xref: /freebsd/sys/vm/vm_kern.c (revision 61afd5bb22d787b0641523e7b9b95c964d669bd5)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $Id: vm_kern.c,v 1.28 1996/11/17 02:38:29 dyson Exp $
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 #include <sys/syslog.h>
77 #include <sys/queue.h>
78 #include <sys/vmmeter.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_prot.h>
83 #include <vm/lock.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 vm_map_t kernel_map=0;
93 vm_map_t kmem_map=0;
94 vm_map_t exec_map=0;
95 vm_map_t exech_map=0;
96 vm_map_t clean_map=0;
97 vm_map_t u_map=0;
98 vm_map_t buffer_map=0;
99 vm_map_t mb_map=0;
100 int mb_map_full=0;
101 vm_map_t mcl_map=0;
102 int mcl_map_full=0;
103 vm_map_t io_map=0;
104 vm_map_t phys_map=0;
105 
106 /*
107  *	kmem_alloc_pageable:
108  *
109  *	Allocate pageable memory to the kernel's address map.
110  *	"map" must be kernel_map or a submap of kernel_map.
111  */
112 
113 vm_offset_t
114 kmem_alloc_pageable(map, size)
115 	vm_map_t map;
116 	register vm_size_t size;
117 {
118 	vm_offset_t addr;
119 	register int result;
120 
121 	size = round_page(size);
122 	addr = vm_map_min(map);
123 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
124 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
125 	if (result != KERN_SUCCESS) {
126 		return (0);
127 	}
128 	return (addr);
129 }
130 
131 /*
132  *	Allocate wired-down memory in the kernel's address map
133  *	or a submap.
134  */
135 vm_offset_t
136 kmem_alloc(map, size)
137 	register vm_map_t map;
138 	register vm_size_t size;
139 {
140 	vm_offset_t addr;
141 	register vm_offset_t offset;
142 	vm_offset_t i;
143 
144 	size = round_page(size);
145 
146 	/*
147 	 * Use the kernel object for wired-down kernel pages. Assume that no
148 	 * region of the kernel object is referenced more than once.
149 	 */
150 
151 	/*
152 	 * Locate sufficient space in the map.  This will give us the final
153 	 * virtual address for the new memory, and thus will tell us the
154 	 * offset within the kernel map.
155 	 */
156 	vm_map_lock(map);
157 	if (vm_map_findspace(map, 0, size, &addr)) {
158 		vm_map_unlock(map);
159 		return (0);
160 	}
161 	offset = addr - VM_MIN_KERNEL_ADDRESS;
162 	vm_object_reference(kernel_object);
163 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
164 		VM_PROT_ALL, VM_PROT_ALL, 0);
165 	vm_map_unlock(map);
166 
167 	/*
168 	 * Guarantee that there are pages already in this object before
169 	 * calling vm_map_pageable.  This is to prevent the following
170 	 * scenario:
171 	 *
172 	 * 1) Threads have swapped out, so that there is a pager for the
173 	 * kernel_object. 2) The kmsg zone is empty, and so we are
174 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
175 	 * there is no page, but there is a pager, so we call
176 	 * pager_data_request.  But the kmsg zone is empty, so we must
177 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
178 	 * we get the data back from the pager, it will be (very stale)
179 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
180 	 *
181 	 * We're intentionally not activating the pages we allocate to prevent a
182 	 * race with page-out.  vm_map_pageable will wire the pages.
183 	 */
184 
185 	for (i = 0; i < size; i += PAGE_SIZE) {
186 		vm_page_t mem;
187 
188 		while ((mem = vm_page_alloc(kernel_object,
189 			OFF_TO_IDX(offset + i), VM_ALLOC_ZERO)) == NULL) {
190 			VM_WAIT;
191 		}
192 		if ((mem->flags & PG_ZERO) == 0)
193 			vm_page_zero_fill(mem);
194 		mem->flags &= ~(PG_BUSY|PG_ZERO);
195 		mem->valid = VM_PAGE_BITS_ALL;
196 	}
197 
198 	/*
199 	 * And finally, mark the data as non-pageable.
