xref: /freebsd/sys/vm/vm_kern.c (revision 8f7ed58a15556bf567ff876e1999e4fe4d684e1d)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 #include "opt_vm.h"
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/asan.h>
71 #include <sys/domainset.h>
72 #include <sys/eventhandler.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/malloc.h>
76 #include <sys/msan.h>
77 #include <sys/proc.h>
78 #include <sys/rwlock.h>
79 #include <sys/smp.h>
80 #include <sys/sysctl.h>
81 #include <sys/vmem.h>
82 #include <sys/vmmeter.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_kern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_pagequeue.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_radix.h>
96 #include <vm/vm_extern.h>
97 #include <vm/uma.h>
98 
99 struct vm_map kernel_map_store;
100 struct vm_map exec_map_store;
101 struct vm_map pipe_map_store;
102 
103 const void *zero_region;
104 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105 
106 /* NB: Used by kernel debuggers. */
107 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108 
109 u_int exec_map_entry_size;
110 u_int exec_map_entries;
111 
112 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
114 
115 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
116 #if defined(__arm__)
117     &vm_max_kernel_address, 0,
118 #else
119     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
120 #endif
121     "Max kernel address");
122 
123 #if VM_NRESERVLEVEL > 0
124 #define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
125 #else
126 /* On non-superpage architectures we want large import sizes. */
127 #define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
128 #endif
129 #define	KVA_QUANTUM		(1ul << KVA_QUANTUM_SHIFT)
130 #define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)
131 
132 extern void     uma_startup2(void);
133 
134 /*
135  *	kva_alloc:
136  *
137  *	Allocate a virtual address range with no underlying object and
138  *	no initial mapping to physical memory.  Any mapping from this
139  *	range to physical memory must be explicitly created prior to
140  *	its use, typically with pmap_qenter().  Any attempt to create
141  *	a mapping on demand through vm_fault() will result in a panic.
142  */
143 vm_offset_t
144 kva_alloc(vm_size_t size)
145 {
146 	vm_offset_t addr;
147 
148 	TSENTER();
149 	size = round_page(size);
150 	if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
151 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
152 		return (0);
153 	TSEXIT();
154 
155 	return (addr);
156 }
157 
158 /*
159  *	kva_alloc_aligned:
160  *
161  *	Allocate a virtual address range as in kva_alloc where the base
162  *	address is aligned to align.
163  */
164 vm_offset_t
165 kva_alloc_aligned(vm_size_t size, vm_size_t align)
166 {
167 	vm_offset_t addr;
168 
169 	TSENTER();
170 	size = round_page(size);
171 	if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
172 	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
173 		return (0);
174 	TSEXIT();
175 
176 	return (addr);
177 }
178 
179 /*
180  *	kva_free:
181  *
182  *	Release a region of kernel virtual memory allocated
183  *	with kva_alloc, and return the physical pages
184  *	associated with that region.
185  *
186  *	This routine may not block on kernel maps.
187  */
188 void
189 kva_free(vm_offset_t addr, vm_size_t size)
190 {
191 
192 	size = round_page(size);
193 	vmem_xfree(kernel_arena, addr, size);
194 }
195 
196 /*
197  * Update sanitizer shadow state to reflect a new allocation.  Force inlining to
198  * help make KMSAN origin tracking more precise.
