xref: /freebsd/sys/vm/vm_kern.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>		/* for ticks and hz */
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_extern.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t clean_map=0;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	size = round_page(size);
109 	addr = vm_map_min(map);
110 	result = vm_map_find(map, NULL, 0,
111 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
112 	if (result != KERN_SUCCESS) {
113 		return (0);
114 	}
115 	return (addr);
116 }
117 
118 /*
119  *	kmem_alloc_nofault:
120  *
121  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
122  */
123 vm_offset_t
124 kmem_alloc_nofault(map, size)
125 	vm_map_t map;
126 	vm_size_t size;
127 {
128 	vm_offset_t addr;
129 	int result;
130 
131 	size = round_page(size);
132 	addr = vm_map_min(map);
133 	result = vm_map_find(map, NULL, 0,
134 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
135 	if (result != KERN_SUCCESS) {
136 		return (0);
137 	}
138 	return (addr);
139 }
140 
141 /*
142  *	Allocate wired-down memory in the kernel's address map
143  *	or a submap.
144  */
145 vm_offset_t
146 kmem_alloc(map, size)
147 	vm_map_t map;
148 	vm_size_t size;
149 {
150 	vm_offset_t addr;
151 	vm_offset_t offset;
152 	vm_offset_t i;
153 
154 	GIANT_REQUIRED;
155 
156 	size = round_page(size);
157 
158 	/*
159 	 * Use the kernel object for wired-down kernel pages. Assume that no
160 	 * region of the kernel object is referenced more than once.
161 	 */
162 
163 	/*
164 	 * Locate sufficient space in the map.  This will give us the final
165 	 * virtual address for the new memory, and thus will tell us the
166 	 * offset within the kernel map.
167 	 */
168 	vm_map_lock(map);
169 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
170 		vm_map_unlock(map);
171 		return (0);
172 	}
173 	offset = addr - VM_MIN_KERNEL_ADDRESS;
174 	vm_object_reference(kernel_object);
175 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
176 		VM_PROT_ALL, VM_PROT_ALL, 0);
177 	vm_map_unlock(map);
178 
179 	/*
180 	 * Guarantee that there are pages already in this object before
181 	 * calling vm_map_pageable.  This is to prevent the following
182 	 * scenario:
183 	 *
184 	 * 1) Threads have swapped out, so that there is a pager for the
185 	 * kernel_object. 2) The kmsg zone is empty, and so we are
186 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
187 	 * there is no page, but there is a pager, so we call
188 	 * pager_data_request.  But the kmsg zone is empty, so we must
189 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
190 	 * we get the data back from the pager, it will be (very stale)
191 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
192 	 *
193 	 * We're intentionally not activating the pages we allocate to prevent a
194 	 * race with page-out.  vm_map_pageable will wire the pages.
195 	 */
196 	for (i = 0; i < size; i += PAGE_SIZE) {
197 		vm_page_t mem;
198 
199 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
200 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
201 		if ((mem->flags & PG_ZERO) == 0)
202 			pmap_zero_page(mem);
203 		vm_page_lock_queues();
204 		mem->valid = VM_PAGE_BITS_ALL;
205 		vm_page_flag_clear(mem, PG_ZERO);
206 		vm_page_wakeup(mem);
207 		vm_page_unlock_queues();
208 	}
209 
210 	/*
211 	 * And finally, mark the data as non-pageable.
212 	 */
213 	(void) vm_map_wire(map, addr, addr + size, FALSE);
214 
215 	return (addr);
216 }
217 
218 /*
219  *	kmem_free:
220  *
221  *	Release a region of kernel virtual memory allocated
222  *	with kmem_alloc, and return the physical pages
223  *	associated with that region.
224  *
225  *	This routine may not block on kernel maps.
226  */
227 void
228 kmem_free(map, addr, size)
229 	vm_map_t map;
230 	vm_offset_t addr;
231 	vm_size_t size;
232 {
233 
234 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
235 }
236 
237 /*
238  *	kmem_suballoc:
239  *
240  *	Allocates a map to manage a subrange
241  *	of the kernel virtual address space.
