1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 const void *zero_region; 95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 96 97 /* 98 * kmem_alloc_nofault: 99 * 100 * Allocate a virtual address range with no underlying object and 101 * no initial mapping to physical memory. Any mapping from this 102 * range to physical memory must be explicitly created prior to 103 * its use, typically with pmap_qenter(). Any attempt to create 104 * a mapping on demand through vm_fault() will result in a panic. 105 */ 106 vm_offset_t 107 kmem_alloc_nofault(map, size) 108 vm_map_t map; 109 vm_size_t size; 110 { 111 vm_offset_t addr; 112 int result; 113 114 size = round_page(size); 115 addr = vm_map_min(map); 116 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 117 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 118 if (result != KERN_SUCCESS) { 119 return (0); 120 } 121 return (addr); 122 } 123 124 /* 125 * kmem_alloc_nofault_space: 126 * 127 * Allocate a virtual address range with no underlying object and 128 * no initial mapping to physical memory within the specified 129 * address space. Any mapping from this range to physical memory 130 * must be explicitly created prior to its use, typically with 131 * pmap_qenter(). Any attempt to create a mapping on demand 132 * through vm_fault() will result in a panic. 133 */ 134 vm_offset_t 135 kmem_alloc_nofault_space(map, size, find_space) 136 vm_map_t map; 137 vm_size_t size; 138 int find_space; 139 { 140 vm_offset_t addr; 141 int result; 142 143 size = round_page(size); 144 addr = vm_map_min(map); 145 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 146 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 147 if (result != KERN_SUCCESS) { 148 return (0); 149 } 150 return (addr); 151 } 152 153 /* 154 * Allocate wired-down memory in the kernel's address map 155 * or a submap. 156 */ 157 vm_offset_t 158 kmem_alloc(map, size) 159 vm_map_t map; 160 vm_size_t size; 161 { 162 vm_offset_t addr; 163 vm_offset_t offset; 164 165 size = round_page(size); 166 167 /* 168 * Use the kernel object for wired-down kernel pages. Assume that no 169 * region of the kernel object is referenced more than once. 170 */ 171 172 /* 173 * Locate sufficient space in the map. This will give us the final 174 * virtual address for the new memory, and thus will tell us the 175 * offset within the kernel map. 176 */ 177 vm_map_lock(map); 178 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 179 vm_map_unlock(map); 180 return (0); 181 } 182 offset = addr - VM_MIN_KERNEL_ADDRESS; 183 vm_object_reference(kernel_object); 184 vm_map_insert(map, kernel_object, offset, addr, addr + size, 185 VM_PROT_ALL, VM_PROT_ALL, 0); 186 vm_map_unlock(map); 187 188 /* 189 * And finally, mark the data as non-pageable. 190 */ 191 (void) vm_map_wire(map, addr, addr + size, 192 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 193 194 return (addr); 195 } 196 197 /* 198 * Allocates a region from the kernel address map and physical pages 199 * within the specified address range to the kernel object. Creates a 200 * wired mapping from this region to these pages, and returns the 201 * region's starting virtual address. The allocated pages are not 202 * necessarily physically contiguous. If M_ZERO is specified through the 203 * given flags, then the pages are zeroed before they are mapped. 204 */ 205 vm_offset_t 206 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 207 vm_paddr_t high, vm_memattr_t memattr) 208 { 209 vm_object_t object = kernel_object; 210 vm_offset_t addr; 211 vm_ooffset_t end_offset, offset; 212 vm_page_t m; 213 int pflags, tries; 214 215 size = round_page(size); 216 vm_map_lock(map); 217 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 218 vm_map_unlock(map); 219 return (0); 220 } 221 offset = addr - VM_MIN_KERNEL_ADDRESS; 222 vm_object_reference(object); 223 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 224 VM_PROT_ALL, 0); 225 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 226 VM_OBJECT_LOCK(object); 227 end_offset = offset + size; 228 for (; offset < end_offset; offset += PAGE_SIZE) { 229 tries = 0; 230 retry: 231 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1, 232 low, high, PAGE_SIZE, 0, memattr); 233 if (m == NULL) { 234 VM_OBJECT_UNLOCK(object); 235 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 236 vm_map_unlock(map); 237 vm_pageout_grow_cache(tries, low, high); 238 vm_map_lock(map); 239 VM_OBJECT_LOCK(object); 240 tries++; 241 goto retry; 242 } 243 244 /* 245 * Since the pages that were allocated by any previous 246 * iterations of this loop are not busy, they can be 247 * freed by vm_object_page_remove(), which is called 248 * by vm_map_delete(). 