1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_kern.c,v 1.54 1999/03/16 07:39:07 alc Exp $ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_prot.h> 79 #include <sys/lock.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t u_map=0; 92 vm_map_t buffer_map=0; 93 vm_map_t mb_map=0; 94 int mb_map_full=0; 95 vm_map_t io_map=0; 96 vm_map_t phys_map=0; 97 98 /* 99 * kmem_alloc_pageable: 100 * 101 * Allocate pageable memory to the kernel's address map. 102 * "map" must be kernel_map or a submap of kernel_map. 103 */ 104 105 vm_offset_t 106 kmem_alloc_pageable(map, size) 107 vm_map_t map; 108 register vm_size_t size; 109 { 110 vm_offset_t addr; 111 register int result; 112 113 size = round_page(size); 114 addr = vm_map_min(map); 115 result = vm_map_find(map, NULL, (vm_offset_t) 0, 116 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 117 if (result != KERN_SUCCESS) { 118 return (0); 119 } 120 return (addr); 121 } 122 123 /* 124 * kmem_alloc_nofault: 125 * 126 * Same as kmem_alloc_pageable, except that it create a nofault entry. 127 */ 128 129 vm_offset_t 130 kmem_alloc_nofault(map, size) 131 vm_map_t map; 132 register vm_size_t size; 133 { 134 vm_offset_t addr; 135 register int result; 136 137 size = round_page(size); 138 addr = vm_map_min(map); 139 result = vm_map_find(map, NULL, (vm_offset_t) 0, 140 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 141 if (result != KERN_SUCCESS) { 142 return (0); 143 } 144 return (addr); 145 } 146 147 /* 148 * Allocate wired-down memory in the kernel's address map 149 * or a submap. 150 */ 151 vm_offset_t 152 kmem_alloc(map, size) 153 register vm_map_t map; 154 register vm_size_t size; 155 { 156 vm_offset_t addr; 157 register vm_offset_t offset; 158 vm_offset_t i; 159 160 size = round_page(size); 161 162 /* 163 * Use the kernel object for wired-down kernel pages. Assume that no 164 * region of the kernel object is referenced more than once. 165 */ 166 167 /* 168 * Locate sufficient space in the map. This will give us the final 169 * virtual address for the new memory, and thus will tell us the 170 * offset within the kernel map. 171 */ 172 vm_map_lock(map); 173 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 174 vm_map_unlock(map); 175 return (0); 176 } 177 offset = addr - VM_MIN_KERNEL_ADDRESS; 178 vm_object_reference(kernel_object); 179 vm_map_insert(map, kernel_object, offset, addr, addr + size, 180 VM_PROT_ALL, VM_PROT_ALL, 0); 181 vm_map_unlock(map); 182 183 /* 184 * Guarantee that there are pages already in this object before 185 * calling vm_map_pageable. This is to prevent the following 186 * scenario: 187 * 188 * 1) Threads have swapped out, so that there is a pager for the 189 * kernel_object. 2) The kmsg zone is empty, and so we are 190 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 191 * there is no page, but there is a pager, so we call 192 * pager_data_request. But the kmsg zone is empty, so we must 193 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 194 * we get the data back from the pager, it will be (very stale) 195 * non-zero data. kmem_alloc is defined to return zero-filled memory. 196 * 197 * We're intentionally not activating the pages we allocate to prevent a 198 * race with page-out. vm_map_pageable will wire the pages. 199 */ 200 201 for (i = 0; i < size; i += PAGE_SIZE) { 202 vm_page_t mem; 203 204 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 205 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 206 if ((mem->flags & PG_ZERO) == 0) 207 vm_page_zero_fill(mem); 208 mem->valid = VM_PAGE_BITS_ALL; 209 vm_page_flag_clear(mem, PG_ZERO); 210 vm_page_wakeup(mem); 211 } 212 213 /* 214 * And finally, mark the data as non-pageable. 215 */ 216 217 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 218 219 return (addr); 220 } 221 222 /* 223 * kmem_free: 224 * 225 * Release a region of kernel virtual memory allocated 226 * with kmem_alloc, and return the physical pages 227 * associated with that region. 