xref: /freebsd/sys/vm/vm_kern.c (revision 92f340d137ba5d6db7610ba1dae35842e2c9c8ea)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/asan.h>
71 #include <sys/domainset.h>
72 #include <sys/eventhandler.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/msan.h>
77 #include <sys/proc.h>
78 #include <sys/rwlock.h>
79 #include <sys/smp.h>
80 #include <sys/sysctl.h>
81 #include <sys/vmem.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_kern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_radix.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 struct vm_map kernel_map_store;
100 struct vm_map exec_map_store;
101 struct vm_map pipe_map_store;
102 
103 const void *zero_region;
104 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105 
106 /* NB: Used by kernel debuggers. */
107 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108 
109 u_int exec_map_entry_size;
110 u_int exec_map_entries;
111 
112 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
114 
115 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
116 #if defined(__arm__)
117     &vm_max_kernel_address, 0,
118 #else
119     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
120 #endif
121     "Max kernel address");
122 
123 #if VM_NRESERVLEVEL > 1
124 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER + \
125     PAGE_SHIFT)
126 #elif VM_NRESERVLEVEL > 0
127 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
128 #else
129 /* On non-superpage architectures we want large import sizes. */
130 #define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
131 #endif
132 #define	KVA_QUANTUM		(1ul << KVA_QUANTUM_SHIFT)
133 #define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)
134 
135 extern void     uma_startup2(void);
136 
137 /*
138  *	kva_alloc:
139  *
140  *	Allocate a virtual address range with no underlying object and
141  *	no initial mapping to physical memory.  Any mapping from this
142  *	range to physical memory must be explicitly created prior to
143  *	its use, typically with pmap_qenter().  Any attempt to create
144  *	a mapping on demand through vm_fault() will result in a panic.
145  */
146 vm_offset_t
147 kva_alloc(vm_size_t size)
148 {
149 	vm_offset_t addr;
150 
151 	TSENTER();
152 	size = round_page(size);
153 	if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
154 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
155 		return (0);
156 	TSEXIT();
157 
158 	return (addr);
159 }
160 
161 /*
162  *	kva_alloc_aligned:
163  *
164  *	Allocate a virtual address range as in kva_alloc where the base
165  *	address is aligned to align.
166  */
167 vm_offset_t
168 kva_alloc_aligned(vm_size_t size, vm_size_t align)
169 {
170 	vm_offset_t addr;
171 
172 	TSENTER();
173 	size = round_page(size);
174 	if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
175 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
176 		return (0);
177 	TSEXIT();
178 
179 	return (addr);
180 }
181 
182 /*
183  *	kva_free:
184  *
185  *	Release a region of kernel virtual memory allocated
186  *	with kva_alloc, and return the physical pages
187  *	associated with that region.
188  *
189  *	This routine may not block on kernel maps.
190  */
191 void
192 kva_free(vm_offset_t addr, vm_size_t size)
193 {
194 
195 	size = round_page(size);
196 	vmem_xfree(kernel_arena, addr, size);
197 }
198 
199 /*
200  * Update sanitizer shadow state to reflect a new allocation.  Force inlining to
201  * help make KMSAN origin tracking more precise.
202  */
203 static __always_inline void
204 kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
205 {
206 	if ((flags & M_ZERO) == 0) {
207 		kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
208 		kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
209 		    KMSAN_RET_ADDR);
210 	} else {
211 		kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
212 	}
213 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
214 }
215 
216 static vm_page_t
217 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
218     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
219     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
220 {
221 	vm_page_t m;
222 	int tries;
223 	bool wait, reclaim;
224 
225 	VM_OBJECT_ASSERT_WLOCKED(object);
226 
227 	wait = (pflags & VM_ALLOC_WAITOK) != 0;
228 	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
229 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
230 	pflags |= VM_ALLOC_NOWAIT;
231 	for (tries = wait ? 3 : 1;; tries--) {
232 		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
233 		    npages, low, high, alignment, boundary, memattr);
234 		if (m != NULL || tries == 0 || !reclaim)
235 			break;
236 
237 		VM_OBJECT_WUNLOCK(object);
238 		if (vm_page_reclaim_contig_domain(domain, pflags, npages,
239 		    low, high, alignment, boundary) == ENOMEM && wait)
240 			vm_wait_domain(domain);
241 		VM_OBJECT_WLOCK(object);
242 	}
243 	return (m);
244 }
245 
246 /*
247  *	Allocates a region from the kernel address map and physical pages
248  *	within the specified address range to the kernel object.  Creates a
249  *	wired mapping from this region to these pages, and returns the
250  *	region's starting virtual address.  The allocated pages are not
251  *	necessarily physically contiguous.  If M_ZERO is specified through the
252  *	given flags, then the pages are zeroed before they are mapped.
