1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/malloc.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 87 vm_map_t kernel_map=0; 88 vm_map_t kmem_map=0; 89 vm_map_t exec_map=0; 90 vm_map_t clean_map=0; 91 vm_map_t buffer_map=0; 92 93 /* 94 * kmem_alloc_pageable: 95 * 96 * Allocate pageable memory to the kernel's address map. 97 * "map" must be kernel_map or a submap of kernel_map. 98 */ 99 100 vm_offset_t 101 kmem_alloc_pageable(map, size) 102 vm_map_t map; 103 vm_size_t size; 104 { 105 vm_offset_t addr; 106 int result; 107 108 GIANT_REQUIRED; 109 110 size = round_page(size); 111 addr = vm_map_min(map); 112 result = vm_map_find(map, NULL, (vm_offset_t) 0, 113 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 114 if (result != KERN_SUCCESS) { 115 return (0); 116 } 117 return (addr); 118 } 119 120 /* 121 * kmem_alloc_nofault: 122 * 123 * Same as kmem_alloc_pageable, except that it create a nofault entry. 124 */ 125 126 vm_offset_t 127 kmem_alloc_nofault(map, size) 128 vm_map_t map; 129 vm_size_t size; 130 { 131 vm_offset_t addr; 132 int result; 133 134 GIANT_REQUIRED; 135 136 size = round_page(size); 137 addr = vm_map_min(map); 138 result = vm_map_find(map, NULL, (vm_offset_t) 0, 139 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 140 if (result != KERN_SUCCESS) { 141 return (0); 142 } 143 return (addr); 144 } 145 146 /* 147 * Allocate wired-down memory in the kernel's address map 148 * or a submap. 149 */ 150 vm_offset_t 151 kmem_alloc(map, size) 152 vm_map_t map; 153 vm_size_t size; 154 { 155 vm_offset_t addr; 156 vm_offset_t offset; 157 vm_offset_t i; 158 159 GIANT_REQUIRED; 160 161 size = round_page(size); 162 163 /* 164 * Use the kernel object for wired-down kernel pages. Assume that no 165 * region of the kernel object is referenced more than once. 166 */ 167 168 /* 169 * Locate sufficient space in the map. This will give us the final 170 * virtual address for the new memory, and thus will tell us the 171 * offset within the kernel map. 172 */ 173 vm_map_lock(map); 174 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 175 vm_map_unlock(map); 176 return (0); 177 } 178 offset = addr - VM_MIN_KERNEL_ADDRESS; 179 vm_object_reference(kernel_object); 180 vm_map_insert(map, kernel_object, offset, addr, addr + size, 181 VM_PROT_ALL, VM_PROT_ALL, 0); 182 vm_map_unlock(map); 183 184 /* 185 * Guarantee that there are pages already in this object before 186 * calling vm_map_pageable. This is to prevent the following 187 * scenario: 188 * 189 * 1) Threads have swapped out, so that there is a pager for the 190 * kernel_object. 2) The kmsg zone is empty, and so we are 191 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 192 * there is no page, but there is a pager, so we call 193 * pager_data_request. But the kmsg zone is empty, so we must 194 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 195 * we get the data back from the pager, it will be (very stale) 196 * non-zero data. kmem_alloc is defined to return zero-filled memory. 197 * 198 * We're intentionally not activating the pages we allocate to prevent a 199 * race with page-out. vm_map_pageable will wire the pages. 200 */ 201 202 for (i = 0; i < size; i += PAGE_SIZE) { 203 vm_page_t mem; 204 205 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 206 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 207 if ((mem->flags & PG_ZERO) == 0) 208 vm_page_zero_fill(mem); 209 mem->valid = VM_PAGE_BITS_ALL; 210 vm_page_flag_clear(mem, PG_ZERO); 211 vm_page_wakeup(mem); 212 } 213 214 /* 215 * And finally, mark the data as non-pageable. 216 */ 217 218 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 219 220 return (addr); 221 } 222 223 /* 224 * kmem_free: 225 * 226 * Release a region of kernel virtual memory allocated 227 * with kmem_alloc, and return the physical pages 228 * associated with that region. 