xref: /freebsd/sys/vm/vm_kern.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75 #include <sys/rwlock.h>
76 #include <sys/sysctl.h>
77 #include <sys/vmem.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_radix.h>
88 #include <vm/vm_extern.h>
89 #include <vm/uma.h>
90 
91 vm_map_t kernel_map;
92 vm_map_t exec_map;
93 vm_map_t pipe_map;
94 
95 const void *zero_region;
96 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
97 
98 /* NB: Used by kernel debuggers. */
99 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
100 
101 u_int exec_map_entry_size;
102 u_int exec_map_entries;
103 
104 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
105     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
106 
107 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
108 #if defined(__arm__) || defined(__sparc64__)
109     &vm_max_kernel_address, 0,
110 #else
111     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
112 #endif
113     "Max kernel address");
114 
115 /*
116  *	kva_alloc:
117  *
118  *	Allocate a virtual address range with no underlying object and
119  *	no initial mapping to physical memory.  Any mapping from this
120  *	range to physical memory must be explicitly created prior to
121  *	its use, typically with pmap_qenter().  Any attempt to create
122  *	a mapping on demand through vm_fault() will result in a panic.
123  */
124 vm_offset_t
125 kva_alloc(size)
126 	vm_size_t size;
127 {
128 	vm_offset_t addr;
129 
130 	size = round_page(size);
131 	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
132 		return (0);
133 
134 	return (addr);
135 }
136 
137 /*
138  *	kva_free:
139  *
140  *	Release a region of kernel virtual memory allocated
141  *	with kva_alloc, and return the physical pages
142  *	associated with that region.
143  *
144  *	This routine may not block on kernel maps.
145  */
146 void
147 kva_free(addr, size)
148 	vm_offset_t addr;
149 	vm_size_t size;
150 {
151 
152 	size = round_page(size);
153 	vmem_free(kernel_arena, addr, size);
154 }
155 
156 /*
157  *	Allocates a region from the kernel address map and physical pages
158  *	within the specified address range to the kernel object.  Creates a
159  *	wired mapping from this region to these pages, and returns the
160  *	region's starting virtual address.  The allocated pages are not
161  *	necessarily physically contiguous.  If M_ZERO is specified through the
162  *	given flags, then the pages are zeroed before they are mapped.
163  */
164 vm_offset_t
165 kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
166     vm_paddr_t high, vm_memattr_t memattr)
167 {
168 	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
169 	vm_offset_t addr, i, offset;
170 	vm_page_t m;
171 	int pflags, tries;
172 
173 	size = round_page(size);
174 	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
175 		return (0);
176 	offset = addr - VM_MIN_KERNEL_ADDRESS;
177 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
178 	VM_OBJECT_WLOCK(object);
179 	for (i = 0; i < size; i += PAGE_SIZE) {
180 		tries = 0;
181 retry:
182 		m = vm_page_alloc_contig(object, atop(offset + i),
183 		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
184 		if (m == NULL) {
185 			VM_OBJECT_WUNLOCK(object);
186 			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
187 				if (!vm_page_reclaim_contig(pflags, 1,
188 				    low, high, PAGE_SIZE, 0) &&
189 				    (flags & M_WAITOK) != 0)
190 					VM_WAIT;
191 				VM_OBJECT_WLOCK(object);
192 				tries++;
193 				goto retry;
194 			}
195 			kmem_unback(object, addr, i);
196 			vmem_free(vmem, addr, size);
197 			return (0);
198 		}
199 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
200 			pmap_zero_page(m);
201 		m->valid = VM_PAGE_BITS_ALL;
202 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
203 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
204 	}
205 	VM_OBJECT_WUNLOCK(object);
206 	return (addr);
207 }
208 
209 /*
210  *	Allocates a region from the kernel address map and physically
211  *	contiguous pages within the specified address range to the kernel
212  *	object.  Creates a wired mapping from this region to these pages, and
213  *	returns the region's starting virtual address.  If M_ZERO is specified
214  *	through the given flags, then the pages are zeroed before they are
215  *	mapped.
