1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 #include <sys/rwlock.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map; 89 vm_map_t kmem_map; 90 vm_map_t exec_map; 91 vm_map_t pipe_map; 92 93 const void *zero_region; 94 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 95 96 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, 97 NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address"); 98 99 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD, 100 #if defined(__arm__) || defined(__sparc64__) 101 &vm_max_kernel_address, 0, 102 #else 103 NULL, VM_MAX_KERNEL_ADDRESS, 104 #endif 105 "Max kernel address"); 106 107 /* 108 * kmem_alloc_nofault: 109 * 110 * Allocate a virtual address range with no underlying object and 111 * no initial mapping to physical memory. Any mapping from this 112 * range to physical memory must be explicitly created prior to 113 * its use, typically with pmap_qenter(). Any attempt to create 114 * a mapping on demand through vm_fault() will result in a panic. 115 */ 116 vm_offset_t 117 kmem_alloc_nofault(map, size) 118 vm_map_t map; 119 vm_size_t size; 120 { 121 vm_offset_t addr; 122 int result; 123 124 size = round_page(size); 125 addr = vm_map_min(map); 126 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 127 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 128 if (result != KERN_SUCCESS) { 129 return (0); 130 } 131 return (addr); 132 } 133 134 /* 135 * kmem_alloc_nofault_space: 136 * 137 * Allocate a virtual address range with no underlying object and 138 * no initial mapping to physical memory within the specified 139 * address space. Any mapping from this range to physical memory 140 * must be explicitly created prior to its use, typically with 141 * pmap_qenter(). Any attempt to create a mapping on demand 142 * through vm_fault() will result in a panic. 143 */ 144 vm_offset_t 145 kmem_alloc_nofault_space(map, size, find_space) 146 vm_map_t map; 147 vm_size_t size; 148 int find_space; 149 { 150 vm_offset_t addr; 151 int result; 152 153 size = round_page(size); 154 addr = vm_map_min(map); 155 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 156 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 157 if (result != KERN_SUCCESS) { 158 return (0); 159 } 160 return (addr); 161 } 162 163 /* 164 * Allocate wired-down memory in the kernel's address map 165 * or a submap. 166 */ 167 vm_offset_t 168 kmem_alloc(map, size) 169 vm_map_t map; 170 vm_size_t size; 171 { 172 vm_offset_t addr; 173 vm_offset_t offset; 174 175 size = round_page(size); 176 177 /* 178 * Use the kernel object for wired-down kernel pages. Assume that no 179 * region of the kernel object is referenced more than once. 180 */ 181 182 /* 183 * Locate sufficient space in the map. This will give us the final 184 * virtual address for the new memory, and thus will tell us the 185 * offset within the kernel map. 186 */ 187 vm_map_lock(map); 188 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 189 vm_map_unlock(map); 190 return (0); 191 } 192 offset = addr - VM_MIN_KERNEL_ADDRESS; 193 vm_object_reference(kernel_object); 194 vm_map_insert(map, kernel_object, offset, addr, addr + size, 195 VM_PROT_ALL, VM_PROT_ALL, 0); 196 vm_map_unlock(map); 197 198 /* 199 * And finally, mark the data as non-pageable. 200 */ 201 (void) vm_map_wire(map, addr, addr + size, 202 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 203 204 return (addr); 205 } 206 207 /* 208 * Allocates a region from the kernel address map and physical pages 209 * within the specified address range to the kernel object. Creates a 210 * wired mapping from this region to these pages, and returns the 211 * region's starting virtual address. The allocated pages are not 212 * necessarily physically contiguous. If M_ZERO is specified through the 213 * given flags, then the pages are zeroed before they are mapped. 214 */ 215 vm_offset_t 216 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 217 vm_paddr_t high, vm_memattr_t memattr) 218 { 219 vm_object_t object = kernel_object; 220 vm_offset_t addr; 221 vm_ooffset_t end_offset, offset; 222 vm_page_t m; 223 int pflags, tries; 224 225 size = round_page(size); 226 vm_map_lock(map); 227 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 228 vm_map_unlock(map); 229 return (0); 230 } 231 offset = addr - VM_MIN_KERNEL_ADDRESS; 232 vm_object_reference(object); 233 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 234 VM_PROT_ALL, 0); 235 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 236 VM_OBJECT_WLOCK(object); 237 end_offset = offset + size; 238 for (; offset < end_offset; offset += PAGE_SIZE) { 239 tries = 0; 240 retry: 241 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1, 242 low, high, PAGE_SIZE, 0, memattr); 243 if (m == NULL) { 244 VM_OBJECT_WUNLOCK(object); 245 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 246 vm_map_unlock(map); 247 vm_pageout_grow_cache(tries, low, high); 248 vm_map_lock(map); 249 VM_OBJECT_WLOCK(object); 250 tries++; 251 goto retry; 252 } 253 254 /* 255 * Since the pages that were allocated by any previous 256 * iterations of this loop are not busy, they can be 257 * freed by vm_object_page_remove(), which is called 258 * by vm_map_delete(). 