1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Kernel memory management. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/kernel.h> /* for ticks and hz */ 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/malloc.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_extern.h> 87 88 vm_map_t kernel_map=0; 89 vm_map_t kmem_map=0; 90 vm_map_t exec_map=0; 91 vm_map_t clean_map=0; 92 vm_map_t buffer_map=0; 93 94 /* 95 * kmem_alloc_pageable: 96 * 97 * Allocate pageable memory to the kernel's address map. 98 * "map" must be kernel_map or a submap of kernel_map. 99 */ 100 101 vm_offset_t 102 kmem_alloc_pageable(map, size) 103 vm_map_t map; 104 vm_size_t size; 105 { 106 vm_offset_t addr; 107 int result; 108 109 GIANT_REQUIRED; 110 111 size = round_page(size); 112 addr = vm_map_min(map); 113 result = vm_map_find(map, NULL, (vm_offset_t) 0, 114 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 115 if (result != KERN_SUCCESS) { 116 return (0); 117 } 118 return (addr); 119 } 120 121 /* 122 * kmem_alloc_nofault: 123 * 124 * Same as kmem_alloc_pageable, except that it create a nofault entry. 125 */ 126 127 vm_offset_t 128 kmem_alloc_nofault(map, size) 129 vm_map_t map; 130 vm_size_t size; 131 { 132 vm_offset_t addr; 133 int result; 134 135 GIANT_REQUIRED; 136 137 size = round_page(size); 138 addr = vm_map_min(map); 139 result = vm_map_find(map, NULL, (vm_offset_t) 0, 140 &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); 141 if (result != KERN_SUCCESS) { 142 return (0); 143 } 144 return (addr); 145 } 146 147 /* 148 * Allocate wired-down memory in the kernel's address map 149 * or a submap. 150 */ 151 vm_offset_t 152 kmem_alloc(map, size) 153 vm_map_t map; 154 vm_size_t size; 155 { 156 vm_offset_t addr; 157 vm_offset_t offset; 158 vm_offset_t i; 159 160 GIANT_REQUIRED; 161 162 size = round_page(size); 163 164 /* 165 * Use the kernel object for wired-down kernel pages. Assume that no 166 * region of the kernel object is referenced more than once. 167 */ 168 169 /* 170 * Locate sufficient space in the map. This will give us the final 171 * virtual address for the new memory, and thus will tell us the 172 * offset within the kernel map. 173 */ 174 vm_map_lock(map); 175 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 176 vm_map_unlock(map); 177 return (0); 178 } 179 offset = addr - VM_MIN_KERNEL_ADDRESS; 180 vm_object_reference(kernel_object); 181 vm_map_insert(map, kernel_object, offset, addr, addr + size, 182 VM_PROT_ALL, VM_PROT_ALL, 0); 183 vm_map_unlock(map); 184 185 /* 186 * Guarantee that there are pages already in this object before 187 * calling vm_map_pageable. This is to prevent the following 188 * scenario: 189 * 190 * 1) Threads have swapped out, so that there is a pager for the 191 * kernel_object. 2) The kmsg zone is empty, and so we are 192 * kmem_allocing a new page for it. 3) vm_map_pageable calls vm_fault; 193 * there is no page, but there is a pager, so we call 194 * pager_data_request. But the kmsg zone is empty, so we must 195 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when 196 * we get the data back from the pager, it will be (very stale) 197 * non-zero data. kmem_alloc is defined to return zero-filled memory. 198 * 199 * We're intentionally not activating the pages we allocate to prevent a 200 * race with page-out. vm_map_pageable will wire the pages. 201 */ 202 203 for (i = 0; i < size; i += PAGE_SIZE) { 204 vm_page_t mem; 205 206 mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i), 207 VM_ALLOC_ZERO | VM_ALLOC_RETRY); 208 if ((mem->flags & PG_ZERO) == 0) 209 vm_page_zero_fill(mem); 210 mem->valid = VM_PAGE_BITS_ALL; 211 vm_page_flag_clear(mem, PG_ZERO); 212 vm_page_wakeup(mem); 213 } 214 215 /* 216 * And finally, mark the data as non-pageable. 217 */ 218 219 (void) vm_map_pageable(map, (vm_offset_t) addr, addr + size, FALSE); 220 221 return (addr); 222 } 223 224 /* 225 * kmem_free: 226 * 227 * Release a region of kernel virtual memory allocated 228 * with kmem_alloc, and return the physical pages 229 * associated with that region. 