1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/malloc.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map=0; 93 94 const void *zero_region; 95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 96 97 /* 98 * kmem_alloc_nofault: 99 * 100 * Allocate a virtual address range with no underlying object and 101 * no initial mapping to physical memory. Any mapping from this 102 * range to physical memory must be explicitly created prior to 103 * its use, typically with pmap_qenter(). Any attempt to create 104 * a mapping on demand through vm_fault() will result in a panic. 105 */ 106 vm_offset_t 107 kmem_alloc_nofault(map, size) 108 vm_map_t map; 109 vm_size_t size; 110 { 111 vm_offset_t addr; 112 int result; 113 114 size = round_page(size); 115 addr = vm_map_min(map); 116 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 117 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 118 if (result != KERN_SUCCESS) { 119 return (0); 120 } 121 return (addr); 122 } 123 124 /* 125 * kmem_alloc_nofault_space: 126 * 127 * Allocate a virtual address range with no underlying object and 128 * no initial mapping to physical memory within the specified 129 * address space. Any mapping from this range to physical memory 130 * must be explicitly created prior to its use, typically with 131 * pmap_qenter(). Any attempt to create a mapping on demand 132 * through vm_fault() will result in a panic. 133 */ 134 vm_offset_t 135 kmem_alloc_nofault_space(map, size, find_space) 136 vm_map_t map; 137 vm_size_t size; 138 int find_space; 139 { 140 vm_offset_t addr; 141 int result; 142 143 size = round_page(size); 144 addr = vm_map_min(map); 145 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 146 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 147 if (result != KERN_SUCCESS) { 148 return (0); 149 } 150 return (addr); 151 } 152 153 /* 154 * Allocate wired-down memory in the kernel's address map 155 * or a submap. 156 */ 157 vm_offset_t 158 kmem_alloc(map, size) 159 vm_map_t map; 160 vm_size_t size; 161 { 162 vm_offset_t addr; 163 vm_offset_t offset; 164 165 size = round_page(size); 166 167 /* 168 * Use the kernel object for wired-down kernel pages. Assume that no 169 * region of the kernel object is referenced more than once. 170 */ 171 172 /* 173 * Locate sufficient space in the map. This will give us the final 174 * virtual address for the new memory, and thus will tell us the 175 * offset within the kernel map. 176 */ 177 vm_map_lock(map); 178 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 179 vm_map_unlock(map); 180 return (0); 181 } 182 offset = addr - VM_MIN_KERNEL_ADDRESS; 183 vm_object_reference(kernel_object); 184 vm_map_insert(map, kernel_object, offset, addr, addr + size, 185 VM_PROT_ALL, VM_PROT_ALL, 0); 186 vm_map_unlock(map); 187 188 /* 189 * And finally, mark the data as non-pageable. 190 */ 191 (void) vm_map_wire(map, addr, addr + size, 192 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 193 194 return (addr); 195 } 196 197 /* 198 * kmem_free: 199 * 200 * Release a region of kernel virtual memory allocated 201 * with kmem_alloc, and return the physical pages 202 * associated with that region. 203 * 204 * This routine may not block on kernel maps. 205 */ 206 void 207 kmem_free(map, addr, size) 208 vm_map_t map; 209 vm_offset_t addr; 210 vm_size_t size; 211 { 212 213 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 214 } 215 216 /* 217 * kmem_suballoc: 218 * 219 * Allocates a map to manage a subrange 220 * of the kernel virtual address space. 221 * 222 * Arguments are as follows: 223 * 224 * parent Map to take range from 225 * min, max Returned endpoints of map 226 * size Size of range to find 227 * superpage_align Request that min is superpage aligned 228 */ 229 vm_map_t 230 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 231 vm_size_t size, boolean_t superpage_align) 232 { 233 int ret; 234 vm_map_t result; 235 236 size = round_page(size); 237 238 *min = vm_map_min(parent); 239 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 240 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 241 MAP_ACC_NO_CHARGE); 242 if (ret != KERN_SUCCESS) 243 panic("kmem_suballoc: bad status return of %d", ret); 244 *max = *min + size; 245 result = vm_map_create(vm_map_pmap(parent), *min, *max); 246 if (result == NULL) 247 panic("kmem_suballoc: cannot create submap"); 248 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 249 panic("kmem_suballoc: unable to change range to submap"); 250 return (result); 251 } 252 253 /* 254 * kmem_malloc: 255 * 256 * Allocate wired-down memory in the kernel's address map for the higher 257 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 258 * kmem_alloc() because we may need to allocate memory at interrupt 259 * level where we cannot block (canwait == FALSE). 