259 */ 260 vm_map_delete(map, addr, addr + size); 261 vm_map_unlock(map); 262 return (0); 263 } 264 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 265 pmap_zero_page(m); 266 m->valid = VM_PAGE_BITS_ALL; 267 } 268 VM_OBJECT_WUNLOCK(object); 269 vm_map_unlock(map); 270 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 271 VM_MAP_WIRE_NOHOLES); 272 return (addr); 273 } 274 275 /* 276 * Allocates a region from the kernel address map and physically 277 * contiguous pages within the specified address range to the kernel 278 * object. Creates a wired mapping from this region to these pages, and 279 * returns the region's starting virtual address. If M_ZERO is specified 280 * through the given flags, then the pages are zeroed before they are 281 * mapped. 282 */ 283 vm_offset_t 284 kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 285 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 286 vm_memattr_t memattr) 287 { 288 vm_object_t object = kernel_object; 289 vm_offset_t addr; 290 vm_ooffset_t offset; 291 vm_page_t end_m, m; 292 int pflags, tries; 293 294 size = round_page(size); 295 vm_map_lock(map); 296 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 297 vm_map_unlock(map); 298 return (0); 299 } 300 offset = addr - VM_MIN_KERNEL_ADDRESS; 301 vm_object_reference(object); 302 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 303 VM_PROT_ALL, 0); 304 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 305 VM_OBJECT_WLOCK(object); 306 tries = 0; 307 retry: 308 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 309 atop(size), low, high, alignment, boundary, memattr); 310 if (m == NULL) { 311 VM_OBJECT_WUNLOCK(object); 312 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 313 vm_map_unlock(map); 314 vm_pageout_grow_cache(tries, low, high); 315 vm_map_lock(map); 316 VM_OBJECT_WLOCK(object); 317 tries++; 318 goto retry; 319 } 320 vm_map_delete(map, addr, addr + size); 321 vm_map_unlock(map); 322 return (0); 323 } 324 end_m = m + atop(size); 325 for (; m < end_m; m++) { 326 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 327 pmap_zero_page(m); 328 m->valid = VM_PAGE_BITS_ALL; 329 } 330 VM_OBJECT_WUNLOCK(object); 331 vm_map_unlock(map); 332 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 333 VM_MAP_WIRE_NOHOLES); 334 return (addr); 335 } 336 337 /* 338 * kmem_free: 339 * 340 * Release a region of kernel virtual memory allocated 341 * with kmem_alloc, and return the physical pages 342 * associated with that region. 343 * 344 * This routine may not block on kernel maps. 345 */ 346 void 347 kmem_free(map, addr, size) 348 vm_map_t map; 349 vm_offset_t addr; 350 vm_size_t size; 351 { 352 353 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 354 } 355 356 /* 357 * kmem_suballoc: 358 * 359 * Allocates a map to manage a subrange 360 * of the kernel virtual address space. 361 * 362 * Arguments are as follows: 363 * 364 * parent Map to take range from 365 * min, max Returned endpoints of map 366 * size Size of range to find 367 * superpage_align Request that min is superpage aligned 368 */ 369 vm_map_t 370 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 371 vm_size_t size, boolean_t superpage_align) 372 { 373 int ret; 374 vm_map_t result; 375 376 size = round_page(size); 377 378 *min = vm_map_min(parent); 379 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 380 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 381 MAP_ACC_NO_CHARGE); 382 if (ret != KERN_SUCCESS) 383 panic("kmem_suballoc: bad status return of %d", ret); 384 *max = *min + size; 385 result = vm_map_create(vm_map_pmap(parent), *min, *max); 386 if (result == NULL) 387 panic("kmem_suballoc: cannot create submap"); 388 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 389 panic("kmem_suballoc: unable to change range to submap"); 390 return (result); 391 } 392 393 /* 394 * kmem_malloc: 395 * 396 * Allocate wired-down memory in the kernel's address map for the higher 397 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 398 * kmem_alloc() because we may need to allocate memory at interrupt 399 * level where we cannot block (canwait == FALSE). 