253  */
254 static void *
255 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
256     vm_paddr_t high, vm_memattr_t memattr)
257 {
258 	vmem_t *vmem;
259 	vm_object_t object;
260 	vm_offset_t addr, i, offset;
261 	vm_page_t m;
262 	vm_size_t asize;
263 	int pflags;
264 	vm_prot_t prot;
265 
266 	object = kernel_object;
267 	asize = round_page(size);
268 	vmem = vm_dom[domain].vmd_kernel_arena;
269 	if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
270 		return (0);
271 	offset = addr - VM_MIN_KERNEL_ADDRESS;
272 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
273 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
274 	VM_OBJECT_WLOCK(object);
275 	for (i = 0; i < asize; i += PAGE_SIZE) {
276 		m = kmem_alloc_contig_pages(object, atop(offset + i),
277 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
278 		if (m == NULL) {
279 			VM_OBJECT_WUNLOCK(object);
280 			kmem_unback(object, addr, i);
281 			vmem_free(vmem, addr, asize);
282 			return (0);
283 		}
284 		KASSERT(vm_page_domain(m) == domain,
285 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
286 		    vm_page_domain(m), domain));
287 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
288 			pmap_zero_page(m);
289 		vm_page_valid(m);
290 		pmap_enter(kernel_pmap, addr + i, m, prot,
291 		    prot | PMAP_ENTER_WIRED, 0);
292 	}
293 	VM_OBJECT_WUNLOCK(object);
294 	kmem_alloc_san(addr, size, asize, flags);
295 	return ((void *)addr);
296 }
297 
298 void *
299 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
300     vm_memattr_t memattr)
301 {
302 
303 	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
304 	    high, memattr));
305 }
306 
307 void *
308 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
309     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
310 {
311 	struct vm_domainset_iter di;
312 	vm_page_t bounds[2];
313 	void *addr;
314 	int domain;
315 	int start_segind;
316 
317 	start_segind = -1;
318 
319 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
320 	do {
321 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
322 		    memattr);
323 		if (addr != NULL)
324 			break;
325 		if (start_segind == -1)
326 			start_segind = vm_phys_lookup_segind(low);
327 		if (vm_phys_find_range(bounds, start_segind, domain,
328 		    atop(round_page(size)), low, high) == -1) {
329 			vm_domainset_iter_ignore(&di, domain);
330 		}
331 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
332 
333 	return (addr);
334 }
335 
336 /*
337  *	Allocates a region from the kernel address map and physically
338  *	contiguous pages within the specified address range to the kernel
339  *	object.  Creates a wired mapping from this region to these pages, and
340  *	returns the region's starting virtual address.  If M_ZERO is specified
341  *	through the given flags, then the pages are zeroed before they are
342  *	mapped.
