1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <sys/lock.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pageout.h> 84 #include <vm/vm_extern.h> 85 86 vm_map_t kernel_map=0; 87 vm_map_t kmem_map=0; 88 vm_map_t exec_map=0; 89 vm_map_t clean_map=0; 90 vm_map_t buffer_map=0; 91 vm_map_t mb_map=0; 92 int mb_map_full=0; 93 94 /* 95 * kmem_alloc_pageable: 96 * 97 * Allocate pageable memory to the kernel's address map. 98 * "map" must be kernel_map or a submap of kernel_map. 99 */ 100 101 vm_offset_t 102 kmem_alloc_pageable(map, size) 103 vm_map_t map; 104 register vm_size_t size; 105 { 106 vm_offset_t addr; 107 register int result; 108 109 size = round_page(size); 110 addr = vm_map_min(map); 111 result = vm_map_find(map, NULL, (vm_offset_t) 0, 112 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 113 if (result != KERN_SUCCESS) { 114 return (0); 115 } 116 return (addr); 117 } 118 119 /* 120 * kmem_alloc_nofault: 121 * 122 * Same as kmem_alloc_pageable, except that it create a nofault entry. 123 */ 124 125 vm_offset_t 126 kmem_alloc_nofault(map, size) 127 vm_map_t map; 128 register vm_size_t size; 129 { 130 vm_offset_t addr; 131 register int result; 132 133 size = round_page(size); 134 addr = vm_map_min(map); 135 result = vm_map_find(map, NULL, (vm_offset_t) 0, 136 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 137 if (result != KERN_SUCCESS) { 138 return (0); 139 } 140 return (addr); 141 } 142 143 /* 144 * Allocate wired-down memory in the kernel's address map 145 * or a submap. 146 */ 147 vm_offset_t 148 kmem_alloc(map, size) 149 register vm_map_t map; 150 register vm_size_t size; 151 { 152 vm_offset_t addr; 153 register vm_offset_t offset; 154 vm_offset_t i; 155 156 size = round_page(size); 157 158 /* 159 * Use the kernel object for wired-down kernel pages. Assume that no 160 * region of the kernel object is referenced more than once. 161 */ 162 163 /* 164 * Locate sufficient space in the map. This will give us the final 165 * virtual address for the new memory, and thus will tell us the 166 * offset within the kernel map. 167 */ 168 vm_map_lock(map); 169 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 170 vm_map_unlock(map); 171 return (0); 172 } 173 offset = addr - VM_MIN_KERNEL_ADDRESS; 174 vm_object_reference(kernel_object); 175 vm_map_insert(map, kernel_object, offset, addr, addr + size, 176 VM_PROT_ALL, VM_PROT_ALL, 0); 177 vm_map_unlock(map); 178 179 /* 180 * Guarantee that there are pages already in this object before 181 * calling vm_map_pageable. This is to prevent the following 182 * scenario: 183 * 184 * 1) Threads have swapped out, so that there is a pager for the 185 * kernel_object. 2) The kmsg zone is empty, and so we are 186 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 187 * there is no page, but there is a pager, so we call 188 * pager_data_request. But the kmsg zone is empty, so we must 189 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 190 * we get the data back from the pager, it will be (very stale) 191 * non-zero data. kmem_alloc is defined to return zero-filled memory. 192 * 193 * We're intentionally not activating the pages we allocate to prevent a 194 * race with page-out. vm_map_pageable will wire the pages. 195 */ 196 197 for (i = 0; i < size; i += PAGE_SIZE) { 198 vm_page_t mem; 199 200 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 201 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 202 if ((mem->flags & PG_ZERO) == 0) 203 vm_page_zero_fill(mem); 204 mem->valid = VM_PAGE_BITS_ALL; 205 vm_page_flag_clear(mem, PG_ZERO); 206 vm_page_wakeup(mem); 207 } 208 209 /* 210 * And finally, mark the data as non-pageable. 211 */ 212 213 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 214 215 return (addr); 216 } 217 218 /* 219 * kmem_free: 220 * 221 * Release a region of kernel virtual memory allocated 222 * with kmem_alloc, and return the physical pages 223 * associated with that region. 