199  */
200 static __always_inline void
201 kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
202 {
203 	if ((flags & M_ZERO) == 0) {
204 		kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
205 		kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
206 		    KMSAN_RET_ADDR);
207 	} else {
208 		kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
209 	}
210 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
211 }
212 
213 static vm_page_t
214 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
215     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
216     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
217 {
218 	vm_page_t m;
219 	int tries;
220 	bool wait, reclaim;
221 
222 	VM_OBJECT_ASSERT_WLOCKED(object);
223 
224 	wait = (pflags & VM_ALLOC_WAITOK) != 0;
225 	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
226 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
227 	pflags |= VM_ALLOC_NOWAIT;
228 	for (tries = wait ? 3 : 1;; tries--) {
229 		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
230 		    npages, low, high, alignment, boundary, memattr);
231 		if (m != NULL || tries == 0 || !reclaim)
232 			break;
233 
234 		VM_OBJECT_WUNLOCK(object);
235 		if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
236 		    low, high, alignment, boundary) && wait)
237 			vm_wait_domain(domain);
238 		VM_OBJECT_WLOCK(object);
239 	}
240 	return (m);
241 }
242 
243 /*
244  *	Allocates a region from the kernel address map and physical pages
245  *	within the specified address range to the kernel object.  Creates a
246  *	wired mapping from this region to these pages, and returns the
247  *	region's starting virtual address.  The allocated pages are not
248  *	necessarily physically contiguous.  If M_ZERO is specified through the
249  *	given flags, then the pages are zeroed before they are mapped.
250  */
251 static void *
252 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
253     vm_paddr_t high, vm_memattr_t memattr)
254 {
255 	vmem_t *vmem;
256 	vm_object_t object;
257 	vm_offset_t addr, i, offset;
258 	vm_page_t m;
259 	vm_size_t asize;
260 	int pflags;
261 	vm_prot_t prot;
262 
263 	object = kernel_object;
264 	asize = round_page(size);
265 	vmem = vm_dom[domain].vmd_kernel_arena;
266 	if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
267 		return (0);
268 	offset = addr - VM_MIN_KERNEL_ADDRESS;
269 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
270 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
271 	VM_OBJECT_WLOCK(object);
272 	for (i = 0; i < asize; i += PAGE_SIZE) {
273 		m = kmem_alloc_contig_pages(object, atop(offset + i),
274 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
275 		if (m == NULL) {
276 			VM_OBJECT_WUNLOCK(object);
277 			kmem_unback(object, addr, i);
278 			vmem_free(vmem, addr, asize);
279 			return (0);
280 		}
281 		KASSERT(vm_page_domain(m) == domain,
282 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
283 		    vm_page_domain(m), domain));
284 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
285 			pmap_zero_page(m);
286 		vm_page_valid(m);
287 		pmap_enter(kernel_pmap, addr + i, m, prot,
288 		    prot | PMAP_ENTER_WIRED, 0);
289 	}
290 	VM_OBJECT_WUNLOCK(object);
291 	kmem_alloc_san(addr, size, asize, flags);
292 	return ((void *)addr);
293 }
294 
295 void *
296 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
297     vm_memattr_t memattr)
298 {
299 
300 	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
301 	    high, memattr));
302 }
303 
304 void *
305 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
306     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
307 {
308 	struct vm_domainset_iter di;
309 	void *addr;
310 	int domain;
311 
312 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
313 	do {
314 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
315 		    memattr);
316 		if (addr != NULL)
317 			break;
318 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
319 
320 	return (addr);
321 }
322 
323 /*
324  *	Allocates a region from the kernel address map and physically
325  *	contiguous pages within the specified address range to the kernel
326  *	object.  Creates a wired mapping from this region to these pages, and
327  *	returns the region's starting virtual address.  If M_ZERO is specified
328  *	through the given flags, then the pages are zeroed before they are
329  *	mapped.
