1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/malloc.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t buffer_map=0; 92 vm_map_t mb_map=0; 93 int mb_map_full=0; 94 95 /* 96 * kmem_alloc_pageable: 97 * 98 * Allocate pageable memory to the kernel's address map. 99 * "map" must be kernel_map or a submap of kernel_map. 100 */ 101 102 vm_offset_t 103 kmem_alloc_pageable(map, size) 104 vm_map_t map; 105 vm_size_t size; 106 { 107 vm_offset_t addr; 108 int result; 109 int hadvmlock; 110 111 hadvmlock = mtx_owned(&vm_mtx); 112 if (!hadvmlock) 113 mtx_lock(&vm_mtx); 114 size = round_page(size); 115 addr = vm_map_min(map); 116 result = vm_map_find(map, NULL, (vm_offset_t) 0, 117 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 118 if (!hadvmlock) 119 mtx_unlock(&vm_mtx); 120 if (result != KERN_SUCCESS) { 121 return (0); 122 } 123 return (addr); 124 } 125 126 /* 127 * kmem_alloc_nofault: 128 * 129 * Same as kmem_alloc_pageable, except that it create a nofault entry. 130 */ 131 132 vm_offset_t 133 kmem_alloc_nofault(map, size) 134 vm_map_t map; 135 vm_size_t size; 136 { 137 vm_offset_t addr; 138 int result; 139 140 int hadvmlock; 141 142 hadvmlock = mtx_owned(&vm_mtx); 143 if (!hadvmlock) 144 mtx_lock(&vm_mtx); 145 size = round_page(size); 146 addr = vm_map_min(map); 147 result = vm_map_find(map, NULL, (vm_offset_t) 0, 148 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 149 if (!hadvmlock) 150 mtx_unlock(&vm_mtx); 151 if (result != KERN_SUCCESS) { 152 return (0); 153 } 154 return (addr); 155 } 156 157 /* 158 * Allocate wired-down memory in the kernel's address map 159 * or a submap. 160 */ 161 vm_offset_t 162 kmem_alloc(map, size) 163 vm_map_t map; 164 vm_size_t size; 165 { 166 vm_offset_t addr; 167 vm_offset_t offset; 168 vm_offset_t i; 169 int hadvmlock; 170 171 hadvmlock = mtx_owned(&vm_mtx); 172 if (!hadvmlock) 173 mtx_lock(&vm_mtx); 174 size = round_page(size); 175 176 /* 177 * Use the kernel object for wired-down kernel pages. Assume that no 178 * region of the kernel object is referenced more than once. 179 */ 180 181 /* 182 * Locate sufficient space in the map. This will give us the final 183 * virtual address for the new memory, and thus will tell us the 184 * offset within the kernel map. 185 */ 186 vm_map_lock(map); 187 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 188 vm_map_unlock(map); 189 if (!hadvmlock) 190 mtx_unlock(&vm_mtx); 191 return (0); 192 } 193 offset = addr - VM_MIN_KERNEL_ADDRESS; 194 vm_object_reference(kernel_object); 195 vm_map_insert(map, kernel_object, offset, addr, addr + size, 196 VM_PROT_ALL, VM_PROT_ALL, 0); 197 vm_map_unlock(map); 198 199 /* 200 * Guarantee that there are pages already in this object before 201 * calling vm_map_pageable. This is to prevent the following 202 * scenario: 203 * 204 * 1) Threads have swapped out, so that there is a pager for the 205 * kernel_object. 2) The kmsg zone is empty, and so we are 206 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 207 * there is no page, but there is a pager, so we call 208 * pager_data_request. But the kmsg zone is empty, so we must 209 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 210 * we get the data back from the pager, it will be (very stale) 211 * non-zero data. kmem_alloc is defined to return zero-filled memory. 212 * 213 * We're intentionally not activating the pages we allocate to prevent a 214 * race with page-out. vm_map_pageable will wire the pages. 215 */ 216 217 for (i = 0; i < size; i += PAGE_SIZE) { 218 vm_page_t mem; 219 220 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 221 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 222 if ((mem->flags & PG_ZERO) == 0) 223 vm_page_zero_fill(mem); 224 mem->valid = VM_PAGE_BITS_ALL; 225 vm_page_flag_clear(mem, PG_ZERO); 226 vm_page_wakeup(mem); 227 } 228 229 /* 230 * And finally, mark the data as non-pageable. 231 */ 232 233 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 234 235 if (!hadvmlock) 236 mtx_unlock(&vm_mtx); 237 return (addr); 238 } 239 240 /* 241 * kmem_free: 242 * 243 * Release a region of kernel virtual memory allocated 244 * with kmem_alloc, and return the physical pages 245 * associated with that region. 