228 * 229 * This routine may not block on kernel maps. 230 */ 231 void 232 kmem_free(map, addr, size) 233 vm_map_t map; 234 register vm_offset_t addr; 235 vm_size_t size; 236 { 237 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 238 } 239 240 /* 241 * kmem_suballoc: 242 * 243 * Allocates a map to manage a subrange 244 * of the kernel virtual address space. 245 * 246 * Arguments are as follows: 247 * 248 * parent Map to take range from 249 * size Size of range to find 250 * min, max Returned endpoints of map 251 * pageable Can the region be paged 252 */ 253 vm_map_t 254 kmem_suballoc(parent, min, max, size) 255 register vm_map_t parent; 256 vm_offset_t *min, *max; 257 register vm_size_t size; 258 { 259 register int ret; 260 vm_map_t result; 261 262 size = round_page(size); 263 264 *min = (vm_offset_t) vm_map_min(parent); 265 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 266 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 267 if (ret != KERN_SUCCESS) { 268 printf("kmem_suballoc: bad status return of %d.\n", ret); 269 panic("kmem_suballoc"); 270 } 271 *max = *min + size; 272 pmap_reference(vm_map_pmap(parent)); 273 result = vm_map_create(vm_map_pmap(parent), *min, *max); 274 if (result == NULL) 275 panic("kmem_suballoc: cannot create submap"); 276 if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS) 277 panic("kmem_suballoc: unable to change range to submap"); 278 return (result); 279 } 280 281 /* 282 * kmem_malloc: 283 * 284 * Allocate wired-down memory in the kernel's address map for the higher 285 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 286 * kmem_alloc() because we may need to allocate memory at interrupt 287 * level where we cannot block (canwait == FALSE). 288 * 289 * This routine has its own private kernel submap (kmem_map) and object 290 * (kmem_object). This, combined with the fact that only malloc uses 291 * this routine, ensures that we will never block in map or object waits. 292 * 293 * Note that this still only works in a uni-processor environment and 294 * when called at splhigh(). 295 * 296 * We don't worry about expanding the map (adding entries) since entries 297 * for wired maps are statically allocated. 298 * 299 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 300 * I have not verified that it actually does not block. 301 */ 302 vm_offset_t 303 kmem_malloc(map, size, flags) 304 register vm_map_t map; 305 register vm_size_t size; 306 int flags; 307 { 308 register vm_offset_t offset, i; 309 vm_map_entry_t entry; 310 vm_offset_t addr; 311 vm_page_t m; 312 313 if (map != kmem_map && map != mb_map) 314 panic("kmem_malloc: map != {kmem,mb}_map"); 315 316 size = round_page(size); 317 addr = vm_map_min(map); 318 319 /* 320 * Locate sufficient space in the map. This will give us the final 321 * virtual address for the new memory, and thus will tell us the 322 * offset within the kernel map. 323 */ 324 vm_map_lock(map); 325 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 326 vm_map_unlock(map); 327 if (map == mb_map) { 328 mb_map_full = TRUE; 329 printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n"); 330 return (0); 331 } 332 if ((flags & M_NOWAIT) == 0) 333 panic("kmem_malloc(%d): kmem_map too small: %d total allocated", 334 size, map->size); 335 return (0); 336 } 337 offset = addr - VM_MIN_KERNEL_ADDRESS; 338 vm_object_reference(kmem_object); 339 vm_map_insert(map, kmem_object, offset, addr, addr + size, 340 VM_PROT_ALL, VM_PROT_ALL, 0); 341 342 for (i = 0; i < size; i += PAGE_SIZE) { 343 /* 344 * Note: if M_NOWAIT specified alone, allocate from 345 * interrupt-safe queues only (just the free list). If 346 * M_ASLEEP or M_USE_RESERVE is also specified, we can also 347 * allocate from the cache. Neither of the latter two 348 * flags may be specified from an interrupt since interrupts 349 * are not allowed to mess with the cache queue. 