330  */
331 static void *
332 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
333     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
334     vm_memattr_t memattr)
335 {
336 	vmem_t *vmem;
337 	vm_object_t object;
338 	vm_offset_t addr, offset, tmp;
339 	vm_page_t end_m, m;
340 	vm_size_t asize;
341 	u_long npages;
342 	int pflags;
343 
344 	object = kernel_object;
345 	asize = round_page(size);
346 	vmem = vm_dom[domain].vmd_kernel_arena;
347 	if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
348 		return (NULL);
349 	offset = addr - VM_MIN_KERNEL_ADDRESS;
350 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
351 	npages = atop(asize);
352 	VM_OBJECT_WLOCK(object);
353 	m = kmem_alloc_contig_pages(object, atop(offset), domain,
354 	    pflags, npages, low, high, alignment, boundary, memattr);
355 	if (m == NULL) {
356 		VM_OBJECT_WUNLOCK(object);
357 		vmem_free(vmem, addr, asize);
358 		return (NULL);
359 	}
360 	KASSERT(vm_page_domain(m) == domain,
361 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
362 	    vm_page_domain(m), domain));
363 	end_m = m + npages;
364 	tmp = addr;
365 	for (; m < end_m; m++) {
366 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
367 			pmap_zero_page(m);
368 		vm_page_valid(m);
369 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
370 		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
371 		tmp += PAGE_SIZE;
372 	}
373 	VM_OBJECT_WUNLOCK(object);
374 	kmem_alloc_san(addr, size, asize, flags);
375 	return ((void *)addr);
376 }
377 
378 void *
379 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
380     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
381 {
382 
383 	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
384 	    high, alignment, boundary, memattr));
385 }
386 
387 void *
388 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
389     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
390     vm_memattr_t memattr)
391 {
392 	struct vm_domainset_iter di;
393 	void *addr;
394 	int domain;
395 
396 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
397 	do {
398 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
399 		    alignment, boundary, memattr);
400 		if (addr != NULL)
401 			break;
402 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
403 
404 	return (addr);
405 }
406 
407 /*
408  *	kmem_subinit:
409  *
410  *	Initializes a map to manage a subrange
411  *	of the kernel virtual address space.
412  *
413  *	Arguments are as follows:
414  *
415  *	parent		Map to take range from
416  *	min, max	Returned endpoints of map
417  *	size		Size of range to find
418  *	superpage_align	Request that min is superpage aligned
419  */
420 void
421 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
422     vm_size_t size, bool superpage_align)
423 {
424 	int ret;
425 
426 	size = round_page(size);
427 
428 	*min = vm_map_min(parent);
429 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
430 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
431 	    MAP_ACC_NO_CHARGE);
432 	if (ret != KERN_SUCCESS)
433 		panic("kmem_subinit: bad status return of %d", ret);
434 	*max = *min + size;
435 	vm_map_init(map, vm_map_pmap(parent), *min, *max);
436 	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
437 		panic("kmem_subinit: unable to change range to submap");
438 }
439 
440 /*
441  *	kmem_malloc_domain:
442  *
443  *	Allocate wired-down pages in the kernel's address space.
444  */
445 static void *
446 kmem_malloc_domain(int domain, vm_size_t size, int flags)
447 {
448 	vmem_t *arena;
449 	vm_offset_t addr;
450 	vm_size_t asize;
451 	int rv;
452 
453 	if (__predict_true((flags & M_EXEC) == 0))
454 		arena = vm_dom[domain].vmd_kernel_arena;
455 	else
456 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
457 	asize = round_page(size);
458 	if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
459 		return (0);
460 
461 	rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
462 	if (rv != KERN_SUCCESS) {
463 		vmem_free(arena, addr, asize);
464 		return (0);
465 	}
466 	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
467 	return ((void *)addr);
468 }
469 
470 void *
471 kmem_malloc(vm_size_t size, int flags)
472 {
473 	void * p;
474 
475 	TSENTER();
476 	p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
477 	TSEXIT();
478 	return (p);
479 }
480 
481 void *
482 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
483 {
484 	struct vm_domainset_iter di;
485 	void *addr;
486 	int domain;
487 
488 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
489 	do {
490 		addr = kmem_malloc_domain(domain, size, flags);
491 		if (addr != NULL)
492 			break;
493 	} while (vm_domainset_iter_policy(&di, &domain) == 0);
494 
495 	return (addr);
496 }
497 
498 /*
499  *	kmem_back_domain:
500  *
501  *	Allocate physical pages from the specified domain for the specified
502  *	virtual address range.
