xref: /freebsd/sys/vm/vm_kern.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/malloc.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 
87 vm_map_t kernel_map=0;
88 vm_map_t kmem_map=0;
89 vm_map_t exec_map=0;
90 vm_map_t clean_map=0;
91 vm_map_t buffer_map=0;
92 
93 /*
94  *	kmem_alloc_pageable:
95  *
96  *	Allocate pageable memory to the kernel's address map.
97  *	"map" must be kernel_map or a submap of kernel_map.
98  */
99 
100 vm_offset_t
101 kmem_alloc_pageable(map, size)
102 	vm_map_t map;
103 	vm_size_t size;
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	GIANT_REQUIRED;
109 
110 	size = round_page(size);
111 	addr = vm_map_min(map);
112 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
113 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
114 	if (result != KERN_SUCCESS) {
115 		return (0);
116 	}
117 	return (addr);
118 }
119 
120 /*
121  *	kmem_alloc_nofault:
122  *
123  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
124  */
125 
126 vm_offset_t
127 kmem_alloc_nofault(map, size)
128 	vm_map_t map;
129 	vm_size_t size;
130 {
131 	vm_offset_t addr;
132 	int result;
133 
134 	GIANT_REQUIRED;
135 
136 	size = round_page(size);
137 	addr = vm_map_min(map);
138 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
139 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140 	if (result != KERN_SUCCESS) {
141 		return (0);
142 	}
143 	return (addr);
144 }
145 
146 /*
147  *	Allocate wired-down memory in the kernel's address map
148  *	or a submap.
149  */
150 vm_offset_t
151 kmem_alloc(map, size)
152 	vm_map_t map;
153 	vm_size_t size;
154 {
155 	vm_offset_t addr;
156 	vm_offset_t offset;
157 	vm_offset_t i;
158 
159 	GIANT_REQUIRED;
160 
161 	size = round_page(size);
162 
163 	/*
164 	 * Use the kernel object for wired-down kernel pages. Assume that no
165 	 * region of the kernel object is referenced more than once.
166 	 */
167 
168 	/*
169 	 * Locate sufficient space in the map.  This will give us the final
170 	 * virtual address for the new memory, and thus will tell us the
171 	 * offset within the kernel map.
172 	 */
173 	vm_map_lock(map);
174 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
175 		vm_map_unlock(map);
176 		return (0);
177 	}
178 	offset = addr - VM_MIN_KERNEL_ADDRESS;
179 	vm_object_reference(kernel_object);
180 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
181 		VM_PROT_ALL, VM_PROT_ALL, 0);
182 	vm_map_unlock(map);
183 
184 	/*
185 	 * Guarantee that there are pages already in this object before
186 	 * calling vm_map_pageable.  This is to prevent the following
187 	 * scenario:
188 	 *
189 	 * 1) Threads have swapped out, so that there is a pager for the
190 	 * kernel_object. 2) The kmsg zone is empty, and so we are
191 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
192 	 * there is no page, but there is a pager, so we call
193 	 * pager_data_request.  But the kmsg zone is empty, so we must
194 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
195 	 * we get the data back from the pager, it will be (very stale)
196 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
197 	 *
198 	 * We're intentionally not activating the pages we allocate to prevent a
199 	 * race with page-out.  vm_map_pageable will wire the pages.
200 	 */
201 
202 	for (i = 0; i < size; i += PAGE_SIZE) {
203 		vm_page_t mem;
204 
205 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
206 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
207 		if ((mem->flags & PG_ZERO) == 0)
208 			vm_page_zero_fill(mem);
209 		mem->valid = VM_PAGE_BITS_ALL;
210 		vm_page_flag_clear(mem, PG_ZERO);
211 		vm_page_wakeup(mem);
212 	}
213 
214 	/*
215 	 * And finally, mark the data as non-pageable.
216 	 */
217 
218 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
219 
220 	return (addr);
221 }
222 
223 /*
224  *	kmem_free:
225  *
226  *	Release a region of kernel virtual memory allocated
227  *	with kmem_alloc, and return the physical pages
228  *	associated with that region.
229  *
230  *	This routine may not block on kernel maps.