400 * 401 * This routine has its own private kernel submap (kmem_map) and object 402 * (kmem_object). This, combined with the fact that only malloc uses 403 * this routine, ensures that we will never block in map or object waits. 404 * 405 * We don't worry about expanding the map (adding entries) since entries 406 * for wired maps are statically allocated. 407 * 408 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 409 * which we never free. 410 */ 411 vm_offset_t 412 kmem_malloc(map, size, flags) 413 vm_map_t map; 414 vm_size_t size; 415 int flags; 416 { 417 vm_offset_t addr; 418 int i, rv; 419 420 size = round_page(size); 421 addr = vm_map_min(map); 422 423 /* 424 * Locate sufficient space in the map. This will give us the final 425 * virtual address for the new memory, and thus will tell us the 426 * offset within the kernel map. 427 */ 428 vm_map_lock(map); 429 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 430 vm_map_unlock(map); 431 if ((flags & M_NOWAIT) == 0) { 432 for (i = 0; i < 8; i++) { 433 EVENTHANDLER_INVOKE(vm_lowmem, 0); 434 uma_reclaim(); 435 vm_map_lock(map); 436 if (vm_map_findspace(map, vm_map_min(map), 437 size, &addr) == 0) { 438 break; 439 } 440 vm_map_unlock(map); 441 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 442 } 443 if (i == 8) { 444 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 445 (long)size, (long)map->size); 446 } 447 } else { 448 return (0); 449 } 450 } 451 452 rv = kmem_back(map, addr, size, flags); 453 vm_map_unlock(map); 454 return (rv == KERN_SUCCESS ? addr : 0); 455 } 456 457 /* 458 * kmem_back: 459 * 460 * Allocate physical pages for the specified virtual address range. 461 */ 462 int 463 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 464 { 465 vm_offset_t offset, i; 466 vm_map_entry_t entry; 467 vm_page_t m; 468 int pflags; 469 boolean_t found; 470 471 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 472 offset = addr - VM_MIN_KERNEL_ADDRESS; 473 vm_object_reference(kmem_object); 474 vm_map_insert(map, kmem_object, offset, addr, addr + size, 475 VM_PROT_ALL, VM_PROT_ALL, 0); 476 477 /* 478 * Assert: vm_map_insert() will never be able to extend the 479 * previous entry so vm_map_lookup_entry() will find a new 480 * entry exactly corresponding to this address range and it 481 * will have wired_count == 0. 482 */ 483 found = vm_map_lookup_entry(map, addr, &entry); 484 KASSERT(found && entry->start == addr && entry->end == addr + size && 485 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 486 == 0, ("kmem_back: entry not found or misaligned")); 487 488 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 489 490 VM_OBJECT_WLOCK(kmem_object); 491 for (i = 0; i < size; i += PAGE_SIZE) { 492 retry: 493 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 494 495 /* 496 * Ran out of space, free everything up and return. Don't need 497 * to lock page queues here as we know that the pages we got 498 * aren't on any queues. 499 */ 500 if (m == NULL) { 501 if ((flags & M_NOWAIT) == 0) { 502 VM_OBJECT_WUNLOCK(kmem_object); 503 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 504 vm_map_unlock(map); 505 VM_WAIT; 506 vm_map_lock(map); 507 KASSERT( 508 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 509 MAP_ENTRY_IN_TRANSITION, 510 ("kmem_back: volatile entry")); 511 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 512 VM_OBJECT_WLOCK(kmem_object); 513 goto retry; 514 } 515 /* 516 * Free the pages before removing the map entry. 517 * They are already marked busy. Calling 518 * vm_map_delete before the pages has been freed or 519 * unbusied will cause a deadlock. 520 */ 521 while (i != 0) { 522 i -= PAGE_SIZE; 523 m = vm_page_lookup(kmem_object, 524 OFF_TO_IDX(offset + i)); 525 vm_page_unwire(m, 0); 526 vm_page_free(m); 527 } 528 VM_OBJECT_WUNLOCK(kmem_object); 529 vm_map_delete(map, addr, addr + size); 530 return (KERN_NO_SPACE); 531 } 532 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 533 pmap_zero_page(m); 534 m->valid = VM_PAGE_BITS_ALL; 535 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 536 ("kmem_malloc: page %p is managed", m)); 537 } 538 VM_OBJECT_WUNLOCK(kmem_object); 539 540 /* 541 * Mark map entry as non-pageable. Repeat the assert. 