1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_param.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pageout.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t pipe_map; 91 vm_map_t buffer_map=0; 92 93 /* 94 * kmem_alloc_nofault: 95 * 96 * Allocate a virtual address range with no underlying object and 97 * no initial mapping to physical memory. Any mapping from this 98 * range to physical memory must be explicitly created prior to 99 * its use, typically with pmap_qenter(). Any attempt to create 100 * a mapping on demand through vm_fault() will result in a panic. 101 */ 102 vm_offset_t 103 kmem_alloc_nofault(map, size) 104 vm_map_t map; 105 vm_size_t size; 106 { 107 vm_offset_t addr; 108 int result; 109 110 size = round_page(size); 111 addr = vm_map_min(map); 112 result = vm_map_find(map, NULL, 0, 113 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 114 if (result != KERN_SUCCESS) { 115 return (0); 116 } 117 return (addr); 118 } 119 120 /* 121 * Allocate wired-down memory in the kernel's address map 122 * or a submap. 123 */ 124 vm_offset_t 125 kmem_alloc(map, size) 126 vm_map_t map; 127 vm_size_t size; 128 { 129 vm_offset_t addr; 130 vm_offset_t offset; 131 vm_offset_t i; 132 133 size = round_page(size); 134 135 /* 136 * Use the kernel object for wired-down kernel pages. Assume that no 137 * region of the kernel object is referenced more than once. 138 */ 139 140 /* 141 * Locate sufficient space in the map. This will give us the final 142 * virtual address for the new memory, and thus will tell us the 143 * offset within the kernel map. 144 */ 145 vm_map_lock(map); 146 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 147 vm_map_unlock(map); 148 return (0); 149 } 150 offset = addr - VM_MIN_KERNEL_ADDRESS; 151 vm_object_reference(kernel_object); 152 vm_map_insert(map, kernel_object, offset, addr, addr + size, 153 VM_PROT_ALL, VM_PROT_ALL, 0); 154 vm_map_unlock(map); 155 156 /* 157 * Guarantee that there are pages already in this object before 158 * calling vm_map_wire. This is to prevent the following 159 * scenario: 160 * 161 * 1) Threads have swapped out, so that there is a pager for the 162 * kernel_object. 2) The kmsg zone is empty, and so we are 163 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault; 164 * there is no page, but there is a pager, so we call 165 * pager_data_request. But the kmsg zone is empty, so we must 166 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 167 * we get the data back from the pager, it will be (very stale) 168 * non-zero data. kmem_alloc is defined to return zero-filled memory. 169 * 170 * We're intentionally not activating the pages we allocate to prevent a 171 * race with page-out. vm_map_wire will wire the pages. 172 */ 173 VM_OBJECT_LOCK(kernel_object); 174 for (i = 0; i < size; i += PAGE_SIZE) { 175 vm_page_t mem; 176 177 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 178 VM_ALLOC_NOBUSY | VM_ALLOC_ZERO | VM_ALLOC_RETRY); 179 mem->valid = VM_PAGE_BITS_ALL; 180 KASSERT((mem->flags & PG_UNMANAGED) != 0, 181 ("kmem_alloc: page %p is managed", mem)); 182 } 183 VM_OBJECT_UNLOCK(kernel_object); 184 185 /* 186 * And finally, mark the data as non-pageable. 187 */ 188 (void) vm_map_wire(map, addr, addr + size, 189 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 190 191 return (addr); 192 } 193 194 /* 195 * kmem_free: 196 * 197 * Release a region of kernel virtual memory allocated 198 * with kmem_alloc, and return the physical pages 199 * associated with that region. 200 * 201 * This routine may not block on kernel maps. 202 */ 203 void 204 kmem_free(map, addr, size) 205 vm_map_t map; 206 vm_offset_t addr; 207 vm_size_t size; 208 { 209 210 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 211 } 212 213 /* 214 * kmem_suballoc: 215 * 216 * Allocates a map to manage a subrange 217 * of the kernel virtual address space. 