231  */
232 void
233 kmem_free(map, addr, size)
234 	vm_map_t map;
235 	vm_offset_t addr;
236 	vm_size_t size;
237 {
238 	GIANT_REQUIRED;
239 
240 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
241 }
242 
243 /*
244  *	kmem_suballoc:
245  *
246  *	Allocates a map to manage a subrange
247  *	of the kernel virtual address space.
248  *
249  *	Arguments are as follows:
250  *
251  *	parent		Map to take range from
252  *	min, max	Returned endpoints of map
253  *	size		Size of range to find
254  */
255 vm_map_t
256 kmem_suballoc(parent, min, max, size)
257 	vm_map_t parent;
258 	vm_offset_t *min, *max;
259 	vm_size_t size;
260 {
261 	int ret;
262 	vm_map_t result;
263 
264 	GIANT_REQUIRED;
265 
266 	size = round_page(size);
267 
268 	*min = (vm_offset_t) vm_map_min(parent);
269 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
270 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
271 	if (ret != KERN_SUCCESS) {
272 		printf("kmem_suballoc: bad status return of %d.\n", ret);
273 		panic("kmem_suballoc");
274 	}
275 	*max = *min + size;
276 	pmap_reference(vm_map_pmap(parent));
277 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
278 	if (result == NULL)
279 		panic("kmem_suballoc: cannot create submap");
280 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
281 		panic("kmem_suballoc: unable to change range to submap");
282 	return (result);
283 }
284 
285 /*
286  *	kmem_malloc:
287  *
288  * 	Allocate wired-down memory in the kernel's address map for the higher
289  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
290  * 	kmem_alloc() because we may need to allocate memory at interrupt
291  * 	level where we cannot block (canwait == FALSE).
292  *
293  * 	This routine has its own private kernel submap (kmem_map) and object
294  * 	(kmem_object).  This, combined with the fact that only malloc uses
295  * 	this routine, ensures that we will never block in map or object waits.
296  *
297  * 	Note that this still only works in a uni-processor environment and
298  * 	when called at splhigh().
299  *
300  * 	We don't worry about expanding the map (adding entries) since entries
301  * 	for wired maps are statically allocated.
302  *
303  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
304  *	I have not verified that it actually does not block.
305  *
306  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
307  *	which we never free.
308  */
309 vm_offset_t
310 kmem_malloc(map, size, flags)
311 	vm_map_t map;
312 	vm_size_t size;
313 	int flags;
314 {
315 	vm_offset_t offset, i;
316 	vm_map_entry_t entry;
317 	vm_offset_t addr;
318 	vm_page_t m;
319 
320 	GIANT_REQUIRED;
321 
322 	size = round_page(size);
323 	addr = vm_map_min(map);
324 
325 	/*
326 	 * Locate sufficient space in the map.  This will give us the final
327 	 * virtual address for the new memory, and thus will tell us the
328 	 * offset within the kernel map.
329 	 */
330 	vm_map_lock(map);
331 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
332 		vm_map_unlock(map);
333 		if (map != kmem_map) {
334 			printf("Out of mbuf address space!\n");
335 			printf("Consider increasing NMBCLUSTERS\n");
336 			goto bad;
337 		}
338 		if ((flags & M_NOWAIT) == 0)
339 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
340 				(long)size, (long)map->size);
341 		goto bad;
342 	}
343 	offset = addr - VM_MIN_KERNEL_ADDRESS;
344 	vm_object_reference(kmem_object);
345 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
346 		VM_PROT_ALL, VM_PROT_ALL, 0);
347 
348 	for (i = 0; i < size; i += PAGE_SIZE) {
349 		/*
350 		 * Note: if M_NOWAIT specified alone, allocate from
351 		 * interrupt-safe queues only (just the free list).  If
352 		 * M_USE_RESERVE is also specified, we can also
353 		 * allocate from the cache.  Neither of the latter two
354 		 * flags may be specified from an interrupt since interrupts
355 		 * are not allowed to mess with the cache queue.