229 * 230 * This routine may not block on kernel maps. 231 */ 232 void 233 kmem_free(map, addr, size) 234 vm_map_t map; 235 vm_offset_t addr; 236 vm_size_t size; 237 { 238 GIANT_REQUIRED; 239 240 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 241 } 242 243 /* 244 * kmem_suballoc: 245 * 246 * Allocates a map to manage a subrange 247 * of the kernel virtual address space. 248 * 249 * Arguments are as follows: 250 * 251 * parent Map to take range from 252 * min, max Returned endpoints of map 253 * size Size of range to find 254 */ 255 vm_map_t 256 kmem_suballoc(parent, min, max, size) 257 vm_map_t parent; 258 vm_offset_t *min, *max; 259 vm_size_t size; 260 { 261 int ret; 262 vm_map_t result; 263 264 GIANT_REQUIRED; 265 266 size = round_page(size); 267 268 *min = (vm_offset_t) vm_map_min(parent); 269 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 270 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 271 if (ret != KERN_SUCCESS) { 272 printf("kmem_suballoc: bad status return of %d.\n", ret); 273 panic("kmem_suballoc"); 274 } 275 *max = *min + size; 276 pmap_reference(vm_map_pmap(parent)); 277 result = vm_map_create(vm_map_pmap(parent), *min, *max); 278 if (result == NULL) 279 panic("kmem_suballoc: cannot create submap"); 280 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 281 panic("kmem_suballoc: unable to change range to submap"); 282 return (result); 283 } 284 285 /* 286 * kmem_malloc: 287 * 288 * Allocate wired-down memory in the kernel's address map for the higher 289 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 290 * kmem_alloc() because we may need to allocate memory at interrupt 291 * level where we cannot block (canwait == FALSE). 292 * 293 * This routine has its own private kernel submap (kmem_map) and object 294 * (kmem_object). This, combined with the fact that only malloc uses 295 * this routine, ensures that we will never block in map or object waits. 296 * 297 * Note that this still only works in a uni-processor environment and 298 * when called at splhigh(). 299 * 300 * We don't worry about expanding the map (adding entries) since entries 301 * for wired maps are statically allocated. 302 * 303 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 304 * I have not verified that it actually does not block. 305 * 306 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 307 * which we never free. 308 */ 309 vm_offset_t 310 kmem_malloc(map, size, flags) 311 vm_map_t map; 312 vm_size_t size; 313 int flags; 314 { 315 vm_offset_t offset, i; 316 vm_map_entry_t entry; 317 vm_offset_t addr; 318 vm_page_t m; 319 320 GIANT_REQUIRED; 321 322 size = round_page(size); 323 addr = vm_map_min(map); 324 325 /* 326 * Locate sufficient space in the map. This will give us the final 327 * virtual address for the new memory, and thus will tell us the 328 * offset within the kernel map. 329 */ 330 vm_map_lock(map); 331 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 332 vm_map_unlock(map); 333 if (map != kmem_map) { 334 printf("Out of mbuf address space!\n"); 335 printf("Consider increasing NMBCLUSTERS\n"); 336 goto bad; 337 } 338 if ((flags & M_NOWAIT) == 0) 339 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 340 (long)size, (long)map->size); 341 goto bad; 342 } 343 offset = addr - VM_MIN_KERNEL_ADDRESS; 344 vm_object_reference(kmem_object); 345 vm_map_insert(map, kmem_object, offset, addr, addr + size, 346 VM_PROT_ALL, VM_PROT_ALL, 0); 347 348 for (i = 0; i < size; i += PAGE_SIZE) { 349 /* 350 * Note: if M_NOWAIT specified alone, allocate from 351 * interrupt-safe queues only (just the free list). If 352 * M_USE_RESERVE is also specified, we can also 353 * allocate from the cache. Neither of the latter two 354 * flags may be specified from an interrupt since interrupts 355 * are not allowed to mess with the cache queue. 356 */ 357 retry: 358 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 359 ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ? 