218 * 219 * Arguments are as follows: 220 * 221 * parent Map to take range from 222 * min, max Returned endpoints of map 223 * size Size of range to find 224 */ 225 vm_map_t 226 kmem_suballoc(parent, min, max, size) 227 vm_map_t parent; 228 vm_offset_t *min, *max; 229 vm_size_t size; 230 { 231 int ret; 232 vm_map_t result; 233 234 size = round_page(size); 235 236 *min = (vm_offset_t) vm_map_min(parent); 237 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 238 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 239 if (ret != KERN_SUCCESS) 240 panic("kmem_suballoc: bad status return of %d", ret); 241 *max = *min + size; 242 result = vm_map_create(vm_map_pmap(parent), *min, *max); 243 if (result == NULL) 244 panic("kmem_suballoc: cannot create submap"); 245 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 246 panic("kmem_suballoc: unable to change range to submap"); 247 return (result); 248 } 249 250 /* 251 * kmem_malloc: 252 * 253 * Allocate wired-down memory in the kernel's address map for the higher 254 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 255 * kmem_alloc() because we may need to allocate memory at interrupt 256 * level where we cannot block (canwait == FALSE). 257 * 258 * This routine has its own private kernel submap (kmem_map) and object 259 * (kmem_object). This, combined with the fact that only malloc uses 260 * this routine, ensures that we will never block in map or object waits. 261 * 262 * Note that this still only works in a uni-processor environment and 263 * when called at splhigh(). 264 * 265 * We don't worry about expanding the map (adding entries) since entries 266 * for wired maps are statically allocated. 267 * 268 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 269 * I have not verified that it actually does not block. 270 * 271 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 272 * which we never free. 273 */ 274 vm_offset_t 275 kmem_malloc(map, size, flags) 276 vm_map_t map; 277 vm_size_t size; 278 int flags; 279 { 280 vm_offset_t offset, i; 281 vm_map_entry_t entry; 282 vm_offset_t addr; 283 vm_page_t m; 284 int pflags; 285 286 size = round_page(size); 287 addr = vm_map_min(map); 288 289 /* 290 * Locate sufficient space in the map. This will give us the final 291 * virtual address for the new memory, and thus will tell us the 292 * offset within the kernel map. 293 */ 294 vm_map_lock(map); 295 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 296 vm_map_unlock(map); 297 if ((flags & M_NOWAIT) == 0) { 298 for (i = 0; i < 8; i++) { 299 EVENTHANDLER_INVOKE(vm_lowmem, 0); 300 uma_reclaim(); 301 vm_map_lock(map); 302 if (vm_map_findspace(map, vm_map_min(map), 303 size, &addr) == 0) { 304 break; 305 } 306 vm_map_unlock(map); 307 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 308 } 309 if (i == 8) { 310 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 311 (long)size, (long)map->size); 312 } 313 } else { 314 return (0); 315 } 316 } 317 offset = addr - VM_MIN_KERNEL_ADDRESS; 318 vm_object_reference(kmem_object); 319 vm_map_insert(map, kmem_object, offset, addr, addr + size, 320 VM_PROT_ALL, VM_PROT_ALL, 0); 321 322 /* 323 * Note: if M_NOWAIT specified alone, allocate from 324 * interrupt-safe queues only (just the free list). If 325 * M_USE_RESERVE is also specified, we can also 326 * allocate from the cache. Neither of the latter two 327 * flags may be specified from an interrupt since interrupts 328 * are not allowed to mess with the cache queue. 329 */ 330 331 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 332 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 333 else 334 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 335 336 if (flags & M_ZERO) 337 pflags |= VM_ALLOC_ZERO; 338 339 VM_OBJECT_LOCK(kmem_object); 340 for (i = 0; i < size; i += PAGE_SIZE) { 341 retry: 342 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 343 344 /* 345 * Ran out of space, free everything up and return. Don't need 346 * to lock page queues here as we know that the pages we got 347 * aren't on any queues. 348 */ 349 if (m == NULL) { 350 if ((flags & M_NOWAIT) == 0) { 351 VM_OBJECT_UNLOCK(kmem_object); 352 vm_map_unlock(map); 353 VM_WAIT; 354 vm_map_lock(map); 355 VM_OBJECT_LOCK(kmem_object); 356 goto retry; 357 } 358 /* 359 * Free the pages before removing the map entry. 