503  */
504 int
505 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
506     vm_size_t size, int flags)
507 {
508 	vm_offset_t offset, i;
509 	vm_page_t m, mpred;
510 	vm_prot_t prot;
511 	int pflags;
512 
513 	KASSERT(object == kernel_object,
514 	    ("kmem_back_domain: only supports kernel object."));
515 
516 	offset = addr - VM_MIN_KERNEL_ADDRESS;
517 	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
518 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
519 	if (flags & M_WAITOK)
520 		pflags |= VM_ALLOC_WAITFAIL;
521 	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
522 
523 	i = 0;
524 	VM_OBJECT_WLOCK(object);
525 retry:
526 	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
527 	for (; i < size; i += PAGE_SIZE, mpred = m) {
528 		m = vm_page_alloc_domain_after(object, atop(offset + i),
529 		    domain, pflags, mpred);
530 
531 		/*
532 		 * Ran out of space, free everything up and return. Don't need
533 		 * to lock page queues here as we know that the pages we got
534 		 * aren't on any queues.
535 		 */
536 		if (m == NULL) {
537 			if ((flags & M_NOWAIT) == 0)
538 				goto retry;
539 			VM_OBJECT_WUNLOCK(object);
540 			kmem_unback(object, addr, i);
541 			return (KERN_NO_SPACE);
542 		}
543 		KASSERT(vm_page_domain(m) == domain,
544 		    ("kmem_back_domain: Domain mismatch %d != %d",
545 		    vm_page_domain(m), domain));
546 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
547 			pmap_zero_page(m);
548 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
549 		    ("kmem_malloc: page %p is managed", m));
550 		vm_page_valid(m);
551 		pmap_enter(kernel_pmap, addr + i, m, prot,
552 		    prot | PMAP_ENTER_WIRED, 0);
553 		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
554 			m->oflags |= VPO_KMEM_EXEC;
555 	}
556 	VM_OBJECT_WUNLOCK(object);
557 	kmem_alloc_san(addr, size, size, flags);
558 	return (KERN_SUCCESS);
559 }
560 
561 /*
562  *	kmem_back:
563  *
564  *	Allocate physical pages for the specified virtual address range.
565  */
566 int
567 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
568 {
569 	vm_offset_t end, next, start;
570 	int domain, rv;
571 
572 	KASSERT(object == kernel_object,
573 	    ("kmem_back: only supports kernel object."));
574 
575 	for (start = addr, end = addr + size; addr < end; addr = next) {
576 		/*
577 		 * We must ensure that pages backing a given large virtual page
578 		 * all come from the same physical domain.
579 		 */
580 		if (vm_ndomains > 1) {
581 			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
582 			while (VM_DOMAIN_EMPTY(domain))
583 				domain++;
584 			next = roundup2(addr + 1, KVA_QUANTUM);
585 			if (next > end || next < start)
586 				next = end;
587 		} else {
588 			domain = 0;
589 			next = end;
590 		}
591 		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
592 		if (rv != KERN_SUCCESS) {
593 			kmem_unback(object, start, addr - start);
594 			break;
595 		}
596 	}
597 	return (rv);
598 }
599 
600 /*
601  *	kmem_unback:
602  *
603  *	Unmap and free the physical pages underlying the specified virtual
604  *	address range.
605  *
606  *	A physical page must exist within the specified object at each index
607  *	that is being unmapped.