343  */
344 static void *
345 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
346     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
347     vm_memattr_t memattr)
348 {
349 	vmem_t *vmem;
350 	vm_object_t object;
351 	vm_offset_t addr, offset, tmp;
352 	vm_page_t end_m, m;
353 	vm_size_t asize;
354 	u_long npages;
355 	int pflags;
356 
357 	object = kernel_object;
358 	asize = round_page(size);
359 	vmem = vm_dom[domain].vmd_kernel_arena;
360 	if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
361 		return (NULL);
362 	offset = addr - VM_MIN_KERNEL_ADDRESS;
363 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
364 	npages = atop(asize);
365 	VM_OBJECT_WLOCK(object);
366 	m = kmem_alloc_contig_pages(object, atop(offset), domain,
367 	    pflags, npages, low, high, alignment, boundary, memattr);
368 	if (m == NULL) {
369 		VM_OBJECT_WUNLOCK(object);
370 		vmem_free(vmem, addr, asize);
371 		return (NULL);
372 	}
373 	KASSERT(vm_page_domain(m) == domain,
374 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
375 	    vm_page_domain(m), domain));
376 	end_m = m + npages;
377 	tmp = addr;
378 	for (; m < end_m; m++) {
379 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
380 			pmap_zero_page(m);
381 		vm_page_valid(m);
382 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
383 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
384 		tmp += PAGE_SIZE;
385 	}
386 	VM_OBJECT_WUNLOCK(object);
387 	kmem_alloc_san(addr, size, asize, flags);
388 	return ((void *)addr);
389 }
390 
391 void *
392 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
393     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
394 {
395 
396 	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
397 	    high, alignment, boundary, memattr));
398 }
399 
400 void *
401 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
402     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
403     vm_memattr_t memattr)
404 {
405 	struct vm_domainset_iter di;
406 	vm_page_t bounds[2];
407 	void *addr;
408 	int domain;
409 	int start_segind;
410 
411 	start_segind = -1;
412 
413 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
414 	do {
415 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
416 		    alignment, boundary, memattr);
417 		if (addr != NULL)
418 			break;
419 		if (start_segind == -1)
420 			start_segind = vm_phys_lookup_segind(low);
421 		if (vm_phys_find_range(bounds, start_segind, domain,
422 		    atop(round_page(size)), low, high) == -1) {
423 			vm_domainset_iter_ignore(&di, domain);
424 		}
425 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
426 
427 	return (addr);
428 }
429 
430 /*
431  *	kmem_subinit:
432  *
433  *	Initializes a map to manage a subrange
434  *	of the kernel virtual address space.
435  *
436  *	Arguments are as follows:
437  *
438  *	parent		Map to take range from
439  *	min, max	Returned endpoints of map
440  *	size		Size of range to find
441  *	superpage_align	Request that min is superpage aligned
442  */
443 void
444 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
445     vm_size_t size, bool superpage_align)
446 {
447 	int ret;
448 
449 	size = round_page(size);
450 
451 	*min = vm_map_min(parent);
452 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
453 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
454 	    MAP_ACC_NO_CHARGE);
455 	if (ret != KERN_SUCCESS)
456 		panic("kmem_subinit: bad status return of %d", ret);
457 	*max = *min + size;
458 	vm_map_init(map, vm_map_pmap(parent), *min, *max);
459 	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
460 		panic("kmem_subinit: unable to change range to submap");
461 }
462 
463 /*
464  *	kmem_malloc_domain:
465  *
466  *	Allocate wired-down pages in the kernel's address space.
467  */
468 static void *
469 kmem_malloc_domain(int domain, vm_size_t size, int flags)
470 {
471 	vmem_t *arena;
472 	vm_offset_t addr;
473 	vm_size_t asize;
474 	int rv;
475 
476 	if (__predict_true((flags & (M_EXEC | M_NEVERFREED)) == 0))
477 		arena = vm_dom[domain].vmd_kernel_arena;
478 	else if ((flags & M_EXEC) != 0)
479 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
480 	else
481 		arena = vm_dom[domain].vmd_kernel_nofree_arena;
482 	asize = round_page(size);
483 	if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
484 		return (0);
485 
486 	rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
487 	if (rv != KERN_SUCCESS) {
488 		vmem_free(arena, addr, asize);
489 		return (0);
490 	}
491 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
492 	return ((void *)addr);
493 }
494 
495 void *
496 kmem_malloc(vm_size_t size, int flags)
497 {
498 	void * p;
499 
500 	TSENTER();
501 	p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
502 	TSEXIT();
503 	return (p);
504 }
505 
506 void *
507 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
508 {
509 	struct vm_domainset_iter di;
510 	void *addr;
511 	int domain;
512 
513 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
514 	do {
515 		addr = kmem_malloc_domain(domain, size, flags);
516 		if (addr != NULL)
517 			break;
518 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
519 
520 	return (addr);
521 }
522 
523 /*
524  *	kmem_back_domain:
525  *
526  *	Allocate physical pages from the specified domain for the specified
527  *	virtual address range.
