xref: /freebsd/sys/vm/vm_kern.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Kernel memory management.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include "opt_vm.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>		/* for ticks and hz */
75 #include <sys/domainset.h>
76 #include <sys/eventhandler.h>
77 #include <sys/lock.h>
78 #include <sys/proc.h>
79 #include <sys/malloc.h>
80 #include <sys/rwlock.h>
81 #include <sys/sysctl.h>
82 #include <sys/vmem.h>
83 #include <sys/vmmeter.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_domainset.h>
88 #include <vm/vm_kern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_pagequeue.h>
96 #include <vm/vm_radix.h>
97 #include <vm/vm_extern.h>
98 #include <vm/uma.h>
99 
100 vm_map_t kernel_map;
101 vm_map_t exec_map;
102 vm_map_t pipe_map;
103 
104 const void *zero_region;
105 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
106 
107 /* NB: Used by kernel debuggers. */
108 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
109 
110 u_int exec_map_entry_size;
111 u_int exec_map_entries;
112 
113 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
114     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
115 
116 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
117 #if defined(__arm__) || defined(__sparc64__)
118     &vm_max_kernel_address, 0,
119 #else
120     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
121 #endif
122     "Max kernel address");
123 
124 /*
125  *	kva_alloc:
126  *
127  *	Allocate a virtual address range with no underlying object and
128  *	no initial mapping to physical memory.  Any mapping from this
129  *	range to physical memory must be explicitly created prior to
130  *	its use, typically with pmap_qenter().  Any attempt to create
131  *	a mapping on demand through vm_fault() will result in a panic.
132  */
133 vm_offset_t
134 kva_alloc(vm_size_t size)
135 {
136 	vm_offset_t addr;
137 
138 	size = round_page(size);
139 	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
140 		return (0);
141 
142 	return (addr);
143 }
144 
145 /*
146  *	kva_free:
147  *
148  *	Release a region of kernel virtual memory allocated
149  *	with kva_alloc, and return the physical pages
150  *	associated with that region.
151  *
152  *	This routine may not block on kernel maps.
153  */
154 void
155 kva_free(vm_offset_t addr, vm_size_t size)
156 {
157 
158 	size = round_page(size);
159 	vmem_free(kernel_arena, addr, size);
160 }
161 
162 /*
163  *	Allocates a region from the kernel address map and physical pages
164  *	within the specified address range to the kernel object.  Creates a
165  *	wired mapping from this region to these pages, and returns the
166  *	region's starting virtual address.  The allocated pages are not
167  *	necessarily physically contiguous.  If M_ZERO is specified through the
168  *	given flags, then the pages are zeroed before they are mapped.
169  */
170 vm_offset_t
171 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
172     vm_paddr_t high, vm_memattr_t memattr)
173 {
174 	vmem_t *vmem;
175 	vm_object_t object = kernel_object;
176 	vm_offset_t addr, i, offset;
177 	vm_page_t m;
178 	int pflags, tries;
179 
180 	size = round_page(size);
181 	vmem = vm_dom[domain].vmd_kernel_arena;
182 	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
183 		return (0);
184 	offset = addr - VM_MIN_KERNEL_ADDRESS;
185 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
186 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
187 	pflags |= VM_ALLOC_NOWAIT;
188 	VM_OBJECT_WLOCK(object);
189 	for (i = 0; i < size; i += PAGE_SIZE) {
190 		tries = 0;
191 retry:
192 		m = vm_page_alloc_contig_domain(object, atop(offset + i),
193 		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
194 		if (m == NULL) {
195 			VM_OBJECT_WUNLOCK(object);
196 			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
197 				if (!vm_page_reclaim_contig_domain(domain,
198 				    pflags, 1, low, high, PAGE_SIZE, 0) &&
199 				    (flags & M_WAITOK) != 0)
200 					vm_wait_domain(domain);
201 				VM_OBJECT_WLOCK(object);
202 				tries++;
203 				goto retry;
204 			}
205 			kmem_unback(object, addr, i);
206 			vmem_free(vmem, addr, size);
207 			return (0);
208 		}
209 		KASSERT(vm_phys_domain(m) == domain,
210 		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
211 		    vm_phys_domain(m), domain));
212 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
213 			pmap_zero_page(m);
214 		m->valid = VM_PAGE_BITS_ALL;
215 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
216 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
217 	}
218 	VM_OBJECT_WUNLOCK(object);
219 	return (addr);
220 }
221 
222 vm_offset_t
223 kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
224     vm_paddr_t high, vm_memattr_t memattr)
225 {
226 	struct vm_domainset_iter di;
227 	vm_offset_t addr;
228 	int domain;
229 
230 	KASSERT(vmem == kernel_arena,
231 	    ("kmem_alloc_attr: Only kernel_arena is supported."));
232 
233 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
234 	do {
235 		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
236 		    memattr);
237 		if (addr != 0)
238 			break;
239 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
240 
241 	return (addr);
242 }
243 
244 /*
245  *	Allocates a region from the kernel address map and physically
246  *	contiguous pages within the specified address range to the kernel
247  *	object.  Creates a wired mapping from this region to these pages, and
248  *	returns the region's starting virtual address.  If M_ZERO is specified
249  *	through the given flags, then the pages are zeroed before they are
250  *	mapped.