249 */ 250 vm_map_delete(map, addr, addr + size); 251 vm_map_unlock(map); 252 return (0); 253 } 254 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 255 pmap_zero_page(m); 256 m->valid = VM_PAGE_BITS_ALL; 257 } 258 VM_OBJECT_UNLOCK(object); 259 vm_map_unlock(map); 260 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 261 VM_MAP_WIRE_NOHOLES); 262 return (addr); 263 } 264 265 /* 266 * Allocates a region from the kernel address map and physically 267 * contiguous pages within the specified address range to the kernel 268 * object. Creates a wired mapping from this region to these pages, and 269 * returns the region's starting virtual address. If M_ZERO is specified 270 * through the given flags, then the pages are zeroed before they are 271 * mapped. 272 */ 273 vm_offset_t 274 kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 275 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 276 vm_memattr_t memattr) 277 { 278 vm_object_t object = kernel_object; 279 vm_offset_t addr; 280 vm_ooffset_t offset; 281 vm_page_t end_m, m; 282 int pflags, tries; 283 284 size = round_page(size); 285 vm_map_lock(map); 286 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 287 vm_map_unlock(map); 288 return (0); 289 } 290 offset = addr - VM_MIN_KERNEL_ADDRESS; 291 vm_object_reference(object); 292 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 293 VM_PROT_ALL, 0); 294 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 295 VM_OBJECT_LOCK(object); 296 tries = 0; 297 retry: 298 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 299 atop(size), low, high, alignment, boundary, memattr); 300 if (m == NULL) { 301 VM_OBJECT_UNLOCK(object); 302 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 303 vm_map_unlock(map); 304 vm_pageout_grow_cache(tries, low, high); 305 vm_map_lock(map); 306 VM_OBJECT_LOCK(object); 307 tries++; 308 goto retry; 309 } 310 vm_map_delete(map, addr, addr + size); 311 vm_map_unlock(map); 312 return (0); 313 } 314 end_m = m + atop(size); 315 for (; m < end_m; m++) { 316 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 317 pmap_zero_page(m); 318 m->valid = VM_PAGE_BITS_ALL; 319 } 320 VM_OBJECT_UNLOCK(object); 321 vm_map_unlock(map); 322 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 323 VM_MAP_WIRE_NOHOLES); 324 return (addr); 325 } 326 327 /* 328 * kmem_free: 329 * 330 * Release a region of kernel virtual memory allocated 331 * with kmem_alloc, and return the physical pages 332 * associated with that region. 333 * 334 * This routine may not block on kernel maps. 335 */ 336 void 337 kmem_free(map, addr, size) 338 vm_map_t map; 339 vm_offset_t addr; 340 vm_size_t size; 341 { 342 343 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 344 } 345 346 /* 347 * kmem_suballoc: 348 * 349 * Allocates a map to manage a subrange 350 * of the kernel virtual address space. 351 * 352 * Arguments are as follows: 353 * 354 * parent Map to take range from 355 * min, max Returned endpoints of map 356 * size Size of range to find 357 * superpage_align Request that min is superpage aligned 358 */ 359 vm_map_t 360 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 361 vm_size_t size, boolean_t superpage_align) 362 { 363 int ret; 364 vm_map_t result; 365 366 size = round_page(size); 367 368 *min = vm_map_min(parent); 369 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 370 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 371 MAP_ACC_NO_CHARGE); 372 if (ret != KERN_SUCCESS) 373 panic("kmem_suballoc: bad status return of %d", ret); 374 *max = *min + size; 375 result = vm_map_create(vm_map_pmap(parent), *min, *max); 376 if (result == NULL) 377 panic("kmem_suballoc: cannot create submap"); 378 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 379 panic("kmem_suballoc: unable to change range to submap"); 380 return (result); 381 } 382 383 /* 384 * kmem_malloc: 385 * 386 * Allocate wired-down memory in the kernel's address map for the higher 387 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 388 * kmem_alloc() because we may need to allocate memory at interrupt 389 * level where we cannot block (canwait == FALSE). 