back from the pager, it will be (very stale)
191 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192 	 *
193 	 * We're intentionally not activating the pages we allocate to prevent a
194 	 * race with page-out.  vm_map_pageable will wire the pages.
195 	 */
196 	for (i = 0; i < size; i += PAGE_SIZE) {
197 		vm_page_t mem;
198 
199 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201 		if ((mem->flags & PG_ZERO) == 0)
202 			vm_page_zero_fill(mem);
203 		mem->valid = VM_PAGE_BITS_ALL;
204 		vm_page_flag_clear(mem, PG_ZERO);
205 		vm_page_wakeup(mem);
206 	}
207 
208 	/*
209 	 * And finally, mark the data as non-pageable.
210 	 */
211 	(void) vm_map_wire(map, addr, addr + size, FALSE);
212 
213 	return (addr);
214 }
215 
216 /*
217  *	kmem_free:
218  *
219  *	Release a region of kernel virtual memory allocated
220  *	with kmem_alloc, and return the physical pages
221  *	associated with that region.
222  *
223  *	This routine may not block on kernel maps.
224  */
225 void
226 kmem_free(map, addr, size)
227 	vm_map_t map;
228 	vm_offset_t addr;
229 	vm_size_t size;
230 {
231 
232 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
233 }
234 
235 /*
236  *	kmem_suballoc:
237  *
238  *	Allocates a map to manage a subrange
239  *	of the kernel virtual address space.
240  *
241  *	Arguments are as follows:
242  *
243  *	parent		Map to take range from
244  *	min, max	Returned endpoints of map
245  *	size		Size of range to find
246  */
247 vm_map_t
248 kmem_suballoc(parent, min, max, size)
249 	vm_map_t parent;
250 	vm_offset_t *min, *max;
251 	vm_size_t size;
252 {
253 	int ret;
254 	vm_map_t result;
255 
256 	GIANT_REQUIRED;
257 
258 	size = round_page(size);
259 
260 	*min = (vm_offset_t) vm_map_min(parent);
261 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
262 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
263 	if (ret != KERN_SUCCESS) {
264 		printf("kmem_suballoc: bad status return of %d.\n", ret);
265 		panic("kmem_suballoc");
266 	}
267 	*max = *min + size;
268 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
269 	if (result == NULL)
270 		panic("kmem_suballoc: cannot create submap");
271 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
272 		panic("kmem_suballoc: unable to change range to submap");
273 	return (result);
274 }
275 
276 /*
277  *	kmem_malloc:
278  *
279  * 	Allocate wired-down memory in the kernel's address map for the higher
280  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
281  * 	kmem_alloc() because we may need to allocate memory at interrupt
282  * 	level where we cannot block (canwait == FALSE).
283  *
284  * 	This routine has its own private kernel submap (kmem_map) and object
285  * 	(kmem_object).  This, combined with the fact that only malloc uses
286  * 	this routine, ensures that we will never block in map or object waits.
287  *
288  * 	Note that this still only works in a uni-processor environment and
289  * 	when called at splhigh().
290  *
291  * 	We don't worry about expanding the map (adding entries) since entries
292  * 	for wired maps are statically allocated.
293  *
294  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
295  *	I have not verified that it actually does not block.
296  *
297  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
298  *	which we never free.
299  */
300 vm_offset_t
301 kmem_malloc(map, size, flags)
302 	vm_map_t map;
303 	vm_size_t size;
304 	int flags;
305 {
306 	vm_offset_t offset, i;
307 	vm_map_entry_t entry;
308 	vm_offset_t addr;
309 	vm_page_t m;
310 	int pflags;
311 
312 	GIANT_REQUIRED;
313 
314 	size = round_page(size);
315 	addr = vm_map_min(map);
316 
317 	/*
318 	 * Locate sufficient space in the map.  This will give us the final
319 	 * virtual address for the new memory, and thus will tell us the
320 	 * offset within the kernel map.
321 	 */
322 	vm_map_lock(map);
323 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
324 		vm_map_unlock(map);
325 		if (map != kmem_map) {
326 			static int last_report; /* when we did it (in ticks) */
327 			if (ticks < last_report ||
328 			    (ticks - last_report) >= hz) {
329 				last_report = ticks;
330 				printf("Out of mbuf address space!\n");
331 				printf("Consider increasing NMBCLUSTERS\n");
332 			}
333 			goto bad;
334 		}
335 		if ((flags & M_NOWAIT) == 0)
336 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
337 				(long)size, (long)map->size);
338 		goto bad;
339 	}
340 	offset = addr - VM_MIN_KERNEL_ADDRESS;
341 	vm_object_reference(kmem_object);
342 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
343 		VM_PROT_ALL, VM_PROT_ALL, 0);
344 
345 	/*
346 	 * Note: if M_NOWAIT specified alone, allocate from
347 	 * interrupt-safe queues only (just the free list).  If
348 	 * M_USE_RESERVE is also specified, we can also
349 	 * allocate from the cache.  Neither of the latter two
350 	 * flags may be specified from an interrupt since interrupts
351 	 * are not allowed to mess with the cache queue.
