1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Kernel memory management. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> /* for ticks and hz */ 71 #include <sys/eventhandler.h> 72 #include <sys/lock.h> 73 #include <sys/proc.h> 74 #include <sys/malloc.h> 75 #include <sys/rwlock.h> 76 #include <sys/sysctl.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 vm_map_t kernel_map; 89 vm_map_t kmem_map; 90 vm_map_t exec_map; 91 vm_map_t pipe_map; 92 vm_map_t buffer_map; 93 vm_map_t bio_transient_map; 94 95 const void *zero_region; 96 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0); 97 98 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD, 99 NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address"); 100 101 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD, 102 #if defined(__arm__) || defined(__sparc64__) 103 &vm_max_kernel_address, 0, 104 #else 105 NULL, VM_MAX_KERNEL_ADDRESS, 106 #endif 107 "Max kernel address"); 108 109 /* 110 * kmem_alloc_nofault: 111 * 112 * Allocate a virtual address range with no underlying object and 113 * no initial mapping to physical memory. Any mapping from this 114 * range to physical memory must be explicitly created prior to 115 * its use, typically with pmap_qenter(). Any attempt to create 116 * a mapping on demand through vm_fault() will result in a panic. 117 */ 118 vm_offset_t 119 kmem_alloc_nofault(map, size) 120 vm_map_t map; 121 vm_size_t size; 122 { 123 vm_offset_t addr; 124 int result; 125 126 size = round_page(size); 127 addr = vm_map_min(map); 128 result = vm_map_find(map, NULL, 0, &addr, size, VMFS_ANY_SPACE, 129 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 130 if (result != KERN_SUCCESS) { 131 return (0); 132 } 133 return (addr); 134 } 135 136 /* 137 * kmem_alloc_nofault_space: 138 * 139 * Allocate a virtual address range with no underlying object and 140 * no initial mapping to physical memory within the specified 141 * address space. Any mapping from this range to physical memory 142 * must be explicitly created prior to its use, typically with 143 * pmap_qenter(). Any attempt to create a mapping on demand 144 * through vm_fault() will result in a panic. 145 */ 146 vm_offset_t 147 kmem_alloc_nofault_space(map, size, find_space) 148 vm_map_t map; 149 vm_size_t size; 150 int find_space; 151 { 152 vm_offset_t addr; 153 int result; 154 155 size = round_page(size); 156 addr = vm_map_min(map); 157 result = vm_map_find(map, NULL, 0, &addr, size, find_space, 158 VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 159 if (result != KERN_SUCCESS) { 160 return (0); 161 } 162 return (addr); 163 } 164 165 /* 166 * Allocate wired-down memory in the kernel's address map 167 * or a submap. 168 */ 169 vm_offset_t 170 kmem_alloc(map, size) 171 vm_map_t map; 172 vm_size_t size; 173 { 174 vm_offset_t addr; 175 vm_offset_t offset; 176 177 size = round_page(size); 178 179 /* 180 * Use the kernel object for wired-down kernel pages. Assume that no 181 * region of the kernel object is referenced more than once. 182 */ 183 184 /* 185 * Locate sufficient space in the map. This will give us the final 186 * virtual address for the new memory, and thus will tell us the 187 * offset within the kernel map. 188 */ 189 vm_map_lock(map); 190 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 191 vm_map_unlock(map); 192 return (0); 193 } 194 offset = addr - VM_MIN_KERNEL_ADDRESS; 195 vm_object_reference(kernel_object); 196 vm_map_insert(map, kernel_object, offset, addr, addr + size, 197 VM_PROT_ALL, VM_PROT_ALL, 0); 198 vm_map_unlock(map); 199 200 /* 201 * And finally, mark the data as non-pageable. 