xref: /freebsd/sys/vm/vm_kern.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  *	Kernel memory management.
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>		/* for ticks and hz */
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/malloc.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_extern.h>
88 
89 vm_map_t kernel_map=0;
90 vm_map_t kmem_map=0;
91 vm_map_t exec_map=0;
92 vm_map_t pipe_map;
93 vm_map_t buffer_map=0;
94 
95 /*
96  *	kmem_alloc_pageable:
97  *
98  *	Allocate pageable memory to the kernel's address map.
99  *	"map" must be kernel_map or a submap of kernel_map.
100  */
101 vm_offset_t
102 kmem_alloc_pageable(map, size)
103 	vm_map_t map;
104 	vm_size_t size;
105 {
106 	vm_offset_t addr;
107 	int result;
108 
109 	size = round_page(size);
110 	addr = vm_map_min(map);
111 	result = vm_map_find(map, NULL, 0,
112 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
113 	if (result != KERN_SUCCESS) {
114 		return (0);
115 	}
116 	return (addr);
117 }
118 
119 /*
120  *	kmem_alloc_nofault:
121  *
122  *	Allocate a virtual address range with no underlying object and
123  *	no initial mapping to physical memory.  Any mapping from this
124  *	range to physical memory must be explicitly created prior to
125  *	its use, typically with pmap_qenter().  Any attempt to create
126  *	a mapping on demand through vm_fault() will result in a panic.
127  */
128 vm_offset_t
129 kmem_alloc_nofault(map, size)
130 	vm_map_t map;
131 	vm_size_t size;
132 {
133 	vm_offset_t addr;
134 	int result;
135 
136 	size = round_page(size);
137 	addr = vm_map_min(map);
138 	result = vm_map_find(map, NULL, 0,
139 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140 	if (result != KERN_SUCCESS) {
141 		return (0);
142 	}
143 	return (addr);
144 }
145 
146 /*
147  *	Allocate wired-down memory in the kernel's address map
148  *	or a submap.
149  */
150 vm_offset_t
151 kmem_alloc(map, size)
152 	vm_map_t map;
153 	vm_size_t size;
154 {
155 	vm_offset_t addr;
156 	vm_offset_t offset;
157 	vm_offset_t i;
158 
159 	size = round_page(size);
160 
161 	/*
162 	 * Use the kernel object for wired-down kernel pages. Assume that no
163 	 * region of the kernel object is referenced more than once.
164 	 */
165 
166 	/*
167 	 * Locate sufficient space in the map.  This will give us the final
168 	 * virtual address for the new memory, and thus will tell us the
169 	 * offset within the kernel map.
170 	 */
171 	vm_map_lock(map);
172 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
173 		vm_map_unlock(map);
174 		return (0);
175 	}
176 	offset = addr - VM_MIN_KERNEL_ADDRESS;
177 	vm_object_reference(kernel_object);
178 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
179 		VM_PROT_ALL, VM_PROT_ALL, 0);
180 	vm_map_unlock(map);
181 
182 	/*
183 	 * Guarantee that there are pages already in this object before
184 	 * calling vm_map_pageable.  This is to prevent the following
185 	 * scenario:
186 	 *
187 	 * 1) Threads have swapped out, so that there is a pager for the
188 	 * kernel_object. 2) The kmsg zone is empty, and so we are
189 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
190 	 * there is no page, but there is a pager, so we call
191 	 * pager_data_request.  But the kmsg zone is empty, so we must
192 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
193 	 * we get the data back from the pager, it will be (very stale)
194 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
195 	 *
196 	 * We're intentionally not activating the pages we allocate to prevent a
197 	 * race with page-out.  vm_map_pageable will wire the pages.
198 	 */
199 	for (i = 0; i < size; i += PAGE_SIZE) {
200 		vm_page_t mem;
201 
202 		VM_OBJECT_LOCK(kernel_object);
203 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
204 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
205 		VM_OBJECT_UNLOCK(kernel_object);
206 		if ((mem->flags & PG_ZERO) == 0)
207 			pmap_zero_page(mem);
208 		vm_page_lock_queues();
209 		mem->valid = VM_PAGE_BITS_ALL;
210 		vm_page_flag_clear(mem, PG_ZERO);
211 		vm_page_wakeup(mem);
212 		vm_page_unlock_queues();
213 	}
214 
215 	/*
216 	 * And finally, mark the data as non-pageable.
217 	 */
218 	(void) vm_map_wire(map, addr, addr + size,
219 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
220 
221 	return (addr);
222 }
223 
224 /*
225  *	kmem_free:
226  *
227  *	Release a region of kernel virtual memory allocated
228  *	with kmem_alloc, and return the physical pages
229  *	associated with that region.
230  *
231  *	This routine may not block on kernel maps.