350 */ 351 retry: 352 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 353 ((flags & (M_NOWAIT|M_ASLEEP|M_USE_RESERVE)) == M_NOWAIT) ? 354 VM_ALLOC_INTERRUPT : 355 VM_ALLOC_SYSTEM); 356 357 /* 358 * Ran out of space, free everything up and return. Don't need 359 * to lock page queues here as we know that the pages we got 360 * aren't on any queues. 361 */ 362 if (m == NULL) { 363 if ((flags & M_NOWAIT) == 0) { 364 vm_map_unlock(map); 365 VM_WAIT; 366 vm_map_lock(map); 367 goto retry; 368 } 369 vm_map_delete(map, addr, addr + size); 370 vm_map_unlock(map); 371 if (flags & M_ASLEEP) { 372 VM_AWAIT; 373 } 374 return (0); 375 } 376 vm_page_flag_clear(m, PG_ZERO); 377 m->valid = VM_PAGE_BITS_ALL; 378 } 379 380 /* 381 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 382 * be able to extend the previous entry so there will be a new entry 383 * exactly corresponding to this address range and it will have 384 * wired_count == 0. 385 */ 386 if (!vm_map_lookup_entry(map, addr, &entry) || 387 entry->start != addr || entry->end != addr + size || 388 entry->wired_count != 0) 389 panic("kmem_malloc: entry not found or misaligned"); 390 entry->wired_count = 1; 391 392 vm_map_simplify_entry(map, entry); 393 394 /* 395 * Loop thru pages, entering them in the pmap. (We cannot add them to 396 * the wired count without wrapping the vm_page_queue_lock in 397 * splimp...) 398 */ 399 for (i = 0; i < size; i += PAGE_SIZE) { 400 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 401 vm_page_wire(m); 402 vm_page_wakeup(m); 403 /* 404 * Because this is kernel_pmap, this call will not block. 405 */ 406 pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m), 407 VM_PROT_ALL, 1); 408 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 409 } 410 vm_map_unlock(map); 411 412 return (addr); 413 } 414 415 /* 416 * kmem_alloc_wait: 417 * 418 * Allocates pageable memory from a sub-map of the kernel. If the submap 419 * has no room, the caller sleeps waiting for more memory in the submap. 420 * 421 * This routine may block. 422 */ 423 424 vm_offset_t 425 kmem_alloc_wait(map, size) 426 vm_map_t map; 427 vm_size_t size; 428 { 429 vm_offset_t addr; 430 431 size = round_page(size); 432 433 for (;;) { 434 /* 435 * To make this work for more than one map, use the map's lock 436 * to lock out sleepers/wakers. 437 */ 438 vm_map_lock(map); 439 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 440 break; 441 /* no space now; see if we can ever get space */ 442 if (vm_map_max(map) - vm_map_min(map) < size) { 443 vm_map_unlock(map); 444 return (0); 445 } 446 vm_map_unlock(map); 447 tsleep(map, PVM, "kmaw", 0); 448 } 449 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 450 vm_map_unlock(map); 451 return (addr); 452 } 453 454 /* 455 * kmem_free_wakeup: 456 * 457 * Returns memory to a submap of the kernel, and wakes up any processes 458 * waiting for memory in that map. 459 */ 460 void 461 kmem_free_wakeup(map, addr, size) 462 vm_map_t map; 463 vm_offset_t addr; 464 vm_size_t size; 465 { 466 vm_map_lock(map); 467 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 468 wakeup(map); 469 vm_map_unlock(map); 470 } 471 472 /* 473 * kmem_init: 474 * 475 * Create the kernel map; insert a mapping covering kernel text, 476 * data, bss, and all space allocated thus far (`boostrap' data). The 477 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 478 * `start' as allocated, and the range between `start' and `end' as free. 479 */ 480 481 void 482 kmem_init(start, end) 483 vm_offset_t start, end; 484 { 485 register vm_map_t m; 486 487 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 488 vm_map_lock(m); 489 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 490 kernel_map = m; 491 kernel_map->system_map = 1; 492 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 493 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 494 /* ... and ending with the completion of the above `insert' */ 495 vm_map_unlock(m); 496 } 497 498