xref: /freebsd/sys/vm/vm_kern.c (revision 54ab3ed82b639b593fb0fe6db845e38a9d18970e)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Kernel memory management.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>		/* for ticks and hz */
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_extern.h>
87 
88 vm_map_t kernel_map=0;
89 vm_map_t kmem_map=0;
90 vm_map_t exec_map=0;
91 vm_map_t clean_map=0;
92 vm_map_t buffer_map=0;
93 
94 /*
95  *	kmem_alloc_pageable:
96  *
97  *	Allocate pageable memory to the kernel's address map.
98  *	"map" must be kernel_map or a submap of kernel_map.
99  */
100 
101 vm_offset_t
102 kmem_alloc_pageable(map, size)
103 	vm_map_t map;
104 	vm_size_t size;
105 {
106 	vm_offset_t addr;
107 	int result;
108 
109 	GIANT_REQUIRED;
110 
111 	size = round_page(size);
112 	addr = vm_map_min(map);
113 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
114 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
115 	if (result != KERN_SUCCESS) {
116 		return (0);
117 	}
118 	return (addr);
119 }
120 
121 /*
122  *	kmem_alloc_nofault:
123  *
124  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
125  */
126 
127 vm_offset_t
128 kmem_alloc_nofault(map, size)
129 	vm_map_t map;
130 	vm_size_t size;
131 {
132 	vm_offset_t addr;
133 	int result;
134 
135 	GIANT_REQUIRED;
136 
137 	size = round_page(size);
138 	addr = vm_map_min(map);
139 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
140 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
141 	if (result != KERN_SUCCESS) {
142 		return (0);
143 	}
144 	return (addr);
145 }
146 
147 /*
148  *	Allocate wired-down memory in the kernel's address map
149  *	or a submap.
150  */
151 vm_offset_t
152 kmem_alloc(map, size)
153 	vm_map_t map;
154 	vm_size_t size;
155 {
156 	vm_offset_t addr;
157 	vm_offset_t offset;
158 	vm_offset_t i;
159 
160 	GIANT_REQUIRED;
161 
162 	size = round_page(size);
163 
164 	/*
165 	 * Use the kernel object for wired-down kernel pages. Assume that no
166 	 * region of the kernel object is referenced more than once.
167 	 */
168 
169 	/*
170 	 * Locate sufficient space in the map.  This will give us the final
171 	 * virtual address for the new memory, and thus will tell us the
172 	 * offset within the kernel map.
173 	 */
174 	vm_map_lock(map);
175 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
176 		vm_map_unlock(map);
177 		return (0);
178 	}
179 	offset = addr - VM_MIN_KERNEL_ADDRESS;
180 	vm_object_reference(kernel_object);
181 	vm_map_insert(map, kernel_object, offset, addr, addr + size,
182 		VM_PROT_ALL, VM_PROT_ALL, 0);
183 	vm_map_unlock(map);
184 
185 	/*
186 	 * Guarantee that there are pages already in this object before
187 	 * calling vm_map_pageable.  This is to prevent the following
188 	 * scenario:
189 	 *
190 	 * 1) Threads have swapped out, so that there is a pager for the
191 	 * kernel_object. 2) The kmsg zone is empty, and so we are
192 	 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault;
193 	 * there is no page, but there is a pager, so we call
194 	 * pager_data_request.  But the kmsg zone is empty, so we must
195 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
196 	 * we get the data back from the pager, it will be (very stale)
197 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
198 	 *
199 	 * We're intentionally not activating the pages we allocate to prevent a
200 	 * race with page-out.  vm_map_pageable will wire the pages.
201 	 */
202 
203 	for (i = 0; i < size; i += PAGE_SIZE) {
204 		vm_page_t mem;
205 
206 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
207 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
208 		if ((mem->flags & PG_ZERO) == 0)
209 			vm_page_zero_fill(mem);
210 		mem->valid = VM_PAGE_BITS_ALL;
211 		vm_page_flag_clear(mem, PG_ZERO);
212 		vm_page_wakeup(mem);
213 	}
214 
215 	/*
216 	 * And finally, mark the data as non-pageable.
217 	 */
218 
219 	(void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE);
220 
221 	return (addr);
222 }
223 
224 /*
225  *	kmem_free:
226  *
227  *	Release a region of kernel virtual memory allocated
228  *	with kmem_alloc, and return the physical pages
229  *	associated with that region.
