xref: /freebsd/sys/vm/vm_kern.c (revision 7ef6ba5d27fdecaea9bd3c03940c3ef29f081c02)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/vm_extern.h>
84 
85 vm_map_t kernel_map=0;
86 vm_map_t kmem_map=0;
87 vm_map_t exec_map=0;
88 vm_map_t pipe_map;
89 vm_map_t buffer_map=0;
90 
91 /*
92  *	kmem_alloc_pageable:
93  *
94  *	Allocate pageable memory to the kernel's address map.
95  *	"map" must be kernel_map or a submap of kernel_map.
96  */
97 vm_offset_t
98 kmem_alloc_pageable(map, size)
99 	vm_map_t map;
100 	vm_size_t size;
101 {
102 	vm_offset_t addr;
103 	int result;
104 
105 	size = round_page(size);
106 	addr = vm_map_min(map);
107 	result = vm_map_find(map, NULL, 0,
108 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
109 	if (result != KERN_SUCCESS) {
110 		return (0);
111 	}
112 	return (addr);
113 }
114 
115 /*
116  *	kmem_alloc_nofault:
117  *
118  *	Allocate a virtual address range with no underlying object and
119  *	no initial mapping to physical memory.  Any mapping from this
120  *	range to physical memory must be explicitly created prior to
121  *	its use, typically with pmap_qenter().  Any attempt to create
122  *	a mapping on demand through vm_fault() will result in a panic.
123  */
124 vm_offset_t
125 kmem_alloc_nofault(map, size)
126 	vm_map_t map;
127 	vm_size_t size;
128 {
129 	vm_offset_t addr;
130 	int result;
131 
132 	size = round_page(size);
133 	addr = vm_map_min(map);
134 	result = vm_map_find(map, NULL, 0,
135 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
136 	if (result != KERN_SUCCESS) {
137 		return (0);
138 	}
139 	return (addr);
140 }
141 
142 /*
143  *	Allocate wired-down memory in the kernel's address map
144  *	or a submap.
145  */
146 vm_offset_t
147 kmem_alloc(map, size)
148 	vm_map_t map;
149 	vm_size_t size;
150 {
151 	vm_offset_t addr;
152 	vm_offset_t offset;
153 	vm_offset_t i;
154 
155 	size = round_page(size);
156 
157 	/*
158 	 * Use the kernel object for wired-down kernel pages. Assume that no
159 	 * region of the kernel object is referenced more than once.
160 	 */
161 
162 	/*
163 	 * Locate sufficient space in the map.  This will give us the final
164 	 * virtual address for the new memory, and thus will tell us the
165 	 * offset within the kernel map.
166 	 */
167 	vm_map_lock(map);
168 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
169 		vm_map_unlock(map);
170 		return (0);
171 	}
172 	offset = addr - VM_MIN_KERNEL_ADDRESS;
173 	vm_object_reference(kernel_object);
174 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
175 		VM_PROT_ALL, VM_PROT_ALL, 0);
176 	vm_map_unlock(map);
177 
178 	/*
179 	 * Guarantee that there are pages already in this object before
180 	 * calling vm_map_wire.  This is to prevent the following
181 	 * scenario:
182 	 *
183 	 * 1) Threads have swapped out, so that there is a pager for the
184 	 * kernel_object. 2) The kmsg zone is empty, and so we are
185 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
186 	 * there is no page, but there is a pager, so we call
187 	 * pager_data_request.  But the kmsg zone is empty, so we must
188 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
189 	 * we get the data back from the pager, it will be (very stale)
190 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
191 	 *
192 	 * We're intentionally not activating the pages we allocate to prevent a
193 	 * race with page-out.  vm_map_wire will wire the pages.
194 	 */
195 	VM_OBJECT_LOCK(kernel_object);
196 	for (i = 0; i < size; i += PAGE_SIZE) {
197 		vm_page_t mem;
198 
199 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201 		mem->valid = VM_PAGE_BITS_ALL;
202 		vm_page_lock_queues();
203 		vm_page_unmanage(mem);
204 		vm_page_wakeup(mem);
205 		vm_page_unlock_queues();
206 	}
207 	VM_OBJECT_UNLOCK(kernel_object);
208 
209 	/*
210 	 * And finally, mark the data as non-pageable.
211 	 */
212 	(void) vm_map_wire(map, addr, addr + size,
213 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
214 
215 	return (addr);
216 }
217 
218 /*
219  *	kmem_free:
220  *
221  *	Release a region of kernel virtual memory allocated
222  *	with kmem_alloc, and return the physical pages
223  *	associated with that region.
224  *
225  *	This routine may not block on kernel maps.