242  *
243  *	Arguments are as follows:
244  *
245  *	parent		Map to take range from
246  *	min, max	Returned endpoints of map
247  *	size		Size of range to find
248  */
249 vm_map_t
250 kmem_suballoc(parent, min, max, size)
251 	vm_map_t parent;
252 	vm_offset_t *min, *max;
253 	vm_size_t size;
254 {
255 	int ret;
256 	vm_map_t result;
257 
258 	GIANT_REQUIRED;
259 
260 	size = round_page(size);
261 
262 	*min = (vm_offset_t) vm_map_min(parent);
263 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
264 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
265 	if (ret != KERN_SUCCESS) {
266 		printf("kmem_suballoc: bad status return of %d.\n", ret);
267 		panic("kmem_suballoc");
268 	}
269 	*max = *min + size;
270 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
271 	if (result == NULL)
272 		panic("kmem_suballoc: cannot create submap");
273 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
274 		panic("kmem_suballoc: unable to change range to submap");
275 	return (result);
276 }
277 
278 /*
279  *	kmem_malloc:
280  *
281  * 	Allocate wired-down memory in the kernel's address map for the higher
282  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
283  * 	kmem_alloc() because we may need to allocate memory at interrupt
284  * 	level where we cannot block (canwait == FALSE).
285  *
286  * 	This routine has its own private kernel submap (kmem_map) and object
287  * 	(kmem_object).  This, combined with the fact that only malloc uses
288  * 	this routine, ensures that we will never block in map or object waits.
289  *
290  * 	Note that this still only works in a uni-processor environment and
291  * 	when called at splhigh().
292  *
293  * 	We don't worry about expanding the map (adding entries) since entries
294  * 	for wired maps are statically allocated.
295  *
296  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
297  *	I have not verified that it actually does not block.
298  *
299  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
300  *	which we never free.
301  */
302 vm_offset_t
303 kmem_malloc(map, size, flags)
304 	vm_map_t map;
305 	vm_size_t size;
306 	int flags;
307 {
308 	vm_offset_t offset, i;
309 	vm_map_entry_t entry;
310 	vm_offset_t addr;
311 	vm_page_t m;
312 	int pflags;
313 
314 	if ((flags & M_NOWAIT) == 0)
315 		GIANT_REQUIRED;
316 
317 	size = round_page(size);
318 	addr = vm_map_min(map);
319 
320 	/*
321 	 * Locate sufficient space in the map.  This will give us the final
322 	 * virtual address for the new memory, and thus will tell us the
323 	 * offset within the kernel map.
324 	 */
325 	vm_map_lock(map);
326 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
327 		vm_map_unlock(map);
328 		if (map != kmem_map) {
329 			static int last_report; /* when we did it (in ticks) */
330 			if (ticks < last_report ||
331 			    (ticks - last_report) >= hz) {
332 				last_report = ticks;
333 				printf("Out of mbuf address space!\n");
334 				printf("Consider increasing NMBCLUSTERS\n");
335 			}
336 			return (0);
337 		}
338 		if ((flags & M_NOWAIT) == 0)
339 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
340 				(long)size, (long)map->size);
341 		return (0);
342 	}
343 	offset = addr - VM_MIN_KERNEL_ADDRESS;
344 	vm_object_reference(kmem_object);
345 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
346 		VM_PROT_ALL, VM_PROT_ALL, 0);
347 
348 	/*
349 	 * Note: if M_NOWAIT specified alone, allocate from
350 	 * interrupt-safe queues only (just the free list).  If
351 	 * M_USE_RESERVE is also specified, we can also
352 	 * allocate from the cache.  Neither of the latter two
353 	 * flags may be specified from an interrupt since interrupts
354 	 * are not allowed to mess with the cache queue.
355 	 */
356 
357 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
358 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
359 	else
360 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
361 
362 	if (flags & M_ZERO)
363 		pflags |= VM_ALLOC_ZERO;
364 
365 	VM_OBJECT_LOCK(kmem_object);
366 	for (i = 0; i < size; i += PAGE_SIZE) {
367 retry:
368 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
369 
370 		/*
371 		 * Ran out of space, free everything up and return. Don't need
372 		 * to lock page queues here as we know that the pages we got
373 		 * aren't on any queues.
374 		 */
375 		if (m == NULL) {
376 			if ((flags & M_NOWAIT) == 0) {
377 				VM_OBJECT_UNLOCK(kmem_object);
378 				vm_map_unlock(map);
379 				VM_WAIT;
380 				vm_map_lock(map);
381 				VM_OBJECT_LOCK(kmem_object);
382 				goto retry;
383 			}
384 			/*
385 			 * Free the pages before removing the map entry.
386 			 * They are already marked busy.  Calling
387 			 * vm_map_delete before the pages has been freed or
388 			 * unbusied will cause a deadlock.