528  */
529 int
530 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
531     vm_size_t size, int flags)
532 {
533 	struct pctrie_iter pages;
534 	vm_offset_t offset, i;
535 	vm_page_t m, mpred;
536 	vm_prot_t prot;
537 	int pflags;
538 
539 	KASSERT(object == kernel_object,
540 	    ("kmem_back_domain: only supports kernel object."));
541 
542 	offset = addr - VM_MIN_KERNEL_ADDRESS;
543 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
544 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
545 	if (flags & M_WAITOK)
546 		pflags |= VM_ALLOC_WAITFAIL;
547 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
548 
549 	i = 0;
550 	vm_page_iter_init(&pages, object);
551 	VM_OBJECT_WLOCK(object);
552 retry:
553 	mpred = vm_radix_iter_lookup_lt(&pages, atop(offset + i));
554 	for (; i < size; i += PAGE_SIZE, mpred = m) {
555 		m = vm_page_alloc_domain_after(object, &pages, atop(offset + i),
556 		    domain, pflags, mpred);
557 
558 		/*
559 		 * Ran out of space, free everything up and return. Don't need
560 		 * to lock page queues here as we know that the pages we got
561 		 * aren't on any queues.
562 		 */
563 		if (m == NULL) {
564 			if ((flags & M_NOWAIT) == 0)
565 				goto retry;
566 			VM_OBJECT_WUNLOCK(object);
567 			kmem_unback(object, addr, i);
568 			return (KERN_NO_SPACE);
569 		}
570 		KASSERT(vm_page_domain(m) == domain,
571 		    ("kmem_back_domain: Domain mismatch %d != %d",
572 		    vm_page_domain(m), domain));
573 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
574 			pmap_zero_page(m);
575 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
576 		    ("kmem_malloc: page %p is managed", m));
577 		vm_page_valid(m);
578 		pmap_enter(kernel_pmap, addr + i, m, prot,
579 		    prot | PMAP_ENTER_WIRED, 0);
580 		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
581 			m->oflags |= VPO_KMEM_EXEC;
582 	}
583 	VM_OBJECT_WUNLOCK(object);
584 	kmem_alloc_san(addr, size, size, flags);
585 	return (KERN_SUCCESS);
586 }
587 
588 /*
589  *	kmem_back:
590  *
591  *	Allocate physical pages for the specified virtual address range.
592  */
593 int
594 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
595 {
596 	vm_offset_t end, next, start;
597 	int domain, rv;
598 
599 	KASSERT(object == kernel_object,
600 	    ("kmem_back: only supports kernel object."));
601 
602 	for (start = addr, end = addr + size; addr < end; addr = next) {
603 		/*
604 		 * We must ensure that pages backing a given large virtual page
605 		 * all come from the same physical domain.
606 		 */
607 		if (vm_ndomains > 1) {
608 			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
609 			while (VM_DOMAIN_EMPTY(domain))
610 				domain++;
611 			next = roundup2(addr + 1, KVA_QUANTUM);
612 			if (next > end || next < start)
613 				next = end;
614 		} else {
615 			domain = 0;
616 			next = end;
617 		}
618 		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
619 		if (rv != KERN_SUCCESS) {
620 			kmem_unback(object, start, addr - start);
621 			break;
622 		}
623 	}
624 	return (rv);
625 }
626 
627 /*
628  *	kmem_unback:
629  *
630  *	Unmap and free the physical pages underlying the specified virtual
631  *	address range.
632  *
633  *	A physical page must exist within the specified object at each index
634  *	that is being unmapped.