226  */
227 void
228 kmem_free(map, addr, size)
229 	vm_map_t map;
230 	vm_offset_t addr;
231 	vm_size_t size;
232 {
233 
234 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235 }
236 
237 /*
238  *	kmem_suballoc:
239  *
240  *	Allocates a map to manage a subrange
241  *	of the kernel virtual address space.
242  *
243  *	Arguments are as follows:
244  *
245  *	parent		Map to take range from
246  *	min, max	Returned endpoints of map
247  *	size		Size of range to find
248  */
249 vm_map_t
250 kmem_suballoc(parent, min, max, size)
251 	vm_map_t parent;
252 	vm_offset_t *min, *max;
253 	vm_size_t size;
254 {
255 	int ret;
256 	vm_map_t result;
257 
258 	size = round_page(size);
259 
260 	*min = (vm_offset_t) vm_map_min(parent);
261 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
262 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
263 	if (ret != KERN_SUCCESS) {
264 		printf("kmem_suballoc: bad status return of %d.\n", ret);
265 		panic("kmem_suballoc");
266 	}
267 	*max = *min + size;
268 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
269 	if (result == NULL)
270 		panic("kmem_suballoc: cannot create submap");
271 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
272 		panic("kmem_suballoc: unable to change range to submap");
273 	return (result);
274 }
275 
276 /*
277  *	kmem_malloc:
278  *
279  * 	Allocate wired-down memory in the kernel's address map for the higher
280  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
281  * 	kmem_alloc() because we may need to allocate memory at interrupt
282  * 	level where we cannot block (canwait == FALSE).
283  *
284  * 	This routine has its own private kernel submap (kmem_map) and object
285  * 	(kmem_object).  This, combined with the fact that only malloc uses
286  * 	this routine, ensures that we will never block in map or object waits.
287  *
288  * 	Note that this still only works in a uni-processor environment and
289  * 	when called at splhigh().
290  *
291  * 	We don't worry about expanding the map (adding entries) since entries
292  * 	for wired maps are statically allocated.
293  *
294  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
295  *	I have not verified that it actually does not block.
296  *
297  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
298  *	which we never free.
299  */
300 vm_offset_t
301 kmem_malloc(map, size, flags)
302 	vm_map_t map;
303 	vm_size_t size;
304 	int flags;
305 {
306 	vm_offset_t offset, i;
307 	vm_map_entry_t entry;
308 	vm_offset_t addr;
309 	vm_page_t m;
310 	int pflags;
311 
312 	size = round_page(size);
313 	addr = vm_map_min(map);
314 
315 	/*
316 	 * Locate sufficient space in the map.  This will give us the final
317 	 * virtual address for the new memory, and thus will tell us the
318 	 * offset within the kernel map.
319 	 */
320 	vm_map_lock(map);
321 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
322 		vm_map_unlock(map);
323 		if (map != kmem_map) {
324 			static int last_report; /* when we did it (in ticks) */
325 			if (ticks < last_report ||
326 			    (ticks - last_report) >= hz) {
327 				last_report = ticks;
328 				printf("Out of mbuf address space!\n");
329 				printf("Consider increasing NMBCLUSTERS\n");
330 			}
331 			return (0);
332 		}
333 		if ((flags & M_NOWAIT) == 0)
334 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
335 				(long)size, (long)map->size);
336 		return (0);
337 	}
338 	offset = addr - VM_MIN_KERNEL_ADDRESS;
339 	vm_object_reference(kmem_object);
340 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
341 		VM_PROT_ALL, VM_PROT_ALL, 0);
342 
343 	/*
344 	 * Note: if M_NOWAIT specified alone, allocate from
345 	 * interrupt-safe queues only (just the free list).  If
346 	 * M_USE_RESERVE is also specified, we can also
347 	 * allocate from the cache.  Neither of the latter two
348 	 * flags may be specified from an interrupt since interrupts
349 	 * are not allowed to mess with the cache queue.
350 	 */
351 
352 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
353 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
354 	else
355 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
356 
357 	if (flags & M_ZERO)
358 		pflags |= VM_ALLOC_ZERO;
359 
360 	VM_OBJECT_LOCK(kmem_object);
361 	for (i = 0; i < size; i += PAGE_SIZE) {
362 retry:
363 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
364 
365 		/*
366 		 * Ran out of space, free everything up and return. Don't need
367 		 * to lock page queues here as we know that the pages we got
368 		 * aren't on any queues.
369 		 */
370 		if (m == NULL) {
371 			if ((flags & M_NOWAIT) == 0) {
372 				VM_OBJECT_UNLOCK(kmem_object);
373 				vm_map_unlock(map);
374 				VM_WAIT;
375 				vm_map_lock(map);
376 				VM_OBJECT_LOCK(kmem_object);
377 				goto retry;
378 			}
379 			/*
380 			 * Free the pages before removing the map entry.