216  */
217 vm_offset_t
218 kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
219     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
220     vm_memattr_t memattr)
221 {
222 	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
223 	vm_offset_t addr, offset, tmp;
224 	vm_page_t end_m, m;
225 	u_long npages;
226 	int pflags, tries;
227 
228 	size = round_page(size);
229 	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
230 		return (0);
231 	offset = addr - VM_MIN_KERNEL_ADDRESS;
232 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
233 	npages = atop(size);
234 	VM_OBJECT_WLOCK(object);
235 	tries = 0;
236 retry:
237 	m = vm_page_alloc_contig(object, atop(offset), pflags,
238 	    npages, low, high, alignment, boundary, memattr);
239 	if (m == NULL) {
240 		VM_OBJECT_WUNLOCK(object);
241 		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
242 			if (!vm_page_reclaim_contig(pflags, npages, low, high,
243 			    alignment, boundary) && (flags & M_WAITOK) != 0)
244 				VM_WAIT;
245 			VM_OBJECT_WLOCK(object);
246 			tries++;
247 			goto retry;
248 		}
249 		vmem_free(vmem, addr, size);
250 		return (0);
251 	}
252 	end_m = m + npages;
253 	tmp = addr;
254 	for (; m < end_m; m++) {
255 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
256 			pmap_zero_page(m);
257 		m->valid = VM_PAGE_BITS_ALL;
258 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
259 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
260 		tmp += PAGE_SIZE;
261 	}
262 	VM_OBJECT_WUNLOCK(object);
263 	return (addr);
264 }
265 
266 /*
267  *	kmem_suballoc:
268  *
269  *	Allocates a map to manage a subrange
270  *	of the kernel virtual address space.
271  *
272  *	Arguments are as follows:
273  *
274  *	parent		Map to take range from
275  *	min, max	Returned endpoints of map
276  *	size		Size of range to find
277  *	superpage_align	Request that min is superpage aligned
278  */
279 vm_map_t
280 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
281     vm_size_t size, boolean_t superpage_align)
282 {
283 	int ret;
284 	vm_map_t result;
285 
286 	size = round_page(size);
287 
288 	*min = vm_map_min(parent);
289 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
290 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
291 	    MAP_ACC_NO_CHARGE);
292 	if (ret != KERN_SUCCESS)
293 		panic("kmem_suballoc: bad status return of %d", ret);
294 	*max = *min + size;
295 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
296 	if (result == NULL)
297 		panic("kmem_suballoc: cannot create submap");
298 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
299 		panic("kmem_suballoc: unable to change range to submap");
300 	return (result);
301 }
302 
303 /*
304  *	kmem_malloc:
305  *
306  *	Allocate wired-down pages in the kernel's address space.
307  */
308 vm_offset_t
309 kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
310 {
311 	vm_offset_t addr;
312 	int rv;
313 
314 	size = round_page(size);
315 	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
316 		return (0);
317 
318 	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
319 	    addr, size, flags);
320 	if (rv != KERN_SUCCESS) {
321 		vmem_free(vmem, addr, size);
322 		return (0);
323 	}
324 	return (addr);
325 }
326 
327 /*
328  *	kmem_back:
329  *
330  *	Allocate physical pages for the specified virtual address range.
331  */
332 int
333 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
334 {
335 	vm_offset_t offset, i;
336 	vm_page_t m, mpred;
337 	int pflags;
338 
339 	KASSERT(object == kmem_object || object == kernel_object,
340 	    ("kmem_back: only supports kernel objects."));
341 
342 	offset = addr - VM_MIN_KERNEL_ADDRESS;
343 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
344 
345 	i = 0;
346 retry:
347 	VM_OBJECT_WLOCK(object);
348 	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
349 	for (; i < size; i += PAGE_SIZE, mpred = m) {
350 		m = vm_page_alloc_after(object, atop(offset + i), pflags,
351 		    mpred);
352 
353 		/*
354 		 * Ran out of space, free everything up and return. Don't need
355 		 * to lock page queues here as we know that the pages we got
356 		 * aren't on any queues.
357 		 */
358 		if (m == NULL) {
359 			VM_OBJECT_WUNLOCK(object);
360 			if ((flags & M_NOWAIT) == 0) {
361 				VM_WAIT;
362 				goto retry;
363 			}
364 			kmem_unback(object, addr, i);
365 			return (KERN_NO_SPACE);
366 		}
367 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
368 			pmap_zero_page(m);
369 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
370 		    ("kmem_malloc: page %p is managed", m));
371 		m->valid = VM_PAGE_BITS_ALL;
372 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
373 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
374 	}
375 	VM_OBJECT_WUNLOCK(object);
376 
377 	return (KERN_SUCCESS);
378 }
379 
380 /*
381  *	kmem_unback:
382  *
383  *	Unmap and free the physical pages underlying the specified virtual
384  *	address range.
385  *
386  *	A physical page must exist within the specified object at each index
387  *	that is being unmapped.