390 * 391 * This routine has its own private kernel submap (kmem_map) and object 392 * (kmem_object). This, combined with the fact that only malloc uses 393 * this routine, ensures that we will never block in map or object waits. 394 * 395 * We don't worry about expanding the map (adding entries) since entries 396 * for wired maps are statically allocated. 397 * 398 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 399 * which we never free. 400 */ 401 vm_offset_t 402 kmem_malloc(map, size, flags) 403 vm_map_t map; 404 vm_size_t size; 405 int flags; 406 { 407 vm_offset_t addr; 408 int i, rv; 409 410 size = round_page(size); 411 addr = vm_map_min(map); 412 413 /* 414 * Locate sufficient space in the map. This will give us the final 415 * virtual address for the new memory, and thus will tell us the 416 * offset within the kernel map. 417 */ 418 vm_map_lock(map); 419 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 420 vm_map_unlock(map); 421 if ((flags & M_NOWAIT) == 0) { 422 for (i = 0; i < 8; i++) { 423 EVENTHANDLER_INVOKE(vm_lowmem, 0); 424 uma_reclaim(); 425 vm_map_lock(map); 426 if (vm_map_findspace(map, vm_map_min(map), 427 size, &addr) == 0) { 428 break; 429 } 430 vm_map_unlock(map); 431 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 432 } 433 if (i == 8) { 434 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 435 (long)size, (long)map->size); 436 } 437 } else { 438 return (0); 439 } 440 } 441 442 rv = kmem_back(map, addr, size, flags); 443 vm_map_unlock(map); 444 return (rv == KERN_SUCCESS ? addr : 0); 445 } 446 447 /* 448 * kmem_back: 449 * 450 * Allocate physical pages for the specified virtual address range. 451 */ 452 int 453 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 454 { 455 vm_offset_t offset, i; 456 vm_map_entry_t entry; 457 vm_page_t m; 458 int pflags; 459 boolean_t found; 460 461 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 462 offset = addr - VM_MIN_KERNEL_ADDRESS; 463 vm_object_reference(kmem_object); 464 vm_map_insert(map, kmem_object, offset, addr, addr + size, 465 VM_PROT_ALL, VM_PROT_ALL, 0); 466 467 /* 468 * Assert: vm_map_insert() will never be able to extend the 469 * previous entry so vm_map_lookup_entry() will find a new 470 * entry exactly corresponding to this address range and it 471 * will have wired_count == 0. 472 */ 473 found = vm_map_lookup_entry(map, addr, &entry); 474 KASSERT(found && entry->start == addr && entry->end == addr + size && 475 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 476 == 0, ("kmem_back: entry not found or misaligned")); 477 478 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 479 480 VM_OBJECT_LOCK(kmem_object); 481 for (i = 0; i < size; i += PAGE_SIZE) { 482 retry: 483 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 484 485 /* 486 * Ran out of space, free everything up and return. Don't need 487 * to lock page queues here as we know that the pages we got 488 * aren't on any queues. 489 */ 490 if (m == NULL) { 491 if ((flags & M_NOWAIT) == 0) { 492 VM_OBJECT_UNLOCK(kmem_object); 493 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 494 vm_map_unlock(map); 495 VM_WAIT; 496 vm_map_lock(map); 497 KASSERT( 498 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 499 MAP_ENTRY_IN_TRANSITION, 500 ("kmem_back: volatile entry")); 501 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 502 VM_OBJECT_LOCK(kmem_object); 503 goto retry; 504 } 505 /* 506 * Free the pages before removing the map entry. 507 * They are already marked busy. Calling 508 * vm_map_delete before the pages has been freed or 509 * unbusied will cause a deadlock. 510 */ 511 while (i != 0) { 512 i -= PAGE_SIZE; 513 m = vm_page_lookup(kmem_object, 514 OFF_TO_IDX(offset + i)); 515 vm_page_unwire(m, 0); 516 vm_page_free(m); 517 } 518 VM_OBJECT_UNLOCK(kmem_object); 519 vm_map_delete(map, addr, addr + size); 520 return (KERN_NO_SPACE); 521 } 522 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 523 pmap_zero_page(m); 524 m->valid = VM_PAGE_BITS_ALL; 525 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 526 ("kmem_malloc: page %p is managed", m)); 527 } 528 VM_OBJECT_UNLOCK(kmem_object); 529 530 /* 531 * Mark map entry as non-pageable. Repeat the assert. 532 */ 533 KASSERT(entry->start == addr && entry->end == addr + size && 534 entry->wired_count == 0, 535 ("kmem_back: entry not found or misaligned after allocation")); 536 entry->wired_count = 1; 537 538 /* 539 * At this point, the kmem_object must be unlocked because 540 * vm_map_simplify_entry() calls vm_object_deallocate(), which 541 * locks the kmem_object. 