200 	 */
201 
202 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
203 
204 	return (addr);
205 }
206 
207 /*
208  *	kmem_free:
209  *
210  *	Release a region of kernel virtual memory allocated
211  *	with kmem_alloc, and return the physical pages
212  *	associated with that region.
213  */
214 void
215 kmem_free(map, addr, size)
216 	vm_map_t map;
217 	register vm_offset_t addr;
218 	vm_size_t size;
219 {
220 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
221 }
222 
223 /*
224  *	kmem_suballoc:
225  *
226  *	Allocates a map to manage a subrange
227  *	of the kernel virtual address space.
228  *
229  *	Arguments are as follows:
230  *
231  *	parent		Map to take range from
232  *	size		Size of range to find
233  *	min, max	Returned endpoints of map
234  *	pageable	Can the region be paged
235  */
236 vm_map_t
237 kmem_suballoc(parent, min, max, size, pageable)
238 	register vm_map_t parent;
239 	vm_offset_t *min, *max;
240 	register vm_size_t size;
241 	boolean_t pageable;
242 {
243 	register int ret;
244 	vm_map_t result;
245 
246 	size = round_page(size);
247 
248 	*min = (vm_offset_t) vm_map_min(parent);
249 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
250 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
251 	if (ret != KERN_SUCCESS) {
252 		printf("kmem_suballoc: bad status return of %d.\n", ret);
253 		panic("kmem_suballoc");
254 	}
255 	*max = *min + size;
256 	pmap_reference(vm_map_pmap(parent));
257 	result = vm_map_create(vm_map_pmap(parent), *min, *max, pageable);
258 	if (result == NULL)
259 		panic("kmem_suballoc: cannot create submap");
260 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
261 		panic("kmem_suballoc: unable to change range to submap");
262 	return (result);
263 }
264 
265 /*
266  * Allocate wired-down memory in the kernel's address map for the higher
267  * level kernel memory allocator (kern/kern_malloc.c).  We cannot use
268  * kmem_alloc() because we may need to allocate memory at interrupt
269  * level where we cannot block (canwait == FALSE).
270  *
271  * This routine has its own private kernel submap (kmem_map) and object
272  * (kmem_object).  This, combined with the fact that only malloc uses
273  * this routine, ensures that we will never block in map or object waits.
274  *
275  * Note that this still only works in a uni-processor environment and
276  * when called at splhigh().
277  *
278  * We don't worry about expanding the map (adding entries) since entries
279  * for wired maps are statically allocated.
280  */
281 vm_offset_t
282 kmem_malloc(map, size, waitflag)
283 	register vm_map_t map;
284 	register vm_size_t size;
285 	boolean_t waitflag;
286 {
287 	register vm_offset_t offset, i;
288 	vm_map_entry_t entry;
289 	vm_offset_t addr;
290 	vm_page_t m;
291 
292 	if (map != kmem_map && map != mb_map && map != mcl_map)
293 		panic("kmem_malloc: map != {kmem,mb,mcl}_map");
294 
295 	size = round_page(size);
296 	addr = vm_map_min(map);
297 
298 	/*
299 	 * Locate sufficient space in the map.  This will give us the final
300 	 * virtual address for the new memory, and thus will tell us the
301 	 * offset within the kernel map.
302 	 */
303 	vm_map_lock(map);
304 	if (vm_map_findspace(map, 0, size, &addr)) {
305 		vm_map_unlock(map);
306 		if (map == mb_map) {
307 			mb_map_full = TRUE;
308 			log(LOG_ERR, "Out of mbufs - increase maxusers!\n");
309 			return (0);
310 		}
311 		if (map == mcl_map) {
312 			mcl_map_full = TRUE;
313 			log(LOG_ERR,
314 			    "Out of mbuf clusters - increase maxusers!\n");
315 			return (0);
316 		}
317 		if (waitflag == M_WAITOK)
318 			panic("kmem_malloc: kmem_map too small");
319 		return (0);
320 	}
321 	offset = addr - VM_MIN_KERNEL_ADDRESS;
322 	vm_object_reference(kmem_object);
323 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
324 		VM_PROT_ALL, VM_PROT_ALL, 0);
325 
326 	for (i = 0; i < size; i += PAGE_SIZE) {
327 retry:
328 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
329 			(waitflag == M_NOWAIT) ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM);
330 
331 		/*
332 		 * Ran out of space, free everything up and return. Don't need
333 		 * to lock page queues here as we know that the pages we got
334 		 * aren't on any queues.