224 * 225 * This routine may not block on kernel maps. 226 */ 227 void 228 kmem_free(map, addr, size) 229 vm_map_t map; 230 register vm_offset_t addr; 231 vm_size_t size; 232 { 233 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 234 } 235 236 /* 237 * kmem_suballoc: 238 * 239 * Allocates a map to manage a subrange 240 * of the kernel virtual address space. 241 * 242 * Arguments are as follows: 243 * 244 * parent Map to take range from 245 * size Size of range to find 246 * min, max Returned endpoints of map 247 * pageable Can the region be paged 248 */ 249 vm_map_t 250 kmem_suballoc(parent, min, max, size) 251 register vm_map_t parent; 252 vm_offset_t *min, *max; 253 register vm_size_t size; 254 { 255 register int ret; 256 vm_map_t result; 257 258 size = round_page(size); 259 260 *min = (vm_offset_t) vm_map_min(parent); 261 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 262 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 263 if (ret != KERN_SUCCESS) { 264 printf("kmem_suballoc: bad status return of %d.\n", ret); 265 panic("kmem_suballoc"); 266 } 267 *max = *min + size; 268 pmap_reference(vm_map_pmap(parent)); 269 result = vm_map_create(vm_map_pmap(parent), *min, *max); 270 if (result == NULL) 271 panic("kmem_suballoc: cannot create submap"); 272 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS) 273 panic("kmem_suballoc: unable to change range to submap"); 274 return (result); 275 } 276 277 /* 278 * kmem_malloc: 279 * 280 * Allocate wired-down memory in the kernel's address map for the higher 281 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 282 * kmem_alloc() because we may need to allocate memory at interrupt 283 * level where we cannot block (canwait == FALSE). 284 * 285 * This routine has its own private kernel submap (kmem_map) and object 286 * (kmem_object). This, combined with the fact that only malloc uses 287 * this routine, ensures that we will never block in map or object waits. 288 * 289 * Note that this still only works in a uni-processor environment and 290 * when called at splhigh(). 291 * 292 * We don't worry about expanding the map (adding entries) since entries 293 * for wired maps are statically allocated. 294 * 295 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 296 * I have not verified that it actually does not block. 297 */ 298 vm_offset_t 299 kmem_malloc(map, size, flags) 300 register vm_map_t map; 301 register vm_size_t size; 302 int flags; 303 { 304 register vm_offset_t offset, i; 305 vm_map_entry_t entry; 306 vm_offset_t addr; 307 vm_page_t m; 308 309 if (map != kmem_map && map != mb_map) 310 panic("kmem_malloc: map != {kmem,mb}_map"); 311 312 size = round_page(size); 313 addr = vm_map_min(map); 314 315 /* 316 * Locate sufficient space in the map. This will give us the final 317 * virtual address for the new memory, and thus will tell us the 318 * offset within the kernel map. 319 */ 320 vm_map_lock(map); 321 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 322 vm_map_unlock(map); 323 if (map == mb_map) { 324 mb_map_full = TRUE; 325 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n"); 326 return (0); 327 } 328 if ((flags & M_NOWAIT) == 0) 329 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 330 (long)size, (long)map->size); 331 return (0); 332 } 333 offset = addr - VM_MIN_KERNEL_ADDRESS; 334 vm_object_reference(kmem_object); 335 vm_map_insert(map, kmem_object, offset, addr, addr + size, 336 VM_PROT_ALL, VM_PROT_ALL, 0); 337 338 for (i = 0; i < size; i += PAGE_SIZE) { 339 /* 340 * Note: if M_NOWAIT specified alone, allocate from 341 * interrupt-safe queues only (just the free list). If 342 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 343 * allocate from the cache. Neither of the latter two 344 * flags may be specified from an interrupt since interrupts 345 * are not allowed to mess with the cache queue. 