1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 /* 95 * kmem_alloc_nofault: 96 * 97 * Allocate a virtual address range with no underlying object and 98 * no initial mapping to physical memory. Any mapping from this 99 * range to physical memory must be explicitly created prior to 100 * its use, typically with pmap_qenter(). Any attempt to create 101 * a mapping on demand through vm_fault() will result in a panic. 102 */ 103 vm_offset_t 104 kmem_alloc_nofault(map, size) 105 vm_map_t map; 106 vm_size_t size; 107 { 108 vm_offset_t addr; 109 int result; 110 111 size = round_page(size); 112 addr = vm_map_min(map); 113 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 114 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 115 if (result != KERN_SUCCESS) { 116 return (0); 117 } 118 return (addr); 119 } 120 121 /* 122 * kmem_alloc_nofault_space: 123 * 124 * Allocate a virtual address range with no underlying object and 125 * no initial mapping to physical memory within the specified 126 * address space. Any mapping from this range to physical memory 127 * must be explicitly created prior to its use, typically with 128 * pmap_qenter(). Any attempt to create a mapping on demand 129 * through vm_fault() will result in a panic. 130 */ 131 vm_offset_t 132 kmem_alloc_nofault_space(map, size, find_space) 133 vm_map_t map; 134 vm_size_t size; 135 int find_space; 136 { 137 vm_offset_t addr; 138 int result; 139 140 size = round_page(size); 141 addr = vm_map_min(map); 142 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 143 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 144 if (result != KERN_SUCCESS) { 145 return (0); 146 } 147 return (addr); 148 } 149 150 /* 151 * Allocate wired-down memory in the kernel's address map 152 * or a submap. 153 */ 154 vm_offset_t 155 kmem_alloc(map, size) 156 vm_map_t map; 157 vm_size_t size; 158 { 159 vm_offset_t addr; 160 vm_offset_t offset; 161 vm_offset_t i; 162 163 size = round_page(size); 164 165 /* 166 * Use the kernel object for wired-down kernel pages. Assume that no 167 * region of the kernel object is referenced more than once. 168 */ 169 170 /* 171 * Locate sufficient space in the map. This will give us the final 172 * virtual address for the new memory, and thus will tell us the 173 * offset within the kernel map. 174 */ 175 vm_map_lock(map); 176 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 177 vm_map_unlock(map); 178 return (0); 179 } 180 offset = addr - VM_MIN_KERNEL_ADDRESS; 181 vm_object_reference(kernel_object); 182 vm_map_insert(map, kernel_object, offset, addr, addr + size, 183 VM_PROT_ALL, VM_PROT_ALL, 0); 184 vm_map_unlock(map); 185 186 /* 187 * Guarantee that there are pages already in this object before 188 * calling vm_map_wire. This is to prevent the following 189 * scenario: 190 * 191 * 1) Threads have swapped out, so that there is a pager for the 192 * kernel_object. 2) The kmsg zone is empty, and so we are 193 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 194 * there is no page, but there is a pager, so we call 195 * pager_data_request. But the kmsg zone is empty, so we must 196 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 197 * we get the data back from the pager, it will be (very stale) 198 * non-zero data. kmem_alloc is defined to return zero-filled memory. 199 * 200 * We're intentionally not activating the pages we allocate to prevent a 201 * race with page-out. vm_map_wire will wire the pages. 202 */ 203 VM_OBJECT_LOCK(kernel_object); 204 for (i = 0; i < size; i += PAGE_SIZE) { 205 vm_page_t mem; 206 207 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 208 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 209 mem->valid = VM_PAGE_BITS_ALL; 210 KASSERT((mem->flags & PG_UNMANAGED) != 0, 211 ("kmem_alloc: page %p is managed", mem)); 212 } 213 VM_OBJECT_UNLOCK(kernel_object); 214 215 /* 216 * And finally, mark the data as non-pageable. 217 */ 218 (void) vm_map_wire(map, addr, addr + size, 219 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 220 221 return (addr); 222 } 223 224 /* 225 * kmem_free: 226 * 227 * Release a region of kernel virtual memory allocated 228 * with kmem_alloc, and return the physical pages 229 * associated with that region. 