360 VM_ALLOC_INTERRUPT : 361 VM_ALLOC_SYSTEM); 362 363 /* 364 * Ran out of space, free everything up and return. Don't need 365 * to lock page queues here as we know that the pages we got 366 * aren't on any queues. 367 */ 368 if (m == NULL) { 369 if ((flags & M_NOWAIT) == 0) { 370 vm_map_unlock(map); 371 VM_WAIT; 372 vm_map_lock(map); 373 goto retry; 374 } 375 vm_map_delete(map, addr, addr + size); 376 vm_map_unlock(map); 377 goto bad; 378 } 379 vm_page_flag_clear(m, PG_ZERO); 380 m->valid = VM_PAGE_BITS_ALL; 381 } 382 383 /* 384 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 385 * be able to extend the previous entry so there will be a new entry 386 * exactly corresponding to this address range and it will have 387 * wired_count == 0. 388 */ 389 if (!vm_map_lookup_entry(map, addr, &entry) || 390 entry->start != addr || entry->end != addr + size || 391 entry->wired_count != 0) 392 panic("kmem_malloc: entry not found or misaligned"); 393 entry->wired_count = 1; 394 395 vm_map_simplify_entry(map, entry); 396 397 /* 398 * Loop thru pages, entering them in the pmap. (We cannot add them to 399 * the wired count without wrapping the vm_page_queue_lock in 400 * splimp...) 401 */ 402 for (i = 0; i < size; i += PAGE_SIZE) { 403 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 404 vm_page_wire(m); 405 vm_page_wakeup(m); 406 /* 407 * Because this is kernel_pmap, this call will not block. 408 */ 409 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 410 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 411 } 412 vm_map_unlock(map); 413 414 return (addr); 415 416 bad: 417 return (0); 418 } 419 420 /* 421 * kmem_alloc_wait: 422 * 423 * Allocates pageable memory from a sub-map of the kernel. If the submap 424 * has no room, the caller sleeps waiting for more memory in the submap. 425 * 426 * This routine may block. 427 */ 428 429 vm_offset_t 430 kmem_alloc_wait(map, size) 431 vm_map_t map; 432 vm_size_t size; 433 { 434 vm_offset_t addr; 435 436 GIANT_REQUIRED; 437 438 size = round_page(size); 439 440 for (;;) { 441 /* 442 * To make this work for more than one map, use the map's lock 443 * to lock out sleepers/wakers. 444 */ 445 vm_map_lock(map); 446 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 447 break; 448 /* no space now; see if we can ever get space */ 449 if (vm_map_max(map) - vm_map_min(map) < size) { 450 vm_map_unlock(map); 451 return (0); 452 } 453 vm_map_unlock(map); 454 tsleep(map, PVM, "kmaw", 0); 455 } 456 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 457 vm_map_unlock(map); 458 return (addr); 459 } 460 461 /* 462 * kmem_free_wakeup: 463 * 464 * Returns memory to a submap of the kernel, and wakes up any processes 465 * waiting for memory in that map. 466 */ 467 void 468 kmem_free_wakeup(map, addr, size) 469 vm_map_t map; 470 vm_offset_t addr; 471 vm_size_t size; 472 { 473 GIANT_REQUIRED; 474 475 vm_map_lock(map); 476 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 477 wakeup(map); 478 vm_map_unlock(map); 479 } 480 481 /* 482 * kmem_init: 483 * 484 * Create the kernel map; insert a mapping covering kernel text, 485 * data, bss, and all space allocated thus far (`boostrap' data). The 486 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 487 * `start' as allocated, and the range between `start' and `end' as free. 488 */ 489 490 void 491 kmem_init(start, end) 492 vm_offset_t start, end; 493 { 494 vm_map_t m; 495 496 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 497 vm_map_lock(m); 498 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 499 kernel_map = m; 500 kernel_map->system_map = 1; 501 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 502 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 503 /* ... and ending with the completion of the above `insert' */ 504 vm_map_unlock(m); 505 } 506