251  */
252 vm_offset_t
253 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
254     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
255     vm_memattr_t memattr)
256 {
257 	vmem_t *vmem;
258 	vm_object_t object = kernel_object;
259 	vm_offset_t addr, offset, tmp;
260 	vm_page_t end_m, m;
261 	u_long npages;
262 	int pflags, tries;
263 
264 	size = round_page(size);
265 	vmem = vm_dom[domain].vmd_kernel_arena;
266 	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
267 		return (0);
268 	offset = addr - VM_MIN_KERNEL_ADDRESS;
269 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
270 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
271 	pflags |= VM_ALLOC_NOWAIT;
272 	npages = atop(size);
273 	VM_OBJECT_WLOCK(object);
274 	tries = 0;
275 retry:
276 	m = vm_page_alloc_contig_domain(object, atop(offset), domain, pflags,
277 	    npages, low, high, alignment, boundary, memattr);
278 	if (m == NULL) {
279 		VM_OBJECT_WUNLOCK(object);
280 		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
281 			if (!vm_page_reclaim_contig_domain(domain, pflags,
282 			    npages, low, high, alignment, boundary) &&
283 			    (flags & M_WAITOK) != 0)
284 				vm_wait_domain(domain);
285 			VM_OBJECT_WLOCK(object);
286 			tries++;
287 			goto retry;
288 		}
289 		vmem_free(vmem, addr, size);
290 		return (0);
291 	}
292 	KASSERT(vm_phys_domain(m) == domain,
293 	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
294 	    vm_phys_domain(m), domain));
295 	end_m = m + npages;
296 	tmp = addr;
297 	for (; m < end_m; m++) {
298 		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
299 			pmap_zero_page(m);
300 		m->valid = VM_PAGE_BITS_ALL;
301 		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
302 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
303 		tmp += PAGE_SIZE;
304 	}
305 	VM_OBJECT_WUNLOCK(object);
306 	return (addr);
307 }
308 
309 vm_offset_t
310 kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
311     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
312     vm_memattr_t memattr)
313 {
314 	struct vm_domainset_iter di;
315 	vm_offset_t addr;
316 	int domain;
317 
318 	KASSERT(vmem == kernel_arena,
319 	    ("kmem_alloc_contig: Only kernel_arena is supported."));
320 
321 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
322 	do {
323 		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
324 		    alignment, boundary, memattr);
325 		if (addr != 0)
326 			break;
327 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
328 
329 	return (addr);
330 }
331 
332 /*
333  *	kmem_suballoc:
334  *
335  *	Allocates a map to manage a subrange
336  *	of the kernel virtual address space.
337  *
338  *	Arguments are as follows:
339  *
340  *	parent		Map to take range from
341  *	min, max	Returned endpoints of map
342  *	size		Size of range to find
343  *	superpage_align	Request that min is superpage aligned
344  */
345 vm_map_t
346 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
347     vm_size_t size, boolean_t superpage_align)
348 {
349 	int ret;
350 	vm_map_t result;
351 
352 	size = round_page(size);
353 
354 	*min = vm_map_min(parent);
355 	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
356 	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
357 	    MAP_ACC_NO_CHARGE);
358 	if (ret != KERN_SUCCESS)
359 		panic("kmem_suballoc: bad status return of %d", ret);
360 	*max = *min + size;
361 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
362 	if (result == NULL)
363 		panic("kmem_suballoc: cannot create submap");
364 	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
365 		panic("kmem_suballoc: unable to change range to submap");
366 	return (result);
367 }
368 
369 /*
370  *	kmem_malloc:
371  *
372  *	Allocate wired-down pages in the kernel's address space.