542 */ 543 KASSERT(entry->start == addr && entry->end == addr + size && 544 entry->wired_count == 0, 545 ("kmem_back: entry not found or misaligned after allocation")); 546 entry->wired_count = 1; 547 548 /* 549 * At this point, the kmem_object must be unlocked because 550 * vm_map_simplify_entry() calls vm_object_deallocate(), which 551 * locks the kmem_object. 552 */ 553 vm_map_simplify_entry(map, entry); 554 555 /* 556 * Loop thru pages, entering them in the pmap. 557 */ 558 VM_OBJECT_WLOCK(kmem_object); 559 for (i = 0; i < size; i += PAGE_SIZE) { 560 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 561 /* 562 * Because this is kernel_pmap, this call will not block. 563 */ 564 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 565 TRUE); 566 vm_page_wakeup(m); 567 } 568 VM_OBJECT_WUNLOCK(kmem_object); 569 570 return (KERN_SUCCESS); 571 } 572 573 /* 574 * kmem_alloc_wait: 575 * 576 * Allocates pageable memory from a sub-map of the kernel. If the submap 577 * has no room, the caller sleeps waiting for more memory in the submap. 578 * 579 * This routine may block. 580 */ 581 vm_offset_t 582 kmem_alloc_wait(map, size) 583 vm_map_t map; 584 vm_size_t size; 585 { 586 vm_offset_t addr; 587 588 size = round_page(size); 589 if (!swap_reserve(size)) 590 return (0); 591 592 for (;;) { 593 /* 594 * To make this work for more than one map, use the map's lock 595 * to lock out sleepers/wakers. 596 */ 597 vm_map_lock(map); 598 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 599 break; 600 /* no space now; see if we can ever get space */ 601 if (vm_map_max(map) - vm_map_min(map) < size) { 602 vm_map_unlock(map); 603 swap_release(size); 604 return (0); 605 } 606 map->needs_wakeup = TRUE; 607 vm_map_unlock_and_wait(map, 0); 608 } 609 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 610 VM_PROT_ALL, MAP_ACC_CHARGED); 611 vm_map_unlock(map); 612 return (addr); 613 } 614 615 /* 616 * kmem_free_wakeup: 617 * 618 * Returns memory to a submap of the kernel, and wakes up any processes 619 * waiting for memory in that map. 620 */ 621 void 622 kmem_free_wakeup(map, addr, size) 623 vm_map_t map; 624 vm_offset_t addr; 625 vm_size_t size; 626 { 627 628 vm_map_lock(map); 629 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 630 if (map->needs_wakeup) { 631 map->needs_wakeup = FALSE; 632 vm_map_wakeup(map); 633 } 634 vm_map_unlock(map); 635 } 636 637 static void 638 kmem_init_zero_region(void) 639 { 640 vm_offset_t addr, i; 641 vm_page_t m; 642 int error; 643 644 /* 645 * Map a single physical page of zeros to a larger virtual range. 646 * This requires less looping in places that want large amounts of 647 * zeros, while not using much more physical resources. 648 */ 649 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 650 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 651 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 652 if ((m->flags & PG_ZERO) == 0) 653 pmap_zero_page(m); 654 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 655 pmap_qenter(addr + i, &m, 1); 656 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 657 VM_PROT_READ, TRUE); 658 KASSERT(error == 0, ("error=%d", error)); 659 660 zero_region = (const void *)addr; 661 } 662 663 /* 664 * kmem_init: 665 * 666 * Create the kernel map; insert a mapping covering kernel text, 667 * data, bss, and all space allocated thus far (`boostrap' data). The 668 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 669 * `start' as allocated, and the range between `start' and `end' as free. 670 */ 671 void 672 kmem_init(start, end) 673 vm_offset_t start, end; 674 { 675 vm_map_t m; 676 677 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 678 m->system_map = 1; 679 vm_map_lock(m); 680 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 681 kernel_map = m; 682 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 683 #ifdef __amd64__ 684 KERNBASE, 685 #else 686 VM_MIN_KERNEL_ADDRESS, 687 #endif 688 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 689 /* ... and ending with the completion of the above `insert' */ 690 vm_map_unlock(m); 691 692 kmem_init_zero_region(); 693 } 694 695 #ifdef DIAGNOSTIC 696 /* 697 * Allow userspace to directly trigger the VM drain routine for testing 698 * purposes. 699 */ 700 static int 701 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 702 { 703 int error, i; 704 705 i = 0; 706 error = sysctl_handle_int(oidp, &i, 0, req); 707 if (error) 708 return (error); 709 if (i) 710 EVENTHANDLER_INVOKE(vm_lowmem, 0); 711 return (0); 712 } 713 714 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 715 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 716 #endif 717