xref: /freebsd/sys/vm/vm_kern.c (revision 641a6cfb86023499caafe26a4d821a0b885cf00b)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Kernel memory management.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>		/* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/sysctl.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t pipe_map;
92 vm_map_t buffer_map=0;
93 
94 const void *zero_region;
95 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96 
97 /*
98  *	kmem_alloc_nofault:
99  *
100  *	Allocate a virtual address range with no underlying object and
101  *	no initial mapping to physical memory.  Any mapping from this
102  *	range to physical memory must be explicitly created prior to
103  *	its use, typically with pmap_qenter().  Any attempt to create
104  *	a mapping on demand through vm_fault() will result in a panic.
105  */
106 vm_offset_t
107 kmem_alloc_nofault(map, size)
108 	vm_map_t map;
109 	vm_size_t size;
110 {
111 	vm_offset_t addr;
112 	int result;
113 
114 	size = round_page(size);
115 	addr = vm_map_min(map);
116 	result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE,
117 	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
118 	if (result != KERN_SUCCESS) {
119 		return (0);
120 	}
121 	return (addr);
122 }
123 
124 /*
125  *	kmem_alloc_nofault_space:
126  *
127  *	Allocate a virtual address range with no underlying object and
128  *	no initial mapping to physical memory within the specified
129  *	address space.  Any mapping from this range to physical memory
130  *	must be explicitly created prior to its use, typically with
131  *	pmap_qenter().  Any attempt to create a mapping on demand
132  *	through vm_fault() will result in a panic.
133  */
134 vm_offset_t
135 kmem_alloc_nofault_space(map, size, find_space)
136 	vm_map_t map;
137 	vm_size_t size;
138 	int find_space;
139 {
140 	vm_offset_t addr;
141 	int result;
142 
143 	size = round_page(size);
144 	addr = vm_map_min(map);
145 	result = vm_map_find(map, NULL, 0, &addr, size, find_space,
146 	    VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
147 	if (result != KERN_SUCCESS) {
148 		return (0);
149 	}
150 	return (addr);
151 }
152 
153 /*
154  *	Allocate wired-down memory in the kernel's address map
155  *	or a submap.
156  */
157 vm_offset_t
158 kmem_alloc(map, size)
159 	vm_map_t map;
160 	vm_size_t size;
161 {
162 	vm_offset_t addr;
163 	vm_offset_t offset;
164 
165 	size = round_page(size);
166 
167 	/*
168 	 * Use the kernel object for wired-down kernel pages. Assume that no
169 	 * region of the kernel object is referenced more than once.
170 	 */
171 
172 	/*
173 	 * Locate sufficient space in the map.  This will give us the final
174 	 * virtual address for the new memory, and thus will tell us the
175 	 * offset within the kernel map.
176 	 */
177 	vm_map_lock(map);
178 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
179 		vm_map_unlock(map);
180 		return (0);
181 	}
182 	offset = addr - VM_MIN_KERNEL_ADDRESS;
183 	vm_object_reference(kernel_object);
184 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
185 		VM_PROT_ALL, VM_PROT_ALL, 0);
186 	vm_map_unlock(map);
187 
188 	/*
189 	 * And finally, mark the data as non-pageable.
190 	 */
191 	(void) vm_map_wire(map, addr, addr + size,
192 	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
193 
194 	return (addr);
195 }
196 
197 /*
198  *	kmem_free:
199  *
200  *	Release a region of kernel virtual memory allocated
201  *	with kmem_alloc, and return the physical pages
202  *	associated with that region.
203  *
204  *	This routine may not block on kernel maps.
205  */
206 void
207 kmem_free(map, addr, size)
208 	vm_map_t map;
209 	vm_offset_t addr;
210 	vm_size_t size;
211 {
212 
213 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
214 }
215 
216 /*
217  *	kmem_suballoc:
218  *
219  *	Allocates a map to manage a subrange
220  *	of the kernel virtual address space.
221  *
222  *	Arguments are as follows:
223  *
224  *	parent		Map to take range from
225  *	min, max	Returned endpoints of map
226  *	size		Size of range to find
227  *	superpage_align	Request that min is superpage aligned
228  */
229 vm_map_t
230 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
231     vm_size_t size, boolean_t superpage_align)
232 {
233 	int ret;
234 	vm_map_t result;
235 
236 	size = round_page(size);
237 
238 	*min = vm_map_min(parent);
239 	ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ?
240 	    VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
241 	    MAP_ACC_NO_CHARGE);
242 	if (ret != KERN_SUCCESS)
243 		panic("kmem_suballoc: bad status return of %d", ret);
244 	*max = *min + size;
245 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
246 	if (result == NULL)
247 		panic("kmem_suballoc: cannot create submap");
248 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
249 		panic("kmem_suballoc: unable to change range to submap");
250 	return (result);
251 }
252 
253 /*
254  *	kmem_malloc:
255  *
256  * 	Allocate wired-down memory in the kernel's address map for the higher
257  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
258  * 	kmem_alloc() because we may need to allocate memory at interrupt
259  * 	level where we cannot block (canwait == FALSE).