388  */
389 void
390 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
391 {
392 	vm_page_t m, next;
393 	vm_offset_t end, offset;
394 
395 	KASSERT(object == kmem_object || object == kernel_object,
396 	    ("kmem_unback: only supports kernel objects."));
397 
398 	pmap_remove(kernel_pmap, addr, addr + size);
399 	offset = addr - VM_MIN_KERNEL_ADDRESS;
400 	end = offset + size;
401 	VM_OBJECT_WLOCK(object);
402 	for (m = vm_page_lookup(object, atop(offset)); offset < end;
403 	    offset += PAGE_SIZE, m = next) {
404 		next = vm_page_next(m);
405 		vm_page_unwire(m, PQ_NONE);
406 		vm_page_free(m);
407 	}
408 	VM_OBJECT_WUNLOCK(object);
409 }
410 
411 /*
412  *	kmem_free:
413  *
414  *	Free memory allocated with kmem_malloc.  The size must match the
415  *	original allocation.
416  */
417 void
418 kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
419 {
420 
421 	size = round_page(size);
422 	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
423 	    addr, size);
424 	vmem_free(vmem, addr, size);
425 }
426 
427 /*
428  *	kmap_alloc_wait:
429  *
430  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
431  *	has no room, the caller sleeps waiting for more memory in the submap.
432  *
433  *	This routine may block.
434  */
435 vm_offset_t
436 kmap_alloc_wait(map, size)
437 	vm_map_t map;
438 	vm_size_t size;
439 {
440 	vm_offset_t addr;
441 
442 	size = round_page(size);
443 	if (!swap_reserve(size))
444 		return (0);
445 
446 	for (;;) {
447 		/*
448 		 * To make this work for more than one map, use the map's lock
449 		 * to lock out sleepers/wakers.
450 		 */
451 		vm_map_lock(map);
452 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
453 			break;
454 		/* no space now; see if we can ever get space */
455 		if (vm_map_max(map) - vm_map_min(map) < size) {
456 			vm_map_unlock(map);
457 			swap_release(size);
458 			return (0);
459 		}
460 		map->needs_wakeup = TRUE;
461 		vm_map_unlock_and_wait(map, 0);
462 	}
463 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
464 	    VM_PROT_ALL, MAP_ACC_CHARGED);
465 	vm_map_unlock(map);
466 	return (addr);
467 }
468 
469 /*
470  *	kmap_free_wakeup:
471  *
472  *	Returns memory to a submap of the kernel, and wakes up any processes
473  *	waiting for memory in that map.
474  */
475 void
476 kmap_free_wakeup(map, addr, size)
477 	vm_map_t map;
478 	vm_offset_t addr;
479 	vm_size_t size;
480 {
481 
482 	vm_map_lock(map);
483 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
484 	if (map->needs_wakeup) {
485 		map->needs_wakeup = FALSE;
486 		vm_map_wakeup(map);
487 	}
488 	vm_map_unlock(map);
489 }
490 
491 void
492 kmem_init_zero_region(void)
493 {
494 	vm_offset_t addr, i;
495 	vm_page_t m;
496 
497 	/*
498 	 * Map a single physical page of zeros to a larger virtual range.
499 	 * This requires less looping in places that want large amounts of
500 	 * zeros, while not using much more physical resources.
501 	 */
502 	addr = kva_alloc(ZERO_REGION_SIZE);
503 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
504 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
505 	if ((m->flags & PG_ZERO) == 0)
506 		pmap_zero_page(m);
507 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
508 		pmap_qenter(addr + i, &m, 1);
509 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
510 
511 	zero_region = (const void *)addr;
512 }
513 
514 /*
515  * 	kmem_init:
516  *
517  *	Create the kernel map; insert a mapping covering kernel text,
518  *	data, bss, and all space allocated thus far (`boostrap' data).  The
519  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
520  *	`start' as allocated, and the range between `start' and `end' as free.
521  */
522 void
523 kmem_init(start, end)
524 	vm_offset_t start, end;
525 {
526 	vm_map_t m;
527 
528 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
529 	m->system_map = 1;
530 	vm_map_lock(m);
531 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
532 	kernel_map = m;
533 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
534 #ifdef __amd64__
535 	    KERNBASE,
536 #else
537 	    VM_MIN_KERNEL_ADDRESS,
538 #endif
539 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
540 	/* ... and ending with the completion of the above `insert' */
541 	vm_map_unlock(m);
542 }
543 
544 #ifdef DIAGNOSTIC
545 /*
546  * Allow userspace to directly trigger the VM drain routine for testing
547  * purposes.
548  */
549 static int
550 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
551 {
552 	int error, i;
553 
554 	i = 0;
555 	error = sysctl_handle_int(oidp, &i, 0, req);
556 	if (error)
557 		return (error);
558 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
559 		return (EINVAL);
560 	if (i != 0)
561 		EVENTHANDLER_INVOKE(vm_lowmem, i);
562 	return (0);
563 }
564 
565 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
566     debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
567 #endif
568