202 */ 203 (void) vm_map_wire(map, addr, addr + size, 204 VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES); 205 206 return (addr); 207 } 208 209 /* 210 * Allocates a region from the kernel address map and physical pages 211 * within the specified address range to the kernel object. Creates a 212 * wired mapping from this region to these pages, and returns the 213 * region's starting virtual address. The allocated pages are not 214 * necessarily physically contiguous. If M_ZERO is specified through the 215 * given flags, then the pages are zeroed before they are mapped. 216 */ 217 vm_offset_t 218 kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 219 vm_paddr_t high, vm_memattr_t memattr) 220 { 221 vm_object_t object = kernel_object; 222 vm_offset_t addr; 223 vm_ooffset_t end_offset, offset; 224 vm_page_t m; 225 int pflags, tries; 226 227 size = round_page(size); 228 vm_map_lock(map); 229 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 230 vm_map_unlock(map); 231 return (0); 232 } 233 offset = addr - VM_MIN_KERNEL_ADDRESS; 234 vm_object_reference(object); 235 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 236 VM_PROT_ALL, 0); 237 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 238 VM_OBJECT_WLOCK(object); 239 end_offset = offset + size; 240 for (; offset < end_offset; offset += PAGE_SIZE) { 241 tries = 0; 242 retry: 243 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1, 244 low, high, PAGE_SIZE, 0, memattr); 245 if (m == NULL) { 246 VM_OBJECT_WUNLOCK(object); 247 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 248 vm_map_unlock(map); 249 vm_pageout_grow_cache(tries, low, high); 250 vm_map_lock(map); 251 VM_OBJECT_WLOCK(object); 252 tries++; 253 goto retry; 254 } 255 256 /* 257 * Since the pages that were allocated by any previous 258 * iterations of this loop are not busy, they can be 259 * freed by vm_object_page_remove(), which is called 260 * by vm_map_delete(). 261 */ 262 vm_map_delete(map, addr, addr + size); 263 vm_map_unlock(map); 264 return (0); 265 } 266 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 267 pmap_zero_page(m); 268 m->valid = VM_PAGE_BITS_ALL; 269 } 270 VM_OBJECT_WUNLOCK(object); 271 vm_map_unlock(map); 272 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 273 VM_MAP_WIRE_NOHOLES); 274 return (addr); 275 } 276 277 /* 278 * Allocates a region from the kernel address map and physically 279 * contiguous pages within the specified address range to the kernel 280 * object. Creates a wired mapping from this region to these pages, and 281 * returns the region's starting virtual address. If M_ZERO is specified 282 * through the given flags, then the pages are zeroed before they are 283 * mapped. 284 */ 285 vm_offset_t 286 kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low, 287 vm_paddr_t high, u_long alignment, vm_paddr_t boundary, 288 vm_memattr_t memattr) 289 { 290 vm_object_t object = kernel_object; 291 vm_offset_t addr; 292 vm_ooffset_t offset; 293 vm_page_t end_m, m; 294 int pflags, tries; 295 296 size = round_page(size); 297 vm_map_lock(map); 298 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 299 vm_map_unlock(map); 300 return (0); 301 } 302 offset = addr - VM_MIN_KERNEL_ADDRESS; 303 vm_object_reference(object); 304 vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL, 305 VM_PROT_ALL, 0); 306 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY; 307 VM_OBJECT_WLOCK(object); 308 tries = 0; 309 retry: 310 m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 311 atop(size), low, high, alignment, boundary, memattr); 312 if (m == NULL) { 313 VM_OBJECT_WUNLOCK(object); 314 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) { 315 vm_map_unlock(map); 316 vm_pageout_grow_cache(tries, low, high); 317 vm_map_lock(map); 318 VM_OBJECT_WLOCK(object); 319 tries++; 320 goto retry; 321 } 322 