260  *
261  * 	This routine has its own private kernel submap (kmem_map) and object
262  * 	(kmem_object).  This, combined with the fact that only malloc uses
263  * 	this routine, ensures that we will never block in map or object waits.
264  *
265  * 	We don't worry about expanding the map (adding entries) since entries
266  * 	for wired maps are statically allocated.
267  *
268  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
269  *	which we never free.
270  */
271 vm_offset_t
272 kmem_malloc(map, size, flags)
273 	vm_map_t map;
274 	vm_size_t size;
275 	int flags;
276 {
277 	vm_offset_t addr;
278 	int i, rv;
279 
280 	size = round_page(size);
281 	addr = vm_map_min(map);
282 
283 	/*
284 	 * Locate sufficient space in the map.  This will give us the final
285 	 * virtual address for the new memory, and thus will tell us the
286 	 * offset within the kernel map.
287 	 */
288 	vm_map_lock(map);
289 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
290 		vm_map_unlock(map);
291                 if ((flags & M_NOWAIT) == 0) {
292 			for (i = 0; i < 8; i++) {
293 				EVENTHANDLER_INVOKE(vm_lowmem, 0);
294 				uma_reclaim();
295 				vm_map_lock(map);
296 				if (vm_map_findspace(map, vm_map_min(map),
297 				    size, &addr) == 0) {
298 					break;
299 				}
300 				vm_map_unlock(map);
301 				tsleep(&i, 0, "nokva", (hz / 4) * (i + 1));
302 			}
303 			if (i == 8) {
304 				panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
305 				    (long)size, (long)map->size);
306 			}
307 		} else {
308 			return (0);
309 		}
310 	}
311 
312 	rv = kmem_back(map, addr, size, flags);
313 	vm_map_unlock(map);
314 	return (rv == KERN_SUCCESS ? addr : 0);
315 }
316 
317 /*
318  *	kmem_back:
319  *
320  *	Allocate physical pages for the specified virtual address range.
321  */
322 int
323 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags)
324 {
325 	vm_offset_t offset, i;
326 	vm_map_entry_t entry;
327 	vm_page_t m;
328 	int pflags;
329 	boolean_t found;
330 
331 	KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map));
332 	offset = addr - VM_MIN_KERNEL_ADDRESS;
333 	vm_object_reference(kmem_object);
334 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
335 	    VM_PROT_ALL, VM_PROT_ALL, 0);
336 
337 	/*
338 	 * Assert: vm_map_insert() will never be able to extend the
339 	 * previous entry so vm_map_lookup_entry() will find a new
340 	 * entry exactly corresponding to this address range and it
341 	 * will have wired_count == 0.
342 	 */
343 	found = vm_map_lookup_entry(map, addr, &entry);
344 	KASSERT(found && entry->start == addr && entry->end == addr + size &&
345 	    entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION)
346 	    == 0, ("kmem_back: entry not found or misaligned"));
347 
348 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
349 		pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
350 	else
351 		pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
352 
353 	if (flags & M_ZERO)
354 		pflags |= VM_ALLOC_ZERO;
355 	if (flags & M_NODUMP)
356 		pflags |= VM_ALLOC_NODUMP;
357 
358 	VM_OBJECT_LOCK(kmem_object);
359 	for (i = 0; i < size; i += PAGE_SIZE) {
360 retry:
361 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags);
362 
363 		/*
364 		 * Ran out of space, free everything up and return. Don't need
365 		 * to lock page queues here as we know that the pages we got
366 		 * aren't on any queues.
367 		 */
368 		if (m == NULL) {
369 			if ((flags & M_NOWAIT) == 0) {
370 				VM_OBJECT_UNLOCK(kmem_object);
371 				entry->eflags |= MAP_ENTRY_IN_TRANSITION;
372 				vm_map_unlock(map);
373 				VM_WAIT;
374 				vm_map_lock(map);
375 				KASSERT(
376 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) ==
377 				    MAP_ENTRY_IN_TRANSITION,
378 				    ("kmem_back: volatile entry"));
379 				entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
380 				VM_OBJECT_LOCK(kmem_object);
381 				goto retry;
382 			}
383 			/*
384 			 * Free the pages before removing the map entry.
385 			 * They are already marked busy.  Calling
386 			 * vm_map_delete before the pages has been freed or
387 			 * unbusied will cause a deadlock.
388 			 */
389 			while (i != 0) {
390 				i -= PAGE_SIZE;
391 				m = vm_page_lookup(kmem_object,
392 						   OFF_TO_IDX(offset + i));
393 				vm_page_unwire(m, 0);
394 				vm_page_free(m);
395 			}
396 			VM_OBJECT_UNLOCK(kmem_object);
397 			vm_map_delete(map, addr, addr + size);
398 			return (KERN_NO_SPACE);
399 		}
400 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
401 			pmap_zero_page(m);
402 		m->valid = VM_PAGE_BITS_ALL;
403 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
404 		    ("kmem_malloc: page %p is managed", m));
405 	}
406 	VM_OBJECT_UNLOCK(kmem_object);
407 
408 	/*
409 	 * Mark map entry as non-pageable.  Repeat the assert.