608  */
609 static struct vmem *
610 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
611 {
612 	struct vmem *arena;
613 	vm_page_t m, next;
614 	vm_offset_t end, offset;
615 	int domain;
616 
617 	KASSERT(object == kernel_object,
618 	    ("kmem_unback: only supports kernel object."));
619 
620 	if (size == 0)
621 		return (NULL);
622 	pmap_remove(kernel_pmap, addr, addr + size);
623 	offset = addr - VM_MIN_KERNEL_ADDRESS;
624 	end = offset + size;
625 	VM_OBJECT_WLOCK(object);
626 	m = vm_page_lookup(object, atop(offset));
627 	domain = vm_page_domain(m);
628 	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
629 		arena = vm_dom[domain].vmd_kernel_arena;
630 	else
631 		arena = vm_dom[domain].vmd_kernel_rwx_arena;
632 	for (; offset < end; offset += PAGE_SIZE, m = next) {
633 		next = vm_page_next(m);
634 		vm_page_xbusy_claim(m);
635 		vm_page_unwire_noq(m);
636 		vm_page_free(m);
637 	}
638 	VM_OBJECT_WUNLOCK(object);
639 
640 	return (arena);
641 }
642 
643 void
644 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
645 {
646 
647 	(void)_kmem_unback(object, addr, size);
648 }
649 
650 /*
651  *	kmem_free:
652  *
653  *	Free memory allocated with kmem_malloc.  The size must match the
654  *	original allocation.
655  */
656 void
657 kmem_free(void *addr, vm_size_t size)
658 {
659 	struct vmem *arena;
660 
661 	size = round_page(size);
662 	kasan_mark(addr, size, size, 0);
663 	arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
664 	if (arena != NULL)
665 		vmem_free(arena, (uintptr_t)addr, size);
666 }
667 
668 /*
669  *	kmap_alloc_wait:
670  *
671  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
672  *	has no room, the caller sleeps waiting for more memory in the submap.
673  *
674  *	This routine may block.
675  */
676 vm_offset_t
677 kmap_alloc_wait(vm_map_t map, vm_size_t size)
678 {
679 	vm_offset_t addr;
680 
681 	size = round_page(size);
682 	if (!swap_reserve(size))
683 		return (0);
684 
685 	for (;;) {
686 		/*
687 		 * To make this work for more than one map, use the map's lock
688 		 * to lock out sleepers/wakers.
689 		 */
690 		vm_map_lock(map);
691 		addr = vm_map_findspace(map, vm_map_min(map), size);
692 		if (addr + size <= vm_map_max(map))
693 			break;
694 		/* no space now; see if we can ever get space */
695 		if (vm_map_max(map) - vm_map_min(map) < size) {
696 			vm_map_unlock(map);
697 			swap_release(size);
698 			return (0);
699 		}
700 		map->needs_wakeup = TRUE;
701 		vm_map_unlock_and_wait(map, 0);
702 	}
703 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
704 	    MAP_ACC_CHARGED);
705 	vm_map_unlock(map);
706 	return (addr);
707 }
708 
709 /*
710  *	kmap_free_wakeup:
711  *
712  *	Returns memory to a submap of the kernel, and wakes up any processes
713  *	waiting for memory in that map.
714  */
715 void
716 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
717 {
718 
719 	vm_map_lock(map);
720 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
721 	if (map->needs_wakeup) {
722 		map->needs_wakeup = FALSE;
723 		vm_map_wakeup(map);
724 	}
725 	vm_map_unlock(map);
726 }
727 
728 void
729 kmem_init_zero_region(void)
730 {
731 	vm_offset_t addr, i;
732 	vm_page_t m;
733 
734 	/*
735 	 * Map a single physical page of zeros to a larger virtual range.
736 	 * This requires less looping in places that want large amounts of
737 	 * zeros, while not using much more physical resources.
738 	 */
739 	addr = kva_alloc(ZERO_REGION_SIZE);
740 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
741 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
742 		pmap_qenter(addr + i, &m, 1);
743 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
744 
745 	zero_region = (const void *)addr;
746 }
747 
748 /*
749  * Import KVA from the kernel map into the kernel arena.