635  */
636 static struct vmem *
637 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
638 {
639 	struct pctrie_iter pages;
640 	struct vmem *arena;
641 	vm_page_t m;
642 	vm_offset_t end, offset;
643 	int domain;
644 
645 	KASSERT(object == kernel_object,
646 	    ("kmem_unback: only supports kernel object."));
647 
648 	if (size == 0)
649 		return (NULL);
650 	pmap_remove(kernel_pmap, addr, addr + size);
651 	offset = addr - VM_MIN_KERNEL_ADDRESS;
652 	end = offset + size;
653 	vm_page_iter_init(&pages, object);
654 	VM_OBJECT_WLOCK(object);
655 	m = vm_radix_iter_lookup(&pages, atop(offset));
656 	domain = vm_page_domain(m);
657 	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
658 		arena = vm_dom[domain].vmd_kernel_arena;
659 	else
660 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
661 	for (; offset < end; offset += PAGE_SIZE,
662 	    m = vm_radix_iter_lookup(&pages, atop(offset))) {
663 		vm_page_xbusy_claim(m);
664 		vm_page_unwire_noq(m);
665 		vm_page_iter_free(&pages, m);
666 	}
667 	VM_OBJECT_WUNLOCK(object);
668 
669 	return (arena);
670 }
671 
672 void
673 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
674 {
675 
676 	(void)_kmem_unback(object, addr, size);
677 }
678 
679 /*
680  *	kmem_free:
681  *
682  *	Free memory allocated with kmem_malloc.  The size must match the
683  *	original allocation.
684  */
685 void
686 kmem_free(void *addr, vm_size_t size)
687 {
688 	struct vmem *arena;
689 
690 	size = round_page(size);
691 	kasan_mark(addr, size, size, 0);
692 	arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
693 	if (arena != NULL)
694 		vmem_free(arena, (uintptr_t)addr, size);
695 }
696 
697 /*
698  *	kmap_alloc_wait:
699  *
700  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
701  *	has no room, the caller sleeps waiting for more memory in the submap.
702  *
703  *	This routine may block.
704  */
705 vm_offset_t
706 kmap_alloc_wait(vm_map_t map, vm_size_t size)
707 {
708 	vm_offset_t addr;
709 
710 	size = round_page(size);
711 	if (!swap_reserve(size))
712 		return (0);
713 
714 	for (;;) {
715 		/*
716 		 * To make this work for more than one map, use the map's lock
717 		 * to lock out sleepers/wakers.
718 		 */
719 		vm_map_lock(map);
720 		addr = vm_map_findspace(map, vm_map_min(map), size);
721 		if (addr + size <= vm_map_max(map))
722 			break;
723 		/* no space now; see if we can ever get space */
724 		if (vm_map_max(map) - vm_map_min(map) < size) {
725 			vm_map_unlock(map);
726 			swap_release(size);
727 			return (0);
728 		}
729 		vm_map_modflags(map, MAP_NEEDS_WAKEUP, 0);
730 		vm_map_unlock_and_wait(map, 0);
731 	}
732 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
733 	    MAP_ACC_CHARGED);
734 	vm_map_unlock(map);
735 	return (addr);
736 }
737 
738 /*
739  *	kmap_free_wakeup:
740  *
741  *	Returns memory to a submap of the kernel, and wakes up any processes
742  *	waiting for memory in that map.
743  */
744 void
745 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
746 {
747 
748 	vm_map_lock(map);
749 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
750 	if ((map->flags & MAP_NEEDS_WAKEUP) != 0) {
751 		vm_map_modflags(map, 0, MAP_NEEDS_WAKEUP);
752 		vm_map_wakeup(map);
753 	}
754 	vm_map_unlock(map);
755 }
756 
757 void
758 kmem_init_zero_region(void)
759 {
760 	vm_offset_t addr, i;
761 	vm_page_t m;
762 
763 	/*
764 	 * Map a single physical page of zeros to a larger virtual range.
765 	 * This requires less looping in places that want large amounts of
766 	 * zeros, while not using much more physical resources.
767 	 */
768 	addr = kva_alloc(ZERO_REGION_SIZE);
769 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO |
770 	    VM_ALLOC_NOFREE);
771 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
772 		pmap_qenter(addr + i, &m, 1);
773 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
774 
775 	zero_region = (const void *)addr;
776 }
777 
778 /*
779  * Import KVA from the kernel map into the kernel arena.