vm_map_delete(map, addr, addr + size); 323 vm_map_unlock(map); 324 return (0); 325 } 326 end_m = m + atop(size); 327 for (; m < end_m; m++) { 328 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0) 329 pmap_zero_page(m); 330 m->valid = VM_PAGE_BITS_ALL; 331 } 332 VM_OBJECT_WUNLOCK(object); 333 vm_map_unlock(map); 334 vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM | 335 VM_MAP_WIRE_NOHOLES); 336 return (addr); 337 } 338 339 /* 340 * kmem_free: 341 * 342 * Release a region of kernel virtual memory allocated 343 * with kmem_alloc, and return the physical pages 344 * associated with that region. 345 * 346 * This routine may not block on kernel maps. 347 */ 348 void 349 kmem_free(map, addr, size) 350 vm_map_t map; 351 vm_offset_t addr; 352 vm_size_t size; 353 { 354 355 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 356 } 357 358 /* 359 * kmem_suballoc: 360 * 361 * Allocates a map to manage a subrange 362 * of the kernel virtual address space. 363 * 364 * Arguments are as follows: 365 * 366 * parent Map to take range from 367 * min, max Returned endpoints of map 368 * size Size of range to find 369 * superpage_align Request that min is superpage aligned 370 */ 371 vm_map_t 372 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max, 373 vm_size_t size, boolean_t superpage_align) 374 { 375 int ret; 376 vm_map_t result; 377 378 size = round_page(size); 379 380 *min = vm_map_min(parent); 381 ret = vm_map_find(parent, NULL, 0, min, size, superpage_align ? 382 VMFS_ALIGNED_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL, 383 MAP_ACC_NO_CHARGE); 384 if (ret != KERN_SUCCESS) 385 panic("kmem_suballoc: bad status return of %d", ret); 386 *max = *min + size; 387 result = vm_map_create(vm_map_pmap(parent), *min, *max); 388 if (result == NULL) 389 panic("kmem_suballoc: cannot create submap"); 390 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 391 panic("kmem_suballoc: unable to change range to submap"); 392 return (result); 393 } 394 395 /* 396 * kmem_malloc: 397 * 398 * Allocate wired-down memory in the kernel's address map for the higher 399 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 400 * kmem_alloc() because we may need to allocate memory at interrupt 401 * level where we cannot block (canwait == FALSE). 402 * 403 * This routine has its own private kernel submap (kmem_map) and object 404 * (kmem_object). This, combined with the fact that only malloc uses 405 * this routine, ensures that we will never block in map or object waits. 406 * 407 * We don't worry about expanding the map (adding entries) since entries 408 * for wired maps are statically allocated. 409 * 410 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 411 * which we never free. 412 */ 413 vm_offset_t 414 kmem_malloc(map, size, flags) 415 vm_map_t map; 416 vm_size_t size; 417 int flags; 418 { 419 vm_offset_t addr; 420 int i, rv; 421 422 size = round_page(size); 423 addr = vm_map_min(map); 424 425 /* 426 * Locate sufficient space in the map. This will give us the final 427 * virtual address for the new memory, and thus will tell us the 428 * offset within the kernel map. 429 */ 430 vm_map_lock(map); 431 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 432 vm_map_unlock(map); 433 if ((flags & M_NOWAIT) == 0) { 434 for (i = 0; i < 8; i++) { 435 EVENTHANDLER_INVOKE(vm_lowmem, 0); 436 uma_reclaim(); 437 vm_map_lock(map); 438 if (vm_map_findspace(map, vm_map_min(map), 439 size, &addr) == 0) { 440 break; 441 } 442 vm_map_unlock(map); 443 tsleep(&i, 0, "nokva", (hz / 4) * (i + 1)); 444 } 445 if (i == 8) { 446 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 447 (long)size, (long)map->size); 448 } 449 } else { 450 return (0); 451 } 452 } 453 454 rv = kmem_back(map, addr, size, flags); 455 vm_map_unlock(map); 456 return (rv == KERN_SUCCESS ? addr : 0); 457 } 458 459 /* 460 * kmem_back: 461 * 462 * Allocate physical pages for the specified virtual address range. 