346 */ 347 retry: 348 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 349 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 350 VM_ALLOC_INTERRUPT : 351 VM_ALLOC_SYSTEM); 352 353 /* 354 * Ran out of space, free everything up and return. Don't need 355 * to lock page queues here as we know that the pages we got 356 * aren't on any queues. 357 */ 358 if (m == NULL) { 359 if ((flags & M_NOWAIT) == 0) { 360 vm_map_unlock(map); 361 VM_WAIT; 362 vm_map_lock(map); 363 goto retry; 364 } 365 vm_map_delete(map, addr, addr + size); 366 vm_map_unlock(map); 367 if (flags & M_ASLEEP) { 368 VM_AWAIT; 369 } 370 return (0); 371 } 372 vm_page_flag_clear(m, PG_ZERO); 373 m->valid = VM_PAGE_BITS_ALL; 374 } 375 376 /* 377 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 378 * be able to extend the previous entry so there will be a new entry 379 * exactly corresponding to this address range and it will have 380 * wired_count == 0. 381 */ 382 if (!vm_map_lookup_entry(map, addr, &entry) || 383 entry->start != addr || entry->end != addr + size || 384 entry->wired_count != 0) 385 panic("kmem_malloc: entry not found or misaligned"); 386 entry->wired_count = 1; 387 388 vm_map_simplify_entry(map, entry); 389 390 /* 391 * Loop thru pages, entering them in the pmap. (We cannot add them to 392 * the wired count without wrapping the vm_page_queue_lock in 393 * splimp...) 394 */ 395 for (i = 0; i < size; i += PAGE_SIZE) { 396 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 397 vm_page_wire(m); 398 vm_page_wakeup(m); 399 /* 400 * Because this is kernel_pmap, this call will not block. 401 */ 402 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m), 403 VM_PROT_ALL, 1); 404 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 405 } 406 vm_map_unlock(map); 407 408 return (addr); 409 } 410 411 /* 412 * kmem_alloc_wait: 413 * 414 * Allocates pageable memory from a sub-map of the kernel. If the submap 415 * has no room, the caller sleeps waiting for more memory in the submap. 416 * 417 * This routine may block. 418 */ 419 420 vm_offset_t 421 kmem_alloc_wait(map, size) 422 vm_map_t map; 423 vm_size_t size; 424 { 425 vm_offset_t addr; 426 427 size = round_page(size); 428 429 for (;;) { 430 /* 431 * To make this work for more than one map, use the map's lock 432 * to lock out sleepers/wakers. 433 */ 434 vm_map_lock(map); 435 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 436 break; 437 /* no space now; see if we can ever get space */ 438 if (vm_map_max(map) - vm_map_min(map) < size) { 439 vm_map_unlock(map); 440 return (0); 441 } 442 vm_map_unlock(map); 443 tsleep(map, PVM, "kmaw", 0); 444 } 445 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 446 vm_map_unlock(map); 447 return (addr); 448 } 449 450 /* 451 * kmem_free_wakeup: 452 * 453 * Returns memory to a submap of the kernel, and wakes up any processes 454 * waiting for memory in that map. 455 */ 456 void 457 kmem_free_wakeup(map, addr, size) 458 vm_map_t map; 459 vm_offset_t addr; 460 vm_size_t size; 461 { 462 vm_map_lock(map); 463 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 464 wakeup(map); 465 vm_map_unlock(map); 466 } 467 468 /* 469 * kmem_init: 470 * 471 * Create the kernel map; insert a mapping covering kernel text, 472 * data, bss, and all space allocated thus far (`boostrap' data). The 473 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 474 * `start' as allocated, and the range between `start' and `end' as free. 475 */ 476 477 void 478 kmem_init(start, end) 479 vm_offset_t start, end; 480 { 481 register vm_map_t m; 482 483 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 484 vm_map_lock(m); 485 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 486 kernel_map = m; 487 kernel_map->system_map = 1; 488 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 489 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 490 /* ... and ending with the completion of the above `insert' */ 491 vm_map_unlock(m); 492 } 493 494