230 * 231 * This routine may not block on kernel maps. 232 */ 233 void 234 kmem_free(map, addr, size) 235 vm_map_t map; 236 vm_offset_t addr; 237 vm_size_t size; 238 { 239 GIANT_REQUIRED; 240 241 (void) vm_map_remove(map, trunc_page(addr), round_page(addr + size)); 242 } 243 244 /* 245 * kmem_suballoc: 246 * 247 * Allocates a map to manage a subrange 248 * of the kernel virtual address space. 249 * 250 * Arguments are as follows: 251 * 252 * parent Map to take range from 253 * min, max Returned endpoints of map 254 * size Size of range to find 255 */ 256 vm_map_t 257 kmem_suballoc(parent, min, max, size) 258 vm_map_t parent; 259 vm_offset_t *min, *max; 260 vm_size_t size; 261 { 262 int ret; 263 vm_map_t result; 264 265 GIANT_REQUIRED; 266 267 size = round_page(size); 268 269 *min = (vm_offset_t) vm_map_min(parent); 270 ret = vm_map_find(parent, NULL, (vm_offset_t) 0, 271 min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0); 272 if (ret != KERN_SUCCESS) { 273 printf("kmem_suballoc: bad status return of %d.\n", ret); 274 panic("kmem_suballoc"); 275 } 276 *max = *min + size; 277 pmap_reference(vm_map_pmap(parent)); 278 result = vm_map_create(vm_map_pmap(parent), *min, *max); 279 if (result == NULL) 280 panic("kmem_suballoc: cannot create submap"); 281 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS) 282 panic("kmem_suballoc: unable to change range to submap"); 283 return (result); 284 } 285 286 /* 287 * kmem_malloc: 288 * 289 * Allocate wired-down memory in the kernel's address map for the higher 290 * level kernel memory allocator (kern/kern_malloc.c). We cannot use 291 * kmem_alloc() because we may need to allocate memory at interrupt 292 * level where we cannot block (canwait == FALSE). 293 * 294 * This routine has its own private kernel submap (kmem_map) and object 295 * (kmem_object). This, combined with the fact that only malloc uses 296 * this routine, ensures that we will never block in map or object waits. 297 * 298 * Note that this still only works in a uni-processor environment and 299 * when called at splhigh(). 300 * 301 * We don't worry about expanding the map (adding entries) since entries 302 * for wired maps are statically allocated. 303 * 304 * NOTE: This routine is not supposed to block if M_NOWAIT is set, but 305 * I have not verified that it actually does not block. 306 * 307 * `map' is ONLY allowed to be kmem_map or one of the mbuf submaps to 308 * which we never free. 309 */ 310 vm_offset_t 311 kmem_malloc(map, size, flags) 312 vm_map_t map; 313 vm_size_t size; 314 int flags; 315 { 316 vm_offset_t offset, i; 317 vm_map_entry_t entry; 318 vm_offset_t addr; 319 vm_page_t m; 320 321 GIANT_REQUIRED; 322 323 size = round_page(size); 324 addr = vm_map_min(map); 325 326 /* 327 * Locate sufficient space in the map. This will give us the final 328 * virtual address for the new memory, and thus will tell us the 329 * offset within the kernel map. 330 */ 331 vm_map_lock(map); 332 if (vm_map_findspace(map, vm_map_min(map), size, &addr)) { 333 vm_map_unlock(map); 334 if (map != kmem_map) { 335 static int last_report; /* when we did it (in ticks) */ 336 if (ticks < last_report || 337 (ticks - last_report) >= hz) { 338 last_report = ticks; 339 printf("Out of mbuf address space!\n"); 340 printf("Consider increasing NMBCLUSTERS\n"); 341 } 342 goto bad; 343 } 344 if ((flags & M_NOWAIT) == 0) 345 panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated", 346 (long)size, (long)map->size); 347 goto bad; 348 } 349 offset = addr - VM_MIN_KERNEL_ADDRESS; 350 vm_object_reference(kmem_object); 351 vm_map_insert(map, kmem_object, offset, addr, addr + size, 352 VM_PROT_ALL, VM_PROT_ALL, 0); 353 354 for (i = 0; i < size; i += PAGE_SIZE) { 355 /* 356 * Note: if M_NOWAIT specified alone, allocate from 357 * interrupt-safe queues only (just the free list). If 358 * M_USE_RESERVE is also specified, we can also 359 * allocate from the cache. Neither of the latter two 360 * flags may be specified from an interrupt since interrupts 361 * are not allowed to mess with the cache queue. 