373  */
374 vm_offset_t
375 kmem_malloc_domain(int domain, vm_size_t size, int flags)
376 {
377 	vmem_t *vmem;
378 	vm_offset_t addr;
379 	int rv;
380 
381 	vmem = vm_dom[domain].vmd_kernel_arena;
382 	size = round_page(size);
383 	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
384 		return (0);
385 
386 	rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
387 	if (rv != KERN_SUCCESS) {
388 		vmem_free(vmem, addr, size);
389 		return (0);
390 	}
391 	return (addr);
392 }
393 
394 vm_offset_t
395 kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
396 {
397 	struct vm_domainset_iter di;
398 	vm_offset_t addr;
399 	int domain;
400 
401 	KASSERT(vmem == kernel_arena,
402 	    ("kmem_malloc: Only kernel_arena is supported."));
403 
404 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
405 	do {
406 		addr = kmem_malloc_domain(domain, size, flags);
407 		if (addr != 0)
408 			break;
409 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
410 
411 	return (addr);
412 }
413 
414 /*
415  *	kmem_back:
416  *
417  *	Allocate physical pages for the specified virtual address range.
418  */
419 int
420 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
421     vm_size_t size, int flags)
422 {
423 	vm_offset_t offset, i;
424 	vm_page_t m, mpred;
425 	int pflags;
426 
427 	KASSERT(object == kernel_object,
428 	    ("kmem_back_domain: only supports kernel object."));
429 
430 	offset = addr - VM_MIN_KERNEL_ADDRESS;
431 	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
432 	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
433 	if (flags & M_WAITOK)
434 		pflags |= VM_ALLOC_WAITFAIL;
435 
436 	i = 0;
437 	VM_OBJECT_WLOCK(object);
438 retry:
439 	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
440 	for (; i < size; i += PAGE_SIZE, mpred = m) {
441 		m = vm_page_alloc_domain_after(object, atop(offset + i),
442 		    domain, pflags, mpred);
443 
444 		/*
445 		 * Ran out of space, free everything up and return. Don't need
446 		 * to lock page queues here as we know that the pages we got
447 		 * aren't on any queues.
448 		 */
449 		if (m == NULL) {
450 			if ((flags & M_NOWAIT) == 0)
451 				goto retry;
452 			VM_OBJECT_WUNLOCK(object);
453 			kmem_unback(object, addr, i);
454 			return (KERN_NO_SPACE);
455 		}
456 		KASSERT(vm_phys_domain(m) == domain,
457 		    ("kmem_back_domain: Domain mismatch %d != %d",
458 		    vm_phys_domain(m), domain));
459 		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
460 			pmap_zero_page(m);
461 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
462 		    ("kmem_malloc: page %p is managed", m));
463 		m->valid = VM_PAGE_BITS_ALL;
464 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
465 		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
466 	}
467 	VM_OBJECT_WUNLOCK(object);
468 
469 	return (KERN_SUCCESS);
470 }
471 
472 int
473 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
474 {
475 	struct vm_domainset_iter di;
476 	int domain;
477 	int ret;
478 
479 	KASSERT(object == kernel_object,
480 	    ("kmem_back: only supports kernel object."));
481 
482 	vm_domainset_iter_malloc_init(&di, kernel_object, &domain, &flags);
483 	do {
484 		ret = kmem_back_domain(domain, object, addr, size, flags);
485 		if (ret == KERN_SUCCESS)
486 			break;
487 	} while (vm_domainset_iter_malloc(&di, &domain, &flags) == 0);
488 
489 	return (ret);
490 }
491 
492 /*
493  *	kmem_unback:
494  *
495  *	Unmap and free the physical pages underlying the specified virtual
496  *	address range.
497  *
498  *	A physical page must exist within the specified object at each index
499  *	that is being unmapped.
500  */
501 static int
502 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
503 {
504 	vm_page_t m, next;
505 	vm_offset_t end, offset;
506 	int domain;
507 
508 	KASSERT(object == kernel_object,
509 	    ("kmem_unback: only supports kernel object."));
510 
511 	if (size == 0)
512 		return (0);
513 	pmap_remove(kernel_pmap, addr, addr + size);
514 	offset = addr - VM_MIN_KERNEL_ADDRESS;
515 	end = offset + size;
516 	VM_OBJECT_WLOCK(object);
517 	m = vm_page_lookup(object, atop(offset));
518 	domain = vm_phys_domain(m);
519 	for (; offset < end; offset += PAGE_SIZE, m = next) {
520 		next = vm_page_next(m);
521 		vm_page_unwire(m, PQ_NONE);
522 		vm_page_free(m);
523 	}
524 	VM_OBJECT_WUNLOCK(object);
525 
526 	return (domain);
527 }
528 
529 void
530 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
531 {
532 
533 	_kmem_unback(object, addr, size);
534 }
535 
536 /*
537  *	kmem_free:
538  *
539  *	Free memory allocated with kmem_malloc.  The size must match the
540  *	original allocation.