230 * 231 * This routine may not block on kernel maps. 232 */ 233 void 234 kmem_free(map, addr, size) 235 vm_map_t map; 236 vm_offset_t addr; 237 vm_size_t size; 238 { 239 240 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 241 } 242 243 /* 244 * kmem_suballoc: 245 * 246 * Allocates a map to manage a subrange 247 * of the kernel virtual address space. 248 * 249 * Arguments are as follows: 250 * 251 * parent Map to take range from 252 * min, max Returned endpoints of map 253 * size Size of range to find 254 * superpage_align Request that min is superpage aligned 255 */ 256 vm_map_t 257 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 258 vm_size_t size, boolean_t superpage_align) 259 { 260 int ret; 261 vm_map_t result; 262 263 size = round_page(size); 264 265 *min = vm_map_min(parent); 266 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 267 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 268 MAP_ACC_NO_CHARGE); 269 if (ret != KERN_SUCCESS) 270 panic("kmem_suballoc: bad status return of %d", ret); 271 *max = *min + size; 272 result = vm_map_create(vm_map_pmap(parent), *min, *max); 273 if (result == NULL) 274 panic("kmem_suballoc: cannot create submap"); 275 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 276 panic("kmem_suballoc: unable to change range to submap"); 277 return (result); 278 } 279 280 /* 281 * kmem_malloc: 282 * 283 * Allocate wired-down memory in the kernel's address map for the higher 284 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 285 * kmem_alloc() because we may need to allocate memory at interrupt 286 * level where we cannot block (canwait == FALSE). 287 * 288 * This routine has its own private kernel submap (kmem_map) and object 289 * (kmem_object). This, combined with the fact that only malloc uses 290 * this routine, ensures that we will never block in map or object waits. 291 * 292 * We don't worry about expanding the map (adding entries) since entries 293 * for wired maps are statically allocated. 294 * 295 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 296 * which we never free. 297 */ 298 vm_offset_t 299 kmem_malloc(map, size, flags) 300 vm_map_t map; 301 vm_size_t size; 302 int flags; 303 { 304 vm_offset_t offset, i; 305 vm_map_entry_t entry; 306 vm_offset_t addr; 307 vm_page_t m; 308 int pflags; 309 310 size = round_page(size); 311 addr = vm_map_min(map); 312 313 /* 314 * Locate sufficient space in the map. This will give us the final 315 * virtual address for the new memory, and thus will tell us the 316 * offset within the kernel map. 317 */ 318 vm_map_lock(map); 319 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 320 vm_map_unlock(map); 321 if ((flags & M_NOWAIT) == 0) { 322 for (i = 0; i < 8; i++) { 323 EVENTHANDLER_INVOKE(vm_lowmem, 0); 324 uma_reclaim(); 325 vm_map_lock(map); 326 if (vm_map_findspace(map, vm_map_min(map), 327 size, &addr) == 0) { 328 break; 329 } 330 vm_map_unlock(map); 331 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 332 } 333 if (i == 8) { 334 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 335 (long)size, (long)map->size); 336 } 337 } else { 338 return (0); 339 } 340 } 341 offset = addr - VM_MIN_KERNEL_ADDRESS; 342 vm_object_reference(kmem_object); 343 vm_map_insert(map, kmem_object, offset, addr, addr + size, 344 VM_PROT_ALL, VM_PROT_ALL, 0); 345 346 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 347 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 348 else 349 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 350 351 if (flags & M_ZERO) 352 pflags |= VM_ALLOC_ZERO; 353 354 VM_OBJECT_LOCK(kmem_object); 355 for (i = 0; i < size; i += PAGE_SIZE) { 356 retry: 357 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 358 359 /* 360 * Ran out of space, free everything up and return. Don't need 361 * to lock page queues here as we know that the pages we got 362 * aren't on any queues. 363 */ 364 if (m == NULL) { 365 if ((flags & M_NOWAIT) == 0) { 366 VM_OBJECT_UNLOCK(kmem_object); 367 vm_map_unlock(map); 368 VM_WAIT; 369 vm_map_lock(map); 370 VM_OBJECT_LOCK(kmem_object); 371 goto retry; 372 } 373 /* 374 * Free the pages before removing the map entry. 375 * They are already marked busy. Calling 376 * vm_map_delete before the pages has been freed or 377 * unbusied will cause a deadlock. 