352 	 */
353 
354 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
355 		pflags = VM_ALLOC_INTERRUPT;
356 	else
357 		pflags = VM_ALLOC_SYSTEM;
358 
359 	if (flags & M_ZERO)
360 		pflags |= VM_ALLOC_ZERO;
361 
362 
363 	for (i = 0; i < size; i += PAGE_SIZE) {
364 retry:
365 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
366 
367 		/*
368 		 * Ran out of space, free everything up and return. Don't need
369 		 * to lock page queues here as we know that the pages we got
370 		 * aren't on any queues.
371 		 */
372 		if (m == NULL) {
373 			if ((flags & M_NOWAIT) == 0) {
374 				vm_map_unlock(map);
375 				VM_WAIT;
376 				vm_map_lock(map);
377 				goto retry;
378 			}
379 			/*
380 			 * Free the pages before removing the map entry.
381 			 * They are already marked busy.  Calling
382 			 * vm_map_delete before the pages has been freed or
383 			 * unbusied will cause a deadlock.
384 			 */
385 			while (i != 0) {
386 				i -= PAGE_SIZE;
387 				m = vm_page_lookup(kmem_object,
388 						   OFF_TO_IDX(offset + i));
389 				vm_page_lock_queues();
390 				vm_page_free(m);
391 				vm_page_unlock_queues();
392 			}
393 			vm_map_delete(map, addr, addr + size);
394 			vm_map_unlock(map);
395 			goto bad;
396 		}
397 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
398 			vm_page_zero_fill(m);
399 		vm_page_flag_clear(m, PG_ZERO);
400 		m->valid = VM_PAGE_BITS_ALL;
401 	}
402 
403 	/*
404 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
405 	 * be able to extend the previous entry so there will be a new entry
406 	 * exactly corresponding to this address range and it will have
407 	 * wired_count == 0.
408 	 */
409 	if (!vm_map_lookup_entry(map, addr, &entry) ||
410 	    entry->start != addr || entry->end != addr + size ||
411 	    entry->wired_count != 0)
412 		panic("kmem_malloc: entry not found or misaligned");
413 	entry->wired_count = 1;
414 
415 	vm_map_simplify_entry(map, entry);
416 
417 	/*
418 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
419 	 * the wired count without wrapping the vm_page_queue_lock in
420 	 * splimp...)
421 	 */
422 	for (i = 0; i < size; i += PAGE_SIZE) {
423 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
424 		vm_page_lock_queues();
425 		vm_page_wire(m);
426 		vm_page_wakeup(m);
427 		vm_page_unlock_queues();
428 		/*
429 		 * Because this is kernel_pmap, this call will not block.
430 		 */
431 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
432 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
433 	}
434 	vm_map_unlock(map);
435 
436 	return (addr);
437 
438 bad:
439 	return (0);
440 }
441 
442 /*
443  *	kmem_alloc_wait:
444  *
445  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
446  *	has no room, the caller sleeps waiting for more memory in the submap.
447  *
448  *	This routine may block.
449  */
450 vm_offset_t
451 kmem_alloc_wait(map, size)
452 	vm_map_t map;
453 	vm_size_t size;
454 {
455 	vm_offset_t addr;
456 
457 	size = round_page(size);
458 
459 	for (;;) {
460 		/*
461 		 * To make this work for more than one map, use the map's lock
462 		 * to lock out sleepers/wakers.
463 		 */
464 		vm_map_lock(map);
465 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
466 			break;
467 		/* no space now; see if we can ever get space */
468 		if (vm_map_max(map) - vm_map_min(map) < size) {
469 			vm_map_unlock(map);
470 			return (0);
471 		}
472 		map->needs_wakeup = TRUE;
473 		vm_map_unlock_and_wait(map, FALSE);
474 	}
475 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
476 	vm_map_unlock(map);
477 	return (addr);
478 }
479 
480 /*
481  *	kmem_free_wakeup:
482  *
483  *	Returns memory to a submap of the kernel, and wakes up any processes
484  *	waiting for memory in that map.
485  */
486 void
487 kmem_free_wakeup(map, addr, size)
488 	vm_map_t map;
489 	vm_offset_t addr;
490 	vm_size_t size;
491 {
492 
493 	vm_map_lock(map);
494 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
495 	if (map->needs_wakeup) {
496 		map->needs_wakeup = FALSE;
497 		vm_map_wakeup(map);
498 	}
499 	vm_map_unlock(map);
500 }
501 
502 /*
503  * 	kmem_init:
504  *
505  *	Create the kernel map; insert a mapping covering kernel text,
506  *	data, bss, and all space allocated thus far (`boostrap' data).  The
507  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
508  *	`start' as allocated, and the range between `start' and `end' as free.
509  */
510 void
511 kmem_init(start, end)
512 	vm_offset_t start, end;
513 {
514 	vm_map_t m;
515 
516 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
517 	vm_map_lock(m);
518 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
519 	kernel_map = m;
520 	kernel_map->system_map = 1;
521 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
522 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
523 	/* ... and ending with the completion of the above `insert' */
524 	vm_map_unlock(m);
525 }
526