463 */ 464 int 465 kmem_back(vm_map_t map, vm_offset_t addr, vm_size_t size, int flags) 466 { 467 vm_offset_t offset, i; 468 vm_map_entry_t entry; 469 vm_page_t m; 470 int pflags; 471 boolean_t found; 472 473 KASSERT(vm_map_locked(map), ("kmem_back: map %p is not locked", map)); 474 offset = addr - VM_MIN_KERNEL_ADDRESS; 475 vm_object_reference(kmem_object); 476 vm_map_insert(map, kmem_object, offset, addr, addr + size, 477 VM_PROT_ALL, VM_PROT_ALL, 0); 478 479 /* 480 * Assert: vm_map_insert() will never be able to extend the 481 * previous entry so vm_map_lookup_entry() will find a new 482 * entry exactly corresponding to this address range and it 483 * will have wired_count == 0. 484 */ 485 found = vm_map_lookup_entry(map, addr, &entry); 486 KASSERT(found && entry->start == addr && entry->end == addr + size && 487 entry->wired_count == 0 && (entry->eflags & MAP_ENTRY_IN_TRANSITION) 488 == 0, ("kmem_back: entry not found or misaligned")); 489 490 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED; 491 492 VM_OBJECT_WLOCK(kmem_object); 493 for (i = 0; i < size; i += PAGE_SIZE) { 494 retry: 495 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), pflags); 496 497 /* 498 * Ran out of space, free everything up and return. Don't need 499 * to lock page queues here as we know that the pages we got 500 * aren't on any queues. 501 */ 502 if (m == NULL) { 503 if ((flags & M_NOWAIT) == 0) { 504 VM_OBJECT_WUNLOCK(kmem_object); 505 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 506 vm_map_unlock(map); 507 VM_WAIT; 508 vm_map_lock(map); 509 KASSERT( 510 (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_NEEDS_WAKEUP)) == 511 MAP_ENTRY_IN_TRANSITION, 512 ("kmem_back: volatile entry")); 513 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 514 VM_OBJECT_WLOCK(kmem_object); 515 goto retry; 516 } 517 /* 518 * Free the pages before removing the map entry. 519 * They are already marked busy. Calling 520 * vm_map_delete before the pages has been freed or 521 * unbusied will cause a deadlock. 522 */ 523 while (i != 0) { 524 i -= PAGE_SIZE; 525 m = vm_page_lookup(kmem_object, 526 OFF_TO_IDX(offset + i)); 527 vm_page_unwire(m, 0); 528 vm_page_free(m); 529 } 530 VM_OBJECT_WUNLOCK(kmem_object); 531 vm_map_delete(map, addr, addr + size); 532 return (KERN_NO_SPACE); 533 } 534 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0) 535 pmap_zero_page(m); 536 m->valid = VM_PAGE_BITS_ALL; 537 KASSERT((m->oflags & VPO_UNMANAGED) != 0, 538 ("kmem_malloc: page %p is managed", m)); 539 } 540 VM_OBJECT_WUNLOCK(kmem_object); 541 542 /* 543 * Mark map entry as non-pageable. Repeat the assert. 544 */ 545 KASSERT(entry->start == addr && entry->end == addr + size && 546 entry->wired_count == 0, 547 ("kmem_back: entry not found or misaligned after allocation")); 548 entry->wired_count = 1; 549 550 /* 551 * At this point, the kmem_object must be unlocked because 552 * vm_map_simplify_entry() calls vm_object_deallocate(), which 553 * locks the kmem_object. 554 */ 555 vm_map_simplify_entry(map, entry); 556 557 /* 558 * Loop thru pages, entering them in the pmap. 559 */ 560 VM_OBJECT_WLOCK(kmem_object); 561 for (i = 0; i < size; i += PAGE_SIZE) { 562 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 563 /* 564 * Because this is kernel_pmap, this call will not block. 565 */ 566 pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL, 567 TRUE); 568 vm_page_wakeup(m); 569 } 570 VM_OBJECT_WUNLOCK(kmem_object); 571 572 return (KERN_SUCCESS); 573 } 574 575 /* 576 * kmem_alloc_wait: 577 * 578 * Allocates pageable memory from a sub-map of the kernel. If the submap 579 * has no room, the caller sleeps waiting for more memory in the submap. 