541  */
542 void
543 kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
544 {
545 	int domain;
546 
547 	KASSERT(vmem == kernel_arena,
548 	    ("kmem_free: Only kernel_arena is supported."));
549 	size = round_page(size);
550 	domain = _kmem_unback(kernel_object, addr, size);
551 	vmem_free(vm_dom[domain].vmd_kernel_arena, addr, size);
552 }
553 
554 /*
555  *	kmap_alloc_wait:
556  *
557  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
558  *	has no room, the caller sleeps waiting for more memory in the submap.
559  *
560  *	This routine may block.
561  */
562 vm_offset_t
563 kmap_alloc_wait(vm_map_t map, vm_size_t size)
564 {
565 	vm_offset_t addr;
566 
567 	size = round_page(size);
568 	if (!swap_reserve(size))
569 		return (0);
570 
571 	for (;;) {
572 		/*
573 		 * To make this work for more than one map, use the map's lock
574 		 * to lock out sleepers/wakers.
575 		 */
576 		vm_map_lock(map);
577 		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
578 			break;
579 		/* no space now; see if we can ever get space */
580 		if (vm_map_max(map) - vm_map_min(map) < size) {
581 			vm_map_unlock(map);
582 			swap_release(size);
583 			return (0);
584 		}
585 		map->needs_wakeup = TRUE;
586 		vm_map_unlock_and_wait(map, 0);
587 	}
588 	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
589 	    VM_PROT_ALL, MAP_ACC_CHARGED);
590 	vm_map_unlock(map);
591 	return (addr);
592 }
593 
594 /*
595  *	kmap_free_wakeup:
596  *
597  *	Returns memory to a submap of the kernel, and wakes up any processes
598  *	waiting for memory in that map.
599  */
600 void
601 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
602 {
603 
604 	vm_map_lock(map);
605 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
606 	if (map->needs_wakeup) {
607 		map->needs_wakeup = FALSE;
608 		vm_map_wakeup(map);
609 	}
610 	vm_map_unlock(map);
611 }
612 
613 void
614 kmem_init_zero_region(void)
615 {
616 	vm_offset_t addr, i;
617 	vm_page_t m;
618 
619 	/*
620 	 * Map a single physical page of zeros to a larger virtual range.
621 	 * This requires less looping in places that want large amounts of
622 	 * zeros, while not using much more physical resources.
623 	 */
624 	addr = kva_alloc(ZERO_REGION_SIZE);
625 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
626 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
627 	if ((m->flags & PG_ZERO) == 0)
628 		pmap_zero_page(m);
629 	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
630 		pmap_qenter(addr + i, &m, 1);
631 	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
632 
633 	zero_region = (const void *)addr;
634 }
635 
636 /*
637  * 	kmem_init:
638  *
639  *	Create the kernel map; insert a mapping covering kernel text,
640  *	data, bss, and all space allocated thus far (`boostrap' data).  The
641  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
642  *	`start' as allocated, and the range between `start' and `end' as free.
643  */
644 void
645 kmem_init(vm_offset_t start, vm_offset_t end)
646 {
647 	vm_map_t m;
648 
649 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
650 	m->system_map = 1;
651 	vm_map_lock(m);
652 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
653 	kernel_map = m;
654 	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
655 #ifdef __amd64__
656 	    KERNBASE,
657 #else
658 	    VM_MIN_KERNEL_ADDRESS,
659 #endif
660 	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
661 	/* ... and ending with the completion of the above `insert' */
662 	vm_map_unlock(m);
663 }
664 
665 #ifdef DIAGNOSTIC
666 /*
667  * Allow userspace to directly trigger the VM drain routine for testing
668  * purposes.
669  */
670 static int
671 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
672 {
673 	int error, i;
674 
675 	i = 0;
676 	error = sysctl_handle_int(oidp, &i, 0, req);
677 	if (error)
678 		return (error);
679 	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
680 		return (EINVAL);
681 	if (i != 0)
682 		EVENTHANDLER_INVOKE(vm_lowmem, i);
683 	return (0);
684 }
685 
686 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
687     debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
688 #endif
689