780  */
781 static int
782 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
783 {
784 	vm_offset_t addr;
785 	int result;
786 
787 	TSENTER();
788 	KASSERT((size % KVA_QUANTUM) == 0,
789 	    ("kva_import: Size %jd is not a multiple of %d",
790 	    (intmax_t)size, (int)KVA_QUANTUM));
791 	addr = vm_map_min(kernel_map);
792 	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
793 	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
794 	if (result != KERN_SUCCESS) {
795 		TSEXIT();
796                 return (ENOMEM);
797 	}
798 
799 	*addrp = addr;
800 
801 	TSEXIT();
802 	return (0);
803 }
804 
805 /*
806  * Import KVA from a parent arena into a per-domain arena.  Imports must be
807  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
808  */
809 static int
810 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
811 {
812 
813 	KASSERT((size % KVA_QUANTUM) == 0,
814 	    ("kva_import_domain: Size %jd is not a multiple of %d",
815 	    (intmax_t)size, (int)KVA_QUANTUM));
816 	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
817 	    VMEM_ADDR_MAX, flags, addrp));
818 }
819 
820 /*
821  * 	kmem_init:
822  *
823  *	Create the kernel map; insert a mapping covering kernel text,
824  *	data, bss, and all space allocated thus far (`boostrap' data).  The
825  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
826  *	`start' as allocated, and the range between `start' and `end' as free.
827  *	Create the kernel vmem arena and its per-domain children.
828  */
829 void
830 kmem_init(vm_offset_t start, vm_offset_t end)
831 {
832 	vm_size_t quantum;
833 	int domain;
834 
835 	vm_map_init_system(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
836 	vm_map_lock(kernel_map);
837 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
838 	(void)vm_map_insert(kernel_map, NULL, 0,
839 #ifdef __amd64__
840 	    KERNBASE,
841 #else
842 	    VM_MIN_KERNEL_ADDRESS,
843 #endif
844 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
845 	/* ... and ending with the completion of the above `insert' */
846 
847 #ifdef __amd64__
848 	/*
849 	 * Mark KVA used for the page array as allocated.  Other platforms
850 	 * that handle vm_page_array allocation can simply adjust virtual_avail
851 	 * instead.
852 	 */
853 	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
854 	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
855 	    sizeof(struct vm_page)),
856 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
857 #endif
858 	vm_map_unlock(kernel_map);
859 
860 	/*
861 	 * Use a large import quantum on NUMA systems.  This helps minimize
862 	 * interleaving of superpages, reducing internal fragmentation within
863 	 * the per-domain arenas.
864 	 */
865 	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
866 		quantum = KVA_NUMA_IMPORT_QUANTUM;
867 	else
868 		quantum = KVA_QUANTUM;
869 
870 	/*
871 	 * Initialize the kernel_arena.  This can grow on demand.
872 	 */
873 	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
874 	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
875 
876 	for (domain = 0; domain < vm_ndomains; domain++) {
877 		/*
878 		 * Initialize the per-domain arenas.  These are used to color
879 		 * the KVA space in a way that ensures that virtual large pages
880 		 * are backed by memory from the same physical domain,
881 		 * maximizing the potential for superpage promotion.
882 		 */
883 		vm_dom[domain].vmd_kernel_arena = vmem_create(
884 		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
885 		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
886 		    kva_import_domain, NULL, kernel_arena, quantum);
887 
888 		/*
889 		 * In architectures with superpages, maintain separate arenas
890 		 * for allocations with permissions that differ from the
891 		 * "standard" read/write permissions used for kernel memory
892 		 * and pages that are never released, so as not to inhibit
893 		 * superpage promotion.
894 		 *
895 		 * Use the base import quantum since these arenas are rarely
896 		 * used.
897 		 */
898 #if VM_NRESERVLEVEL > 0
899 		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
900 		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
901 		vm_dom[domain].vmd_kernel_nofree_arena = vmem_create(
902 		    "kernel NOFREE arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
903 		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
904 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
905 		    kernel_arena, KVA_QUANTUM);
906 		vmem_set_import(vm_dom[domain].vmd_kernel_nofree_arena,
907 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
908 		    kernel_arena, KVA_QUANTUM);
909 #else
910 		vm_dom[domain].vmd_kernel_rwx_arena =
911 		    vm_dom[domain].vmd_kernel_arena;
912 		vm_dom[domain].vmd_kernel_nofree_arena =
913 		    vm_dom[domain].vmd_kernel_arena;
914 #endif
915 	}
916 
917 	/*
918 	 * This must be the very first call so that the virtual address
919 	 * space used for early allocations is properly marked used in
920 	 * the map.