356 		 */
357 retry:
358 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
359 		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
360 			VM_ALLOC_INTERRUPT :
361 			VM_ALLOC_SYSTEM);
362 
363 		/*
364 		 * Ran out of space, free everything up and return. Don't need
365 		 * to lock page queues here as we know that the pages we got
366 		 * aren't on any queues.
367 		 */
368 		if (m == NULL) {
369 			if ((flags & M_NOWAIT) == 0) {
370 				vm_map_unlock(map);
371 				VM_WAIT;
372 				vm_map_lock(map);
373 				goto retry;
374 			}
375 			vm_map_delete(map, addr, addr + size);
376 			vm_map_unlock(map);
377 			goto bad;
378 		}
379 		vm_page_flag_clear(m, PG_ZERO);
380 		m->valid = VM_PAGE_BITS_ALL;
381 	}
382 
383 	/*
384 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
385 	 * be able to extend the previous entry so there will be a new entry
386 	 * exactly corresponding to this address range and it will have
387 	 * wired_count == 0.
388 	 */
389 	if (!vm_map_lookup_entry(map, addr, &entry) ||
390 	    entry->start != addr || entry->end != addr + size ||
391 	    entry->wired_count != 0)
392 		panic("kmem_malloc: entry not found or misaligned");
393 	entry->wired_count = 1;
394 
395 	vm_map_simplify_entry(map, entry);
396 
397 	/*
398 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
399 	 * the wired count without wrapping the vm_page_queue_lock in
400 	 * splimp...)
401 	 */
402 	for (i = 0; i < size; i += PAGE_SIZE) {
403 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
404 		vm_page_wire(m);
405 		vm_page_wakeup(m);
406 		/*
407 		 * Because this is kernel_pmap, this call will not block.
408 		 */
409 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
410 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
411 	}
412 	vm_map_unlock(map);
413 
414 	return (addr);
415 
416 bad:
417 	return (0);
418 }
419 
420 /*
421  *	kmem_alloc_wait:
422  *
423  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
424  *	has no room, the caller sleeps waiting for more memory in the submap.
425  *
426  *	This routine may block.
427  */
428 
429 vm_offset_t
430 kmem_alloc_wait(map, size)
431 	vm_map_t map;
432 	vm_size_t size;
433 {
434 	vm_offset_t addr;
435 
436 	GIANT_REQUIRED;
437 
438 	size = round_page(size);
439 
440 	for (;;) {
441 		/*
442 		 * To make this work for more than one map, use the map's lock
443 		 * to lock out sleepers/wakers.
444 		 */
445 		vm_map_lock(map);
446 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
447 			break;
448 		/* no space now; see if we can ever get space */
449 		if (vm_map_max(map) - vm_map_min(map) < size) {
450 			vm_map_unlock(map);
451 			return (0);
452 		}
453 		vm_map_unlock(map);
454 		tsleep(map, PVM, "kmaw", 0);
455 	}
456 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
457 	vm_map_unlock(map);
458 	return (addr);
459 }
460 
461 /*
462  *	kmem_free_wakeup:
463  *
464  *	Returns memory to a submap of the kernel, and wakes up any processes
465  *	waiting for memory in that map.
466  */
467 void
468 kmem_free_wakeup(map, addr, size)
469 	vm_map_t map;
470 	vm_offset_t addr;
471 	vm_size_t size;
472 {
473 	GIANT_REQUIRED;
474 
475 	vm_map_lock(map);
476 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
477 	wakeup(map);
478 	vm_map_unlock(map);
479 }
480 
481 /*
482  * 	kmem_init:
483  *
484  *	Create the kernel map; insert a mapping covering kernel text,
485  *	data, bss, and all space allocated thus far (`boostrap' data).  The
486  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
487  *	`start' as allocated, and the range between `start' and `end' as free.
488  */
489 
490 void
491 kmem_init(start, end)
492 	vm_offset_t start, end;
493 {
494 	vm_map_t m;
495 
496 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
497 	vm_map_lock(m);
498 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
499 	kernel_map = m;
500 	kernel_map->system_map = 1;
501 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
502 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
503 	/* ... and ending with the completion of the above `insert' */
504 	vm_map_unlock(m);
505 }
506