335 		 */
336 		if (m == NULL) {
337 			if (waitflag == M_WAITOK) {
338 				VM_WAIT;
339 				goto retry;
340 			}
341 			while (i != 0) {
342 				i -= PAGE_SIZE;
343 				m = vm_page_lookup(kmem_object,
344 					OFF_TO_IDX(offset + i));
345 				PAGE_WAKEUP(m);
346 				vm_page_free(m);
347 			}
348 			vm_map_delete(map, addr, addr + size);
349 			vm_map_unlock(map);
350 			return (0);
351 		}
352 		m->flags &= ~PG_ZERO;
353 		m->valid = VM_PAGE_BITS_ALL;
354 	}
355 
356 	/*
357 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
358 	 * be able to extend the previous entry so there will be a new entry
359 	 * exactly corresponding to this address range and it will have
360 	 * wired_count == 0.
361 	 */
362 	if (!vm_map_lookup_entry(map, addr, &entry) ||
363 	    entry->start != addr || entry->end != addr + size ||
364 	    entry->wired_count)
365 		panic("kmem_malloc: entry not found or misaligned");
366 	entry->wired_count++;
367 
368 	vm_map_simplify_entry(map, entry);
369 
370 	/*
371 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
372 	 * the wired count without wrapping the vm_page_queue_lock in
373 	 * splimp...)
374 	 */
375 	for (i = 0; i < size; i += PAGE_SIZE) {
376 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
377 		vm_page_wire(m);
378 		PAGE_WAKEUP(m);
379 		pmap_enter(kernel_pmap, addr + i, VM_PAGE_TO_PHYS(m),
380 			VM_PROT_ALL, 1);
381 		m->flags |= PG_MAPPED|PG_WRITEABLE;
382 	}
383 	vm_map_unlock(map);
384 
385 	return (addr);
386 }
387 
388 /*
389  *	kmem_alloc_wait
390  *
391  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
392  *	has no room, the caller sleeps waiting for more memory in the submap.
393  *
394  */
395 vm_offset_t
396 kmem_alloc_wait(map, size)
397 	vm_map_t map;
398 	vm_size_t size;
399 {
400 	vm_offset_t addr;
401 
402 	size = round_page(size);
403 
404 	for (;;) {
405 		/*
406 		 * To make this work for more than one map, use the map's lock
407 		 * to lock out sleepers/wakers.
408 		 */
409 		vm_map_lock(map);
410 		if (vm_map_findspace(map, 0, size, &addr) == 0)
411 			break;
412 		/* no space now; see if we can ever get space */
413 		if (vm_map_max(map) - vm_map_min(map) < size) {
414 			vm_map_unlock(map);
415 			return (0);
416 		}
417 		vm_map_unlock(map);
418 		tsleep(map, PVM, "kmaw", 0);
419 	}
420 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
421 	vm_map_unlock(map);
422 	return (addr);
423 }
424 
425 /*
426  *	kmem_free_wakeup
427  *
428  *	Returns memory to a submap of the kernel, and wakes up any processes
429  *	waiting for memory in that map.
430  */
431 void
432 kmem_free_wakeup(map, addr, size)
433 	vm_map_t map;
434 	vm_offset_t addr;
435 	vm_size_t size;
436 {
437 	vm_map_lock(map);
438 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
439 	wakeup(map);
440 	vm_map_unlock(map);
441 }
442 
443 /*
444  * Create the kernel map; insert a mapping covering kernel text, data, bss,
445  * and all space allocated thus far (`boostrap' data).  The new map will thus
446  * map the range between VM_MIN_KERNEL_ADDRESS and `start' as allocated, and
447  * the range between `start' and `end' as free.
448  */
449 void
450 kmem_init(start, end)
451 	vm_offset_t start, end;
452 {
453 	register vm_map_t m;
454 
455 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end, FALSE);
456 	vm_map_lock(m);
457 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
458 	kernel_map = m;
459 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
460 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
461 	/* ... and ending with the completion of the above `insert' */
462 	vm_map_unlock(m);
463 }
464