580 * 581 * This routine may block. 582 */ 583 vm_offset_t 584 kmem_alloc_wait(map, size) 585 vm_map_t map; 586 vm_size_t size; 587 { 588 vm_offset_t addr; 589 590 size = round_page(size); 591 if (!swap_reserve(size)) 592 return (0); 593 594 for (;;) { 595 /* 596 * To make this work for more than one map, use the map's lock 597 * to lock out sleepers/wakers. 598 */ 599 vm_map_lock(map); 600 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 601 break; 602 /* no space now; see if we can ever get space */ 603 if (vm_map_max(map) - vm_map_min(map) < size) { 604 vm_map_unlock(map); 605 swap_release(size); 606 return (0); 607 } 608 map->needs_wakeup = TRUE; 609 vm_map_unlock_and_wait(map, 0); 610 } 611 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL, 612 VM_PROT_ALL, MAP_ACC_CHARGED); 613 vm_map_unlock(map); 614 return (addr); 615 } 616 617 /* 618 * kmem_free_wakeup: 619 * 620 * Returns memory to a submap of the kernel, and wakes up any processes 621 * waiting for memory in that map. 622 */ 623 void 624 kmem_free_wakeup(map, addr, size) 625 vm_map_t map; 626 vm_offset_t addr; 627 vm_size_t size; 628 { 629 630 vm_map_lock(map); 631 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 632 if (map->needs_wakeup) { 633 map->needs_wakeup = FALSE; 634 vm_map_wakeup(map); 635 } 636 vm_map_unlock(map); 637 } 638 639 static void 640 kmem_init_zero_region(void) 641 { 642 vm_offset_t addr, i; 643 vm_page_t m; 644 int error; 645 646 /* 647 * Map a single physical page of zeros to a larger virtual range. 648 * This requires less looping in places that want large amounts of 649 * zeros, while not using much more physical resources. 650 */ 651 addr = kmem_alloc_nofault(kernel_map, ZERO_REGION_SIZE); 652 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 653 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); 654 if ((m->flags & PG_ZERO) == 0) 655 pmap_zero_page(m); 656 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE) 657 pmap_qenter(addr + i, &m, 1); 658 error = vm_map_protect(kernel_map, addr, addr + ZERO_REGION_SIZE, 659 VM_PROT_READ, TRUE); 660 KASSERT(error == 0, ("error=%d", error)); 661 662 zero_region = (const void *)addr; 663 } 664 665 /* 666 * kmem_init: 667 * 668 * Create the kernel map; insert a mapping covering kernel text, 669 * data, bss, and all space allocated thus far (`boostrap' data). The 670 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 671 * `start' as allocated, and the range between `start' and `end' as free. 672 */ 673 void 674 kmem_init(start, end) 675 vm_offset_t start, end; 676 { 677 vm_map_t m; 678 679 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 680 m->system_map = 1; 681 vm_map_lock(m); 682 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 683 kernel_map = m; 684 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0, 685 #ifdef __amd64__ 686 KERNBASE, 687 #else 688 VM_MIN_KERNEL_ADDRESS, 689 #endif 690 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 691 /* ... and ending with the completion of the above `insert' */ 692 vm_map_unlock(m); 693 694 kmem_init_zero_region(); 695 } 696 697 #ifdef DIAGNOSTIC 698 /* 699 * Allow userspace to directly trigger the VM drain routine for testing 700 * purposes. 701 */ 702 static int 703 debug_vm_lowmem(SYSCTL_HANDLER_ARGS) 704 { 705 int error, i; 706 707 i = 0; 708 error = sysctl_handle_int(oidp, &i, 0, req); 709 if (error) 710 return (error); 711 if (i) 712 EVENTHANDLER_INVOKE(vm_lowmem, 0); 713 return (0); 714 } 715 716 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0, 717 debug_vm_lowmem, "I", "set to trigger vm_lowmem event"); 718 #endif 719