378 */ 379 while (i != 0) { 380 i -= PAGE_SIZE; 381 m = vm_page_lookup(kmem_object, 382 OFF_TO_IDX(offset + i)); 383 vm_page_unwire(m, 0); 384 vm_page_free(m); 385 } 386 VM_OBJECT_UNLOCK(kmem_object); 387 vm_map_delete(map, addr, addr + size); 388 vm_map_unlock(map); 389 return (0); 390 } 391 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 392 pmap_zero_page(m); 393 m->valid = VM_PAGE_BITS_ALL; 394 KASSERT((m->flags & PG_UNMANAGED) != 0, 395 ("kmem_malloc: page %p is managed", m)); 396 } 397 VM_OBJECT_UNLOCK(kmem_object); 398 399 /* 400 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 401 * be able to extend the previous entry so there will be a new entry 402 * exactly corresponding to this address range and it will have 403 * wired_count == 0. 404 */ 405 if (!vm_map_lookup_entry(map, addr, &entry) || 406 entry->start != addr || entry->end != addr + size || 407 entry->wired_count != 0) 408 panic("kmem_malloc: entry not found or misaligned"); 409 entry->wired_count = 1; 410 411 /* 412 * At this point, the kmem_object must be unlocked because 413 * vm_map_simplify_entry() calls vm_object_deallocate(), which 414 * locks the kmem_object. 415 */ 416 vm_map_simplify_entry(map, entry); 417 418 /* 419 * Loop thru pages, entering them in the pmap. 420 */ 421 VM_OBJECT_LOCK(kmem_object); 422 for (i = 0; i < size; i += PAGE_SIZE) { 423 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 424 /* 425 * Because this is kernel_pmap, this call will not block. 426 */ 427 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 428 TRUE); 429 vm_page_wakeup(m); 430 } 431 VM_OBJECT_UNLOCK(kmem_object); 432 vm_map_unlock(map); 433 434 return (addr); 435 } 436 437 /* 438 * kmem_alloc_wait: 439 * 440 * Allocates pageable memory from a sub-map of the kernel. If the submap 441 * has no room, the caller sleeps waiting for more memory in the submap. 442 * 443 * This routine may block. 444 */ 445 vm_offset_t 446 kmem_alloc_wait(map, size) 447 vm_map_t map; 448 vm_size_t size; 449 { 450 vm_offset_t addr; 451 452 size = round_page(size); 453 if (!swap_reserve(size)) 454 return (0); 455 456 for (;;) { 457 /* 458 * To make this work for more than one map, use the map's lock 459 * to lock out sleepers/wakers. 460 */ 461 vm_map_lock(map); 462 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 463 break; 464 /* no space now; see if we can ever get space */ 465 if (vm_map_max(map) - vm_map_min(map) < size) { 466 vm_map_unlock(map); 467 swap_release(size); 468 return (0); 469 } 470 map->needs_wakeup = TRUE; 471 vm_map_unlock_and_wait(map, 0); 472 } 473 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 474 VM_PROT_ALL, MAP_ACC_CHARGED); 475 vm_map_unlock(map); 476 return (addr); 477 } 478 479 /* 480 * kmem_free_wakeup: 481 * 482 * Returns memory to a submap of the kernel, and wakes up any processes 483 * waiting for memory in that map. 484 */ 485 void 486 kmem_free_wakeup(map, addr, size) 487 vm_map_t map; 488 vm_offset_t addr; 489 vm_size_t size; 490 { 491 492 vm_map_lock(map); 493 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 494 if (map->needs_wakeup) { 495 map->needs_wakeup = FALSE; 496 vm_map_wakeup(map); 497 } 498 vm_map_unlock(map); 499 } 500 501 /* 502 * kmem_init: 503 * 504 * Create the kernel map; insert a mapping covering kernel text, 505 * data, bss, and all space allocated thus far (`boostrap' data). The 506 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 507 * `start' as allocated, and the range between `start' and `end' as free. 508 */ 509 void 510 kmem_init(start, end) 511 vm_offset_t start, end; 512 { 513 vm_map_t m; 514 515 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 516 m->system_map = 1; 517 vm_map_lock(m); 518 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 519 kernel_map = m; 520 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 521 #ifdef __amd64__ 522 KERNBASE, 523 #else 524 VM_MIN_KERNEL_ADDRESS, 525 #endif 526 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 527 /* ... and ending with the completion of the above `insert' */ 528 vm_map_unlock(m); 529 } 530 531 #ifdef DIAGNOSTIC 532 /* 533 * Allow userspace to directly trigger the VM drain routine for testing 534 * purposes. 535 */ 536 static int 537 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 538 { 539 int error, i; 540 541 i = 0; 542 error = sysctl_handle_int(oidp, &i, 0, req); 543 if (error) 544 return (error); 545 if (i) 546 EVENTHANDLER_INVOKE(vm_lowmem, 0); 547 return (0); 548 } 549 550 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 551 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 552 #endif 553