360 * They are already marked busy. Calling 361 * vm_map_delete before the pages has been freed or 362 * unbusied will cause a deadlock. 363 */ 364 while (i != 0) { 365 i -= PAGE_SIZE; 366 m = vm_page_lookup(kmem_object, 367 OFF_TO_IDX(offset + i)); 368 vm_page_lock_queues(); 369 vm_page_unwire(m, 0); 370 vm_page_free(m); 371 vm_page_unlock_queues(); 372 } 373 VM_OBJECT_UNLOCK(kmem_object); 374 vm_map_delete(map, addr, addr + size); 375 vm_map_unlock(map); 376 return (0); 377 } 378 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 379 pmap_zero_page(m); 380 m->valid = VM_PAGE_BITS_ALL; 381 KASSERT((m->flags & PG_UNMANAGED) != 0, 382 ("kmem_malloc: page %p is managed", m)); 383 } 384 VM_OBJECT_UNLOCK(kmem_object); 385 386 /* 387 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 388 * be able to extend the previous entry so there will be a new entry 389 * exactly corresponding to this address range and it will have 390 * wired_count == 0. 391 */ 392 if (!vm_map_lookup_entry(map, addr, &entry) || 393 entry->start != addr || entry->end != addr + size || 394 entry->wired_count != 0) 395 panic("kmem_malloc: entry not found or misaligned"); 396 entry->wired_count = 1; 397 398 /* 399 * At this point, the kmem_object must be unlocked because 400 * vm_map_simplify_entry() calls vm_object_deallocate(), which 401 * locks the kmem_object. 402 */ 403 vm_map_simplify_entry(map, entry); 404 405 /* 406 * Loop thru pages, entering them in the pmap. 407 */ 408 VM_OBJECT_LOCK(kmem_object); 409 for (i = 0; i < size; i += PAGE_SIZE) { 410 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 411 /* 412 * Because this is kernel_pmap, this call will not block. 413 */ 414 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 415 TRUE); 416 vm_page_wakeup(m); 417 } 418 VM_OBJECT_UNLOCK(kmem_object); 419 vm_map_unlock(map); 420 421 return (addr); 422 } 423 424 /* 425 * kmem_alloc_wait: 426 * 427 * Allocates pageable memory from a sub-map of the kernel. If the submap 428 * has no room, the caller sleeps waiting for more memory in the submap. 429 * 430 * This routine may block. 431 */ 432 vm_offset_t 433 kmem_alloc_wait(map, size) 434 vm_map_t map; 435 vm_size_t size; 436 { 437 vm_offset_t addr; 438 439 size = round_page(size); 440 441 for (;;) { 442 /* 443 * To make this work for more than one map, use the map's lock 444 * to lock out sleepers/wakers. 445 */ 446 vm_map_lock(map); 447 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 448 break; 449 /* no space now; see if we can ever get space */ 450 if (vm_map_max(map) - vm_map_min(map) < size) { 451 vm_map_unlock(map); 452 return (0); 453 } 454 map->needs_wakeup = TRUE; 455 vm_map_unlock_and_wait(map, 0); 456 } 457 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 458 vm_map_unlock(map); 459 return (addr); 460 } 461 462 /* 463 * kmem_free_wakeup: 464 * 465 * Returns memory to a submap of the kernel, and wakes up any processes 466 * waiting for memory in that map. 467 */ 468 void 469 kmem_free_wakeup(map, addr, size) 470 vm_map_t map; 471 vm_offset_t addr; 472 vm_size_t size; 473 { 474 475 vm_map_lock(map); 476 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 477 if (map->needs_wakeup) { 478 map->needs_wakeup = FALSE; 479 vm_map_wakeup(map); 480 } 481 vm_map_unlock(map); 482 } 483 484 /* 485 * kmem_init: 486 * 487 * Create the kernel map; insert a mapping covering kernel text, 488 * data, bss, and all space allocated thus far (`boostrap' data). The 489 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 490 * `start' as allocated, and the range between `start' and `end' as free. 491 */ 492 void 493 kmem_init(start, end) 494 vm_offset_t start, end; 495 { 496 vm_map_t m; 497 498 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 499 m->system_map = 1; 500 vm_map_lock(m); 501 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 502 kernel_map = m; 503 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 504 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 505 MAP_NOFAULT); 506 /* ... and ending with the completion of the above `insert' */ 507 vm_map_unlock(m); 508 } 509