232  */
233 void
234 kmem_free(map, addr, size)
235 	vm_map_t map;
236 	vm_offset_t addr;
237 	vm_size_t size;
238 {
239 
240 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
241 }
242 
243 /*
244  *	kmem_suballoc:
245  *
246  *	Allocates a map to manage a subrange
247  *	of the kernel virtual address space.
248  *
249  *	Arguments are as follows:
250  *
251  *	parent		Map to take range from
252  *	min, max	Returned endpoints of map
253  *	size		Size of range to find
254  */
255 vm_map_t
256 kmem_suballoc(parent, min, max, size)
257 	vm_map_t parent;
258 	vm_offset_t *min, *max;
259 	vm_size_t size;
260 {
261 	int ret;
262 	vm_map_t result;
263 
264 	GIANT_REQUIRED;
265 
266 	size = round_page(size);
267 
268 	*min = (vm_offset_t) vm_map_min(parent);
269 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
270 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
271 	if (ret != KERN_SUCCESS) {
272 		printf("kmem_suballoc: bad status return of %d.\n", ret);
273 		panic("kmem_suballoc");
274 	}
275 	*max = *min + size;
276 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
277 	if (result == NULL)
278 		panic("kmem_suballoc: cannot create submap");
279 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
280 		panic("kmem_suballoc: unable to change range to submap");
281 	return (result);
282 }
283 
284 /*
285  *	kmem_malloc:
286  *
287  * 	Allocate wired-down memory in the kernel's address map for the higher
288  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
289  * 	kmem_alloc() because we may need to allocate memory at interrupt
290  * 	level where we cannot block (canwait == FALSE).
291  *
292  * 	This routine has its own private kernel submap (kmem_map) and object
293  * 	(kmem_object).  This, combined with the fact that only malloc uses
294  * 	this routine, ensures that we will never block in map or object waits.
295  *
296  * 	Note that this still only works in a uni-processor environment and
297  * 	when called at splhigh().
298  *
299  * 	We don't worry about expanding the map (adding entries) since entries
300  * 	for wired maps are statically allocated.
301  *
302  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
303  *	I have not verified that it actually does not block.
304  *
305  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
306  *	which we never free.
307  */
308 vm_offset_t
309 kmem_malloc(map, size, flags)
310 	vm_map_t map;
311 	vm_size_t size;
312 	int flags;
313 {
314 	vm_offset_t offset, i;
315 	vm_map_entry_t entry;
316 	vm_offset_t addr;
317 	vm_page_t m;
318 	int pflags;
319 
320 	size = round_page(size);
321 	addr = vm_map_min(map);
322 
323 	/*
324 	 * Locate sufficient space in the map.  This will give us the final
325 	 * virtual address for the new memory, and thus will tell us the
326 	 * offset within the kernel map.
327 	 */
328 	vm_map_lock(map);
329 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
330 		vm_map_unlock(map);
331 		if (map != kmem_map) {
332 			static int last_report; /* when we did it (in ticks) */
333 			if (ticks < last_report ||
334 			    (ticks - last_report) >= hz) {
335 				last_report = ticks;
336 				printf("Out of mbuf address space!\n");
337 				printf("Consider increasing NMBCLUSTERS\n");
338 			}
339 			return (0);
340 		}
341 		if ((flags & M_NOWAIT) == 0)
342 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
343 				(long)size, (long)map->size);
344 		return (0);
345 	}
346 	offset = addr - VM_MIN_KERNEL_ADDRESS;
347 	vm_object_reference(kmem_object);
348 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
349 		VM_PROT_ALL, VM_PROT_ALL, 0);
350 
351 	/*
352 	 * Note: if M_NOWAIT specified alone, allocate from
353 	 * interrupt-safe queues only (just the free list).  If
354 	 * M_USE_RESERVE is also specified, we can also
355 	 * allocate from the cache.  Neither of the latter two
356 	 * flags may be specified from an interrupt since interrupts
357 	 * are not allowed to mess with the cache queue.
358 	 */
359 
360 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
361 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
362 	else
363 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
364 
365 	if (flags & M_ZERO)
366 		pflags |= VM_ALLOC_ZERO;
367 
368 	VM_OBJECT_LOCK(kmem_object);
369 	for (i = 0; i < size; i += PAGE_SIZE) {
370 retry:
371 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
372 
373 		/*
374 		 * Ran out of space, free everything up and return. Don't need
375 		 * to lock page queues here as we know that the pages we got
376 		 * aren't on any queues.
377 		 */
378 		if (m == NULL) {
379 			if ((flags & M_NOWAIT) == 0) {
380 				VM_OBJECT_UNLOCK(kmem_object);
381 				vm_map_unlock(map);
382 				VM_WAIT;
383 				vm_map_lock(map);
384 				VM_OBJECT_LOCK(kmem_object);
385 				goto retry;
386 			}
387 			/*
388 			 * Free the pages before removing the map entry.