246 * 247 * This routine may not block on kernel maps. 248 */ 249 void 250 kmem_free(map, addr, size) 251 vm_map_t map; 252 vm_offset_t addr; 253 vm_size_t size; 254 { 255 int hadvmlock; 256 257 hadvmlock = mtx_owned(&vm_mtx); 258 if (!hadvmlock) 259 mtx_lock(&vm_mtx); 260 261 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 262 263 if (!hadvmlock) 264 mtx_unlock(&vm_mtx); 265 } 266 267 /* 268 * kmem_suballoc: 269 * 270 * Allocates a map to manage a subrange 271 * of the kernel virtual address space. 272 * 273 * Arguments are as follows: 274 * 275 * parent Map to take range from 276 * min, max Returned endpoints of map 277 * size Size of range to find 278 */ 279 vm_map_t 280 kmem_suballoc(parent, min, max, size) 281 vm_map_t parent; 282 vm_offset_t *min, *max; 283 vm_size_t size; 284 { 285 int ret; 286 vm_map_t result; 287 int hadvmlock; 288 289 hadvmlock = mtx_owned(&vm_mtx); 290 if (!hadvmlock) 291 mtx_lock(&vm_mtx); 292 293 size = round_page(size); 294 295 *min = (vm_offset_t) vm_map_min(parent); 296 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 297 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 298 if (ret != KERN_SUCCESS) { 299 printf("kmem_suballoc: bad status return of %d.\n", ret); 300 panic("kmem_suballoc"); 301 } 302 *max = *min + size; 303 pmap_reference(vm_map_pmap(parent)); 304 result = vm_map_create(vm_map_pmap(parent), *min, *max); 305 if (result == NULL) 306 panic("kmem_suballoc: cannot create submap"); 307 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 308 panic("kmem_suballoc: unable to change range to submap"); 309 if (!hadvmlock) 310 mtx_unlock(&vm_mtx); 311 return (result); 312 } 313 314 /* 315 * kmem_malloc: 316 * 317 * Allocate wired-down memory in the kernel's address map for the higher 318 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 319 * kmem_alloc() because we may need to allocate memory at interrupt 320 * level where we cannot block (canwait == FALSE). 321 * 322 * This routine has its own private kernel submap (kmem_map) and object 323 * (kmem_object). This, combined with the fact that only malloc uses 324 * this routine, ensures that we will never block in map or object waits. 325 * 326 * Note that this still only works in a uni-processor environment and 327 * when called at splhigh(). 328 * 329 * We don't worry about expanding the map (adding entries) since entries 330 * for wired maps are statically allocated. 331 * 332 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 333 * I have not verified that it actually does not block. 334 */ 335 vm_offset_t 336 kmem_malloc(map, size, flags) 337 vm_map_t map; 338 vm_size_t size; 339 int flags; 340 { 341 vm_offset_t offset, i; 342 vm_map_entry_t entry; 343 vm_offset_t addr; 344 vm_page_t m; 345 int hadvmlock; 346 347 if (map != kmem_map && map != mb_map) 348 panic("kmem_malloc: map != {kmem,mb}_map"); 349 350 hadvmlock = mtx_owned(&vm_mtx); 351 if (!hadvmlock) 352 mtx_lock(&vm_mtx); 353 354 size = round_page(size); 355 addr = vm_map_min(map); 356 357 /* 358 * Locate sufficient space in the map. This will give us the final 359 * virtual address for the new memory, and thus will tell us the 360 * offset within the kernel map. 361 */ 362 vm_map_lock(map); 363 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 364 vm_map_unlock(map); 365 if (map == mb_map) { 366 mb_map_full = TRUE; 367 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n"); 368 goto bad; 369 } 370 if ((flags & M_NOWAIT) == 0) 371 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 372 (long)size, (long)map->size); 373 goto bad; 374 } 375 offset = addr - VM_MIN_KERNEL_ADDRESS; 376 vm_object_reference(kmem_object); 377 vm_map_insert(map, kmem_object, offset, addr, addr + size, 378 VM_PROT_ALL, VM_PROT_ALL, 0); 379 380 for (i = 0; i < size; i += PAGE_SIZE) { 381 /* 382 * Note: if M_NOWAIT specified alone, allocate from 383 * interrupt-safe queues only (just the free list). If 384 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 385 * allocate from the cache. Neither of the latter two 386 * flags may be specified from an interrupt since interrupts 387 * are not allowed to mess with the cache queue. 