260 * 261 * This routine has its own private kernel submap (kmem_map) and object 262 * (kmem_object). This, combined with the fact that only malloc uses 263 * this routine, ensures that we will never block in map or object waits. 264 * 265 * We don't worry about expanding the map (adding entries) since entries 266 * for wired maps are statically allocated. 267 * 268 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 269 * which we never free. 270 */ 271 vm_offset_t 272 kmem_malloc(map, size, flags) 273 vm_map_t map; 274 vm_size_t size; 275 int flags; 276 { 277 vm_offset_t addr; 278 int i, rv; 279 280 size = round_page(size); 281 addr = vm_map_min(map); 282 283 /* 284 * Locate sufficient space in the map. This will give us the final 285 * virtual address for the new memory, and thus will tell us the 286 * offset within the kernel map. 287 */ 288 vm_map_lock(map); 289 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 290 vm_map_unlock(map); 291 if ((flags & M_NOWAIT) == 0) { 292 for (i = 0; i < 8; i++) { 293 EVENTHANDLER_INVOKE(vm_lowmem, 0); 294 uma_reclaim(); 295 vm_map_lock(map); 296 if (vm_map_findspace(map, vm_map_min(map), 297 size, &addr) == 0) { 298 break; 299 } 300 vm_map_unlock(map); 301 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 302 } 303 if (i == 8) { 304 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 305 (long)size, (long)map->size); 306 } 307 } else { 308 return (0); 309 } 310 } 311 312 rv = kmem_back(map, addr, size, flags); 313 vm_map_unlock(map); 314 return (rv == KERN_SUCCESS ? addr : 0); 315 } 316 317 /* 318 * kmem_back: 319 * 320 * Allocate physical pages for the specified virtual address range. 321 */ 322 int 323 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 324 { 325 vm_offset_t offset, i; 326 vm_map_entry_t entry; 327 vm_page_t m; 328 int pflags; 329 boolean_t found; 330 331 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 332 offset = addr - VM_MIN_KERNEL_ADDRESS; 333 vm_object_reference(kmem_object); 334 vm_map_insert(map, kmem_object, offset, addr, addr + size, 335 VM_PROT_ALL, VM_PROT_ALL, 0); 336 337 /* 338 * Assert: vm_map_insert() will never be able to extend the 339 * previous entry so vm_map_lookup_entry() will find a new 340 * entry exactly corresponding to this address range and it 341 * will have wired_count == 0. 342 */ 343 found = vm_map_lookup_entry(map, addr, &entry); 344 KASSERT(found && entry->start == addr && entry->end == addr + size && 345 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 346 == 0, ("kmem_back: entry not found or misaligned")); 347 348 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 349 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 350 else 351 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 352 353 if (flags & M_ZERO) 354 pflags |= VM_ALLOC_ZERO; 355 if (flags & M_NODUMP) 356 pflags |= VM_ALLOC_NODUMP; 357 358 VM_OBJECT_LOCK(kmem_object); 359 for (i = 0; i < size; i += PAGE_SIZE) { 360 retry: 361 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 362 363 /* 364 * Ran out of space, free everything up and return. Don't need 365 * to lock page queues here as we know that the pages we got 366 * aren't on any queues. 367 */ 368 if (m == NULL) { 369 if ((flags & M_NOWAIT) == 0) { 370 VM_OBJECT_UNLOCK(kmem_object); 371 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 372 vm_map_unlock(map); 373 VM_WAIT; 374 vm_map_lock(map); 375 KASSERT( 376 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 377 MAP_ENTRY_IN_TRANSITION, 378 ("kmem_back: volatile entry")); 379 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 380 VM_OBJECT_LOCK(kmem_object); 381 goto retry; 382 } 383 /* 384 * Free the pages before removing the map entry. 385 * They are already marked busy. Calling 386 * vm_map_delete before the pages has been freed or 387 * unbusied will cause a deadlock. 388 */ 389 while (i != 0) { 390 i -= PAGE_SIZE; 391 m = vm_page_lookup(kmem_object, 392 OFF_TO_IDX(offset + i)); 393 vm_page_unwire(m, 0); 394 vm_page_free(m); 395 } 396 VM_OBJECT_UNLOCK(kmem_object); 397 vm_map_delete(map, addr, addr + size); 398 return (KERN_NO_SPACE); 399 } 400 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 401 pmap_zero_page(m); 402 m->valid = VM_PAGE_BITS_ALL; 403 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 404 ("kmem_malloc: page %p is managed", m)); 405 } 406 VM_OBJECT_UNLOCK(kmem_object); 407 408 /* 409 * Mark map entry as non-pageable. Repeat the assert. 