410 	 */
411 	KASSERT(entry->start == addr && entry->end == addr + size &&
412 	    entry->wired_count == 0,
413 	    ("kmem_back: entry not found or misaligned after allocation"));
414 	entry->wired_count = 1;
415 
416 	/*
417 	 * At this point, the kmem_object must be unlocked because
418 	 * vm_map_simplify_entry() calls vm_object_deallocate(), which
419 	 * locks the kmem_object.
420 	 */
421 	vm_map_simplify_entry(map, entry);
422 
423 	/*
424 	 * Loop thru pages, entering them in the pmap.
425 	 */
426 	VM_OBJECT_LOCK(kmem_object);
427 	for (i = 0; i < size; i += PAGE_SIZE) {
428 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
429 		/*
430 		 * Because this is kernel_pmap, this call will not block.
431 		 */
432 		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
433 		    TRUE);
434 		vm_page_wakeup(m);
435 	}
436 	VM_OBJECT_UNLOCK(kmem_object);
437 
438 	return (KERN_SUCCESS);
439 }
440 
441 /*
442  *	kmem_alloc_wait:
443  *
444  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
445  *	has no room, the caller sleeps waiting for more memory in the submap.
446  *
447  *	This routine may block.
448  */
449 vm_offset_t
450 kmem_alloc_wait(map, size)
451 	vm_map_t map;
452 	vm_size_t size;
453 {
454 	vm_offset_t addr;
455 
456 	size = round_page(size);
457 	if (!swap_reserve(size))
458 		return (0);
459 
460 	for (;;) {
461 		/*
462 		 * To make this work for more than one map, use the map's lock
463 		 * to lock out sleepers/wakers.
464 		 */
465 		vm_map_lock(map);
466 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
467 			break;
468 		/* no space now; see if we can ever get space */
469 		if (vm_map_max(map) - vm_map_min(map) < size) {
470 			vm_map_unlock(map);
471 			swap_release(size);
472 			return (0);
473 		}
474 		map->needs_wakeup = TRUE;
475 		vm_map_unlock_and_wait(map, 0);
476 	}
477 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
478 	    VM_PROT_ALL, MAP_ACC_CHARGED);
479 	vm_map_unlock(map);
480 	return (addr);
481 }
482 
483 /*
484  *	kmem_free_wakeup:
485  *
486  *	Returns memory to a submap of the kernel, and wakes up any processes
487  *	waiting for memory in that map.
488  */
489 void
490 kmem_free_wakeup(map, addr, size)
491 	vm_map_t map;
492 	vm_offset_t addr;
493 	vm_size_t size;
494 {
495 
496 	vm_map_lock(map);
497 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
498 	if (map->needs_wakeup) {
499 		map->needs_wakeup = FALSE;
500 		vm_map_wakeup(map);
501 	}
502 	vm_map_unlock(map);
503 }
504 
505 static void
506 kmem_init_zero_region(void)
507 {
508 	vm_offset_t addr, i;
509 	vm_page_t m;
510 	int error;
511 
512 	/*
513 	 * Map a single physical page of zeros to a larger virtual range.
514 	 * This requires less looping in places that want large amounts of
515 	 * zeros, while not using much more physical resources.
516 	 */
517 	addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE);
518 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
519 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
520 	if ((m->flags & PG_ZERO) == 0)
521 		pmap_zero_page(m);
522 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
523 		pmap_qenter(addr + i, &m, 1);
524 	error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE,
525 	    VM_PROT_READ, TRUE);
526 	KASSERT(error == 0, ("error=%d", error));
527 
528 	zero_region = (const void *)addr;
529 }
530 
531 /*
532  * 	kmem_init:
533  *
534  *	Create the kernel map; insert a mapping covering kernel text,
535  *	data, bss, and all space allocated thus far (`boostrap' data).  The
536  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
537  *	`start' as allocated, and the range between `start' and `end' as free.
538  */
539 void
540 kmem_init(start, end)
541 	vm_offset_t start, end;
542 {
543 	vm_map_t m;
544 
545 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
546 	m->system_map = 1;
547 	vm_map_lock(m);
548 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
549 	kernel_map = m;
550 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
551 #ifdef __amd64__
552 	    KERNBASE,
553 #else
554 	    VM_MIN_KERNEL_ADDRESS,
555 #endif
556 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
557 	/* ... and ending with the completion of the above `insert' */
558 	vm_map_unlock(m);
559 
560 	kmem_init_zero_region();
561 }
562 
563 #ifdef DIAGNOSTIC
564 /*
565  * Allow userspace to directly trigger the VM drain routine for testing
566  * purposes.
567  */
568 static int
569 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
570 {
571 	int error, i;
572 
573 	i = 0;
574 	error = sysctl_handle_int(oidp, &i, 0, req);
575 	if (error)
576 		return (error);
577 	if (i)
578 		EVENTHANDLER_INVOKE(vm_lowmem, 0);
579 	return (0);
580 }
581 
582 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
583     debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
584 #endif
585