389 			 * They are already marked busy.  Calling
390 			 * vm_map_delete before the pages has been freed or
391 			 * unbusied will cause a deadlock.
392 			 */
393 			while (i != 0) {
394 				i -= PAGE_SIZE;
395 				m = vm_page_lookup(kmem_object,
396 						   OFF_TO_IDX(offset + i));
397 				vm_page_lock_queues();
398 				vm_page_unwire(m, 0);
399 				vm_page_free(m);
400 				vm_page_unlock_queues();
401 			}
402 			VM_OBJECT_UNLOCK(kmem_object);
403 			vm_map_delete(map, addr, addr + size);
404 			vm_map_unlock(map);
405 			return (0);
406 		}
407 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
408 			pmap_zero_page(m);
409 		vm_page_lock_queues();
410 		vm_page_flag_clear(m, PG_ZERO);
411 		m->valid = VM_PAGE_BITS_ALL;
412 		vm_page_unmanage(m);
413 		vm_page_unlock_queues();
414 	}
415 	VM_OBJECT_UNLOCK(kmem_object);
416 
417 	/*
418 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
419 	 * be able to extend the previous entry so there will be a new entry
420 	 * exactly corresponding to this address range and it will have
421 	 * wired_count == 0.
422 	 */
423 	if (!vm_map_lookup_entry(map, addr, &entry) ||
424 	    entry->start != addr || entry->end != addr + size ||
425 	    entry->wired_count != 0)
426 		panic("kmem_malloc: entry not found or misaligned");
427 	entry->wired_count = 1;
428 
429 	vm_map_simplify_entry(map, entry);
430 
431 	/*
432 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
433 	 * the wired count without wrapping the vm_page_queue_lock in
434 	 * splimp...)
435 	 */
436 	for (i = 0; i < size; i += PAGE_SIZE) {
437 		VM_OBJECT_LOCK(kmem_object);
438 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
439 		VM_OBJECT_UNLOCK(kmem_object);
440 		/*
441 		 * Because this is kernel_pmap, this call will not block.
442 		 */
443 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
444 		vm_page_lock_queues();
445 		vm_page_flag_set(m, PG_WRITEABLE | PG_REFERENCED);
446 		vm_page_wakeup(m);
447 		vm_page_unlock_queues();
448 	}
449 	vm_map_unlock(map);
450 
451 	return (addr);
452 }
453 
454 /*
455  *	kmem_alloc_wait:
456  *
457  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
458  *	has no room, the caller sleeps waiting for more memory in the submap.
459  *
460  *	This routine may block.
461  */
462 vm_offset_t
463 kmem_alloc_wait(map, size)
464 	vm_map_t map;
465 	vm_size_t size;
466 {
467 	vm_offset_t addr;
468 
469 	size = round_page(size);
470 
471 	for (;;) {
472 		/*
473 		 * To make this work for more than one map, use the map's lock
474 		 * to lock out sleepers/wakers.
475 		 */
476 		vm_map_lock(map);
477 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
478 			break;
479 		/* no space now; see if we can ever get space */
480 		if (vm_map_max(map) - vm_map_min(map) < size) {
481 			vm_map_unlock(map);
482 			return (0);
483 		}
484 		map->needs_wakeup = TRUE;
485 		vm_map_unlock_and_wait(map, FALSE);
486 	}
487 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
488 	vm_map_unlock(map);
489 	return (addr);
490 }
491 
492 /*
493  *	kmem_free_wakeup:
494  *
495  *	Returns memory to a submap of the kernel, and wakes up any processes
496  *	waiting for memory in that map.
497  */
498 void
499 kmem_free_wakeup(map, addr, size)
500 	vm_map_t map;
501 	vm_offset_t addr;
502 	vm_size_t size;
503 {
504 
505 	vm_map_lock(map);
506 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
507 	if (map->needs_wakeup) {
508 		map->needs_wakeup = FALSE;
509 		vm_map_wakeup(map);
510 	}
511 	vm_map_unlock(map);
512 }
513 
514 /*
515  * 	kmem_init:
516  *
517  *	Create the kernel map; insert a mapping covering kernel text,
518  *	data, bss, and all space allocated thus far (`boostrap' data).  The
519  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
520  *	`start' as allocated, and the range between `start' and `end' as free.
521  */
522 void
523 kmem_init(start, end)
524 	vm_offset_t start, end;
525 {
526 	vm_map_t m;
527 
528 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
529 	m->system_map = 1;
530 	vm_map_lock(m);
531 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
532 	kernel_map = m;
533 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
534 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
535 	/* ... and ending with the completion of the above `insert' */
536 	vm_map_unlock(m);
537 }
538