381 			 * They are already marked busy.  Calling
382 			 * vm_map_delete before the pages has been freed or
383 			 * unbusied will cause a deadlock.
384 			 */
385 			while (i != 0) {
386 				i -= PAGE_SIZE;
387 				m = vm_page_lookup(kmem_object,
388 						   OFF_TO_IDX(offset + i));
389 				vm_page_lock_queues();
390 				vm_page_unwire(m, 0);
391 				vm_page_free(m);
392 				vm_page_unlock_queues();
393 			}
394 			VM_OBJECT_UNLOCK(kmem_object);
395 			vm_map_delete(map, addr, addr + size);
396 			vm_map_unlock(map);
397 			return (0);
398 		}
399 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
400 			pmap_zero_page(m);
401 		m->valid = VM_PAGE_BITS_ALL;
402 		vm_page_lock_queues();
403 		vm_page_unmanage(m);
404 		vm_page_unlock_queues();
405 	}
406 	VM_OBJECT_UNLOCK(kmem_object);
407 
408 	/*
409 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
410 	 * be able to extend the previous entry so there will be a new entry
411 	 * exactly corresponding to this address range and it will have
412 	 * wired_count == 0.
413 	 */
414 	if (!vm_map_lookup_entry(map, addr, &entry) ||
415 	    entry->start != addr || entry->end != addr + size ||
416 	    entry->wired_count != 0)
417 		panic("kmem_malloc: entry not found or misaligned");
418 	entry->wired_count = 1;
419 
420 	/*
421 	 * At this point, the kmem_object must be unlocked because
422 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
423 	 * locks the kmem_object.
424 	 */
425 	vm_map_simplify_entry(map, entry);
426 
427 	/*
428 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
429 	 * the wired count without wrapping the vm_page_queue_lock in
430 	 * splimp...)
431 	 */
432 	VM_OBJECT_LOCK(kmem_object);
433 	for (i = 0; i < size; i += PAGE_SIZE) {
434 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
435 		/*
436 		 * Because this is kernel_pmap, this call will not block.
437 		 */
438 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
439 		vm_page_lock_queues();
440 		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
441 		vm_page_wakeup(m);
442 		vm_page_unlock_queues();
443 	}
444 	VM_OBJECT_UNLOCK(kmem_object);
445 	vm_map_unlock(map);
446 
447 	return (addr);
448 }
449 
450 /*
451  *	kmem_alloc_wait:
452  *
453  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
454  *	has no room, the caller sleeps waiting for more memory in the submap.
455  *
456  *	This routine may block.
457  */
458 vm_offset_t
459 kmem_alloc_wait(map, size)
460 	vm_map_t map;
461 	vm_size_t size;
462 {
463 	vm_offset_t addr;
464 
465 	size = round_page(size);
466 
467 	for (;;) {
468 		/*
469 		 * To make this work for more than one map, use the map's lock
470 		 * to lock out sleepers/wakers.
471 		 */
472 		vm_map_lock(map);
473 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
474 			break;
475 		/* no space now; see if we can ever get space */
476 		if (vm_map_max(map) - vm_map_min(map) < size) {
477 			vm_map_unlock(map);
478 			return (0);
479 		}
480 		map->needs_wakeup = TRUE;
481 		vm_map_unlock_and_wait(map, FALSE);
482 	}
483 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
484 	vm_map_unlock(map);
485 	return (addr);
486 }
487 
488 /*
489  *	kmem_free_wakeup:
490  *
491  *	Returns memory to a submap of the kernel, and wakes up any processes
492  *	waiting for memory in that map.
493  */
494 void
495 kmem_free_wakeup(map, addr, size)
496 	vm_map_t map;
497 	vm_offset_t addr;
498 	vm_size_t size;
499 {
500 
501 	vm_map_lock(map);
502 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
503 	if (map->needs_wakeup) {
504 		map->needs_wakeup = FALSE;
505 		vm_map_wakeup(map);
506 	}
507 	vm_map_unlock(map);
508 }
509 
510 /*
511  * 	kmem_init:
512  *
513  *	Create the kernel map; insert a mapping covering kernel text,
514  *	data, bss, and all space allocated thus far (`boostrap' data).  The
515  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
516  *	`start' as allocated, and the range between `start' and `end' as free.
517  */
518 void
519 kmem_init(start, end)
520 	vm_offset_t start, end;
521 {
522 	vm_map_t m;
523 
524 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
525 	m->system_map = 1;
526 	vm_map_lock(m);
527 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
528 	kernel_map = m;
529 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
530 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
531 	/* ... and ending with the completion of the above `insert' */
532 	vm_map_unlock(m);
533 }
534