750  */
751 static int
752 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
753 {
754 	vm_offset_t addr;
755 	int result;
756 
757 	TSENTER();
758 	KASSERT((size % KVA_QUANTUM) == 0,
759 	    ("kva_import: Size %jd is not a multiple of %d",
760 	    (intmax_t)size, (int)KVA_QUANTUM));
761 	addr = vm_map_min(kernel_map);
762 	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
763 	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
764 	if (result != KERN_SUCCESS) {
765 		TSEXIT();
766                 return (ENOMEM);
767 	}
768 
769 	*addrp = addr;
770 
771 	TSEXIT();
772 	return (0);
773 }
774 
775 /*
776  * Import KVA from a parent arena into a per-domain arena.  Imports must be
777  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
778  */
779 static int
780 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
781 {
782 
783 	KASSERT((size % KVA_QUANTUM) == 0,
784 	    ("kva_import_domain: Size %jd is not a multiple of %d",
785 	    (intmax_t)size, (int)KVA_QUANTUM));
786 	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
787 	    VMEM_ADDR_MAX, flags, addrp));
788 }
789 
790 /*
791  * 	kmem_init:
792  *
793  *	Create the kernel map; insert a mapping covering kernel text,
794  *	data, bss, and all space allocated thus far (`boostrap' data).  The
795  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
796  *	`start' as allocated, and the range between `start' and `end' as free.
797  *	Create the kernel vmem arena and its per-domain children.
798  */
799 void
800 kmem_init(vm_offset_t start, vm_offset_t end)
801 {
802 	vm_size_t quantum;
803 	int domain;
804 
805 	vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
806 	kernel_map->system_map = 1;
807 	vm_map_lock(kernel_map);
808 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
809 	(void)vm_map_insert(kernel_map, NULL, 0,
810 #ifdef __amd64__
811 	    KERNBASE,
812 #else
813 	    VM_MIN_KERNEL_ADDRESS,
814 #endif
815 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
816 	/* ... and ending with the completion of the above `insert' */
817 
818 #ifdef __amd64__
819 	/*
820 	 * Mark KVA used for the page array as allocated.  Other platforms
821 	 * that handle vm_page_array allocation can simply adjust virtual_avail
822 	 * instead.
823 	 */
824 	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
825 	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
826 	    sizeof(struct vm_page)),
827 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
828 #endif
829 	vm_map_unlock(kernel_map);
830 
831 	/*
832 	 * Use a large import quantum on NUMA systems.  This helps minimize
833 	 * interleaving of superpages, reducing internal fragmentation within
834 	 * the per-domain arenas.
835 	 */
836 	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
837 		quantum = KVA_NUMA_IMPORT_QUANTUM;
838 	else
839 		quantum = KVA_QUANTUM;
840 
841 	/*
842 	 * Initialize the kernel_arena.  This can grow on demand.
843 	 */
844 	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
845 	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
846 
847 	for (domain = 0; domain < vm_ndomains; domain++) {
848 		/*
849 		 * Initialize the per-domain arenas.  These are used to color
850 		 * the KVA space in a way that ensures that virtual large pages
851 		 * are backed by memory from the same physical domain,
852 		 * maximizing the potential for superpage promotion.
853 		 */
854 		vm_dom[domain].vmd_kernel_arena = vmem_create(
855 		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
856 		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
857 		    kva_import_domain, NULL, kernel_arena, quantum);
858 
859 		/*
860 		 * In architectures with superpages, maintain separate arenas
861 		 * for allocations with permissions that differ from the
862 		 * "standard" read/write permissions used for kernel memory,
863 		 * so as not to inhibit superpage promotion.
864 		 *
865 		 * Use the base import quantum since this arena is rarely used.
866 		 */
867 #if VM_NRESERVLEVEL > 0
868 		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
869 		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
870 		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
871 		    kva_import_domain, (vmem_release_t *)vmem_xfree,
872 		    kernel_arena, KVA_QUANTUM);
873 #else
874 		vm_dom[domain].vmd_kernel_rwx_arena =
875 		    vm_dom[domain].vmd_kernel_arena;
876 #endif
877 	}
878 
879 	/*
880 	 * This must be the very first call so that the virtual address
881 	 * space used for early allocations is properly marked used in
882 	 * the map.