921 	 */
922 	uma_startup2();
923 }
924 
925 /*
926  *	kmem_bootstrap_free:
927  *
928  *	Free pages backing preloaded data (e.g., kernel modules) to the
929  *	system.  Currently only supported on platforms that create a
930  *	vm_phys segment for preloaded data.
931  */
932 void
933 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
934 {
935 #if defined(__i386__) || defined(__amd64__)
936 	struct vm_domain *vmd;
937 	vm_offset_t end, va;
938 	vm_paddr_t pa;
939 	vm_page_t m;
940 
941 	end = trunc_page(start + size);
942 	start = round_page(start);
943 
944 #ifdef __amd64__
945 	/*
946 	 * Preloaded files do not have execute permissions by default on amd64.
947 	 * Restore the default permissions to ensure that the direct map alias
948 	 * is updated.
949 	 */
950 	pmap_change_prot(start, end - start, VM_PROT_RW);
951 #endif
952 	for (va = start; va < end; va += PAGE_SIZE) {
953 		pa = pmap_kextract(va);
954 		m = PHYS_TO_VM_PAGE(pa);
955 
956 		vmd = vm_pagequeue_domain(m);
957 		vm_domain_free_lock(vmd);
958 		vm_phys_free_pages(m, m->pool, 0);
959 		vm_domain_free_unlock(vmd);
960 
961 		vm_domain_freecnt_inc(vmd, 1);
962 		vm_cnt.v_page_count++;
963 	}
964 	pmap_remove(kernel_pmap, start, end);
965 	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
966 #endif
967 }
968 
969 #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
970 void
971 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
972 {
973 	struct thread *td;
974 	struct proc *p;
975 	struct vmspace *vm;
976 	int c;
977 
978 	CPU_ZERO(res);
979 	CPU_FOREACH(c) {
980 		td = cpuid_to_pcpu[c]->pc_curthread;
981 		p = td->td_proc;
982 		if (p == NULL)
983 			continue;
984 		vm = vmspace_acquire_ref(p);
985 		if (vm == NULL)
986 			continue;
987 		if (pmap == vmspace_pmap(vm))
988 			CPU_SET(c, res);
989 		vmspace_free(vm);
990 	}
991 }
992 #endif
993 
994 /*
995  * Allow userspace to directly trigger the VM drain routine for testing
996  * purposes.
997  */
998 static int
999 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
1000 {
1001 	int error, i;
1002 
1003 	i = 0;
1004 	error = sysctl_handle_int(oidp, &i, 0, req);
1005 	if (error != 0)
1006 		return (error);
1007 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
1008 		return (EINVAL);
1009 	if (i != 0)
1010 		EVENTHANDLER_INVOKE(vm_lowmem, i);
1011 	return (0);
1012 }
1013 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
1014     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
1015     "set to trigger vm_lowmem event with given flags");
1016 
1017 static int
1018 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
1019 {
1020 	int error, i;
1021 
1022 	i = 0;
1023 	error = sysctl_handle_int(oidp, &i, 0, req);
1024 	if (error != 0 || req->newptr == NULL)
1025 		return (error);
1026 	if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
1027 	    i != UMA_RECLAIM_DRAIN_CPU)
1028 		return (EINVAL);
1029 	uma_reclaim(i);
1030 	return (0);
1031 }
1032 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
1033     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
1034     "set to generate request to reclaim uma caches");
1035 
1036 static int
1037 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1038 {
1039 	int domain, error, request;
1040 
1041 	request = 0;
1042 	error = sysctl_handle_int(oidp, &request, 0, req);
1043 	if (error != 0 || req->newptr == NULL)
1044 		return (error);
1045 
1046 	domain = request >> 4;
1047 	request &= 0xf;
1048 	if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1049 	    request != UMA_RECLAIM_DRAIN_CPU)
1050 		return (EINVAL);
1051 	if (domain < 0 || domain >= vm_ndomains)
1052 		return (EINVAL);
1053 	uma_reclaim_domain(request, domain);
1054 	return (0);
1055 }
1056 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1057     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1058     debug_uma_reclaim_domain, "I",
1059     "");
1060