388 */ 389 retry: 390 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 391 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 392 VM_ALLOC_INTERRUPT : 393 VM_ALLOC_SYSTEM); 394 395 /* 396 * Ran out of space, free everything up and return. Don't need 397 * to lock page queues here as we know that the pages we got 398 * aren't on any queues. 399 */ 400 if (m == NULL) { 401 if ((flags & M_NOWAIT) == 0) { 402 vm_map_unlock(map); 403 VM_WAIT; 404 vm_map_lock(map); 405 goto retry; 406 } 407 vm_map_delete(map, addr, addr + size); 408 vm_map_unlock(map); 409 if (flags & M_ASLEEP) { 410 VM_AWAIT; 411 } 412 goto bad; 413 } 414 vm_page_flag_clear(m, PG_ZERO); 415 m->valid = VM_PAGE_BITS_ALL; 416 } 417 418 /* 419 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 420 * be able to extend the previous entry so there will be a new entry 421 * exactly corresponding to this address range and it will have 422 * wired_count == 0. 423 */ 424 if (!vm_map_lookup_entry(map, addr, &entry) || 425 entry->start != addr || entry->end != addr + size || 426 entry->wired_count != 0) 427 panic("kmem_malloc: entry not found or misaligned"); 428 entry->wired_count = 1; 429 430 vm_map_simplify_entry(map, entry); 431 432 /* 433 * Loop thru pages, entering them in the pmap. (We cannot add them to 434 * the wired count without wrapping the vm_page_queue_lock in 435 * splimp...) 436 */ 437 for (i = 0; i < size; i += PAGE_SIZE) { 438 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 439 vm_page_wire(m); 440 vm_page_wakeup(m); 441 /* 442 * Because this is kernel_pmap, this call will not block. 443 */ 444 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 445 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 446 } 447 vm_map_unlock(map); 448 449 if (!hadvmlock) 450 mtx_unlock(&vm_mtx); 451 return (addr); 452 453 bad: 454 if (!hadvmlock) 455 mtx_unlock(&vm_mtx); 456 return (0); 457 } 458 459 /* 460 * kmem_alloc_wait: 461 * 462 * Allocates pageable memory from a sub-map of the kernel. If the submap 463 * has no room, the caller sleeps waiting for more memory in the submap. 464 * 465 * This routine may block. 466 */ 467 468 vm_offset_t 469 kmem_alloc_wait(map, size) 470 vm_map_t map; 471 vm_size_t size; 472 { 473 vm_offset_t addr; 474 int hadvmlock; 475 476 hadvmlock = mtx_owned(&vm_mtx); 477 if (!hadvmlock) 478 mtx_lock(&vm_mtx); 479 480 size = round_page(size); 481 482 for (;;) { 483 /* 484 * To make this work for more than one map, use the map's lock 485 * to lock out sleepers/wakers. 486 */ 487 vm_map_lock(map); 488 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 489 break; 490 /* no space now; see if we can ever get space */ 491 if (vm_map_max(map) - vm_map_min(map) < size) { 492 vm_map_unlock(map); 493 if (!hadvmlock) 494 mtx_unlock(&vm_mtx); 495 return (0); 496 } 497 vm_map_unlock(map); 498 msleep(map, &vm_mtx, PVM, "kmaw", 0); 499 } 500 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 501 vm_map_unlock(map); 502 if (!hadvmlock) 503 mtx_unlock(&vm_mtx); 504 return (addr); 505 } 506 507 /* 508 * kmem_free_wakeup: 509 * 510 * Returns memory to a submap of the kernel, and wakes up any processes 511 * waiting for memory in that map. 512 */ 513 void 514 kmem_free_wakeup(map, addr, size) 515 vm_map_t map; 516 vm_offset_t addr; 517 vm_size_t size; 518 { 519 int hadvmlock; 520 521 hadvmlock = mtx_owned(&vm_mtx); 522 if (!hadvmlock) 523 mtx_lock(&vm_mtx); 524 vm_map_lock(map); 525 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 526 wakeup(map); 527 vm_map_unlock(map); 528 if (!hadvmlock) 529 mtx_unlock(&vm_mtx); 530 } 531 532 /* 533 * kmem_init: 534 * 535 * Create the kernel map; insert a mapping covering kernel text, 536 * data, bss, and all space allocated thus far (`boostrap' data). The 537 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 538 * `start' as allocated, and the range between `start' and `end' as free. 539 */ 540 541 void 542 kmem_init(start, end) 543 vm_offset_t start, end; 544 { 545 vm_map_t m; 546 547 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 548 vm_map_lock(m); 549 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 550 kernel_map = m; 551 kernel_map->system_map = 1; 552 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 553 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 554 /* ... and ending with the completion of the above `insert' */ 555 vm_map_unlock(m); 556 } 557