542 */ 543 vm_map_simplify_entry(map, entry); 544 545 /* 546 * Loop thru pages, entering them in the pmap. 547 */ 548 VM_OBJECT_LOCK(kmem_object); 549 for (i = 0; i < size; i += PAGE_SIZE) { 550 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 551 /* 552 * Because this is kernel_pmap, this call will not block. 553 */ 554 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 555 TRUE); 556 vm_page_wakeup(m); 557 } 558 VM_OBJECT_UNLOCK(kmem_object); 559 560 return (KERN_SUCCESS); 561 } 562 563 /* 564 * kmem_alloc_wait: 565 * 566 * Allocates pageable memory from a sub-map of the kernel. If the submap 567 * has no room, the caller sleeps waiting for more memory in the submap. 568 * 569 * This routine may block. 570 */ 571 vm_offset_t 572 kmem_alloc_wait(map, size) 573 vm_map_t map; 574 vm_size_t size; 575 { 576 vm_offset_t addr; 577 578 size = round_page(size); 579 if (!swap_reserve(size)) 580 return (0); 581 582 for (;;) { 583 /* 584 * To make this work for more than one map, use the map's lock 585 * to lock out sleepers/wakers. 586 */ 587 vm_map_lock(map); 588 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 589 break; 590 /* no space now; see if we can ever get space */ 591 if (vm_map_max(map) - vm_map_min(map) < size) { 592 vm_map_unlock(map); 593 swap_release(size); 594 return (0); 595 } 596 map->needs_wakeup = TRUE; 597 vm_map_unlock_and_wait(map, 0); 598 } 599 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 600 VM_PROT_ALL, MAP_ACC_CHARGED); 601 vm_map_unlock(map); 602 return (addr); 603 } 604 605 /* 606 * kmem_free_wakeup: 607 * 608 * Returns memory to a submap of the kernel, and wakes up any processes 609 * waiting for memory in that map. 610 */ 611 void 612 kmem_free_wakeup(map, addr, size) 613 vm_map_t map; 614 vm_offset_t addr; 615 vm_size_t size; 616 { 617 618 vm_map_lock(map); 619 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 620 if (map->needs_wakeup) { 621 map->needs_wakeup = FALSE; 622 vm_map_wakeup(map); 623 } 624 vm_map_unlock(map); 625 } 626 627 static void 628 kmem_init_zero_region(void) 629 { 630 vm_offset_t addr, i; 631 vm_page_t m; 632 int error; 633 634 /* 635 * Map a single physical page of zeros to a larger virtual range. 636 * This requires less looping in places that want large amounts of 637 * zeros, while not using much more physical resources. 638 */ 639 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 640 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 641 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 642 if ((m->flags & PG_ZERO) == 0) 643 pmap_zero_page(m); 644 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 645 pmap_qenter(addr + i, &m, 1); 646 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 647 VM_PROT_READ, TRUE); 648 KASSERT(error == 0, ("error=%d", error)); 649 650 zero_region = (const void *)addr; 651 } 652 653 /* 654 * kmem_init: 655 * 656 * Create the kernel map; insert a mapping covering kernel text, 657 * data, bss, and all space allocated thus far (`boostrap' data). The 658 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 659 * `start' as allocated, and the range between `start' and `end' as free. 660 */ 661 void 662 kmem_init(start, end) 663 vm_offset_t start, end; 664 { 665 vm_map_t m; 666 667 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 668 m->system_map = 1; 669 vm_map_lock(m); 670 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 671 kernel_map = m; 672 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 673 #ifdef __amd64__ 674 KERNBASE, 675 #else 676 VM_MIN_KERNEL_ADDRESS, 677 #endif 678 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 679 /* ... and ending with the completion of the above `insert' */ 680 vm_map_unlock(m); 681 682 kmem_init_zero_region(); 683 } 684 685 #ifdef DIAGNOSTIC 686 /* 687 * Allow userspace to directly trigger the VM drain routine for testing 688 * purposes. 689 */ 690 static int 691 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 692 { 693 int error, i; 694 695 i = 0; 696 error = sysctl_handle_int(oidp, &i, 0, req); 697 if (error) 698 return (error); 699 if (i) 700 EVENTHANDLER_INVOKE(vm_lowmem, 0); 701 return (0); 702 } 703 704 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 705 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 706 #endif 707