389 			 */
390 			while (i != 0) {
391 				i -= PAGE_SIZE;
392 				m = vm_page_lookup(kmem_object,
393 						   OFF_TO_IDX(offset + i));
394 				vm_page_lock_queues();
395 				vm_page_unwire(m, 0);
396 				vm_page_free(m);
397 				vm_page_unlock_queues();
398 			}
399 			VM_OBJECT_UNLOCK(kmem_object);
400 			vm_map_delete(map, addr, addr + size);
401 			vm_map_unlock(map);
402 			return (0);
403 		}
404 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
405 			pmap_zero_page(m);
406 		vm_page_lock_queues();
407 		vm_page_flag_clear(m, PG_ZERO);
408 		m->valid = VM_PAGE_BITS_ALL;
409 		vm_page_unlock_queues();
410 	}
411 	VM_OBJECT_UNLOCK(kmem_object);
412 
413 	/*
414 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
415 	 * be able to extend the previous entry so there will be a new entry
416 	 * exactly corresponding to this address range and it will have
417 	 * wired_count == 0.
418 	 */
419 	if (!vm_map_lookup_entry(map, addr, &entry) ||
420 	    entry->start != addr || entry->end != addr + size ||
421 	    entry->wired_count != 0)
422 		panic("kmem_malloc: entry not found or misaligned");
423 	entry->wired_count = 1;
424 
425 	vm_map_simplify_entry(map, entry);
426 
427 	/*
428 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
429 	 * the wired count without wrapping the vm_page_queue_lock in
430 	 * splimp...)
431 	 */
432 	for (i = 0; i < size; i += PAGE_SIZE) {
433 		VM_OBJECT_LOCK(kmem_object);
434 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
435 		VM_OBJECT_UNLOCK(kmem_object);
436 		/*
437 		 * Because this is kernel_pmap, this call will not block.
438 		 */
439 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
440 		vm_page_lock_queues();
441 		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
442 		vm_page_wakeup(m);
443 		vm_page_unlock_queues();
444 	}
445 	vm_map_unlock(map);
446 
447 	return (addr);
448 }
449 
450 /*
451  *	kmem_alloc_wait:
452  *
453  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
454  *	has no room, the caller sleeps waiting for more memory in the submap.
455  *
456  *	This routine may block.
457  */
458 vm_offset_t
459 kmem_alloc_wait(map, size)
460 	vm_map_t map;
461 	vm_size_t size;
462 {
463 	vm_offset_t addr;
464 
465 	size = round_page(size);
466 
467 	for (;;) {
468 		/*
469 		 * To make this work for more than one map, use the map's lock
470 		 * to lock out sleepers/wakers.
471 		 */
472 		vm_map_lock(map);
473 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
474 			break;
475 		/* no space now; see if we can ever get space */
476 		if (vm_map_max(map) - vm_map_min(map) < size) {
477 			vm_map_unlock(map);
478 			return (0);
479 		}
480 		map->needs_wakeup = TRUE;
481 		vm_map_unlock_and_wait(map, FALSE);
482 	}
483 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
484 	vm_map_unlock(map);
485 	return (addr);
486 }
487 
488 /*
489  *	kmem_free_wakeup:
490  *
491  *	Returns memory to a submap of the kernel, and wakes up any processes
492  *	waiting for memory in that map.
493  */
494 void
495 kmem_free_wakeup(map, addr, size)
496 	vm_map_t map;
497 	vm_offset_t addr;
498 	vm_size_t size;
499 {
500 
501 	vm_map_lock(map);
502 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
503 	if (map->needs_wakeup) {
504 		map->needs_wakeup = FALSE;
505 		vm_map_wakeup(map);
506 	}
507 	vm_map_unlock(map);
508 }
509 
510 /*
511  * 	kmem_init:
512  *
513  *	Create the kernel map; insert a mapping covering kernel text,
514  *	data, bss, and all space allocated thus far (`boostrap' data).  The
515  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
516  *	`start' as allocated, and the range between `start' and `end' as free.
517  */
518 void
519 kmem_init(start, end)
520 	vm_offset_t start, end;
521 {
522 	vm_map_t m;
523 
524 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
525 	m->system_map = 1;
526 	vm_map_lock(m);
527 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
528 	kernel_map = m;
529 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
530 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
531 	/* ... and ending with the completion of the above `insert' */
532 	vm_map_unlock(m);
533 }
534