883 	 */
884 	uma_startup2();
885 }
886 
887 /*
888  *	kmem_bootstrap_free:
889  *
890  *	Free pages backing preloaded data (e.g., kernel modules) to the
891  *	system.  Currently only supported on platforms that create a
892  *	vm_phys segment for preloaded data.
893  */
894 void
895 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
896 {
897 #if defined(__i386__) || defined(__amd64__)
898 	struct vm_domain *vmd;
899 	vm_offset_t end, va;
900 	vm_paddr_t pa;
901 	vm_page_t m;
902 
903 	end = trunc_page(start + size);
904 	start = round_page(start);
905 
906 #ifdef __amd64__
907 	/*
908 	 * Preloaded files do not have execute permissions by default on amd64.
909 	 * Restore the default permissions to ensure that the direct map alias
910 	 * is updated.
911 	 */
912 	pmap_change_prot(start, end - start, VM_PROT_RW);
913 #endif
914 	for (va = start; va < end; va += PAGE_SIZE) {
915 		pa = pmap_kextract(va);
916 		m = PHYS_TO_VM_PAGE(pa);
917 
918 		vmd = vm_pagequeue_domain(m);
919 		vm_domain_free_lock(vmd);
920 		vm_phys_free_pages(m, 0);
921 		vm_domain_free_unlock(vmd);
922 
923 		vm_domain_freecnt_inc(vmd, 1);
924 		vm_cnt.v_page_count++;
925 	}
926 	pmap_remove(kernel_pmap, start, end);
927 	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
928 #endif
929 }
930 
931 #ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
932 void
933 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
934 {
935 	struct thread *td;
936 	struct proc *p;
937 	struct vmspace *vm;
938 	int c;
939 
940 	CPU_ZERO(res);
941 	CPU_FOREACH(c) {
942 		td = cpuid_to_pcpu[c]->pc_curthread;
943 		p = td->td_proc;
944 		if (p == NULL)
945 			continue;
946 		vm = vmspace_acquire_ref(p);
947 		if (vm == NULL)
948 			continue;
949 		if (pmap == vmspace_pmap(vm))
950 			CPU_SET(c, res);
951 		vmspace_free(vm);
952 	}
953 }
954 #endif
955 
956 /*
957  * Allow userspace to directly trigger the VM drain routine for testing
958  * purposes.
959  */
960 static int
961 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
962 {
963 	int error, i;
964 
965 	i = 0;
966 	error = sysctl_handle_int(oidp, &i, 0, req);
967 	if (error != 0)
968 		return (error);
969 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
970 		return (EINVAL);
971 	if (i != 0)
972 		EVENTHANDLER_INVOKE(vm_lowmem, i);
973 	return (0);
974 }
975 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
976     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
977     "set to trigger vm_lowmem event with given flags");
978 
979 static int
980 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
981 {
982 	int error, i;
983 
984 	i = 0;
985 	error = sysctl_handle_int(oidp, &i, 0, req);
986 	if (error != 0 || req->newptr == NULL)
987 		return (error);
988 	if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
989 	    i != UMA_RECLAIM_DRAIN_CPU)
990 		return (EINVAL);
991 	uma_reclaim(i);
992 	return (0);
993 }
994 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
995     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
996     "set to generate request to reclaim uma caches");
997 
998 static int
999 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1000 {
1001 	int domain, error, request;
1002 
1003 	request = 0;
1004 	error = sysctl_handle_int(oidp, &request, 0, req);
1005 	if (error != 0 || req->newptr == NULL)
1006 		return (error);
1007 
1008 	domain = request >> 4;
1009 	request &= 0xf;
1010 	if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1011 	    request != UMA_RECLAIM_DRAIN_CPU)
1012 		return (EINVAL);
1013 	if (domain < 0 || domain >= vm_ndomains)
1014 		return (EINVAL);
1015 	uma_reclaim_domain(request, domain);
1016 	return (0);
1017 }
1018 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1019     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1020     debug_uma_reclaim_domain, "I",
1021     "");
1022