230  *
231  *	This routine may not block on kernel maps.
232  */
233 void
234 kmem_free(map, addr, size)
235 	vm_map_t map;
236 	vm_offset_t addr;
237 	vm_size_t size;
238 {
239 	GIANT_REQUIRED;
240 
241 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
242 }
243 
244 /*
245  *	kmem_suballoc:
246  *
247  *	Allocates a map to manage a subrange
248  *	of the kernel virtual address space.
249  *
250  *	Arguments are as follows:
251  *
252  *	parent		Map to take range from
253  *	min, max	Returned endpoints of map
254  *	size		Size of range to find
255  */
256 vm_map_t
257 kmem_suballoc(parent, min, max, size)
258 	vm_map_t parent;
259 	vm_offset_t *min, *max;
260 	vm_size_t size;
261 {
262 	int ret;
263 	vm_map_t result;
264 
265 	GIANT_REQUIRED;
266 
267 	size = round_page(size);
268 
269 	*min = (vm_offset_t) vm_map_min(parent);
270 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
271 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
272 	if (ret != KERN_SUCCESS) {
273 		printf("kmem_suballoc: bad status return of %d.\n", ret);
274 		panic("kmem_suballoc");
275 	}
276 	*max = *min + size;
277 	pmap_reference(vm_map_pmap(parent));
278 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
279 	if (result == NULL)
280 		panic("kmem_suballoc: cannot create submap");
281 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
282 		panic("kmem_suballoc: unable to change range to submap");
283 	return (result);
284 }
285 
286 /*
287  *	kmem_malloc:
288  *
289  * 	Allocate wired-down memory in the kernel's address map for the higher
290  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
291  * 	kmem_alloc() because we may need to allocate memory at interrupt
292  * 	level where we cannot block (canwait == FALSE).
293  *
294  * 	This routine has its own private kernel submap (kmem_map) and object
295  * 	(kmem_object).  This, combined with the fact that only malloc uses
296  * 	this routine, ensures that we will never block in map or object waits.
297  *
298  * 	Note that this still only works in a uni-processor environment and
299  * 	when called at splhigh().
300  *
301  * 	We don't worry about expanding the map (adding entries) since entries
302  * 	for wired maps are statically allocated.
303  *
304  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
305  *	I have not verified that it actually does not block.
306  *
307  *	`map' is ONLY allowed to be kmem_map or one of the mbuf submaps to
308  *	which we never free.
309  */
310 vm_offset_t
311 kmem_malloc(map, size, flags)
312 	vm_map_t map;
313 	vm_size_t size;
314 	int flags;
315 {
316 	vm_offset_t offset, i;
317 	vm_map_entry_t entry;
318 	vm_offset_t addr;
319 	vm_page_t m;
320 
321 	GIANT_REQUIRED;
322 
323 	size = round_page(size);
324 	addr = vm_map_min(map);
325 
326 	/*
327 	 * Locate sufficient space in the map.  This will give us the final
328 	 * virtual address for the new memory, and thus will tell us the
329 	 * offset within the kernel map.
330 	 */
331 	vm_map_lock(map);
332 	if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
333 		vm_map_unlock(map);
334 		if (map != kmem_map) {
335 			static int last_report; /* when we did it (in ticks) */
336 			if (ticks < last_report ||
337 			    (ticks - last_report) >= hz) {
338 				last_report = ticks;
339 				printf("Out of mbuf address space!\n");
340 				printf("Consider increasing NMBCLUSTERS\n");
341 			}
342 			goto bad;
343 		}
344 		if ((flags & M_NOWAIT) == 0)
345 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
346 				(long)size, (long)map->size);
347 		goto bad;
348 	}
349 	offset = addr - VM_MIN_KERNEL_ADDRESS;
350 	vm_object_reference(kmem_object);
351 	vm_map_insert(map, kmem_object, offset, addr, addr + size,
352 		VM_PROT_ALL, VM_PROT_ALL, 0);
353 
354 	for (i = 0; i < size; i += PAGE_SIZE) {
355 		/*
356 		 * Note: if M_NOWAIT specified alone, allocate from
357 		 * interrupt-safe queues only (just the free list).  If
358 		 * M_USE_RESERVE is also specified, we can also
359 		 * allocate from the cache.  Neither of the latter two
360 		 * flags may be specified from an interrupt since interrupts
361 		 * are not allowed to mess with the cache queue.