410 */ 411 KASSERT(entry->start == addr && entry->end == addr + size && 412 entry->wired_count == 0, 413 ("kmem_back: entry not found or misaligned after allocation")); 414 entry->wired_count = 1; 415 416 /* 417 * At this point, the kmem_object must be unlocked because 418 * vm_map_simplify_entry() calls vm_object_deallocate(), which 419 * locks the kmem_object. 420 */ 421 vm_map_simplify_entry(map, entry); 422 423 /* 424 * Loop thru pages, entering them in the pmap. 425 */ 426 VM_OBJECT_LOCK(kmem_object); 427 for (i = 0; i < size; i += PAGE_SIZE) { 428 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 429 /* 430 * Because this is kernel_pmap, this call will not block. 431 */ 432 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 433 TRUE); 434 vm_page_wakeup(m); 435 } 436 VM_OBJECT_UNLOCK(kmem_object); 437 438 return (KERN_SUCCESS); 439 } 440 441 /* 442 * kmem_alloc_wait: 443 * 444 * Allocates pageable memory from a sub-map of the kernel. If the submap 445 * has no room, the caller sleeps waiting for more memory in the submap. 446 * 447 * This routine may block. 448 */ 449 vm_offset_t 450 kmem_alloc_wait(map, size) 451 vm_map_t map; 452 vm_size_t size; 453 { 454 vm_offset_t addr; 455 456 size = round_page(size); 457 if (!swap_reserve(size)) 458 return (0); 459 460 for (;;) { 461 /* 462 * To make this work for more than one map, use the map's lock 463 * to lock out sleepers/wakers. 464 */ 465 vm_map_lock(map); 466 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 467 break; 468 /* no space now; see if we can ever get space */ 469 if (vm_map_max(map) - vm_map_min(map) < size) { 470 vm_map_unlock(map); 471 swap_release(size); 472 return (0); 473 } 474 map->needs_wakeup = TRUE; 475 vm_map_unlock_and_wait(map, 0); 476 } 477 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 478 VM_PROT_ALL, MAP_ACC_CHARGED); 479 vm_map_unlock(map); 480 return (addr); 481 } 482 483 /* 484 * kmem_free_wakeup: 485 * 486 * Returns memory to a submap of the kernel, and wakes up any processes 487 * waiting for memory in that map. 488 */ 489 void 490 kmem_free_wakeup(map, addr, size) 491 vm_map_t map; 492 vm_offset_t addr; 493 vm_size_t size; 494 { 495 496 vm_map_lock(map); 497 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 498 if (map->needs_wakeup) { 499 map->needs_wakeup = FALSE; 500 vm_map_wakeup(map); 501 } 502 vm_map_unlock(map); 503 } 504 505 static void 506 kmem_init_zero_region(void) 507 { 508 vm_offset_t addr, i; 509 vm_page_t m; 510 int error; 511 512 /* 513 * Map a single physical page of zeros to a larger virtual range. 514 * This requires less looping in places that want large amounts of 515 * zeros, while not using much more physical resources. 516 */ 517 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 518 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 519 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 520 if ((m->flags & PG_ZERO) == 0) 521 pmap_zero_page(m); 522 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 523 pmap_qenter(addr + i, &m, 1); 524 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 525 VM_PROT_READ, TRUE); 526 KASSERT(error == 0, ("error=%d", error)); 527 528 zero_region = (const void *)addr; 529 } 530 531 /* 532 * kmem_init: 533 * 534 * Create the kernel map; insert a mapping covering kernel text, 535 * data, bss, and all space allocated thus far (`boostrap' data). The 536 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 537 * `start' as allocated, and the range between `start' and `end' as free. 538 */ 539 void 540 kmem_init(start, end) 541 vm_offset_t start, end; 542 { 543 vm_map_t m; 544 545 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 546 m->system_map = 1; 547 vm_map_lock(m); 548 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 549 kernel_map = m; 550 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 551 #ifdef __amd64__ 552 KERNBASE, 553 #else 554 VM_MIN_KERNEL_ADDRESS, 555 #endif 556 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 557 /* ... and ending with the completion of the above `insert' */ 558 vm_map_unlock(m); 559 560 kmem_init_zero_region(); 561 } 562 563 #ifdef DIAGNOSTIC 564 /* 565 * Allow userspace to directly trigger the VM drain routine for testing 566 * purposes. 567 */ 568 static int 569 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 570 { 571 int error, i; 572 573 i = 0; 574 error = sysctl_handle_int(oidp, &i, 0, req); 575 if (error) 576 return (error); 577 if (i) 578 EVENTHANDLER_INVOKE(vm_lowmem, 0); 579 return (0); 580 } 581 582 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 583 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 584 #endif 585