362 */ 363 retry: 364 m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i), 365 ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ? 366 VM_ALLOC_INTERRUPT : 367 VM_ALLOC_SYSTEM); 368 369 /* 370 * Ran out of space, free everything up and return. Don't need 371 * to lock page queues here as we know that the pages we got 372 * aren't on any queues. 373 */ 374 if (m == NULL) { 375 if ((flags & M_NOWAIT) == 0) { 376 vm_map_unlock(map); 377 VM_WAIT; 378 vm_map_lock(map); 379 goto retry; 380 } 381 vm_map_delete(map, addr, addr + size); 382 vm_map_unlock(map); 383 goto bad; 384 } 385 vm_page_flag_clear(m, PG_ZERO); 386 m->valid = VM_PAGE_BITS_ALL; 387 } 388 389 /* 390 * Mark map entry as non-pageable. Assert: vm_map_insert() will never 391 * be able to extend the previous entry so there will be a new entry 392 * exactly corresponding to this address range and it will have 393 * wired_count == 0. 394 */ 395 if (!vm_map_lookup_entry(map, addr, &entry) || 396 entry->start != addr || entry->end != addr + size || 397 entry->wired_count != 0) 398 panic("kmem_malloc: entry not found or misaligned"); 399 entry->wired_count = 1; 400 401 vm_map_simplify_entry(map, entry); 402 403 /* 404 * Loop thru pages, entering them in the pmap. (We cannot add them to 405 * the wired count without wrapping the vm_page_queue_lock in 406 * splimp...) 407 */ 408 for (i = 0; i < size; i += PAGE_SIZE) { 409 m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i)); 410 vm_page_wire(m); 411 vm_page_wakeup(m); 412 /* 413 * Because this is kernel_pmap, this call will not block. 414 */ 415 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 416 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 417 } 418 vm_map_unlock(map); 419 420 return (addr); 421 422 bad: 423 return (0); 424 } 425 426 /* 427 * kmem_alloc_wait: 428 * 429 * Allocates pageable memory from a sub-map of the kernel. If the submap 430 * has no room, the caller sleeps waiting for more memory in the submap. 431 * 432 * This routine may block. 433 */ 434 435 vm_offset_t 436 kmem_alloc_wait(map, size) 437 vm_map_t map; 438 vm_size_t size; 439 { 440 vm_offset_t addr; 441 442 GIANT_REQUIRED; 443 444 size = round_page(size); 445 446 for (;;) { 447 /* 448 * To make this work for more than one map, use the map's lock 449 * to lock out sleepers/wakers. 450 */ 451 vm_map_lock(map); 452 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0) 453 break; 454 /* no space now; see if we can ever get space */ 455 if (vm_map_max(map) - vm_map_min(map) < size) { 456 vm_map_unlock(map); 457 return (0); 458 } 459 vm_map_unlock(map); 460 tsleep(map, PVM, "kmaw", 0); 461 } 462 vm_map_insert(map, NULL, (vm_offset_t) 0, addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0); 463 vm_map_unlock(map); 464 return (addr); 465 } 466 467 /* 468 * kmem_free_wakeup: 469 * 470 * Returns memory to a submap of the kernel, and wakes up any processes 471 * waiting for memory in that map. 472 */ 473 void 474 kmem_free_wakeup(map, addr, size) 475 vm_map_t map; 476 vm_offset_t addr; 477 vm_size_t size; 478 { 479 GIANT_REQUIRED; 480 481 vm_map_lock(map); 482 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size)); 483 wakeup(map); 484 vm_map_unlock(map); 485 } 486 487 /* 488 * kmem_init: 489 * 490 * Create the kernel map; insert a mapping covering kernel text, 491 * data, bss, and all space allocated thus far (`boostrap' data). The 492 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 493 * `start' as allocated, and the range between `start' and `end' as free. 494 */ 495 496 void 497 kmem_init(start, end) 498 vm_offset_t start, end; 499 { 500 vm_map_t m; 501 502 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end); 503 vm_map_lock(m); 504 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */ 505 kernel_map = m; 506 kernel_map->system_map = 1; 507 (void) vm_map_insert(m, NULL, (vm_offset_t) 0, 508 VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0); 509 /* ... and ending with the completion of the above `insert' */ 510 vm_map_unlock(m); 511 } 512