362 		 */
363 retry:
364 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
365 		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
366 			VM_ALLOC_INTERRUPT :
367 			VM_ALLOC_SYSTEM);
368 
369 		/*
370 		 * Ran out of space, free everything up and return. Don't need
371 		 * to lock page queues here as we know that the pages we got
372 		 * aren't on any queues.
373 		 */
374 		if (m == NULL) {
375 			if ((flags & M_NOWAIT) == 0) {
376 				vm_map_unlock(map);
377 				VM_WAIT;
378 				vm_map_lock(map);
379 				goto retry;
380 			}
381 			vm_map_delete(map, addr, addr + size);
382 			vm_map_unlock(map);
383 			goto bad;
384 		}
385 		vm_page_flag_clear(m, PG_ZERO);
386 		m->valid = VM_PAGE_BITS_ALL;
387 	}
388 
389 	/*
390 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
391 	 * be able to extend the previous entry so there will be a new entry
392 	 * exactly corresponding to this address range and it will have
393 	 * wired_count == 0.
394 	 */
395 	if (!vm_map_lookup_entry(map, addr, &entry) ||
396 	    entry->start != addr || entry->end != addr + size ||
397 	    entry->wired_count != 0)
398 		panic("kmem_malloc: entry not found or misaligned");
399 	entry->wired_count = 1;
400 
401 	vm_map_simplify_entry(map, entry);
402 
403 	/*
404 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
405 	 * the wired count without wrapping the vm_page_queue_lock in
406 	 * splimp...)
407 	 */
408 	for (i = 0; i < size; i += PAGE_SIZE) {
409 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
410 		vm_page_wire(m);
411 		vm_page_wakeup(m);
412 		/*
413 		 * Because this is kernel_pmap, this call will not block.
414 		 */
415 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
416 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
417 	}
418 	vm_map_unlock(map);
419 
420 	return (addr);
421 
422 bad:
423 	return (0);
424 }
425 
426 /*
427  *	kmem_alloc_wait:
428  *
429  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
430  *	has no room, the caller sleeps waiting for more memory in the submap.
431  *
432  *	This routine may block.
433  */
434 
435 vm_offset_t
436 kmem_alloc_wait(map, size)
437 	vm_map_t map;
438 	vm_size_t size;
439 {
440 	vm_offset_t addr;
441 
442 	GIANT_REQUIRED;
443 
444 	size = round_page(size);
445 
446 	for (;;) {
447 		/*
448 		 * To make this work for more than one map, use the map's lock
449 		 * to lock out sleepers/wakers.
450 		 */
451 		vm_map_lock(map);
452 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
453 			break;
454 		/* no space now; see if we can ever get space */
455 		if (vm_map_max(map) - vm_map_min(map) < size) {
456 			vm_map_unlock(map);
457 			return (0);
458 		}
459 		vm_map_unlock(map);
460 		tsleep(map, PVM, "kmaw", 0);
461 	}
462 	vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
463 	vm_map_unlock(map);
464 	return (addr);
465 }
466 
467 /*
468  *	kmem_free_wakeup:
469  *
470  *	Returns memory to a submap of the kernel, and wakes up any processes
471  *	waiting for memory in that map.
472  */
473 void
474 kmem_free_wakeup(map, addr, size)
475 	vm_map_t map;
476 	vm_offset_t addr;
477 	vm_size_t size;
478 {
479 	GIANT_REQUIRED;
480 
481 	vm_map_lock(map);
482 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
483 	wakeup(map);
484 	vm_map_unlock(map);
485 }
486 
487 /*
488  * 	kmem_init:
489  *
490  *	Create the kernel map; insert a mapping covering kernel text,
491  *	data, bss, and all space allocated thus far (`boostrap' data).  The
492  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
493  *	`start' as allocated, and the range between `start' and `end' as free.
494  */
495 
496 void
497 kmem_init(start, end)
498 	vm_offset_t start, end;
499 {
500 	vm_map_t m;
501 
502 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
503 	vm_map_lock(m);
504 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
505 	kernel_map = m;
506 	kernel_map->system_map = 1;
507 	(void) vm_map_insert(m, NULL, (vm_offset_t) 0,
508 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
509 	/* ... and ending with the completion of the above `insert' */
510 	vm_map_unlock(m);
511 }
512